
Published in Transactions on Machine Learning Research (12/2025)

On a Gradient Approach to Chebyshev Center Problems with
Applications to Function Learning

Abhinav Raghuvanshi 200040008@iitb.ac.in
Indian Institute of Technology, Bombay

Mayank Baranwal mbaranwal@iitb.ac.in
Tata Consultancy Services Research, Mumbai
Indian Institute of Technology, Bombay

Debasish Chatterjee dchatter@iitb.ac.in
Indian Institute of Technology, Bombay

Reviewed on OpenReview: https: // openreview. net/ forum? id= lPZVsDhyj3

Abstract

We introduce gradOL, the first gradient-based optimization framework for solving Chebyshev
center problems, a fundamental challenge in optimal function learning and geometric opti-
mization. gradOL hinges on reformulating the semi-infinite problem as a finitary max-min
optimization, making it amenable to gradient-based techniques. By leveraging automatic
differentiation for precise numerical gradient computation, gradOL ensures numerical sta-
bility and scalability, making it suitable for large-scale settings. Under strong convexity
of the ambient norm, gradOL provably recovers optimal Chebyshev centers while directly
computing the associated radius. This addresses a key bottleneck in constructing stable
optimal interpolants. Empirically, gradOL achieves significant improvements in accuracy
and efficiency on 34 benchmark Chebyshev center problems from a benchmark CSIP library.
Moreover, we extend gradOL to general convex semi-infinite programming (CSIP), attaining
up to 4000× speedups over the state-of-the-art SIPAMPL solver tested on the indicated CSIP
library containing 67 benchmark problems. Furthermore, we provide the first theoretical
foundation for applying gradient-based methods to Chebyshev center problems, bridging
rigorous analysis with practical algorithms. gradOL thus offers a unified solution framework
for Chebyshev centers and broader CSIPs.

1 Introduction and Problem Formulation

Optimal interpolation and learning have been long-standing open problems in signal processing and the
theory of function learning. The problem was posed in Micchelli & Rivlin (1977) in the context of signal
processing, and while tractable solutions were sought by a multitude of researchers over the subsequent
decades, satisfactory solutions continued to remain elusive. In the language of approximation theory, the
optimal interpolation (learning) corresponds to the so-called Chebyshev center problem, which involves
constructing a single function from a given class that best justifies a given data set. Beyond function learning,
the Chebyshev center problem has found extensive applications in diverse fields, such as robust optimization
for managing uncertainty Ben-Tal & Nemirovski (1998), sensor network localization for estimating node
positions Doherty & Ghaoui (2001), and facility location problems to optimize placement strategies Drezner
& Hamacher (2004). Moreover, its utility extends to tasks like data fitting in classification Tax & Duin
(1999), control system design for ensuring stability under bounded uncertainties Zhou et al. (1996), and
parameter estimation in error-bounded scenarios Boyd & Vanderberghe (2004), underscoring its fundamental
importance in both theoretical and practical domains.

1

https://openreview.net/forum?id=lPZVsDhyj3

Published in Transactions on Machine Learning Research (12/2025)

Let us briefly recall the optimal interpolation problem in the context of function learning: At its core, on
a Banach space (Z, ∥·∥), one is given a closed and bounded subset 𝐾 ⊂ Z, and charged with the task of
determining a ball of smallest radius containing 𝐾. The center 𝜁 of such a ball is a Chebyshev center of
𝐾. In other words, a Chebyshev center of 𝐾 is an optimizer of the variational problem

minimize
𝑓 ∈Z

sup
𝑔∈𝐾

∥ 𝑓 − 𝑔∥ . (1)

Depending on certain properties (e.g., strict convexity) of the norm ∥·∥, a set 𝐾 may not have a single
Chebyshev center. The optimal value of (1) is the Chebyshev radius 𝑟𝐾 of 𝐾. We refer the reader to
the review Alimov & Tsar’kov (2019) and the authoritative text (Alimov & Tsar’kov, 2021, Chapter 16)
for background on the Chebyshev center problem, and the recent work Binev et al. (2024) for an historical
account of optimal interpolation interpreted from the viewpoint of the Chebyshev center. While the problem
is posed above in its most general, infinite-dimensional form, any computational method must necessarily
operate on a finite-dimensional version (Alimov & Tsar’kov, 2021, Section 16.1). This paper is dedicated to
solving this important finite-dimensional problem, for which we present an algorithm to find a solution that
is exact up to the precision of the computing machine.

Function learning and the Chebyshev center
In the context of function learning and interpolation theory, the Chebyshev center problem encodes the idea
of optimal learning in a hypothesized model class: Here Z stands for the space of functions whose subsets
are the hypothesis classes, and the set 𝐾 represents the subset of the model class of functions satisfying
a given data set. The corresponding optimization problem (1) faces difficult numerical challenges because
first, for each fixed 𝑓 ∈ Z, the inner maximization over 𝑔 in (1) is on a potentially infinite-dimensional
subset of the Banach space Z, and its solutions cannot be parametrically expressed in closed form in 𝑓 , and
second, the outer minimization over 𝑓 in (1) is also over an infinite-dimensional Banach space Z in general.
Consequently, (1) is numerically intractable. To ensure computational tractability, one “discretizes” the
various infinite-dimensional objects in (1) above, and works in a finite dimensional setting;1 the resulting
mathematical optimization is an instance of the so-called relative Chebyshev center problem: A relative
Chebyshev center of a closed and bounded subset 𝐾 with respect to a nonempty 𝑋 ⊂ Z is given by an
optimizer of

minimize
𝑓 ∈𝑋

sup
𝑔∈𝐾

∥ 𝑓 − 𝑔∥ , (2)

where the set 𝑋 is chosen to be a reasonably fine finite discretization approximating the Banach space Z and
the model class 𝐾 is restricted to a suitable finite dimensional set of functions (nearly) satisfying the given
data. Consequently, it addresses the optimal function learning problem via optimal interpolation from finite
datasets. Nevertheless, even the resulting simplified problem (2) continues to be numerically challenging
since even in finite-dimensions, the complexity increases exponentially in the state dimension (Alimov &
Tsar’kov, 2021, Chapter 15, p. 362). Indeed, the (finite-dimensional) Chebyshev center problem is known to
be NP-hard (Alimov & Tsar’kov, 2021, Chapter 15) in general.

Chebyshev center via convex semi-infinite programs
Some NP-hard problems may permit numerically viable and robust approximations, and it turns out that
such is the case with the (finite dimensional) Chebyshev center problem. At its core, given a nonempty and
compact set 𝐾 ⊂ ℝ𝑛, the centerpiece of a numerical algorithm must operate to solve the finite-dimensional
variational problem

𝑟𝐾 = inf
𝑥∈𝑋

sup
𝑢∈𝐾

∥𝑢 − 𝑥∥ , (3)

where 𝑋 is either ℝ𝑛 or a nonempty convex subset thereof. Function learning from finite data can be framed
in the language of (3) (see Paruchuri & Chatterjee (2023)). Note that (3) is always feasible, and if the set

1For computational tractability, as pointed out in (Alimov & Tsar’kov, 2021, Section 16.1), it is imperative to restrict
attention to finitary objects; consequently, considering finite-dimensional avatars of the various objects in (1) is the best that
can be done.

2

Published in Transactions on Machine Learning Research (12/2025)

𝐾 contains more than two distinct points, then the Chebyshev radius of 𝐾 is non-zero. Introducing a slack
variable 𝑠∈ℝ, we note that the value 𝑟𝐾 of (3) is precisely equal to the value of

minimize
(𝑠,𝑥)

𝑠

subject to
{
∥𝑢 − 𝑥∥ − 𝑠 ⩽ 0 for all 𝑢 ∈ 𝐾,
(𝑠, 𝑥) ∈ ℝ × 𝑋,

(4)

which is a convex semi-infinite program (CSIP) — a finite-dimensional convex optimization problem with
a compact (and infinite) family of convex inequality constraints. It follows that solving (4) gives a solution
to (3) in the sense that if (𝑠∗, 𝑥∗) solves (4), then 𝑟𝐾 = 𝑠∗ and 𝑥∗ is a Chebyshev center of 𝐾. The recent
work Das et al. (2022) established a viable approach to obtaining exact solutions to CSIPs, and Paruchuri
& Chatterjee (2023) developed the connection between optimal function learning and CSIPs to provide a
numerically viable solution to the Chebyshev center problem. While these two works established general
principles and high-level algorithms, robust numerical algorithms for solving the Chebyshev center problem
were outside their scope. This article is devoted to the development of a gradient based algorithm for
solving the Chebyshev center problem, which is enabled by reformulating the underlying semi-infinite
program into an entirely finitary max-min structure, which in turn serves as a numerically viable
algorithm for optimal function learning

Why Are Chebyshev Center Problems Practically Important? - Illustrative Examples
Chebyshev center problems, at their core, capture the principle of constructing an “optimally central” object
within a set 𝐾, which translates directly into optimal function learning when the set represents candidate
hypotheses consistent with observed data. Beyond their foundational role in approximation theory, several
concrete examples illustrate their broad impact:
Robust Control Systems: In designing a controller for a physical system (e.g., an aircraft or a robot),
the exact parameters of the system are often uncertain due to manufacturing tolerances or environmental
changes. The set 𝐾 can represent the set of all possible system responses. The Chebyshev center corresponds
to a single controller design that guarantees the best possible performance (e.g., stability) in the worst-case
scenario, across all possible system variations in 𝐾.
Sensor Network Localization: Consider estimating the position of a sensor node based on signals from
several fixed beacons. Each signal constrains the node’s location to be within a certain region. The inter-
section of these regions forms the set 𝐾 of all possible locations. The Chebyshev center of 𝐾 provides the
optimal location estimate, minimizing the maximum possible error between the estimate and true location.
Financial Portfolio Optimization: An investor might model a set 𝐾 of plausible future market scenarios,
each represented by a vector of asset returns. The goal is to construct a single investment portfolio (the
center) that minimizes the maximum regret across all scenarios in 𝐾. This approach creates a portfolio
optimally hedged against worst-case market outcome.

Contributions
Chebyshev center problems and more broadly, CSIPs, are notoriously challenging to solve, even in moder-
ately high-dimensional settings. The core difficulty lies in their semi-infinite nature: the feasible region is
defined by infinitely many constraints, rendering even approximate solutions computationally demanding. In
response, prior work has often focused on tractable relaxations, such as the relaxed Chebyshev center (RCC)
problem Eldar et al. (2007); Xia et al. (2021), which approximates the original formulation.
Consequently, developing a scalable, gradient-based solver for the original (non-relaxed) Chebyshev
center problem has remained a longstanding open challenge in optimization and function learn-
ing. Despite the importance of the problem, there has been little progress on algorithms that can directly
tackle the original formulation using modern optimization toolkits. This paper introduces gradOL, the first
framework to successfully address this gap. To the best of our knowledge, no existing methods have
successfully exploited gradient-based optimization to directly solve the Chebyshev center problem, a task
for which we leverage modern automatic differentiation techniques. Relying on the fundamental insights of
Borwein (1981), the key results of Paruchuri & Chatterjee (2023) can be leveraged to establish that the value

3

Published in Transactions on Machine Learning Research (12/2025)

of (4) is precisely equal to the value of

sup
(𝑢1 ,...,𝑢𝑛+1) ∈𝐾𝑛+1

inf
(𝑠,𝑥) ∈ℝ×𝑋

{
𝑠

��� ∥𝑢𝑖 − 𝑥∥ ⩽ 𝑠, 𝑖 = 1, . . . , 𝑛 + 1
}
. (5)

Observe that (5) is entirely finitary: The inner minimization is a standard convex optimization problem
with 𝑛 + 1 constraints, while the outer maximization is global and over 𝑛 + 1 many variables, each of which
is 𝑛-dimensional. Since there is no realistic possibility of obtaining an expression of the map

𝐾𝑛+1 ∋ (𝑢1, . . . , 𝑢𝑛+1) ↦→ G(𝑢1, . . . , 𝑢𝑛+1)

where, G(𝑢1, . . . , 𝑢𝑛+1) is defined as:

inf
(𝑠,𝑥) ∈ℝ×𝑋

{
𝑠

��� ∥𝑢𝑖 − 𝑥∥ ⩽ 𝑠 for 𝑖 = 1, . . . , 𝑛 + 1
}
∈ ℝ,

but it can be evaluated at will by employing standard convex optimization solvers, zeroth-order numerical
methods are natural candidates for solving (5). However, the availability of autodiff libraries, e.g., pytorch
and zygote, raises the pertinent question of whether employing first-order (sub-)gradient methods (leveraging
automatic differentiation) to solve the outer maximization in (5) would be feasible. Below we summarize
our primary contributions:
1. Efficient solver for Chebyshev center problems: We present a robust and numerically efficient im-

plementation of a gradient-based optimization technique for the Chebyshev center problem. Our complete
Julia package, gradOL, employs the latest automatic differentiation libraries to compute (sub-)gradients,
ensuring high accuracy and scalability. Specifically:
• The optimal value obtained via our solver corresponds directly to the Chebyshev radius.
• When the ambient norm on ℝ𝑛 is strongly convex, our algorithm also produces optimizers that attain

the Chebyshev radius through the formulation in (5). This is particularly valuable in optimal function
learning, where the construction of numerically viable optimal interpolants has remained a notable
challenge over decades.

2. Theoretical foundation for gradient-based learning: The inner minimization in (5) is subject to
constraints, raising two key challenges: (a) whether the gradient of the inner objective, as required by the
outer maximization step, is well-defined, and (b) how to compute this gradient efficiently when it exists.
While our proposed gradOL algorithm directly addresses the computational aspect in (b) through auto-
matic differentiation, we also provide a rigorous theoretical foundation that justifies the use of gradient-
based learning in the first place. Specifically, we establish that the map 𝑢 ↦→ G(𝑢) is locally Lipschitz,
thereby ensuring the existence of generalized gradients.

3. Benchmark testing and performance: The gradOL package has been tested extensively on a curated
collection of 34 benchmark Chebyshev center problems from the CSIP library Vaz (2001). As reported in
the subsequent sections, gradOL demonstrates consistent improvements over existing techniques, providing
very accurate and vastly more efficient solutions in all cases.

4. The case of general CSIPs: Since the Chebyshev center problem is a special case of CSIPs, our
gradient-based approach naturally extends to solving general CSIPs. We applied gradOL to an extended
library of 33 additional benchmark CSIPs. Notably, gradOL shows several orders of magnitude
improvement in speed in almost all cases, and the values reported by gradOL are no worse than the
best reported values in all but two cases.

2 Preliminaries

For Chebyshev center problems, both geometric and optimization-based methods have been proposed. In
the case of certain convex sets, the Chebyshev center problem can be formulated as a linear program (LP)
when the feasible region is defined by linear inequalities, making it computationally efficient to solve. Recent
developments have focused on numerical algorithms that combine targeted sampling techniques and convex
semi-infinite optimization to compute the Chebyshev radius and center more efficiently. These methods are
particularly relevant in optimal learning scenarios, especially when working with compact hypothesis spaces
within Banach spaces (Paruchuri & Chatterjee, 2023).

4

Published in Transactions on Machine Learning Research (12/2025)

A key result from the theory of CSIPs
A CSIP is a finite-dimensional convex optimization problem with infinitely many constraints. Consider

minimize
𝑦∈Y

𝑓◦ (𝑦)

subject to
{
𝑓 (𝑦, 𝑣) ⩽ 0 for all 𝑣 ∈ U,

Y ⊂ ℝ𝑑 , U ⊂ ℝ𝑚,

(6)

along with the following data:
((6)-a) Ω ⊂ ℝ𝑑 is an open convex set, Y ⊂ Ω is a closed and convex set with non-empty interior, and U is

a compact set,

((6)-b) 𝑓◦ : Ω → ℝ is a continuous convex function,

((6)-c) 𝑓 : Ω × U→ ℝ is a continuous function such that 𝑓 (·, 𝑣) is convex for every 𝑣 ∈ U, and

((6)-d) the admissible set ⋂
𝑣∈U

{
𝑦 ∈ Y

�� 𝑓 (𝑦, 𝑣) ⩽ 0
}

has non-empty interior.
The following recent result (Das et al., 2022, Theorem 1, Proposition 2) provides a numerically viable
mechanism to solve CSIPs with low memory requirements, and constitutes the backbone of the gradient
technique established in this article.
Theorem 2.1. Consider the CSIP (6) along with its associated data ((6)-a) – ((6)-d). Define the function

U𝑑 ∋ (𝑣1, . . . , 𝑣𝑑) =: 𝑣 ↦→ G(𝑣) := inf
𝑦∈Y

{
𝑓◦ (𝑦)

��� 𝑓 (𝑦, 𝑣𝑖) ⩽ 0 for 𝑖 = 1, . . . , 𝑑
}
. (7)

Then the (optimal) value of the CSIP (6) equals

sup
(𝑣1 ,...,𝑣𝑑) ∈U𝑑

G(𝑣1, . . . , 𝑣𝑑). (8)

Moreover, if (6) admits a unique solution and if (𝑣◦1, . . . , 𝑣◦𝑑) maximizes G, then an optimizer of

inf
𝑦∈Y

{
𝑓◦ (𝑦)

��� 𝑓 (𝑦, 𝑣◦𝑖) ⩽ 0 for 𝑖 = 1, . . . , 𝑑
}

also optimizes (6).

Theorem 2.1 is applicable the CSIP (4) corresponding to the Chebyshev center problem (3); indeed, one
picks 𝑑 = 𝑛+1, 𝑚 = 𝑛, Ω = ℝ×ℝ𝑛, U = 𝐾 ⊂ ℝ𝑛, Y ⊂ Ω is some closed and convex set containing [0,+∞[×𝐾,
and the functions Ω ∋ (𝑠, 𝑥) ↦→ 𝑓◦ (𝑠, 𝑥) = 𝑠 and Ω × 𝐾 ∋

(
(𝑠, 𝑥), 𝑢

)
↦→ 𝑓

(
(𝑠, 𝑥), 𝑢

)
= ∥𝑢 − 𝑥∥ − 𝑠 in (6) to obtain

(4). It is well-known that if the underlying norm ∥·∥ in (4) is strictly convex, e.g., if it is the Euclidean norm,
then the Chebyshev center is unique. Consequently, the CSIP (4) admits a unique solution, and in the light
of Theorem 2.1, the value of (6) equals that of (5) (as noted before (5)) and an optimizer of the Chebyshev
center problem may be extracted as indicated in Theorem 2.1; of course, the corresponding (optimal) value
is the Chebyshev radius.
In the case of the CSIP (4), the function G becomes

𝐾𝑛+1 ∋ (𝑢1, . . . , 𝑢𝑛+1) =: 𝑢 ↦→ G(𝑢) := inf
(𝑠,𝑥) ∈ℝ×𝑋

{
𝑠
�� ∥𝑢𝑖 − 𝑥∥ − 𝑠 ⩽ 0 for 𝑖 = 1, . . . , 𝑛 + 1

}
. (9)

Our main contribution — the algorithm gradOL — leverages insights from Theorem 2.1 to develop a (sub-
)gradient-based optimization algorithm, gradOL, which employs automatic differentiation for numerical gra-
dient estimation. gradOL is designed to employ numerical gradients to maximize G. A key challenge in
maximizing (𝑢1, . . . , 𝑢𝑛+1) ↦→ G(𝑢1, . . . , 𝑢𝑛+1) lies in the absence of closed-form analytical formulae for G

and therefore its gradients. The success of gradient algorithms for optimization hinges on the local Lipschitz
property of the corresponding objective function, so it is natural to find conditions under which this property
holds for G in (9).

5

Published in Transactions on Machine Learning Research (12/2025)

Remark 2.2 (Convexity in the inner variable vs. outer maximization). Although the original problem is
convex, it is semi-infinite. Theorem 2.1 yields a finitary max–min reformulation with the same optimal value.
For any fixed 𝑢, the inner minimization remains a convex program; in contrast, the outer maximization over
𝑢 is generally non-concave and can be non-smooth. This is the source of the stationarity-type guarantees
discussed in Remark 3.2.

Automatic Differentiation for Gradient Computation

Our method leverages automatic differentiation (AD) (Baydin et al., 2018), which computes exact gradients
by propagating derivatives through the computational graph of the routine. The value function G in (7)
is defined implicitly through an inner optimization, and its gradient has no closed form. AD differentiates
through the full sequence of operations that produce G, yielding an exact ∇G and enabling the gradOL
algorithm.

3 A Differentiable Max-Min Formulation and the gradOL Algorithm

Ensuring local Lipschitzness of the function G for general CSIPs with inequality constraints presents signif-
icant difficulties, but certain structures of Chebyshev center problems make them amenable to apply results
from the shelf for proving local Lipschitzness of the corresponding G. Proposition A.1 in Appendix A pro-
vides a set of sufficient conditions for G(·) to be continuous. In order to satisfy the hypotheses of Proposition
A.1, it is possible to rephrase the Chebyshev center problem (3) to the smooth variant

inf
𝑥∈𝑋

sup
𝑢∈𝐾

∥𝑢 − 𝑥∥2 , (10)

such that its optimal value is the square of the Chebyshev radius and its corresponding CSIP (4) features
the twice continuously differentiable objective function 𝑓◦ (𝑠, 𝑥) := 𝑠 and constraint function 𝑓

(
(𝑠, 𝑥), 𝑢

)
=

∥𝑢 − 𝑥∥2 − 𝑠.
Consider the CSIP corresponding to (10) given by

inf
(𝑠,𝑥) ∈ℝ×𝑋

{
𝑠
�� ∥𝑢 − 𝑥∥2 − 𝑠 ⩽ 0 for all 𝑢 ∈ 𝐾

}
, (11)

for which we have the following result. Recall that 𝐾 may be replaced by its closed convex hull, conv(𝐾), in
the Chebyshev center problem; consequently, we shall assume in the sequel that 𝐾 = conv(𝐾) without losing
generality.
Theorem 3.1. Consider the problem (11) with 𝐾 ⊂ ℝ𝑛 non-empty and compact,2 and suppose that 𝑋 is a
compact and convex set containing 𝐾. Define the function

𝐾𝑛+1 ∋ (𝑢1, . . . , 𝑢𝑛+1) =: 𝑢 ↦→ G(𝑢) := inf
(𝑠,𝑥) ∈ℝ×𝑋

{
𝑠

��� ∥𝑢𝑖 − 𝑥∥2 ⩽ 𝑠 for 𝑖 = 1, . . . , 𝑛 + 1
}
. (12)

Then the mapping G is ℝ-valued, Lipschitz continuous, and the value of (10) is precisely equal to
sup𝑢∈𝐾𝑛+1 G(𝑢).

Proof. The mapping G is ℝ-valued since the admissible set is non-empty. Indeed, since 𝐾 is non-empty and
compact, it is bounded. Consequently, G admits an upper bound of diam𝐾 := sup𝑥′ ,𝑥′′∈𝐾 ∥𝑥′ − 𝑥′′∥, while 0
is an obvious lower bound of G. To wit, G is ℝ-valued.
For 𝑠′ > diam(𝐾) and arbitrary 𝑥′ ∈ 𝐾 we have ∥𝑥 − 𝑢∥2 − 𝑠′ < 0 for all 𝑢 ∈ 𝐾, which means that (11) is
strictly feasible. Therefore, the strict feasibility condition ((6)-d) in the context of (6) holds in the case of
(11). The remaining hypotheses of Theorem 2.1 are clearly satisfied for (11), and its assertion guarantees
that the value of (10) is sup𝑢∈𝐾𝑛+1 G(𝑢).
It remains to prove Lipschitz continuity of G, which we present in a sequence of steps:

2Recall that by assumption 𝐾 is closed and convex.

6

Published in Transactions on Machine Learning Research (12/2025)

Step 1: The optimization problem on the right-hand side of (12) admits a solution for every 𝑢 ∈ 𝐾𝑛+1.
Indeed, this is an immediate consequence of Weierstrass’s theorem in view of continuity of the objective and
constraint functions and compactness of the admissible set.
Step 2: The set-valued map 𝑆opt : 𝐾𝑛+1 ⇒ ℝ𝑛 defined by

𝐾𝑛+1 ∋ 𝑢 ↦→ 𝑆opt (𝑢) := arg min
(𝑠,𝑥) ∈ℝ×𝑋

{
𝑠

��� ∥𝑥 − 𝑢𝑖 ∥2 ⩽ 𝑠 for 𝑖 = 1, . . . , 𝑛 + 1
}

is a mapping. Indeed, that 𝑆opt is non-empty valued follows from Step 1. Moreover, since 𝐾 ≠ ∅ by
hypothesis, for any 𝑦 ∈ 𝐾 and for 𝑢 = (𝑢1, . . . , 𝑢𝑛+1) the pair

(
max𝑖=1,...,𝑛+1 ∥𝑢𝑖 − 𝑦∥2 , 𝑦

)
∈ ℝ × 𝑋 is in the

admissible set of the indicated optimization problem. Moreover, the objective function of the optimization
problem is such that if (𝑠′, 𝑥′) and (𝑠′′, 𝑥′′) are two optimizers, then of course 𝑠′ = 𝑠′′, which means that two
optimizers can differ only in the second component. But then due to strong convexity of the norm ∥·∥, the
constraints for 𝑘 = 1, . . . , 𝑛 + 1 give us

2−1𝑥′ + 2−1𝑥′′− 𝑢𝑘

< 2−1 (∥𝑥′ − 𝑢𝑘 ∥ + ∥𝑥′′ − 𝑢𝑘 ∥)<
√
𝑠′ ,

implying that neither (𝑠′, 𝑥′) nor (𝑠′, 𝑥′′) is an optimizer (because one obtains a better value for the pair(
max𝑖=1,...,𝑛+1

2−1 (𝑥′ + 𝑥′′)

2
, 2−1 (𝑥′+𝑥′′)

)
∈ ℝ×𝑋, which is admissible due to convexity of 𝐾), contradicting

our premise. Uniqueness of optimizers follows, and therefore, 𝑆opt is a mapping.
Step 3: Fix 𝑢 ∈ 𝐾𝑛+1 and consider the convex nonlinear program

inf
(𝑠,𝑥) ∈ℝ×𝑋

{
𝑠

��� ∥𝑢𝑖 − 𝑥∥2 ⩽ 𝑠 for 𝑖 = 1, . . . , 𝑛 + 1
}

(13)

on the right-hand side of (12). The family of (𝑛+1) constraints in the preceding program admits the Jacobian

(derivative) matrix 𝐽 (𝑢; 𝑥) :=
©­­«
−1 2(𝑥−𝑢1)ᵀ
−1 2(𝑥−𝑢2)ᵀ
...

...
−1 2(𝑥−𝑢𝑛+1)ᵀ

ª®®¬ for 𝑥 ∈ 𝐾, and clearly 𝑣 :=
(
1 0ᵀ

𝑛+1
)ᵀ ∈ ℝ𝑛+1 satisfies 𝐽 (𝑢; 𝑥) ·

𝑣 =
(
−1 · · · −1

)ᵀ
. Therefore, the Mangasarian-Fromovitz constraint qualification (MFCQ) condition holds

for (13) for the entire family of constraints, and consequently, also for the active constraints. In addition,
the set-valued map 𝑆feas defined by

𝐾𝑛+1 ∋ 𝑢 ↦→ 𝑆feas (𝑢), 𝑆feas (𝑢) :=
𝑛+1⋂
𝑖=1

{
(𝑠, 𝑥) ∈ ℝ × 𝑋

�� ∥𝑢𝑖 − 𝑥∥2 − 𝑠 ⩽ 0
}
⊂ ℝ𝑛 (14)

is uniformly compact because its image is contained in the compact set [0, diam𝐾] × 𝑋 ⊂ ℝ × 𝑋 due to the
definition of (13). (Fiacco & Ishizuka, 1990, Theorem 4.2) — reproduced in Proposition A.1 in Appendix
§A, therefore, applies to (13), and guarantees local Lipschitz continuity of G around 𝑢.
Step 4: The map G is Lipschitz continuous. This follows from (Cobzaş et al., 2019, Theorem 2.1.6), but we
provide a quick proof here. Since 𝑢 was selected in Step 3 arbitrarily, we get the local Lipschitz property
of G around every 𝑢 ∈ 𝐾𝑛+1, and consequently, G is continuous. Since 𝐾𝑛+1 is compact, G attains its
maximum and minimum on 𝐾𝑛+1, and let 𝑀 := sup𝑢∈𝐾𝑛+1 G(𝑢) − inf𝑢′∈𝐾𝑛+1 G(𝑢′). If G is not Lipschitz on
𝐾𝑛+1, then sup𝑢,𝑢′∈𝐾𝑛+1

𝑢≠𝑢′

|G(𝑢)−G(𝑢′) |
∥𝑢−𝑢′∥ = +∞. That means there exist sequences (𝑢𝑘)𝑘∈ℕ∗ , (𝑢′𝑘)𝑘∈ℕ∗ ⊂ 𝐾𝑛+1 such

that lim𝑘→+∞
|G(𝑢𝑘)−G(𝑢′𝑘) |

∥𝑢𝑘−𝑢′𝑘 ∥ = +∞. Since 𝐾𝑛+1 is compact, it follows that there exist subsequences (𝑢𝑘ℓ)ℓ∈ℕ∗

and (𝑢′𝑘ℓ)ℓ∈ℕ∗ that converge to some 𝑣 and 𝑣′ in 𝐾𝑛+1, respectively. But then, since G is bounded on 𝐾𝑛+1,
the numerator of the preceding limit is bounded by 2𝑀, which gives us(

𝑢𝑘ℓ − 𝑢′𝑘ℓ

 −−−−−→ℓ→+∞

0
)

⇒ (𝑣 = 𝑣′).

But this leads to limℓ→+∞
|G(𝑢𝑘ℓ)−G(𝑣′) |

∥𝑢𝑘ℓ −𝑣′∥
= +∞, contradicting local Lipschitz continuity of G around 𝑣′, and

thus asserting Lipschitz continuity of G on 𝐾𝑛+1. □

7

Published in Transactions on Machine Learning Research (12/2025)

Theorem 3.1 relies on the set 𝐾 being a compact subset of ℝ𝑛. While 𝐾 could be discrete for this result
to hold, the application of gradient based techniques such as gradOL is reliant on the set 𝐾𝑛+1 being a
reasonably “nice” (e.g., convex) subset of ℝ𝑚, which is true in a majority of applications.

The algorithm gradOL

Our chief contribution, the algorithm gradOL described below, operates within an iterative framework,
constructing G(𝑢1, . . . , 𝑢𝑛+1) as a computational graph rooted at the variable nodes (𝑢1, . . . , 𝑢𝑛+1). For each
given 𝑢 = (𝑢1, . . . , 𝑢𝑛+1), the inner constrained minimization over (𝑠, 𝑥) is solved using an unconstrained
log-barrier method. This process iteratively updates (𝑠𝑘 , 𝑥𝑘), starting from an initial guess (𝑠0, 𝑥0), while
preserving the computational graph dependency on 𝑢, thereby explicitly representing (𝑠, 𝑥) as a function of
𝑢. Once the inner optimization reaches optimality, G(𝑢) can be computed, and its numerical gradients are
obtained via backpropagation through the computational graph, eliminating the need for explicit gradient
derivation. We now present the gradOL algorithm.
Let 𝛼 > 0 be a “barrier parameter” (Boyd & Vanderberghe, 2004), and let ℓ(·) be a (safe) log function, e.g.
ℓ(𝑡) := log(max(𝑡, 𝜖)) for a small 𝜖 > 0. Given a current estimate 𝑢𝑘 := (𝑢1, . . . , 𝑢𝑛+1) ∈ 𝐾𝑛+1 at iteration 𝑘,
we solve the inner problem

min
(𝑠,𝑥) ∈ℝ×𝑋

(
𝛼 𝑠 −

𝑛+1∑︁
𝑖=1

ℓ

(
𝑠 − ∥𝑥 − 𝑢𝑖 ∥2

))
:= G(𝑢𝑘). (15)

Let (𝑠𝑘 , 𝑥𝑘) be a minimizer of (15). Next, for the outer step, we take a step from 𝑢𝑘 in the direction that
increases a target function G(𝑢𝑘). In our illustrative gradient-based scheme, we compute ∇𝑢G(𝑢𝑘), and
perform an update to obtain 𝑢𝑘+1. The step size (learning rate) may be constant or adaptive. Note that a
reasonable initial estimate for (𝑠, 𝑥) can be obtained using standard off-the-shelf convex optimization solvers
like CVX or Convex.jl. In our framework, we utilize them to reduce the number of iterative updates required.
The use of automatic differentiation libraries (e.g. Zygote in Julia or Autograd in PyTorch) facilitates gradient
estimation, while off-the-shelf solvers enhance computational speed via warm starts. For a general CSIP,
the objective in (15) is replaced with 𝑓◦ (𝑥), while the log-barrier is used to enforce the constraints { 𝑓 (𝑥, 𝑢𝑖)}.

Algorithm 1 gradOL
1: Input: Initial guess 𝑢0 := (𝑢1, . . . , 𝑢𝑛+1); barrier parameter 𝛼 > 0; max epochs M; tolerance 𝛿 > 0.
2: for 𝑘 = 0, 1, 2, . . . , M-1 do
3: Declare (𝑢1, . . . , 𝑢𝑛+1) as variable nodes in computational graph; Initial guess (𝑠0, 𝑥0)
4: (Inner) minimization step:(

𝑠∗𝑘+1 (𝑢𝑘), 𝑥
∗
𝑘+1(𝑢𝑘)

)
∈ arg min

(𝑠,𝑥) ∈ℝ×ℝ𝑛

{
𝛼𝑠 −

∑︁𝑛+1

𝑖=1
ℓ

(
𝑠 − ∥𝑥 − 𝑢𝑖 ∥2

)}
(
𝑠∗
𝑘+1 (𝑢𝑘), 𝑥

∗
𝑘+1(𝑢𝑘)

)
is obtained iteratively using off-the-shelf solvers, such as Convex.jl, while re-

taining the computational graph
5: (Outer) Update of 𝑢𝑘:

Define the objective function in terms of 𝑢𝑘 ,
G(𝑢𝑘) = 𝑓◦

(
𝑠∗𝑘+1 (𝑢𝑘), 𝑥

∗
𝑘+1(𝑢𝑘)

)
Compute the gradient ∇𝑢𝑘 G(𝑢𝑘) using the automatic differentiation library.

Update 𝑢𝑘+1 = 𝑢𝑘 + 𝜂∇𝑢G(𝑢𝑘), possibly applying clipping/projection to keep 𝑢𝑘+1 in 𝐾𝑛+1.
6: Check convergence: If ∥𝑢𝑘+1 − 𝑢𝑘 ∥ < 𝛿, then stop.
7: end for
8: Return:

(
𝑠∗M (𝑢M-1), 𝑥∗M (𝑢M-1)

)
Remark 3.2 (On the computational complexity of gradOL). The function G is potentially non-smooth,
non-concave, and subject to constraints, which makes deriving convergence guarantees for gradOL highly
nontrivial and outside the main scope of this work. Nonetheless, by suitably adapting the proof techniques
developed in Liu et al. (2024), our preliminary analysis shows that gradOL converges to a generalized Gold-

8

Published in Transactions on Machine Learning Research (12/2025)

Table 1: gradOL performance comparison on Chebyshev Center and CSIP benchmarks
Chebyshev Center (34 instances) CSIP (33 instances)

Method Solved Avg. Runtime (ms) Solved Avg. Runtime (ms)

Iterative Sampling 9 3,880.95 20 1,695.37
MSA–Simulated Annealing 19 23,768.12 20 16,417.43
SIPAMPL 32 50,906.00 28 72,336.00
gradOL 34 638.79 33 303.77

stein stationary point of G(·) with complexity

O
(

4𝐺2𝐵𝑐
√
𝑛 + 1 Δ

𝛿(𝜖2 − 4𝐺2 − 8𝑒2)

)
where 𝜖 denotes the allowable error in evaluating G. The constants 𝐺, 𝐵, and 𝑐 capture, respectively, the
regularity of the objective function, the size of the feasible set, and the details of the smoothing procedure
(see Liu et al. (2024)). Here, 𝑛 + 1 is the dimension of the uncertainty variable, and 𝑒 denotes the error in
approximating the gradient ∇G, obtained through automatic differentiation frameworks such as zygote. The
term Δ represents the computational cost of the inner minimization solver (e.g., CLARABEL in our case),
which scales as O(

√
𝛼 log(1/𝜖)) with the barrier parameter 𝛼. Importantly, gradOL achieves a dependence of

only
√
𝑛 + 1 in the outer maximization step—this is the best-known scaling, as existing methods often incur

linear or even exponential dependence on 𝑛. A sketch of the proof for this preliminary result is deferred to
Appendix B due to space constraints.

4 Numerical Experiments and Benchmarking

We implement gradOL in Julia (version 1.8.1)3 and benchmark its performance on an Ubuntu 24.04 system.
The hardware configuration consists of an AWS t2.large instance with 2 vCPUs, backed by an Intel Xeon
processor. The instance has 8 GiB of RAM. Using Julia’s BenchmarkTools library, we measure the mean
runtime of gradOL across 103 iterations for each of the 67 hard CSIP problems listed in (Vaz, 2001). All
computations run on the CPU without GPU acceleration, ensuring that the reported performance reflects
only the algorithm and its implementation.
We benchmark gradOL against the industry standard SIPAMPL package (Vaz et al., 2004), the best-known
solver in the literature for solving CSIPs, presented in Table 2. In addition, gradOL is also compared
with the recently reported simulated-annealing based approach (Paruchuri & Chatterjee, 2023) (a.k.a. the
MSA-Simulated Annealing) and an iterative sampling based approach (details in Supplementary). In our
experiments, we set the tolerance 𝛿 in Algorithm 1 between 1 × 10−4 and 1 × 10−3 and limit the maximum
iterations M to 103. The barrier parameter 𝛼 was chosen to be sufficiently large (≈ 105). Since the algorithm
performs outer maximization by computing ∇𝑢G, the learning rate should ideally depend on G. We provide
a systematic hyperparameter analysis of gradOL under varying learning rates and barrier parameters, as
detailed in Appendix E.
For 65 of the 67 problems, the optimal values produced by gradOL deviates by less than 10−2 from previously
reported results. The largest absolute errors appear in watson10 (2.753×10−1) and honstedel (1.697×10−1).
In particular, gradOL achieves an exact match (within the provided accuracy) for the objective function values
in 5 problems. Our results highlight gradOL’s efficiency, solving each CSIP problem in milliseconds on aver-
age. More specifically, gradOL achieves a remarkable improvement in runtimes (upto ≈ 4 × 103) compared to
the SIPAMPL solver on these benchmarks. The reduced computation time and consistent benchmark perfor-
mance highlight the algorithm’s scalability and real-world potential. Table 1 compares the performances of
gradOL with the aforementioned algorithms on the benchmark problem instances. Notably, gradOL is signifi-

3Source code is included in the supplementary.

9

Published in Transactions on Machine Learning Research (12/2025)

cantly better than all other algorithms, underscoring the importance of gradient-based solvers for Chebyshev
center problems and CSIPs alike.

5 Conclusion

This work introduces gradOL, a novel algorithm for efficiently solving Chebyshev center problems, packaged
within a robust Julia implementation. Extensive testing on 34 Chebyshev center problems, and more gener-
ally, 67 CSIPs demonstrated its superior accuracy and superb computational efficiency over existing solvers.
While gradOL proves to be highly effective, certain CSIP instances challenge gradient-based methods, high-
lighting areas for improvement, especially centering around adaptation of the learning rate to the problems
under consideration. Future work will focus on enhancing robustness for such cases, extending the theo-
retical framework, exploring hybrid optimization approaches, and improving scalability to high-dimensional
settings, aiming to establish gradOL as a versatile tool for broader optimization tasks.

References
A. R. Alimov and I. G. Tsar’kov. Chebyshev centres, Jung constants, and their applications. Russian

Mathematical Surveys, 74(5):775–849, 2019. doi: https://doi.org/10.4213/rm9839.

A. R. Alimov and I. G. Tsar’kov. Geometric Approximation Theory. Springer Monographs in Mathematics.
Springer, Cham, 2021. doi: https://doi.org/10.1007/978-3-030-90951-2.

A.G̃. Baydin, B.Ã. Pearlmutter, A.Ã. Radul, and J.M̃. Siskind. Automatic differentiation in machine learning:
A survey. Journal of Machine Learning Research, 18(153):1–43, 2018.

A. Ben-Tal and A. Nemirovski. Robust convex optimization. Mathematics of Operations Research, 23(4):
769–805, 1998.

P. Binev, A. Bonito, R. DeVore, and G. Petrova. Optimal learning. Calcolo, 61, 2024. article number 15,
doi: https://doi.org/10.1007/s10092-023-00564-y.

J. M. Borwein. Direct theorems in semi-infinite convex programming. Mathematical Programming, 21:
301–318, 1981. doi: https://doi.org/10.1007/BF01584251.

S. Boyd and L. Vanderberghe. Convex Optimization. Cambridge University Press, 2004.

Ş. Cobzaş, R. Miculescu, and A. Nicolae. Lipschitz Functions, volume 2241 of Lecture Notes in Mathematics.
Springer, Cham, 2019. doi: https://doi.org/10.1007/978-3-030-16489-8.

S. Das, A. Aravind, A. Cherukuri, and D. Chatterjee. Near-optimal solutions of convex semi-infinite programs
via targeted sampling. Annals of Operations Research, 318(1):129–146, 2022. doi: https://doi.org/10.
1007/s10479-022-04810-4.

L. Doherty and L. El Ghaoui. Convex position estimation in wireless sensor networks. In Proceedings
IEEE INFOCOM 2001. Conference on computer communications. Twentieth Annual Joint conference of
the IEEE computer and communications society (Cat. No. 01CH37213), volume 3, pp. 1655–1663. IEEE,
2001.

Z. Drezner and H. W. Hamacher. Facility Location: Applications and Theory. Springer Science & Business
Media, 2004.

Yonina C Eldar, Amir Beck, and Marc Teboulle. Bounded error estimation: A chebyshev center approach. In
2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing,
pp. 205–208. IEEE, 2007.

S.-C. Fang and S.-Y. Wu. An inexact approach to solving linear semi-infinite programming problems.
Optimization, 28:291–299, 1994.

10

https://doi.org/10.4213/rm9839
https://doi.org/10.1007/978-3-030-90951-2
https://doi.org/10.1007/s10092-023-00564-y
https://doi.org/10.1007/BF01584251
https://doi.org/10.1007/978-3-030-16489-8
https://doi.org/10.1007/s10479-022-04810-4
https://doi.org/10.1007/s10479-022-04810-4

Published in Transactions on Machine Learning Research (12/2025)

Table 2: Comparison of algorithmic performance with benchmark solutions for CSIPs.
Problem Value reported gradOL value Time reported (ms) gradOL time (ms)

coopeL Price & Coope (1996) 3.4310 × 10−1 3.3631 × 10−1 - 4.067
coopeM Price & Coope (1996) 1.0000 × 100 1.0000 × 100 - 3.052
coopeN Price & Coope (1996) 0.0000 × 100 −6.9580 × 10−3 1.19 × 103 3.209
fang1 Fang & Wu (1994) 4.7927 × 10−1 4.7939 × 10−1 2.173 × 104 28.737
fang2 Fang & Wu (1994) 6.9315 × 10−1 6.7982 × 10−1 2.307 × 104 65.094
fang3 Fang & Wu (1994) 1.7185 × 100 1.7183 × 100 2.128 × 104 33.526
ferris1 Ferris & Philpott (1989) † 4.8800 × 10−3 4.9828 × 10−4 5.99 × 103 2.296 × 102

ferris2 Ferris & Philpott (1989) −1.7869 × 100 −1.7865 × 100 7.46 × 103 8.177
goerner4 Goerner (1997) † 5.3324 × 10−2 2.6209 × 10−2 8.25 × 103 2.658 × 102

goerner5 Goerner (1997) † 2.7275 × 10−2 2.5906 × 10−2 2.2 × 104 1.665 × 102

goerner6 Goerner (1997) † 1.0770 × 10−3 5.9995 × 10−5 4.658 × 104 47.247
honstedel Honstede (1979) 1.2124 × 100 1.0424 × 100 - 3.984
kortanek1 Kortanek & No (1993) 3.2212 × 100 3.2184 × 100 4.802 × 104 6.018
kortanek2 Kortanek & No (1993) 6.8629 × 10−1 6.8628 × 10−1 1.11 × 103 9.324 × 102

kortanek3 Kortanek & No (1993) † 1.4708 × 10−2 2.2281 × 10−4 1.5 × 103 95.012
kortanek4 Kortanek & No (1993) † 5.2083 × 10−3 3.7413 × 10−5 2.666 × 104 1.443
leon1 Leon et al. (2000) † 4.5050 × 10−3 2.4607 × 10−4 1.29 × 103 7.283
leon2 Leon et al. (2000) † 4.1880 × 10−5 1.0002 × 10−7 1.111 × 104 12.273
leon3 Leon et al. (2000) † 5.2190 × 10−4 1.0002 × 10−5 5.12 × 103 4.778 × 102

leon4 Leon et al. (2000) † 2.6028 × 10−3 1.3479 × 10−4 1.381 × 104 6.175 × 103

leon5 Leon et al. (2000) † 1.4257 × 10−2 4.8963 × 10−4 4.722 × 104 14.99
leon6 Leon et al. (2000) † 1.5540 × 10−4 1.1692 × 10−5 4.12 × 103 7.378
leon7 Leon et al. (2000) † 2.0997 × 10−3 2.5904 × 10−4 4.37 × 103 21.41
leon8 Leon et al. (2000) † 5.4222 × 10−2 1.0002 × 10−7 2.139 × 104 5.146 × 103

leon9 Leon et al. (2000) † 1.6338 × 10−1 1.6338 × 10−1 1.696 × 104 8.694
leon10 Leon et al. (2000) † 5.3825 × 10−1 5.3776 × 10−1 2.65 × 103 19.612
leon11 Leon et al. (2000) † 4.8414 × 10−2 2.3620 × 10−3 1.28 × 103 15.384
leon13 Leon et al. (2000) † 2.3607 × 10−1 2.3531 × 10−1 1.26 × 103 3.972
leon14 Leon et al. (2000) 6.6667 × 10−1 6.6640 × 10−1 1.4 × 103 5.151
leon15 Leon et al. (2000) −6.6667 × 10−1 −6.6657 × 10−1 9.5 × 102 4.234
leon16 Leon et al. (2000) 1.7263 × 100 1.7187 × 100 2.2 × 102 3.04
leon17 Leon et al. (2000) −2.0000 × 100 −1.9998 × 100 1.9 × 102 3.4
leon18 Leon et al. (2000) −1.7500 × 100 ∗ −1.7000 × 100 3.63 × 103 3.303
leon19 Leon et al. (2000) 7.8584 × 10−1 ∗ 7.7543 × 10−1 2.12 × 103 4.003
leon20 Leon et al. (2000) 3.2380 × 10−1 3.2316 × 10−1 1.68 × 103 11.713
leon21 Leon et al. (2000) −9.9661 × 101 −9.9670 × 101 3.73 × 103 4.399 × 103

leon22 Leon et al. (2000) −1.0472 × 101 −1.0472 × 101 5.9 × 102 4.211 × 103

leon23 Leon et al. (2000) −3.0857 × 101 −3.0857 × 101 5.1 × 102 16.434
leon24 Leon et al. (2000) −1.1998 × 101 ∗ −1.0370 × 101 1.54 × 103 7.526
lin1 Lin et al. (1998) −1.8244 × 100 ∗ −1.8300 × 100 2.98 × 104 3.785
reemtsen1 Reemtsen (1991) † 1.5249 × 10−1 1.5231 × 10−1 1.2689 × 105 4.974 × 102

reemtsen2 Reemtsen (1991) † 5.8359 × 10−2 5.6952 × 10−2 1.0145 × 105 17.249
reemtsen3 Reemtsen (1991) † 7.3547 × 10−1 7.3548 × 10−1 1.6633 × 105 15.484
reemtsen4 Reemtsen (1991) † 1.1401 × 10−2 1.0001 × 10−5 4.5109 × 105 64.185
reemtsen5 Reemtsen (1991) † 8.8932 × 10−2 2.8761 × 10−2 1.4513 × 105 1.950
potchinkov3 Potchinkov (1997) † - 3.4226 × 10−3 - 5.788
potchinkovPL Potchinkov (1997) † - 9.2940 × 10−7 - 2.595
powell1 Todd (1994) −1.0000 × 100 −1.0000 × 100 9.2 × 102 3.096
hettich2 Hettich (1979) † 5.3800 × 10−1 5.3742 × 10−1 2.68 × 103 3.98
hettich4 Hettich (1979) † 1.0000 × 100 1.0001 × 100 3.6 × 102 8.137
hettich5 Hettich (1979) † 5.3800 × 10−1 5.3505 × 10−1 1.1995 × 105 10.909
hettich6 Hettich (1979) † 2.8100 × 10−2 2.8163 × 10−2 5.504 × 104 1.735
hettich7 Hettich (1979) † 1.7800 × 10−1 1.7776 × 10−1 4.976 × 104 7.776
hettich8 Hettich (1979) † - 2.996 × 10−2 2.290 × 103 1.139 × 102

hettich9 Hettich (1979) † 3.4700 × 10−3 3.4791 × 10−3 8.465 × 104 3.837
hettich12 Hettich (1979) † - 1.0252 × 10−3 7.844 × 104 8.695 × 103

priceK Price (1992) −3.0000 × 100 −3.0000 × 100 5.1 × 102 3.191
still1 Still (2001) 1.0000 × 100 9.9771 × 10−1 3.9 × 102 4.888
userman - 1.2802 × 10−7 - 4.028
watson4a Watson (1983) 6.4904 × 10−1 6.5012 × 10−1 1.78 × 103 10.116
watson4b Watson (1983) 6.1688 × 10−1 6.1610 × 10−1 2.22 × 103 37.654
watson4c Watson (1983) 6.1661 × 10−1 6.1564 × 10−1 2.82 × 103 10.029
watson5 Watson (1983) 4.3012 × 100 4.2966 × 100 8.4 × 102 17.097
watson7 Watson (1983) 1.0000 × 100 9.9777 × 10−1 1.23 × 103 7.534
watson8 Watson (1983) 2.4356 × 100 2.4356 × 100 2.189 × 104 1.627 × 102

watson10 Watson (1983) 2.7527 × 10−1 −7.0000 × 10−5 - 6.952
zhou1 Zhou & Tits (1996) † 2.3605 × 10−1 2.3505 × 10−1 3.09 × 103 42.561
∗ Not reported in original literature but obtained via SIPAMPL
† This is a Chebyshev center problem.

11

Published in Transactions on Machine Learning Research (12/2025)

M. C. Ferris and A. B. Philpott. An interior point algorithm for semi-infinite linear programming. Mathe-
matical Programming, 43:257–276, 1989.

A. V. Fiacco and Yo. Ishizuka. Sensitivity and stability analysis for nonlinear programming. Annals of
Operations Research, 27(1-4):215–235, 1990. doi: https://doi.org/10.1007/BF02055196.

S. Goerner. Ein Hybridverfahren zur Loesung nichtlinearer semi-infiniter Optimierungsprobleme. PhD thesis,
Berlin University, 1997.

R. Hettich. A comparison of some numerical methods for semi-infinite programming. In R. Hettich (ed.),
Semi-infinite Programming, volume 15 of Lecture Notes in Control and Information Sciences, pp. 112–125.
Springer Verlag, Berlin, 1979.

W. V. Honstede. An approximation method for semi-infinite problems. In R. Hettich (ed.), Semi-infinite
Programming, volume 15 of Lecture Notes in Control and Information Sciences, pp. 126–136. Springer
Verlag, Berlin, 1979.

K. O. Kortanek and H. No. A central cutting plane algorithm for convex semi-infinite programming problems.
SIAM Journal on Optimization, 3(4):901–918, 1993.

T. Leon, S. Sanmatias, and E. Vercher. On the numerical treatment of linearly constrained semi-infinite
optimization problems. European Journal of Operational Research, 121:78–91, 2000.

C.-J. Lin, S.-C. Fang, and S.-Y. Wu. An unconstrained convex programming approach to linear semi-infinite
programming. SIAM Journal on Optimization, 8(2):443–456, May 1998.

Zhuanghua Liu, Cheng Chen, Luo Luo, and Bryan Kian Hsiang Low. Zeroth-order methods for constrained
nonconvex nonsmooth stochastic optimization. In Forty-first International Conference on Machine Learn-
ing, 2024.

C. A. Micchelli and T. J. Rivlin. A survey of optimal recovery. In Optimal Estimation in Approximation
Theory, pp. 1–54. Plenum, New York, 1977.

P. Paruchuri and D. Chatterjee. Attaining the Chebyshev bound for optimal learning: a numerical algorithm.
Systems & Control Letters, 181, 2023. paper no. 105648, doi: https://doi.org/10.1016/j.sysconle.
2023.105648.

A. W. Potchinkov. Design of optimal linear phase fir filters by a semi-infinite programming technique. Signal
Processing, 58:165–180, 1997.

C. J. Price. Nonlinear Semi-infinite Programming. PhD thesis, University of Canterbury, New Zealand,
August 1992.

C. J. Price and I. D. Coope. Numerical experiments in semi-infinite programming. Computational Optimiza-
tion and Applications, 6:169–189, 1996.

R. Reemtsen. Discretization methods for the solution of semi-infinite programming problems. Journal of
Optimization Theory and Applications, 71(1), 1991.

G. Still. Discretization in semi-infinite programming: the rate of convergence. Mathematical Programming,
91:53–69, 2001.

D. M. J. Tax and R. P. W. Duin. Support vector domain description. Pattern Recognition Letters, 20(11-13):
1191–1199, 1999.

M. L. Todd. Interior-point algorithms for semi-infinite programming. Mathematical Programming, 65:217–
245, 1994.

A. I. Vaz, E. M. G. P. Fernandes, and M. P. S. F. Gomes. Sipampl: Semi-infinite programming with ampl.
ACM Transactions on Mathematical Software, 30(1):54–78, 2004. doi: 10.1145/974781.974784.

12

https://doi.org/10.1007/BF02055196
https://doi.org/10.1016/j.sysconle.2023.105648
https://doi.org/10.1016/j.sysconle.2023.105648

Published in Transactions on Machine Learning Research (12/2025)

A. Ismael F. Vaz. CSIP (Convex Semi-Infinite Programming) Solver. http://www.norg.uminho.pt/aivaz/
csip.html, 2001. University of Minho, Portugal.

Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point filter line-search al-
gorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):25–57, 2006. doi:
10.1007/s10107-004-0559-y. URL https://doi.org/10.1007/s10107-004-0559-y.

G. A. Watson. Numerical experiments with globally convergent methods for semi-infinite programming
problems. 1983. URL https://api.semanticscholar.org/CorpusID:122452163.

Yong Xia, Meijia Yang, and Shu Wang. Chebyshev center of the intersection of balls: complexity, relaxation
and approximation. Mathematical Programming, 187(1):287–315, 2021.

J. L. Zhou and A. L. Tits. An SQP algorithm for finely discretized continuous minimax problems and other
minimax problems with many objective functions. SIAM Journal on Optimization, 6(2):461–487, 1996.

K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control, volume 2. Prentice Hall, 1996.

13

http://www.norg.uminho.pt/aivaz/csip.html
http://www.norg.uminho.pt/aivaz/csip.html
https://doi.org/10.1007/s10107-004-0559-y
https://api.semanticscholar.org/CorpusID:122452163

A Lipschitz solutions to multiparametric programming problems

Let 𝜈 ∈ ℕ∗ and let L2 (ℝ𝜈 ×ℝ𝜈;ℝ) denote the family of symmetric bilinear maps from ℝ𝜈 ×ℝ𝜈 into ℝ. Recall
that a mapping 𝜑 : ℝ𝜈 → ℝ is locally Lipschitz if at each point 𝑧 ∈ ℝ𝜈 there exists a neighborhood O ∋ 𝑧
and 𝐿 > 0 such that |𝜑(𝑧′) − 𝜑(𝑧′′) | ⩽ 𝐿 ∥𝑧′ − 𝑧′′∥ whenever 𝑧′, 𝑧′′ ∈ O. The constant 𝐿 depends on 𝑧 and O in
general, and 𝐿 is the Lipschitz modulus of the map 𝜑. In particular, if 𝜑 is twice continuously differentiable,
then 𝜑 is locally Lipschitz.

Recall that a set-valued map 𝐹 : ℝ𝜈 ⇒ ℝ𝜈
′ is a mapping 𝐹 : ℝ𝜈 → 2ℝ𝜈′ in the standard sense; i.e., 𝐹 assigns

to each vector 𝑦 ∈ ℝ𝜈 a subset of ℝ𝜈′ . Such a set-valued map is uniformly compact around 𝑦 ∈ ℝ𝜈 if there is
a neighborhood 𝑂 containing 𝑦 such that ⋃

𝑦′∈𝑂 𝐹 (𝑦′) is bounded.
Consider the parametric nonlinear program

minimize
𝜉

𝑓◦ (𝜉, 𝜃)

subject to
{
𝑓𝑖 (𝜉, 𝜃) ⩽ 0 for 𝑖 = 1, . . . , 𝑝,
𝜉 ∈ ℝ𝜈 , 𝜃 ∈ Θ,

A1

along with the data
(A1.a) Θ ⊂ ℝ𝑚 is a non-empty and compact set,

(A1.b) 𝑓◦ : ℝ𝜈 ×ℝ𝑚 → ℝ is a continuously differentiable (objective) function,

(A1.c) 𝑓𝑖 : ℝ𝜈 ×ℝ𝑚 → ℝ is a continuously differentiable (constraint) function for each 𝑖 = 1, . . . , 𝑝.
The feasible set for A1 is the set-valued map 𝑆feas : Θ ⇒ ℝ𝜈, the value of A1 is the function Θ ∋ 𝜃 ↦→
𝑆opt (𝜃) := value of A1 ∈ ℝ, and the optimizers are given by the set-valued map 𝑆opt : Θ ⇒ ℝ𝜈 defined by

𝑆opt (𝜃) =
{
𝑦 ∈ ℝ𝜈

�� 𝑓◦ (𝑦, 𝜃) = 𝑆val(𝜃)
}
.

Proposition A.1 ((Fiacco & Ishizuka, 1990, Theorem 4.2)). Consider A1 along with its associated data.
For 𝜃 ∈ Θ and a point 𝜉 ∈ 𝑆opt (𝜃), let 𝐼 (𝜉) :=

{
𝑖 ∈ {1, . . . , 𝑝}

�� 𝑓𝑖 (𝜉, 𝜃) = 0
}

denote the set of active constraints
at (𝜃, 𝜉). Suppose that there exists a vector 𝑣 ∈ ℝ𝜈 such that

〈
∇𝜉 𝑓𝑖 (𝜉, 𝜃), 𝑣

〉
< 0 for each 𝑖 ∈ 𝐼 (𝜉),4 and that

the set-valued map 𝑆feas (·) is uniformly compact around 𝜃. Then the function 𝑆val(·) corresponding to A1 is
locally Lipschitz around 𝜃.

B Convergence Analysis

In this section, we provide a brief analysis of the convergence properties of the gradOL. We rely on the
framework of randomized smoothing and generalized Goldstein stationarity. Below, we cite the relevant
definitions and auxiliary results from Liu et al. (2024).

B.1 Definitions and Notations

Notation. Let X ⊂ ℝ𝑛+1 be a convex and compact set with diameter bounded by 𝐵. As before, we denote
the Euclidean norm by ∥ · ∥.
Note that the outer-level objective is to maximize G(𝑢) (see (9)) with respect to the uncertainty variable 𝑢.
To retain generality while simplifying notation, we introduce a slight abuse of notation and define 𝐹 := −G.
We also relabel the uncertainty variable 𝑢 as 𝑥 preserving the structure of the original problem while only
modifying symbols. Since gradOL seeks to maximize G(𝑢) over 𝑢, this transformation yields the equivalent
minimization problem

min
𝑥∈X

𝐹 (𝑥).

4In other words, the Mangasarian-Fromovitz constraint qualification conditions hold at 𝜉 .

Published in Transactions on Machine Learning Research (12/2025)

Smoothed Objective. Consider the problem min
𝑥∈X

𝐹 (𝑥), where 𝐹 is locally Lipschitz as established in
Theorem 3.1 but potentially nonconvex and nonsmooth. We utilize the 𝛿-smoothed approximation:

𝐹𝛿 (𝑥) := 𝔼𝑢∼Unif (𝐵(0,1))
[
𝐹 (𝑥 + 𝛿𝑢)

]
.

As established in Liu et al. (2024), 𝐹𝛿 is differentiable with a Lipschitz continuous gradient. Specifically, if
𝐹 is 𝐺-Lipschitz, then 𝐹𝛿 is 𝐿 𝛿-smooth with constant 𝐿 𝛿 = 𝑐𝐺

√
𝑛+1
𝛿

for some dimension-dependent constant
𝑐.
Generalized Gradient Mapping. For a parameter 𝛾 > 0, a point 𝑥 ∈ X, and a gradient vector 𝑣 ∈ ℝ𝑛+1,
the generalized gradient mapping is defined as:

𝔾(𝑥, 𝑣, 𝛾) := 1
𝛾

(
𝑥 − arg min

𝑦∈X

{
⟨𝑣, 𝑦⟩ + 1

2𝛾 ∥𝑦 − 𝑥∥
2
})
.

This mapping serves as a proxy for stationarity in constrained optimization.

B.2 Preliminaries and Assumptions

Lemma B.1 (Gradient Bound). If ℎ : ℝ𝑛+1 → ℝ is 𝐿-Lipschitz, then ∥∇ℎ(𝑥)∥ ⩽ 𝐿 wherever the gradient
exists.
Assumption 1 (Inexact Gradient). At any query point 𝑥𝑅, the algorithm receives an inexact gradient
estimator 𝑣𝑅 satisfying:

∥𝑣𝑅 − ∇𝐹𝛿 (𝑥𝑅)∥ ⩽ 𝑒.

Assumption 2 (Lipschitz Continuity). The function 𝐹𝛿 is 𝐺-Lipschitz on X. Consequently, by standard
properties (Lemma B.1), ∥∇𝐹𝛿 (𝑥)∥ ⩽ 𝐺 for all 𝑥 ∈ X.

B.3 Main Convergence Result

We analyze the output 𝐹 (𝑥𝑅), where 𝑅 is drawn uniformly from{0, . . . , 𝑇−1}, of gradOL and 𝑇 is the number
of iterations.
Theorem B.1. Let step size 𝛾 = 𝛿

𝑐𝐺
√
𝑛+1

. Under the stated assumptions, if the number of iterations 𝑇
satisfies

𝑇 ⩾
4𝐺2𝐵𝑐

√
𝑛 + 1

𝛿(𝜖2 − 4𝐺2 − 8𝑒2) ,

assuming the denominator is positive, then the iterates satisfy the expected stationarity bound
𝔼[∥𝔾(𝑥𝑅,∇𝐹𝛿 (𝑥𝑅), 𝛾)∥] ⩽ 𝜖.

Proof. Step 1: Descent Lemma with Inexact Gradients. Since 𝐹𝛿 is 𝐿 𝛿-smooth with 𝐿 𝛿 = 𝑐𝐺
√
𝑛+1
𝛿

,
the standard descent lemma implies:

𝐹𝛿 (𝑥𝑡+1) ⩽ 𝐹𝛿 (𝑥𝑡) + ⟨∇𝐹𝛿 (𝑥𝑡), 𝑥𝑡+1 − 𝑥𝑡 ⟩ +
𝐿 𝛿

2 ∥𝑥𝑡+1 − 𝑥𝑡 ∥2

= 𝐹𝛿 (𝑥𝑡) − 𝛾⟨∇𝐹𝛿 (𝑥𝑡),𝔾(𝑥𝑡 , 𝑣𝑡 , 𝛾)⟩ +
𝐿 𝛿𝛾

2

2 ∥𝔾(𝑥𝑡 , 𝑣𝑡 , 𝛾)∥2.

Substituting 𝑣𝑡 into the inner product:

−⟨∇𝐹𝛿 (𝑥𝑡),𝔾(𝑥𝑡 , 𝑣𝑡 , 𝛾)⟩ = −⟨𝑣𝑡 ,𝔾(𝑥𝑡 , 𝑣𝑡 , 𝛾)⟩ + ⟨𝑣𝑡 − ∇𝐹𝛿 (𝑥𝑡),𝔾(𝑥𝑡 , 𝑣𝑡 , 𝛾)⟩.

Using the property of the gradient mapping that −⟨𝑣𝑡 ,𝔾(𝑥𝑡 , 𝑣𝑡 , 𝛾)⟩ ⩽ −∥𝔾(𝑥𝑡 , 𝑣𝑡 , 𝛾)∥2 (Lemma C.2 Liu et al.
(2024)), we have:

𝐹𝛿 (𝑥𝑡+1) ⩽ 𝐹𝛿 (𝑥𝑡) −
(
𝛾 − 𝐿 𝛿𝛾

2

2

)
∥𝔾(𝑥𝑡 , 𝑣𝑡 , 𝛾)∥2 + 𝛾⟨𝑣𝑡 − ∇𝐹𝛿 (𝑥𝑡),𝔾(𝑥𝑡 , 𝑣𝑡 , 𝛾)⟩.

15

Published in Transactions on Machine Learning Research (12/2025)

Step 2: Error Decomposition. We bound the inner product term using Cauchy-Schwarz and Young’s
inequality :

⟨𝑣𝑡 − ∇𝐹𝛿 (𝑥𝑡),𝔾(𝑥𝑡 , 𝑣𝑡 , 𝛾)⟩ = ⟨𝑣𝑡 − ∇𝐹𝛿 (𝑥𝑡),𝔾(𝑥𝑡 ,∇𝐹𝛿 (𝑥𝑡), 𝛾)⟩
+ ∥𝑣𝑡 − ∇𝐹𝛿 (𝑥𝑡)∥∥𝔾(𝑥𝑡 , 𝑣𝑡 , 𝛾) − 𝔾(𝑥𝑡 ,∇𝐹𝛿 (𝑥𝑡), 𝛾)∥

⩽ ⟨𝑣𝑡 − ∇𝐹𝛿 (𝑥𝑡),𝔾(𝑥𝑡 ,∇𝐹𝛿 (𝑥𝑡), 𝛾)⟩ + ∥𝑣𝑡 − ∇𝐹𝛿 (𝑥𝑡)∥2

Using Cauchy–Schwarz and Young’s inequality on the RHS above

⟨𝑣𝑡 − ∇𝐹𝛿 (𝑥𝑡),𝔾(𝑥𝑡 , 𝑣𝑡 , 𝛾)⟩ ⩽
3
2 ∥𝑣𝑡 − ∇𝐹𝛿 (𝑥𝑡)∥2 + 1

2 ∥𝔾(𝑥𝑡 ,∇𝐹𝛿 (𝑥𝑡), 𝛾)∥2.

Taking expectations and applying Assumption 1:(
𝛾 − 𝐿 𝛿𝛾

2

2

)
𝔼[∥𝔾(𝑥𝑡 , 𝑣𝑡 , 𝛾)∥2] ⩽ 𝔼[𝐹𝛿 (𝑥𝑡) − 𝐹𝛿 (𝑥𝑡+1)] +

3𝛾
2 𝑒2 + 𝛾

2𝔼[∥𝔾(𝑥𝑡 ,∇𝐹𝛿 (𝑥𝑡), 𝛾)∥2] .

Step 3: Telescoping Sum. Summing from 𝑡 = 0 to 𝑇 − 1, dividing by 𝑇 , and using 𝛾 = 1/𝐿 𝛿 (specifically
𝛾 = 𝛿

𝑐𝐺
√
𝑛+1

) such that the coefficient on the LHS becomes 𝛾/2:

𝛾

2𝔼[∥𝔾(𝑥𝑅, 𝑣𝑅, 𝛾)∥2] ⩽
𝐹𝛿 (𝑥0) − 𝐹𝛿 (𝑥𝑇)

𝑇
+ 3𝛾

2 𝑒2 + 𝛾

2𝔼[∥𝔾(𝑥𝑅,∇𝐹𝛿 (𝑥𝑅), 𝛾)∥2] .

Rearranging and bounding 𝐹𝛿 (𝑥0) − 𝐹𝛿 (𝑥𝑇) ⩽ 𝐺𝐵:

𝔼[∥𝔾(𝑥𝑅, 𝑣𝑅, 𝛾)∥2] ⩽
2𝐺𝐵
𝑇𝛾

+ 3𝑒2 + 𝔼[∥𝔾(𝑥𝑅,∇𝐹𝛿 (𝑥𝑅), 𝛾)∥2] . A2

Step 4: Final Bound. We bound the true gradient mapping term on the RHS using the Lipschitz constant
𝐺 (using ∥𝔾(𝑥,∇𝐹, 𝛾)∥ ⩽ ∥∇𝐹∥ ⩽ 𝐺 using Lemma B.1). Substituting this into A2:

𝔼[∥𝔾(𝑥𝑅, 𝑣𝑅, 𝛾)∥2] ⩽
2𝐺𝐵
𝑇𝛾

+ 3𝑒2 + 𝐺2.

Finally, we relate the true mapping back to the approximate mapping:

𝔼[∥𝔾(𝑥𝑅,∇𝐹𝛿 (𝑥𝑅), 𝛾)∥2] ⩽ 2𝔼[∥𝑣𝑅 − ∇𝐹𝛿 (𝑥𝑅)∥2] + 2𝔼[∥𝔾(𝑥𝑅, 𝑣𝑅, 𝛾)∥2]

⩽ 2𝑒2 + 2
(
2𝐺𝐵
𝑇𝛾

+ 3𝑒2 + 𝐺2
)

=
4𝐺𝐵
𝑇𝛾

+ 4𝐺2 + 8𝑒2.

We obtain the sufficient condition for the squared norm to be bounded by 𝜖2:

4𝐺𝐵
𝑇𝛾

+ 4𝐺2 + 8𝑒2 ⩽ 𝜖2 =⇒ 𝑇 ⩾
4𝐺𝐵

𝛾(𝜖2 − 4𝐺2 − 8𝑒2) .

Substituting 𝛾 = 𝛿

𝑐𝐺
√
𝑛+1

yields the stated result. □

C Iterative Sampling Routine

By sampling 𝑁 many 𝑢(s) from 𝐾 we replace the infinite constraint in (11) by maximization over 𝑁 con-
strained minimization problems, solve the resulting convex program to get 𝑠 𝑗 , and record 𝑓

𝑗

𝑁
. Repeating

𝑀 times yields an empirical distribution of 𝑓𝑁 ; we accept 𝑁 once the fraction of trials within 𝛿 of the true
optimum 𝑓 ∗ reaches 80%.

16

Published in Transactions on Machine Learning Research (12/2025)

Algorithm 2 Iterative Sampling for CSIP (11)
Require: 𝑁, 𝑀 ∈ ℕ, tolerance 𝛿 > 0, true value 𝑓 ∗

1: for 𝑗 = 1, . . . , 𝑀 do
2: Draw i.i.d. samples {𝑢𝑖}𝑁

𝑖=1 ⊂ 𝐾

3: Solve
𝑓
𝑗

𝑁
= min

(𝑠,𝑥) ∈ℝ×𝑋
𝑠 s.t. ∥𝑢𝑖 − 𝑥∥2 − 𝑠 ⩽ 0 ∀ 𝑖 = 1, . . . , 𝑁

4: end for
5: Compute empirical confidence

𝑝𝑁 =
1
𝑀

𝑀∑︁
𝑗=1

1
(
| 𝑓 𝑗
𝑁
− 𝑓 ∗ | ⩽ 𝛿

)
.

6: if 𝑝𝑁 ⩾ 0.8 then
7: 𝑁 is sufficient
8: else
9: Increase 𝑁 and repeat

10: end if

D Hyperparameters

Hyperparameters for gradOL are chosen after experimenting with the benchmark problems. We observe that
runtimes are somewhat robust to some of the given parameters, which can be chosen as per the problem at
hand.

Table 3: Hyperparameters for gradOL
Category Value

Learning rate (𝜂) 1 × 10−1

Tolerance (𝛿) 1 × 10−3

Max Epochs (M) 1 × 104

Barrier Parameter (𝛼) 1 × 105

For MSA-Simulated Annealing, we use Ipopt Optimizer Wächter & Biegler (2006) for the inner minimization,
the hyperparameters are given in 4. As described in the routine we adapt for Iterative Sampling in C the
hyperparameters are given in 5.

Table 4: MSA–Simulated Annealing
Category Value

Maximum iterations 1 × 104

Initial temperature 1.0
Cooling rate 9.95 × 10−1

Table 5: Iterative Sampling
Category Value

Maximum iterations (𝑀) 1 × 102

Number of Random Samples (𝑁) 10 – 1 × 104

Confidence Threshold 8 × 10−1

Tolerance (𝛿) 1 × 10−3

E Ablation Study

We report separate ablation tables for five representative Chebyshev center problems, examining variations
in learning rates and barrier parameters. The comparisons in Table 6 highlight the sensitivity of gradOL to
these hyperparameters. Notably, gradOL relies on only two scalar hyperparameters, each offering an intuitive
sense of how the algorithm’s behavior changes as the parameters are adjusted. In particular, reducing the
learning rate from its default setting (𝜂 = 10−1)typically leads to slower convergence. Conversely, while

17

Published in Transactions on Machine Learning Research (12/2025)

larger values of 𝜂 may accelerate convergence, they often induce instability in the form of oscillatory or
zig-zag optimization trajectories.
On the other hand, the choice of the barrier parameter 𝛼 directly affects the accuracy of the gradient
estimates required for the outer maximization of G. In particular, 𝛼 must be sufficiently large to ensure
that the inner minimization is solved with high fidelity, thereby yielding reliable gradient information for the
outer problem. This effect is also reflected in our ablation study.
Our ablation study considers five benchmark representation problems: leon9, kortanek1, leon10,
reemtsen3, and hettich2. Unless otherwise specified, we use the default parameter setting (𝜂, 𝛼) =

(0.1, 105). We then conduct a simple grid search over learning rates 0.01, 0.1, 0.5 and penalty parameters
104, 105, 106.
As shown in Table 6, the results corroborate the expectation that larger values of 𝛼 yield more accurate
gradient estimates, while smaller learning rates improve convergence at the cost of increased runtime. The
problems exhibit stronger sensitivity to 𝛼, indicating that the ability to compute accurate gradients (con-
trolled by 𝛼) largely determines whether the optimization succeeds. In contrast, the adverse effects of
reducing the learning rate can, in principle, be offset by longer runtimes. However, when 𝛼 is insufficiently
small, the optimizer may fail to identify the correct solution and can miss the optimum entirely.

Table 6: (Obtained Value / Runtime) for different Chebyshev Center problems
leon9

𝛼

𝜂 10−2 10−1 5 × 10−1

104 0.1623
4.259 × 102 ms

0.1644
56.573 ms

1 × 10−6

8.32 × 102 ms

105 0.1421
55.837 ms

0.16338
8.694ms

0.1421
8.466 × 102 ms

106 0.0856
842.124 ms

0.0849
55.451 ms

0.1128
54.495 ms

Optimal Value = 0.16338

kortanek1

𝛼

𝜂 10−2 10−1 5 × 10−1

104 3.2175
2.028 ms

3.1198
2.528 ms

3.1198
2.7552 ms

105 2.9032
1.782 ms

3.2184
6.018 ms

3.0004
7.011 ms

106 2.8152
1.784 ms

3.2211
1.819 ms

3.2052
1.802 ms

Optimal Value = 3.2212

leon10

𝛼

𝜂 10−2 10−1 5 × 10−1

104 1 × 10−6

6.926 ms
1 × 10−6

6.051 ms
1 × 10−6

6.104 ms

105 0.4778
20.704 ms

0.5377
19.612 ms

1 × 10−6

6.166 ms

106 0.5372
143.222 ms

1 × 10−6

11.366 ms
1 × 10−6

6.439 ms
Optimal Value = 0.5382

reemtsen3

𝛼

𝜂 10−2 10−1 5 × 10−1

104 0.7125
4.46 × 104 ms

1 × 10−6

3.87 × 102 ms
1 × 10−6

40.726 ms

105 0.7352
1.16 × 103 ms

0.7354
15.484 ms

1 × 10−6

3.89 × 102 ms

106 0.7351
1.34 × 104 ms

0.7352
1.307 × 103 ms

1 × 10−6

52.71 × 103 ms
Optimal Value = 0.7354

hettich2

𝛼

𝜂 10−2 10−1 5 × 10−1

104 0.48513
2.544 ms

0.47269
2.017 ms

0.0001
2.174 ms

105 0.5355
7.826 ms

0.53742
3.98 ms

0.5372
67.937 ms

106 0.5307
3.702 × 104 ms

0.5378
1.4 × 104 ms

0.53834
8.579 × 103 ms

Optimal Value = 0.538

18

	Introduction and Problem Formulation
	Preliminaries
	A Differentiable Max-Min Formulation and the gradOL Algorithm
	Numerical Experiments and Benchmarking
	Conclusion
	Lipschitz solutions to multiparametric programming problems
	Convergence Analysis
	Definitions and Notations
	Preliminaries and Assumptions
	Main Convergence Result

	Iterative Sampling Routine
	Hyperparameters
	Ablation Study

