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ABSTRACT

Few-shot object detection (FSOD) benchmarks have advanced techniques for de-
tecting new categories using limited annotations. Existing FSOD benchmarks re-
purpose well-established datasets like COCO by partitioning categories into base
and novel classes for pre-training and fine-tuning respectively. However, these
benchmarks do not reflect how FSOD is deployed in practice. Rather than pre-
training on only a small number of categories, we argue that it is more practical to
download a foundational model (e.g., a vision-language model (VLM) pretrained
on web-scale data) and finetune it for specific applications. Surprisingly, we find
that zero-shot inference from foundational VLMs like GroundingDINO signifi-
cantly outperform state-of-the-art methods (48.3 vs. 33.1 AP) on COCO, sug-
gesting that few-shot detection should be reframed in the context of foundation
models. In this work, we propose a new FSOD benchmark protocol that evaluates
detectors pre-trained on any external dataset (not including the target dataset), and
finetuned on K-shot annotations per C target classes. Further, we note that FSOD
benchmarks are actually federated datasets, which are exhaustively annotated for
a single category only on a subset of data. We leverage this insight and propose
simple strategies for fine-tuning VLMs to improve FSOD. We demonstrate the
effectiveness of our approach on LVIS and nuImages.

1 INTRODUCTION

Object detection is a fundamental problem in computer vision (Felzenszwalb et al., 2009; Lin et al.,
2014) that has matured in recent years (Ren et al., 2015; Liu et al., 2016; Redmon & Farhadi, 2017;
Lin et al., 2017). Given a large-scale annotated dataset, one can easily train a detector from scratch.
However, training object detectors for domains with limited annotated data remains challenging,
motivating the problem of few-shot object detection.

Status Quo. Few-shot object detection (FSOD) benchmarks have made considerable progress on
learning to detect new categories from limited training data. Existing FSOD benchmarks are con-
structed by partitioning popular object detection datasets like PASCAL VOC (Everingham et al.,
2010) and COCO (Lin et al., 2014) into base categories (with many examples per class) and
novel categories (with few examples per class). Detectors are first trained on base classes to
learn a strong region proposal network (RPN) and are then finetuned on K examples (or K-shots)
from both base and novel classes. The goal is to detect novel categories from only a few train-
ing examples while maintaining performance on base classes. Performance (measured by average
precision) is reported across both base and novel classes.

Historically, concept leakage (e.g. shared classes) between the pre-training and fine-tuning steps has
been of significant concern (Hsieh et al., 2019; Zhu et al., 2021; Chen et al., 2021; Köhler et al.,
2021). FSOD benchmarks carefully construct dataset splits such that base and novel classes
are disjoint. However, as most detectors are initialized with ImageNet (Deng et al., 2009) weights,
concept leakage of common categories in COCO and PASCAL VOC already occurs. For example,
cup and person are present in both ImageNet and COCO. Similarly, although the COCO class
car is not present in ImageNet, similar concepts like sports car and race car are included.

Technical Insights. We argue that allowing vocabulary overlap between pre-training and novel
classes (as is the case with foundational vision models) is more practical. Modern practitioners
simply download the latest state-of-the-art detector pre-trained on large-scale datasets (which may
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Figure 1: Proposed FSOD Setup. We propose a new setup for FSOD which embraces Foundational VLMs.
On the left, we describe the existing setup: Given a base and novel class split, FOSD methods pre-train on
the base classes and then finetune on K-shots of the novel (and optionally base) classes. On the right is
our proposed setup: Given the scale and often private nature of data used to train VLMs, it is impractical to
maintain a split of base and novel classes. Instead, one should directly fine-tune VLMs on K-shots of the
target classes (and evaluate only those classes). Importantly, VLMs allow us to exploit additional language cues
(such as class names and descriptions) for fine-tuning. We show that such “zero-shot” language cues without
any K-shot fine-tuning already outperforms state-of-the-art FSOD methods.

not be publicly available) (Shao et al., 2019a; Kebe et al., 2021; Li et al., 2022; Sharma et al., 2018;
Radford et al., 2021) and finetune it for their task. Recent work (Li et al., 2022; Liu et al., 2023;
Zhou et al., 2022) also advocates for this more flexible setting, allowing vocabulary overlap between
training and test sets.

Under this realistic setup, state-of-the-art vision-language models (VLMs) like GroundingDINO
achieve 13.6% higher AP than leading FSOD methods on COCO (48.3 vs. 33.1) without fine-tuning
(cf. Table 1). Importantly, (1) zero-shot inference with VLMs serves as a strong baseline for few-
shot object detection, and (2) ignoring this realistic setup impoverishes research exploration. Current
benchmarks should be amended to more accurately reflect practical applications.

Somewhat surprisingly, naively fine-tuning the last few layers of a VLM in the K-shot setup does not
always improve performance over zero-shot inference because training images are not exhaustively
labeled (Fig 2). Importantly, objects not annotated in the frame are considered negatives during train-
ing. We find that improperly training on sparsely annotated images yields degraded performance.
However, we find that FSOD benchmarks are actually federated datasets (Gupta et al., 2019). A
federated dataset is a single dataset comprised of smaller subsets, where each subset guarantees ex-
haustive annotations for a single category. Inspired by prior work in learning with federated datasets
(Zhou et al., 2021), we demonstrate that training VLMs with federated losses for FSOD consistently
improves over zero-shot inference (cf. Tables 2, 4).

Contributions. We present three major contributions

1. We amend few-shot object detection benchmarks to more closely align with practical ap-
plications by not artificially restricting concept leakage during pre-training

2. We point out that existing FSOD benchmarks are actually federated datasets, and present
simple strategies for fine-tuning VLMs

3. We conduct extensive experiments to ablate our design choices and demonstrate that our
simple method achieves state-of-the-art results on LVIS and nuImages FSOD benchmarks

2 RELATED WORKS

Few-Shot Object Detection aims to detect new object categories given limited training data (Köhler
et al., 2021). Recent work explore two primary approaches: meta-learning and transfer learning.
Meta-learning-based methods focus on acquiring generalizable features from a set of base classes,
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which can then be applied to detect objects in novel classes. For example, Kang et al. (2019) pro-
posed a technique that re-weights features from base classes to predict novel classes. Xiao et al.
(2022) defines a simple yet effective framework addressing both few-shot object detection and few-
shot viewpoint estimation. Fan et al. (2020) introduced a general few-shot object detection network
that learns a matching metric between image pairs, while (Wu et al., 2021) enhanced object features
using a universal prototype. In contrast, transfer learning involves freezing the network weights
pretrained on a base dataset to improve the model’s ability to generalize to novel classes with lim-
ited data. Transfer learning approaches often follow a two-stage fine-tuning strategy: first training
on the base dataset and then fine-tuning only the box classifier and regressor with novel data.
This strategy, as demonstrated by Wang et al. (2020), has proven to outperform previous meta-
learning approaches. Recent work has primarily focused on improving classification performance.
FSCE (Sun et al., 2021) utilizes a contrastive proposal encoding loss to encourage instance-level
intra-class compactness and inter-class variance. Similarly, Li et al. (2021) applied a class margin
loss technique to balance inter and intra-class margins. Our approach leverages transfer-learning by
fine-tuning vision-language models (VLMs) pre-trained on large-scale datasets.

Vision Language Models are trained using weakly-supervised image-text pairs collected from the
web. These models embed images and text into a shared space, enabling open-vocabulary detection.
Early work adapted VLMs for object detection by either distilled the model’s predictions for specific
image regions (Gu et al., 2021) or directly incorporated detection components into the frozen Kuo
et al. (2022) or finetuned (Minderer et al., 2022; 2023) encoders. In contrast, RegionCLIP (Zhong
et al., 2022) employs a multistage training approach, which involves generating pseudo-labels from
captioning data and then conducting region-text contrastive pretraining before transferring to detec-
tion. GLIP (Li et al., 2022) uses a single text query for the entire image and frames detection as the
problem of phrase grounding . Detic (Zhou et al., 2022) addresses long-tail detection performance
by leveraging image-level supervision. In the context of open-vocabulary detection, there might be
overlap between the object categories seen during training and those encountered during testing. We
use the term zero-shot inference to identify that a model has never been trained on the target dataset.

Federated Datasets are constructed by combining numerous smaller datasets, each resembling a
conventional object detection dataset for a single category (Gupta et al., 2019). Each of these smaller
datasets ensures exhaustive annotations for a specific category. Images within each smaller dataset
may overlap, resulting in some images with exhaustive annotations for multiple categories. Impor-
tantly, since exhaustive annotations for a particular category are only guaranteed within each small
dataset, most images are sparsely annotated. Consequently, naively training models with federated
datasets leads to much sparser gradients, particularly for infrequently occurring classes. To address
this challenge, CenterNet2 (Zhou et al., 2021) introduced FedLoss, a simple modification of cross-
entropy loss which randomly samples a subset of negative categories for each image. We adopt
FedLoss for Few-Shot Object Detection (FSOD) and find that it consistently improves fine-tuning
performance.

3 FEW-SHOT OBJECT DETECTION WITH VISION LANGUAGE MODELS

As shown in Fig 1, our proposed few-shot object detection (FSOD) protocol uses vision-language
models (VLMs) pre-trained on diverse, large-scale datasets prior to fine-tuning on K-shots per C
target classes. We contrast our proposed setup with the standard FSOD benchmark, demonstrate
that FSOD benchmarks are actually federated datasets, and present simple strategies for fine-tuning
VLMs below.

3.1 FSOD BENCHMARKS MUST BE RE-FRAMED IN THE CONTEXT OF FOUNDATIONAL
VLMS

Existing FSOD benchmarks re-purpose well-established datasets like PASCAL VOC (Everingham
et al., 2010) and COCO (Lin et al., 2014) by partitioning them into base classes for pre-training
and novel classes for fine-tuning. For COCO, the 60 categories disjoint with PASCAL VOC are
used as base classes while the remaining 20 classes are used as novel classes (Wang et al., 2020).
However, we argue that this setup is artificial, as it requires FSOD methods to detect car and
person, among many other common categories given few-shot examples. Importantly, VLMs like
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Figure 2: Federated Labels vs Pseudo-Negatives. The left visualizes the standard K-shot detection setup,
which we argue is actually a federated dataset (Gupta et al., 2019) where one is given multiple mini-datasets
of K-images. In this case, we visualize two K = 1 datasets of buses and motorcycles. Importantly
each mini-dataset does not provide information about the presence of other objects. Previous FSOD methods
apparantly ignore this fact, and instead assume the collective set of few-shot images are fully annotated across
all object classes. This will likely produce many incorrect negative labels – e.g., all unlabeled car’s in the
background of the motorcycle mini-dataset will be incorrectly treated as negative cars. We use a ✓to
denote that a given image will be treated as a negative example of a given class by the learner and a ✗to denote
that a given image will be ignored when learning a given class. We color such negative labels as green when
correct and red when incorrect. Naive FSOD approaches learn about all classes from all images, which results
in many incorrect negative labels (shown in red on the left). Instead, we embrace the partially-labeled nature
of the data and exploit tools from weakly-supervised learning, such as the use of psuedo-labels predicted by a
teacher. We train (or rather, fine-tune) initial detectors on only the appropriate mini-dataset and use thresholded
psuedo-detections to find images that can be confidently treated as (pseudo) negatives, which results in much
fewer mistakes (shown in red on the right). This in turns produces improved performance. We also attempted
to learn from psuedo positive labels, but found these to be less reliable.

GroundingDINO can already detect common categories with high accuracy without fine-tuning on
COCO (cf. Table 1).

Although Wang et al. (2020) highlights the importance of evaluating base class accuracy to prevent
catastrophic forgetting, many foundational vision models are trained on large-scale private datasets.
For example, CLIP (Radford et al., 2021) pre-trained weights are freely available, but the original
dataset of 400M image-text pairs has not been publicly released. In the context of foundational
models, we argue that partitioning datasets into base and novel class no longer makes sense.
Instead, FSOD methods should only train on K-shot annotations for C target classes, and also
evaluate performance on these C classes. We demonstrate this more realistic setup with nuImages
in Section 4.4.

3.2 FSOD BENCHMARKS ARE FEDERATED DATASETS

Prior works follow the K-shot dataset creation process established by Wang et al. (2020). To con-
struct a K-shot dataset D, select an image I and class C. If the total annotations in I for class
C ≤ K, then we add I to D. We repeat this process for all classes utill we have exactly K anno-
tations per class. Similarly, a federated dataset is comprised of smaller subsets, where each subset
guarantees exhaustive annotations for a single category. This hints that we can leverage insights
about federated datasets and apply them to FSOD tasks.

3.3 FINE-TUNING VLMS FOR FSOD

Although VLMs achieve strong zero-shot performance on common classes (as demonstrated by
GroundingDINO’s accuracy on the COCO FSOD benchmark), they struggle to detect ambiguously
defined classes like trailer. nuImages (Caesar et al., 2020) defines trailer as independent
from the truck cab. However, Detic jointly detects the truck cab and its trailer together (cf. Figure
3). This fine-grained distinction is provided to the annotators in the form of visual examples. Not
providing such visual examples or detailed category definitions would lead to poor inter-annotator
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Figure 3: Knowledge Gap between VLM Pre-training and Dataset Annotations. While VLMs show
impressive zero-shot performance, they struggle when the concept of the target class is different from vision-
language concepts encountered in web-scale training. On the left, we see that the nuImages dataset defines the
cab of the truck as a separate object concept from its trailer (shown in green), while the zero-shot VLM
predicts the entire vehicle as a truck (shown in red). The right visualizes the actual class definitions given
to nuImage annotators, provided as both textual descriptions and visual examples. Just as human annotators
learn concepts from such few-shot multimodal vision-language data, VLM fine-tuning similarly exploits such
multimodal language and visual cues for few-shot learning.

agreement for certain classes. Similarly, to align the VLMs with dataset annotations, we provide a
few exemplars for each class. Specifically, we suggest multi-modal fine-tuning of VLMs to address
these semantic knowledge gaps.

We start by fine-tuning Detic (Zhou et al., 2022) on the provided K-shot examples. We ablate the
impact of freezing different parts of Detic in Table 5 and find that freezing the backbone, RPN, and
classifier head with CLIP embeddings yield the best performance.

Due to the sparse annotation nature of the FSOD task, we posit that the model will receive sparser
gradients which degrades the object detector’s performance, especially for rare classes. This is be-
cause all unannotated objects in the image would be treated as negatives(Tan et al., 2020). Therefore,
we explore three strategies for handling negatives.

We fine-tune Detic with Federated Loss (FedLoss) (Zhou et al., 2021) using a subset S of classes for
each training image. Specifically, we use a binary cross-entropy loss on all classes in S and ignore
classes outside of S during training. S comprises of the ground-truth annotation class along with
randomly sampled negative classes for each image. We sample these negative classes in proportion
to their square-root frequency in the training set. We find that probablistically sampling negatives
rather than labeling all unannotated classes as negatives improves fine-tuning results, reliably beating
zero-shot performance.

However, we note that FedLoss samples common classes like car more frequently as negative
examples, hurting detection accuracy for long-tailed datasets like LVIS and nuImages. Instead, we
propose Inverse FedLoss (InvFedLoss), a simple modification of FedLoss that samples negative
categories in proportion to the inverse of their square root frequency. This ensures that we sample
rare categories as negatives more frequently to better match the true data distribution. Importantly,
although we only train with K examples per class, we evaluate on a test-set which is exhaustively
annotated. Leveraging this insight improves over FedLoss and naive fine-tuning.

Despite the effectiveness of Inverse FedLoss, probablistically sampling negatives using dataset-wide
statistics is sub-optimal because it does not consider the content of each image. We can improve the
correctness of sampled negatives by using pseudo-labels to determine which classes are likely not
in a particular image. Specifically, we first finetune Detic using Inverse Federated Loss and predict
per-image pseudo-labels. If the maximal score for any class prediction is less than a fixed threshold,
we consider this class to be a negative. Using image predictions to identify pseudo-negatives yields
better results than simply using dataset-wide statistics.

5



Under review as a conference paper at ICLR 2024

Approach 30-shots
AP bAP nAP

FRCN-ft-full (Yan et al., 2019) 18.6 20.6 12.5
FRCN-BCE (Yan et al., 2019) 30.2 36.8 10.3
TFA w/ fc (Wang et al., 2020) 29.3 34.5 13.5
TFA w/cos (Wang et al., 2020) 29.9 35.3 13.6
MPSR (Wu et al., 2020) 17.1 18.1 14.1
Meta-RCNN (Yan et al., 2019) 7.8 7.1 9.1
FsDetView (Xiao et al., 2022) 10.0 9.3 12.0
Retentive R-CNN (Fan et al., 2021) 32.9 39.3 13.8
DiGeo (Ma et al., 2023) 33.1 39.4 14.2

GroundingDINO (Zero-Shot) (Liu et al., 2023) 48.3 46.3 54.3

Table 1: COCO Few-Shot Object Detection Performance. Zero-Shot inference with VLMs like Ground-
ingDINO easily surpass the performance of state-of-the-art FSOD methods, motivating the need to re-frame
FSOD in the context of foundational VLMs. Although GroundingDINO has not seen COCO images during
training, it has seen examples of COCO classes.

4 EXPERIMENTS

In this section, we highlight that zero-shot inference from VLMs significantly improves over state-
of-the-art FSOD approaches, suggesting that existing benchmarks should be re-framed in the context
of foundational vision models. In addition, we demonstrate the federated losses improves few-shot
object detection under both the standard and our proposed FSOD setups. Lastly, we ablate the
impact of freezing different detector components on fine-tuning performance. We will release our
code to facilitate future research in FSOD.

4.1 DATASETS AND METRICS

We re-purpose three established datasets for few-shot object detection, described below.

• COCO (Lin et al., 2014) is a well-established dataset with 80 classes. 60 categories
disjoint with PASCAL VOC are used as base classes (Cb) while the remaining 20 classes
are used as novel classes (Cn) (Wang et al., 2020). We evaluate methods by reporting
average precision on Cb (bAP), Cn (nAP) and Cb ∪ Cn (AP).

• LVIS (Gupta et al., 2019) re-annotates COCO images using 1,230 fine-grained classes,
which are divided into frequent, common and rare based on the cardinality of each class.
Frequent and common classes are combined to form LVIS-base and is used for pre-
training. Rare classes are used for LVIS-rare. Following Wang et al. (2020); Ma et al.
(2023), we report performance across the groups (APf , APc, APr) on the LVIS val-set.

• nuImages (Caesar et al., 2020) annotates 18 classes, which are divided into classes
with many, medium, and few examples (Peri et al., 2023). Although not traditionally
used for few-shot object detection, nuImage’s open-world categories like debris and
pushable-pullable make it particularly challenging.

4.2 ZERO SHOT INFERENCE BEATS SOTA FSOD METHODS

We compare state-of-the-art FSOD methods with zero-shot inference from GroundingDINO Liu
et al. (2023) on COCO in Table 1. Surprisingly, GroundingDINO beats DiGeo (Ma et al., 2023)
by 16.2% AP averaged across both base and novel categories despite never training on COCO
images. GroundingDINO’s impressive performance is due to its large-scale multi-modal pre-training
on Objects365 (Shao et al., 2019b), GoldG and Cap4M (Li et al., 2022). High accuracy on novel
classes (which include common categories like car, person, dog, cat) further highlights
limitations of the standard FSOD setup. Existing benchmarks must be re-framed in the context of
foundational vision models.
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Approach 10-shots
AP APf APc APr

TFA w/ fc (Wang et al., 2020) 24.1 27.9 23.9 14.9
TFA w/ cos (Wang et al., 2020) 24.4 27.7 24.3 16.9
DiGeo (Ma et al., 2023) 24.9 28.5 24.6 17.3

Detic (Base Only) (Zhou et al., 2022) 30.0 34.4 30.8 16.3
+ Fine-Tuning (Base + Novel) 30.0 33.2 31.9 15.5
w/ FedLoss 30.8 33.9 32.7 17.4
w/ InvFedloss 31.1 34.3 32.5 18.7
w/ Pseudo-Negatives 31.6 34.6 33.2 19.2

Table 2: LVIS Few-Shot Object Detection Performance. We evaluate the impact of federated losses indepen-
dent of large-scale pre-training. Therefore, we follow the standard FSOD setup and pre-train Detic from scratch
on LVIS-base. We note that Detic em without fine-tuning on LVIS-rare outperforms all prior approaches.
Using our insight that FSOD benchmarks are actually federated datasets helps us improve performance by ∼ 2
points on APr over standard fine-tuning. We use |S| = 50 for FedLoss and InvFedLoss experiments, where S
is the set of sampled classes. Training with federated loss improves fine-tuning performance because we don’t
naively assume all classes not labeled in an image are negatives.

4.3 EVALUATING LVIS UNDER THE STANDARD FSOD SETUP

Recall that FSOD benchmarks are actually federated datasets. To evaluate this claim independently
of large-scale pre-trained vision language models, we train Detic (Zhou et al., 2022) (since Ground-
ingDINO does not provide training code) from scratch on LVIS-base. We use a ResNet-50 back-
bone for fair comparison with prior work (Wang et al., 2020; Ma et al., 2023).

As shown in Table 2, Detic outperforms all other baselines without fine-tuning on LVIS-rare due
to its multi-modal training. Impressively, Detic beats DiGeo (Ma et al., 2023)by about ∼ 6 points on
APc and APf and achieves 16.3 APr without ever seeing any rare class data. Further, fine-tuning
using our insights about federated datasets further improves rare class performance by 1.8% over
naive fine-tuning. Despite not pre-training on large-scale datasets, vision-language models provide
considerable improvement over prior work. Specifically, Detic’s CLIP-based classifier dramatically
improves few-shot novel class detection.

4.4 EVALUATING NUIMAGES UNDER OUR PROPOSED FSOD SETUP

In the context of foundational models, we argue that partitioning datasets into base and novel
classes no longer makes sense. Instead, FSOD methods should only train on K-shot annotations for
C target classes, and also evaluate performance on these C classes. We highlight the performance
of our best model under this setup in Table 3. Since the quality of samples in the few-shot split can
have a significant impact on the overall performance, we run each K-shot experiment over 3 random
data splits and report the average. As one would expect, detection accuracy improves as we add
more training examples. Despite large-scale pre-training, we see low accuracy for classes with few
examples, highlighting the difficulty of the nuImages datasets.

High intra-class variance for categories such as debris makes it difficult to generalize given few
examples. Acording to nuImage’s annotation instructions, debris can include anything that is too
big to be safely driven over. This includes things like fallen tree branch and trash bags. Similarly
pushable-pullable is an open-world category that is difficult to classify with few examples
and includes trash cans, luggage, dollies, wheel barrows, shopping carts.

To further contextualize our results, we compute upper bounds when given access to ground truth
negatives and exhaustive annotations. To compute the set of ground-truth negatives, we use the
exhaustive ground-truth annotations to determine which categories are not present for each image.
Note that this information doesn’t exist in LVIS because its ground-truth is sparsely annotated.
Training with ground-truth negatives provides an upper bound on our pseudo-negatives experiment.
Next, we train using exhaustive ground-truth annotations to provide an upper bound for the specific
set of images used during training. In addition, this experiment highlights the performance gap
between having exhaustive negatives and exhaustive annotations.
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Approach Average Precision (AP)
All Many Medium Few

Detic (Zero-Shot) (Zhou et al., 2022) 14.26 27.28 16.88 2.36

Ours (5-shots) 15.61 28.88 18.59 3.12
Ours (10-shots) 16.17 29.61 19.76 2.91
Ours (30-shots) 17.20 30.48 21.60 3.37

Table 3: nuImages Few-Shot Object Detection Performance. We repurpose nuImages for FSOD by fol-
lowing the dataset creation process established by Wang et al. (2020).We group categories by frequency into
classes with many, medium and few examples following Peri et al. (2023). We evaluate 3 different sets of K
examples and report the average accuracy. Unsurprisingly, detection accuracy improves as we add more train-
ing examples. Interestingly, accuracy across cardinalities shows a decreasing trend despite all classes being
trained with K examples. This suggests that despite pre-training on web-scale datasets, VLMs still struggle to
detect rare categories. We note that scores struggle to improve or classes with few examples, highlighting the
challenge of working with nuImages.

Table 4 shows that using pseudo-negatives nearly matches the true negative upper bound (16.17
AP vs 16.71 AP). This demonstrates that we are able to reliably estimate negatives in an image,
alleviating the problem of learning with sparse annotations. Training with exhaustive annotations
yields significantly better results for classes the many and medium examples. This is unsurprising
because 10-shot FSOD includes 10 car annotations and exhaustively annotating the same images
includes over 550 car annotations!

Despite strong performance on classes with many and medium examples, the upper bound for
classes with few examples remains low (3.64 AP and 3.25 AP). We posit that it is very hard to
capture the correct semantics of nuImages’ rare categories only using K-shots. We observe similar
trends for the 5 and 30-shot cases and present further analysis in the supplement.

Given the success of training with pseudo-negatives, a natural next-step is to train with pseudo-
positives. Our preliminary results suggest that incorporating pseudo-positives does not provide
significant improvement over simply trainign with pseduo-negatives. We posit that training with
incorrect pseudo-positives may incur a higher penalty than training with incorrect psuedo-negatives.
This is a promising direction for future work.

Approach 10 Shots: Average Precision (AP)
All Many Medium Few

Detic (Zero-Shot) (Zhou et al., 2022) 14.26 27.28 16.88 2.36

+ Fine-Tuning 15.39 26.94 19.31 3.30
w/ FedLoss 15.47 27.81 19.69 2.37
w/ Inverse FedLoss 15.50 27.85 19.48 2.73
w/ Pseudo-Negatives 16.17 29.61 19.76 2.91

w/ True Negatives 16.71 29.58 20.51 3.64
w/ Exhaustive Annotations 18.13 33.53 21.84 3.25

Table 4: Analysis of nuImages 10-shot Performance. We compare the accuracy of our proposed approach
against upper bounds computed for the FSOD task. Our pseudo-negatives strategy approaches the performance
of using ground-truth negatives, showing that pesudo-labels can provide a reliable signal about negatives, es-
pecially across classes with many and medium examples. The performance gap between our best method and
exhaustive annotations can be attributed to the large number of extra annotations, particularly for classes with
many and medium examples.

4.5 ABLATION ON FINE-TUNING DETIC

We explore different fine-tuning strategies for training Detic with few-shot annotations. We broadly
divide Detic’s architecture into four components: Backbone, Region Proposal Network (RPN), Box
Regressor, and Classifier. We ablate the impact of freezing different components and present results
in Table 5.
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Intuitively, since we only have limited training data, we attempt to fine-tune a minimal number of
parameters. As shown in Table 5 initializing and freezing the classifier head with CLIP embeddings
corresponding to class names provides the most significant improvement. Prior works that fine-tune
vision-only models have no notion of language embeddings and therefore train must classifiers from
scratch. In contrast, Detic can represent any concept using CLIP embeddings and can more easily
adapt using few examples.

We find that the best configuration is to freeze the backbone, RPN and classifier head with CLIP
embeddings, and simply train the classifier projection layer and box regressor. This intuitively
makes sense as the pretrained Detic model has been trained on a large corpus of data. As a result,
the RPN can easily pick up objects in new images and doesn’t need to specifically adapt to new
datasets.

Detic Components 10 Shots: Average Precision (AP)
Backbone RPN Box Regressor Classifier All Many Medium Few

✗ ✗ ✗ ✗ 12.11 19.41 18.44 0.87
✓ ✗ ✗ ✗ 12.37 21.20 17.66 0.91
✓ ✗ ✗ ✓ 15.08 22.88 20.99 3.78
✓ ✓ ✗ ✗ 11.63 21.65 15.42 0.83
✓ ✓ ✗ ✓ 15.37 26.93 19.73 2.83
✓ ✓ ✓ ✗ 10.66 18.54 15.53 0.56
✓ ✓ ✓ ✓ 15.31 26.83 19.58 2.89

Table 5: Detic Fine-Tuning Ablation. ✓ means that we freeze that component, and ✗ means we update
its parameters in fine-tuning. The Detic classifier consists of a fully connected projection layer followed by a
classifier head. ✓ for the classifier means that we freeze the CLIP embeddings for the classifier head and only
training the classifier projection layer. Therefore, ✗ denotes not using CLIP embeddings as classifier head, and
training both the projection and classifier head. We find that freezing the backbone and RPN and initializing
the classifier head with CLIP embeddings yields the highest overall accuracy.

5 CONCLUSION

In this paper, we revisit few-shot object detection (FSOD) with vision-language models (VLMs) and
find that zero-shot inference from state-of-the-art VLMs like GroundingDINO significantly outper-
form leading FSOD methods on COCO. We argue that existing benchmarks should be amended to
include foundation models pre-trained on (often private) web-scale datasets, more closely aligning
with practical applications of FSOD. In addition, we point out that FSOD benchmarks are actually
federated datasets, and demonstrate that federated losses improve FSOD fine-tuning performance.

Limitations. Despite using a VLM pre-trained on large-scale datasets, we find that performance for
rare categories (as defined by the cardinality of each class in the original dataset) is considerably
lower than for common classes. We posit that VLMs are pre-trained with imbalanced data which
includes many examples of common categories like truck and few examples of rare categories like
stroller.

Future Work. Few-shot object detection with VLMs, particularly for rare categories, remains chal-
lenging and requires further investigation by the community. Interestingly, VLMs like Detic (Zhou
et al., 2022), GLIP Li et al. (2022), and GroundingDINO (Liu et al., 2023) are trained with differ-
ent data sources, leading to dramatically different zero-shot performance on novel categories like
stroller. Ensembling predictions from different VLMs may yield better detection accuracy for
rare categories.
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