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ABSTRACT

Existing methods for extracting reward signals in Reinforcement Learning typically rely
on labeled data and dedicated training splits, a setup that contrasts with how humans
learn directly from their environment. In this work, we propose TTRV to enhance
vision–language understanding by adapting the model on-the-fly at inference time,
without the need for any labeled data. Concretely, we enhance the Group Relative
Policy Optimization (GRPO) framework by designing rewards based on the frequency
of the base model’s output, while inferring on each test sample multiple times. Further,
we also propose to control the diversity of model’s output by simultaneously rewarding
the model for obtaining low entropy of the output empirical distribution. Our approach
delivers consistent gains across both object recognition and visual question answering
(VQA), with improvements of up to 52.4% and 29.8%, respectively, and average
boosts of 24.6% and 10.0% across 16 datasets. Remarkably, on image recognition,
TTRV applied to Intern-VL-8B surpasses GPT-4o by an average of 2.3% over 8
benchmarks, while remaining highly competitive on VQA, demonstrating that test-time
reinforcement learning can match or exceed the strongest proprietary models. Finally,
we find many interesting properties of test-time RL for VLMs: for example, even
in extremely data-constrained scenarios, where adaptation is performed on a single
randomly chosen unlabeled test example, TTRV still yields non-trivial improvements
of up to 5.5% in recognition tasks.

“I never teach my pupils; I only attempt to provide the conditions in which they can learn.”
— Albert Einstein
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Figure 1: Test-Time RL for VLMs. (left) Unlike prior methods that require pre-training splits and post-
training via Supervised Finetuning (SFT) or Reinforcement Learning (RL), our approach extracts reward
signals directly at test time from unlabeled data. The reward combines (1) frequency-based signals and (2)
diversity control, allowing the model to adapt online and improve downstream vision performance without
any labeled data. (right) Test accuracy increases while entropy of the output logits decreases, showing that
the model becomes more accurate and less uncertain as test-time RL progresses. The solid lines represent the
mean, and shaded regions represent the variance of results obtained over 5 independent runs. The dataset is
Resics45 (Cheng et al., 2017), task is object recognition, and the model is InternVL-3-2B (Zhu et al., 2025).

1 INTRODUCTION

Recent advances in vision–language models (VLMs) (Radford et al., 2021; Xu et al., 2023; Zhai et al.,
2023; Liu et al., 2023b; Li et al., 2024; OpenAI, 2023) have enabled impressive progress on tasks such as
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object recognition (Deng et al., 2009; Nilsback & Zisserman, 2008) and visual question answering (Fang
et al., 2021; Yin et al., 2023). Yet, unlike humans, who continuously refine their reasoning by interacting
with the world and adapting to ambiguous, unlabeled experiences, current VLMs remain largely static
once trained. Adaptation typically requires large amounts of annotated data and costly fine-tuning, limiting
their ability to cope with new domains or unseen tasks.

Reinforcement Learning (RL) has shown promise for improving reasoning in Large Language Models
(LLMs) (Shao et al., 2024) and Vision–Language Models (VLMs) (Yu et al., 2025), and has emerged
as an effective post-training method for enhancing task-specific performance. However, most existing
approaches still rely on reward signals derived from human-labeled data and remain restricted to curated
training splits, which are misaligned with real-world scenarios where train–test distinctions do not naturally
exist. This dependence raises a fundamental question:

If RL is to embody true learning from experience, should it not arise directly from interaction with
unlabeled data in the wild, rather than from curated benchmarks?

In this work, we move toward this vision by proposing a Test-Time Reinforcement Learning framework
for Vision Language Models (TTRV) that learns directly from unlabeled test data. Our TTRV extracts
reward signals for Group Relative Policy Optimization (GRPO) (Shao et al., 2024) directly on the test data,
as it is encountered. Specifically, our proposed reward formulation consists of two distinct parts, based on
frequency and diversity control of the pre-trained model’s output for each test sample. The intuition is to
encourage the model to frequently produce similar outputs for each test sample and reward the predictions
of the model which are more frequent and at the same time, control the diversity of model’s output by
rewarding lower entropy of the output empirical distribution. An overview of our work, along with one
optimization trajectory, is provided in Figure 1. This approach transforms static pretrained VLMs into
dynamic systems capable of self-improvement at inference time, bringing RL for multimodal models
closer to the human-like paradigm of learning through raw experience.

We extensively evaluate our TTRV across 16 datasets spanning two tasks: image recognition and visual
question answering (VQA). These datasets cover a diverse range of domains, including fine-grained
recognition, math reasoning, and general VQA. Our results show that TTRV consistently improves
performance, generalizes across model families, and is remarkably data-efficient. For instance, when
post-training the InternVL3 (Chen et al., 2024b) model on only 20 randomly sampled test images,
GRPO achieves gains of up to 52.4% (42.3% on large-scale ImageNet (Deng et al., 2009)). Similarly,
on VQA benchmarks, TTRV boosts performance by as much as 28.0% on AI2D (Kembhavi et al., 2016).
Remarkably, our TTRV outperforms one of the strongest proprietary models (GPT-4o) by 2.3% on average
(over 8 datasets) for image classification, while remaining highly competitive for VQA. Beyond these gains,
our ablation studies uncover several interesting properties of GRPO for vision–language understanding.
Notably, GRPO improves cross-dataset generalization: training on one dataset can yield strong gains on
a completely unrelated dataset. Further, even in extremely data-scarce scenarios, GRPO remains effective,
achieving up to 5.5% improvement from rewards extracted on a single randomly chosen example. These
findings suggest that GRPO does not simply adapt to a dataset’s distribution but instead activates latent
capabilities already learned during large-scale pretraining.

To conclude, we summarize the contributions of our work as follows:

• We introduce the first test-time reinforcement learning framework for vision–language models,
which can be bootstrapped to any pre-trained VLM. Powered by carefully designed reward
formulations, our method adapts models on the fly without requiring supervised data, thus
realizing the true promise of RL.

• Through extensive experiments on 16 diverse benchmarks, we demonstrate that our proposed
TTRV provides consistent and substantial improvements across tasks, model families, and
domains.

• Our ablation studies further uncover novel properties of GRPO for VLMs, such as effectiveness
in extremely low-data regimes and cross-dataset generalization, opening up new directions for
future research in test-time adaptation with reward-driven learning.
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2 RELATED WORK

Our work is closely related to vision-language models and works that study RL-based fine-tuning and
test-time training (TTT) for VLMs.

VLMs. Recent progress in vision–language modeling has led to two major families of approaches. The
first is dual-encoder models, where separate vision and text encoders are trained jointly, typically in
a contrastive setting. These models excel at recognition-oriented tasks, with representative examples
including CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021), OpenCLIP (Schuhmann et al., 2022),
SigLIP (Zhai et al., 2023), and MetaCLIP (Xu et al., 2023), as well as numerous extensions for downstream
applications (Mirza et al., 2024; 2023c; Doveh et al., 2023b;a; Lin et al., 2023; Mirza et al., 2023a; Pathak
et al., 2025). The second family, often referred to as large multimodal models (LMMs), couples a vision
encoder with a large language model (LLM), enabling open-ended multimodal reasoning for tasks such
as captioning, visual question answering (VQA), and document understanding. Pioneering approaches
in this direction include BLIP-2 (Li et al., 2023b), InstructBLIP (Dai et al., 2023), MiniGPT (Zhu et al.,
2024; Chen et al., 2024a), and the LLaVA series (Liu et al., 2023b; 2024; 2023a; Li et al., 2024). More
recent models have pushed these capabilities even further: Qwen-2.5 VL (Bai et al., 2025) advances
visual understanding by supporting precise object localization, dynamic resolution processing and strong
agentic capabilities such as tool execution. InternVL3 (Zhu et al., 2025) improves perception and reasoning
through native multimodal pretraining and domain-specific data such as 3D scenes, GUIs, and video.
Phi-3.5 Vision (Abdin et al., 2024) offers a lightweight but strong alternative with long-context reasoning
(128K tokens), robust vision inputs (images, charts, documents), and improved alignment via preference
optimization. Several recent studies (Doveh et al., 2024; Gavrikov et al., 2024; Lin et al., 2024; Huang
et al., 2024; Mirza et al., 2025) have further enhanced these models through improved training or adaptation
strategies. In this work, we target the most recent open-source LMMs and focus on improving their
test-time adaptability for vision-centric tasks such as object recognition, which remains a key weakness
highlighted in prior studies (Zhang et al., 2024b; Mirza et al., 2025).

RL-based fine-tuning for VLMs. RL has become a central paradigm for aligning large language models
with human preferences and task objectives, with approaches such as RLHF (Ouyang et al., 2022) and
DPO (Rafailov et al., 2023) improving safety, coherence, and instruction-following in both LLMs and
VLMs. More recently, rule-based methods like GRPO (Shao et al., 2024) have demonstrated the feasibility
of scaling RL to enhance reasoning capabilities. Building on this foundation, RL-based fine-tuning (RFT)
has been extended to multimodal models across a variety of vision-driven tasks. For example, VLM-
R1 (Shen et al., 2025), VisualThinker-R1-Zero (Zhou et al., 2025), and Perception-R1 (Yu et al., 2025)
adapt RFT for open-vocabulary object recognition, spatial reasoning, and visual perception, respectively;
CLS-RL (Li et al., 2025) applies RFT to few-shot image classification; while R1-VL (Zhang et al., 2025)
and related efforts further refine multimodal reasoning. These works demonstrate that RL can significantly
enhance vision-centric capabilities of VLMs, but they still rely on curated training splits or labeled feedback.
In contrast, our work investigates how reinforcement learning can be performed at test time, directly from
unlabeled test data, thus bringing RL for VLMs closer to human-like learning from raw experience.

Test-time training (TTT). TTT methods adapt model parameters at inference without requiring labeled test
data, typically by optimizing surrogate objectives such as entropy minimization or auxiliary self-supervised
losses (Sun et al., 2020; Gandelsman et al., 2022; Sun et al., 2024; Mirza et al., 2023b; 2022). This idea
is also similar to the recently popular Test-Time Scaling paradigm for LLMs (Snell et al., 2024). While
first explored in unimodal settings, TTT has since been extended to multimodal models, with most efforts
focusing on dual-encoder VLMs (e.g., CLIP (Radford et al., 2021)). Representative approaches include
TPT (Shu et al., 2022), which tunes text prompts via entropy minimization on augmented inputs, with
extensions such as DiffTPT (Feng et al., 2023) and C-TPT (Yoon et al., 2024) improving augmentation
quality and calibration; and RLCF (Zhao et al., 2023), which adapts the image encoder using feedback
from larger models. Other works pursue lightweight black-box strategies that adapt embeddings without
modifying internal parameters.

Most closely related to our work, TTRL (Zuo et al., 2025) introduces the idea of using reinforcement
learning at test time for LLMs, where the majority voting across sampled outputs serves as a surrogate
reward. While sharing the same high-level motivation, our TTRV differs greatly by extending the paradigm
to multimodal models and combining frequency-based rewards with entropy regularization to balance
consistency and diversity in predictions. The novel reward formulation helps us achieve better performance
than the naı̈ve majority voting (c.f., Ablations Section 4.3). Further, in contrast to VLM-based approaches
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Figure 2: Overview of TTRV. For each prompt x, the VLM generates N candidate responses {ŷ1,...,ŷN}
from its policy πθ(·|x). These samples induce an empirical distribution over the unique outputs {ỹ1,...,ỹM},
from which two reward signals are derived: (i) a frequency-based reward, where each response yj is
rewarded in proportion to how often its output occurs among the N responses (i.e., its empirical probability
in the distribution), and (ii) a diversity control reward, computed from the distribution to regulate diversity
and encourage convergence. The final reward is the weighted combination of these terms, which is used
to update the policy via GRPO.

that primarily target dual-encoder VLMs or prompt-level adaptation, our work focuses on decoder-based
VLMs. To the best of our knowledge, our TTRV is the first framework to leverage GRPO for test-time RL
of VLMs. Adapting models through RL at inference presents unique challenges, particularly in designing
reward functions that operate in a fully unsupervised setting. We address this by rewarding predictions
based on their frequency among the model’s own outputs, while simultaneously regularizing diversity
by rewarding model’s certainty obtained by calculating the entropy of the empirical probability distribution.
This formulation enables TTRV to achieve consistent improvements across diverse tasks and benchmarks.

3 TTRV: TEST TIME RL FOR VLMS

The goal of our proposed TTRV is to improve downstream vision tasks by extracting reward signals
directly from unlabeled test data as it is encountered. To this end, we bootstrap an off-the-shelf VLM
(e.g., InternVL (Zhu et al., 2025)) with Group Relative Policy Optimization (GRPO) (Shao et al., 2024).
A key contribution of our work lies in the design of fully unsupervised reward signals. At a high level, we
introduce two complementary rewards: (i) a frequency-based reward that encourages consistent answers
from the base VLM, and (ii) an entropy-based reward that regularizes the diversity of responses. An
overview of our approach is provided in Figure 2 and a comprehensive python-like pseudo-code is
provided in Appendix E, while the codebase is provided as a supplementary .zip file for review.

For ease of assimilation, the following subsections first provide a brief recap of Group Relative Policy
Optimization (Section 3.1), then describe our proposed reward formulations in detail (Section 3.2), and
finally present the resulting optimization objective for our TTRV (Section 3.3).

3.1 RECAP: GROUP RELATIVE POLICY OPTIMIZATION

Let S denote the space of natural language token sequences. A decoder-based vision-language model
π(·|x), given an input prompt (image and text) x∈S, produces a probability distribution over possible
outputs y∈S, where y=(y1,y2,...,yT ) denotes a sequence of tokens. The probability of generating a
sequence y is π(y|x)=

∏T
t=1π(yt |y<t,x).

Post-training with reinforcement learning aims to maximize a scalar reward function r :S×S→R while
constraining deviation from a reference policy πref. This leads to the KL-regularized optimization problem:

max
π

Ex∼D,y∼π(·|x)

[
r(x,y)

]
−βDKL

(
π(·|x)∥πref(·|x)

)
, (1)

where D is the dataset of prompts, and β>0 controls the KL regularization strength.
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Group Relative Policy Optimization (GRPO) (Shao et al., 2024) provides a stable approach to optimize this
objective. Given n sampled responses {yi}ni=1 for a prompt x, the advantage of each response is defined as

Ai=
r(x,yi)−meanj(r(x,yj))

stdj(r(x,yj))
, (2)

which measures relative performance within the sampled group. The policy update is performed via
clipped importance-weighted objectives to ensure stability, while KL regularization keeps the fine-tuned
model close to the reference distribution.

3.2 TEST-TIME RL WITH DISTRIBUTIONAL REWARDS

Our TTRV extends the vanilla GRPO framework, which is usually applied by extracting rewards by using la-
beled data, by introducing an inference-time RL framework. We propose to extract self-supervised reinforce-
ment signals directly from the empirical distribution of model outputs at inference time. Unlike settings that
rely on external supervision, our framework generates self-consistent rewards that exploit the variability of
rollouts to guide convergence during inference. In particular, we extract two rewards from the unlabeled data.

Frequency-Based Reward. Given a copy of the model at a particular time step during test-time learning,
our goal is to infer on the test sample multiple times and reward predictions based on their frequency.
The underlying intuition is that responses produced more consistently by the model are more likely to be
correct. Formally, for each test sample x (consisting of an image and text prompt), we sample N candidate
responses {ŷ1,ŷ2,...,ŷN} from the current policy πθ(·|x). Let U={ỹ1,ỹ2,...,ỹM} denote the set of unique
outputs. We estimate the empirical probability of ỹm as

p(ỹm)=
1

N

N∑
j=1

1{ŷj= ỹm}, (3)

where 1 is an indicator function. The reward for an individual sample ŷj is then defined as

r1(ŷj)=

M∑
m=1

p(ỹm)·1{ŷj= ỹm}, (4)

which assigns higher values to responses that occur frequently, while still allocating nonzero reward to
less common but potentially meaningful alternatives. This graded structure captures the implicit consensus
among repeated rollouts without discarding minority reasoning paths.

Importantly, this differs from the standard best-of-N sampling scheme employed by (Zuo et al., 2025),
which selects only the most frequent response and discards all others. Such a hard decision can be
problematic when the model is uncertain or when the most frequent prediction is incorrect, since it provides
a misleadingly strong but potentially wrong reward signal. In contrast, our reward formulation produces
a soft, probabilistic supervision signal that reflects the full distribution over responses. This perspective
is naturally connected to Bayesian reasoning: rather than collapsing to a single point estimate, our method
retains uncertainty over hypotheses and uses it to shape learning. We further validate this design choice
through ablations against naı̈ve best-of-N sampling, with results reported in Section 4.3.

Diversity Control Reward. Complementing the frequency-based reward r1, which provides soft,
frequency-proportional credit to repeated model responses, we introduce an entropy-based regularizer
to control convergence. For a given test sample we compute the Shannon entropy (Shannon, 1948) of
the empirical response distribution:

H(P)=−
M∑

m=1

p(ỹm)logp(ỹm), (5)

and define the auxiliary reward
r2=−H(P). (6)

which penalizes excessive dispersion in the output distribution. This mechanism ensures that while the
model explores diverse reasoning modes initially (as encouraged by the frequency-based reward), it
gradually consolidates probability mass toward stable, high-probability answers rather than spreading
attention too thin across redundant responses.
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ImageNet ImageNet-V2 ImageNet-R ImageNet-S ImageNet-A Food101 DTD Resisc45 Mean

GPT-4o 98.30 95.10 91.70 91.20 90.60 95.60 92.30 92.13 93.37
CLIP 68.33 61.86 76.90 48.27 49.91 87.04 44.73 58.22 61.91
MetaCLIP 70.78 62.64 80.99 57.91 46.75 85.48 55.80 66.19 65.82
EVACLIP 74.72 67.03 81.95 57.73 53.91 87.65 52.71 60.37 67.01
SigLIP 76.05 68.97 90.33 67.91 45.33 89.84 64.79 64.54 70.97
LLaMA-3.2-11b 72.68 39.94 72.26 69.39 83.07 93.99 87.54 82.51 75.17
LLaVA-1.5-7b 97.74 95.85 96.46 94.58 94.39 95.35 76.68 92.29 92.92
Phi-3.5-vision 97.94 95.66 96.05 94.93 85.78 96.10 88.26 85.89 92.58

InternVL3-2B 56.00 67.43 66.01 62.19 67.92 67.19 37.24 72.28 62.03
w/ TTRV 98.31 98.25 96.89 94.74 96.31 95.60 89.73 90.06 94.99
∆ +42.31 +30.82 +30.88 +32.55 +28.39 +28.41 +52.49 +17.78 +32.95

InternVL2.5-4B 93.26 83.07 79.53 65.51 90.67 80.92 47.33 23.44 70.47
w/ TTRV 97.11 95.66 88.21 92.01 96.00 94.49 81.98 13.30 82.34
∆ +3.85 +12.59 +8.68 +26.50 +5.33 +13.57 +34.65 -10.14 +11.88

InternVL3-8B 79.47 62.58 59.32 54.48 57.03 78.32 59.11 83.62 66.74
w/ TTRV 99.31 97.24 96.88 95.03 96.86 97.20 89.37 93.82 95.71
∆ +19.84 +34.66 +37.56 +40.55 +39.83 +18.88 +30.26 +10.20 +28.97

Table 1: Image Classification. Top-1 Accuracy (%) obtained by evaluating multiple different backbones.
The results in gray are obtained using the specialized dual-encoder VLMs and the proprietary GPT-4o.
For decoder-based VLMs we also evaluate multiple families and model sizes. Our TTRV is applied to
different model sizes from the InternVL (Zhu et al., 2025) family of models. The best results obtained
for a dataset are highlighted in bold, while the second best are underlined.

Combined Reward. The overall reward assigned to a response ŷj is the combination of probability
and entropy terms:

R(ŷj)=r1(ŷj)+αr2, (7)

where α is a tunable hyperparameter controlling the trade-off between convergence and diversity. By
combining probability-based self-rewarding with entropy regularization, the model adaptively aligns its
outputs during inference, striking a balance between exploring diverse reasoning paths and converging
to coherent predictions.

3.3 OPTIMIZATION OBJECTIVE

The reinforcement learning objective is to maximize the expected reward under the policy:

max
θ

Ey∼πθ(·|x)[R(y)]. (8)

For decoder-based VLMs, optimization is performed through the standard autoregressive language
modeling objective, with the reward providing a soft, sample-level weighting of predicted tokens. The
parameters are updated via gradient ascent:

θ←θ+η∇θEy∼πθ(·|x)[R(y)], (9)

where η denotes the learning rate.

We note that GRPO (Shao et al., 2024) modifies this process by replacing the raw reward with a relative
advantage term (as defined in equation 2). This shifts optimization from absolute rewards toward relative
comparisons, making it more stable and better aligned with group-level objectives.

4 RESULTS

In this section, we first list the implementation details, which include an introduction to the datasets
used for evaluating our TTRV, then provide an overview of the different baselines we compare to, and
finally conclude with a discussion of the main results and ablations. The details about implementation
and evaluation protocols are delegated to the Appendix Section A.

4.1 EVALUATION SETTINGS

Image Recognition Datasets. We evaluate on eight diverse object recognition benchmarks. These
include the two original ImageNet test sets: ImageNet (Deng et al., 2009) and ImageNet-V2 (Recht et al.,
2019), along with three out-of-distribution variants: ImageNet-Rendition (R) (Hendrycks et al., 2021a),
ImageNet-Sketch (S) (Wang et al., 2019), and ImageNet-Adversarial (A) (Hendrycks et al., 2021b). In
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Mathverse Mathvista SEED MME RealWorldQA Capture CRPE AI2D Mean

GPT-4o 54.40 63.80 69.80 89.75 75.40 85.25 76.60 84.60 71.97
LLaMA-3.2-11b 19.36 35.40 62.56 51.59 41.18 61.48 44.43 59.54 53.34
LLaVA-1.5-7b 26.02 34.29 61.50 49.05 59.87 71.75 64.84 47.49 46.02
Phi-3.5-vision 36.02 51.22 69.54 77.22 57.25 72.99 68.33 75.55 48.58

InternVL3-2B 44.10 58.26 24.99 17.04 63.47 60.27 71.92 39.68 47.47
w/ TTRV 48.51 66.11 48.85 11.06 64.29 78.64 72.00 67.75 57.15
∆ +4.41 +7.85 +23.86 -5.98 +0.82 +18.37 +0.08 +28.07 +9.69

InternVL2.5-4B 51.69 65.49 57.37 85.27 65.25 80.03 74.33 51.55 66.37
w/ TTRV 53.02 66.94 61.14 85.79 66.00 85.99 75.22 61.09 69.40
∆ +1.33 +1.45 +3.77 +0.52 +0.75 +5.96 +0.89 +9.54 +3.03

InternVL3-8B 34.56 38.84 32.12 49.02 19.01 59.50 55.81 30.95 38.05
w/ TTRV 42.15 50.41 59.16 78.77 26.57 80.68 68.26 53.92 55.56
∆ +7.59 +11.57 +27.04 +29.75 +7.56 +21.18 +12.45 +22.97 +17.50

Table 2: Visual Question Answering. Results obtained by evaluating multiple different backbones. For
decoder-based VLMs, we evaluate multiple families and model sizes. Our TTRV is applied to different
model sizes from the InternVL (Zhu et al., 2025) family of models.

addition, we consider two fine-grained recognition datasets: Food101 (Bossard et al., 2014) and the
Describable Textures Dataset (DTD) (Cimpoi et al., 2014), as well as a remote sensing dataset based on
satellite imagery: Resisc45 (Cheng et al., 2017).

VQA Datasets. We further evaluate our TTRV on eight visual question answering (VQA) datasets cov-
ering a broad range of reasoning skills. These include two math reasoning benchmarks: MathVerse (Zhang
et al., 2024a) and MathVista (Lu et al., 2024); three datasets focusing on everyday scenarios and objects:
SEED (Li et al., 2023a), MME (Yin et al., 2023), and RealWorldQA (AI, 2024); two compositional
reasoning datasets: Capture (Pothiraj et al., 2025) and Circular-based Relation Probing Evaluation
(CRPE) (Wang et al., 2024); and one dataset targeting chart-based questions: AI2D (Kembhavi et al., 2016).

These 16 datasets were deliberately selected to span a broad spectrum of domains and tasks, including
natural images, fine-grained categories, remote sensing, mathematical reasoning, everyday commonsense,
compositionality, and chart understanding. This diversity ensures that our findings are not confined to a
single domain but instead provide a representative view of model capabilities across varied and challenging
settings. We further expect that the insights derived here will generalize to other benchmarks, which can
be incorporated in future evaluations.

Baselines: For comparison, we evaluate the following dual-encoder VLMs: CLIP (Radford et al., 2021),
MetaCLIP (Xu et al., 2023), EVACLIP (Sun et al., 2023), and SigLIP (Zhai et al., 2023). As representative
methods for decoder-based VLMs, we choose: LLaMA (Touvron et al., 2023), LLaVA (Liu et al., 2023b),
Phi-3.5-vision (Abdin et al., 2024), and also provide results for the proprietary GPT-4o (OpenAI, 2023).
For the main experiments, we apply our TTRV to different model sizes of the InternVL (Chen et al.,
2024b) family. However, we want to point out that TTRV can be applied to any open-source VLM. We
provide results with QwenVL (Bai et al., 2025) in the ablations Section 4.3.

4.2 RESULTS

Image Classification. In Table 1 we present the top-1 accuracy across eight diverse image recognition
benchmarks. We observe that TTRV consistently enhances performance for all evaluated InternVL
backbones, with particularly strong gains on challenging distribution shifts such as ImageNet-R and
ImageNet-S. For example, when applied to InternVL3-2B, TTRV improves accuracy by up to 89.7%
on DTD and 90.0% on Resisc45, while yielding an average gain of around 32.9% across datasets.
Similar trends appear for larger models: InternVL2.5-4B and InternVL3-8B see systematic boosts on
both fine-grained recognition (Food101) and large-scale benchmarks (ImageNet and variants). Notably,
TTRV lifts InternVL3-8B to over 99% accuracy on ImageNet, even outperforming proprietary systems
(e.g., GPT-4o) and establishing new state-of-the-art results for open-source VLMs. We emphasize that these
improvements are achieved by randomly sampling only 20 test instances per dataset, suggesting that TTRV
may not be adapting strongly to the test data distribution itself, but rather recovering and amplifying visual
recognition capabilities that were present in pre-training and which might be attenuated during instruction
tuning. We also observe some particular cases when the model performance decreases (e.g., on the Resics45
dataset with InternVL-2.5-4B model). This can be attributed to the low performance of the base model,
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Mathvista SEED AI2D

InternVL2.5-4B (base) 65.49 57.37 51.55

w/ Maj Voting 65.08 58.37 47.52
∆ vs. base -0.41 +1.00 -4.03

TTRV (w/o Freq. reward) 66.81 58.87 52.66
∆ vs. base +1.32 +1.50 +1.11

TTRV (w/o Diversity reward) 65.08 59.27 53.06
∆ vs. base -0.41 +1.90 +1.51

TTRV (Freq. + Diversity) 66.94 61.14 61.09
∆ vs. base +1.45 +3.77 +9.54

Table 3: Ablating Reward Designs. We compare
the design choices of our TTRV with the reward
design proposed by Zuo et al. (2025), based on
the pseudo-labels obtained from a majority voting
scheme. Further, we also ablate the individual ef-
fect of our frequency- and diversity-based rewards.

Food  DTD DTD  Food Resisc  DTD DTD  Resisc
30
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70
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100
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)

+52.03
+26.68

+52.33 +18.83

InternVL3-2B w/ TTRV

Figure 3: Cross-dataset Generalization. Top-1
accuracy (%) achieved by employing TTRV on a
base dataset using InternVL3-2B and evaluating on
a target dataset from a completely different domain.
The results highlight that TTRV enhances core
abilities of the model.

which might result in extremely low-quality rollouts from the model or general instability of GRPO (Wang
et al., 2025). Overall, these findings demonstrate that frequency- and entropy-based test-time rewards allow
models to consolidate predictions more effectively, leading to robust improvements in visual recognition.

Visual Question Answering. In Table 2 we report results across eight multimodal reasoning tasks,
including mathematical problem solving (MathVerse, MathVista), scientific diagram understanding (AI2D),
and general-domain evaluation (RealWorldQA). We find that TTRV provides consistent gains across all
datasets and model scales. For instance, on InternVL2.5-4B, accuracy improves by 4.4% on MathVista and
9.5% on AI2D, while the larger InternVL3-8B benefits from 12.4% and 7.5% improvements on CRPE and
RealWorldQA, respectively. We also observe that TTRV outperforms other open-source VLMs while also
remaining highly competitive with GPT-4o (only lagging behind by∼2% on average), and outperforming
the strong proprietary model on some benchmarks, like the challenging Mathvista. Furthermore, these
gains are also obtained using only 20 sampled instances per dataset, suggesting that the improvements
may not stem from distribution-level adaptation but rather from leveraging and re-aligning latent reasoning
skills that were learned during pre-training but weakened after instruction tuning. This highlights that
TTRV is especially effective at recovering such capabilities under test-time optimization, enabling more
robust reasoning across diverse VQA tasks.

4.3 ABLATIONS

In this section, we present extensive ablations of our method and our design choices. We begin by
comparing our reward formulation against the naı̈ve best-of-N (majority voting) sampling strategy for
RL. Next, we evaluate the robustness of TTRV by training on one dataset and testing on a completely
different distribution. We then investigate alternative sampling techniques and reward designs, followed
by experiments in extremely data-scarce settings where TTRV is applied to a single randomly chosen
test sample. Finally, we report results obtained by applying TTRV to the Qwen-VL model, highlighting
generalization of TTRV beyond the Intern-VL models. Due to space constraints, we delegate additional
ablations (e.g., on latency) to the Appendix.

Reward Designs. In Table 3 we ablate different reward designs. Specifically, we compare the reward
design proposed in our work with the majority voting reward used by (Zuo et al., 2025), and also ablate
the effect of the two different rewards used in our work (c.f., Section 3). We find that the combination
of the two rewards: frequency-based and diversity-control, outperforms all other design choices.

Cross-Data Generalization. In the main results (c.f., Tables 1 & 2), we evaluate TTRV on test samples
drawn from the same dataset (as used for test-time RL). In contrast, Figure 3 reports results when TTRV
is applied using one dataset and evaluated on a completely different distribution (e.g., Food101 for TTRV
and DTD for testing). We observe that TTRV exhibits strong cross-data generalization, indicating that
its performance gains stem not from distribution-specific adaptation but from enhancing the model’s
underlying task ability (e.g., image classification).

Effect of Data Sampling. We find that TTRV does not require sampling data from all classes in the
downstream dataset to achieve strong performance gains. In Table 4, we compare biased sampling, where
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Imagenet-A Imagenet-R

InternVL3-4B (base) 90.67 79.53

w/ biased sampling 95.09 88.51
∆ vs. base +4.42 +8.98

w/ random sampling 96.00 88.21
∆ vs. base +5.33 +8.68

Table 4: Biased vs. Random Sampling. Top-1
accuracy (%) obtained by sampling the test data
differently. For biased sampling, we choose a
fraction of the data from only a subset of classes
(e.g., 4 out of 200 for ImageNet-R). Random
sampling results are obtained by sampling the data
randomly from all classes.

Seed Imagenet-R

InternVL2.5-4B (base) 57.37 79.53

w/ Random Rewards 52.41 78.00
∆ vs. base -4.96 -1.53

TTRV (Freq. + Diversity) 61.14 88.21
∆ vs. base +3.77 +8.68

Table 5: Random Reward vs. TTRV. We
compare the results obtained by using random
rewards (following Shao et al. (2025)) and our
sophisticated reward design. The results highlight
that the gains obtained with spurious rewards do
not transfer to Intern-VL family of models, which
were shown for Qwen-based models.

Mathvista SEED Imagenet-A Imagent-R

InternVL2.5-4B 65.49 57.37 90.67 79.53
w/ TTRV 66.11 58.87 95.28 85.00
∆ +0.62 +1.50 +4.61 +5.47

Table 6: Single Example TTRV. We report results
for VQA and image classification after applying
TTRV on a single randomly sampled test example.
The evaluation is performed on the entire test sets.

Mathverse Mathvista Capture Resisc45

Qwen2.5-VL-3B 45.33 67.35 71.33 90.08
w/ TTRV 48.71 71.48 75.25 92.71
∆ +3.38 +4.13 +3.92 +2.63

Table 7: Generalization to Model Families. We
provide results for the two tasks (Image Classifica-
tion and VQA) by using the Qwen2.5-VL-3B (Bai
et al., 2025).

data is drawn from only a small subset of classes (e.g., 4 out of 200 in ImageNet-R), against random
sampling, where data is sampled uniformly across classes. Remarkably, even under biased sampling,
TTRV yields substantial improvements over the base model.

Random Rewards. Shao et al. (2025) recently showed that some models trained with GRPO can exhibit
performance gains even when optimized with spurious rewards. As a sanity check, we compare TTRV
against such random rewards and report results in Table 5. We find that InternVL (Chen et al., 2024b)
models do not appear to benefit from random rewards, suggesting that their improvements under TTRV
stem from meaningful reward signals rather than spurious correlations.

Single Sample TTRV. To further test whether the gains from TTRV arise from true task enhancement
rather than adaptation to the data distribution, we consider an extreme data-scarce setting where adaptation
is performed on only a single randomly chosen test example. Results in Table 6 show that even in this
case, TTRV yields measurable improvements, lending additional support to our hypothesis.

Generalization to Model Families. While our main results in Tables 1 & 2 focus on post-training
InternVL (Chen et al., 2024b) models, we also examine whether TTRV extends to other architectures.
In Table 7, we present results with Qwen2.5-VL (Bai et al., 2025) and observe consistent gains. These
findings suggest that TTRV is not restricted to a single model family and can generalize across diverse
VLM architectures.

5 LIMITATIONS AND CONCLUSION

Limitations. While we empirically show that TTRV enhances task-specific abilities of the base model
rather than adapting to the data distribution, we do not yet provide a theoretical explanation for this
behavior. Establishing such a foundation remains an important direction for future work.

Conclusion. We introduced TTRV, the first test-time reinforcement learning framework for VLMs, where
rewards are extracted on-the-fly from unlabeled test data. Specifically, we proposed two complementary
rewards: one based on the frequency of model predictions and another that regulates diversity in rollouts.
Extensive evaluation on 16 benchmarks spanning object recognition and visual question answering shows
consistent improvements over strong base models, even outperforming GPT-4. Beyond empirical gains,
our ablations highlight data-efficient properties of TTRV and how it enhances task-specific abilities without
explicit supervision, pointing to test-time optimization through RL as a powerful paradigm for bridging
pre-training and downstream deployment.
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APPENDIX

In this appendix, we present additional experiments and explanations that provide further insight and
clarity beyond the main manuscript. Section A lists additional implementation details and evaluation
protocols. Section B presents a detailed overview of the datasets used in our study. In Section C, we
describe the prompts utilized in our experiments. Then in Section D, we present additional ablation
studies that highlight further aspects of our method and offer deeper insights into its effectiveness. Finally,
Section E includes comprehensive pseudocode to facilitate reproducibility and to help readers gain a
clearer understanding of the implementation details.

All experiments were conducted on a machine equipped with 4× NVIDIA A100 and 4× NVIDIA A6000
GPUs. For the review process, we also provide our full codebase (code.zip) along with detailed
execution instructions in Readme.md. The codebase will be released publicly upon acceptance.

A ADDITIONAL EXPERIMENTAL SETTINGS

Implementation Details. We apply TTRV independently on each benchmark and report the results
in Tables 1 & 2. For optimization, we adopt the AdamW optimizer with a cosine learning rate schedule,
setting the peak learning rate to 5×10−7. During rollout, we generate 32 candidate responses with a
temperature of 1.0 for all experiments. The reward hyperparameter α is fixed at 0.75 for all datasets. We
cap the maximum prompt length at 7524 tokens and the maximum response length at 1024 tokens. We
generally report results using 20 samples in the main table. These samples are randomly sampled from
the test data. In the appendix, we also provide a comparison between 20- and 500-sample adaptation, and
in the ablation study, we further evaluate the extreme case 1-sample adaptation, where the model adapts
to a single example before being evaluated on the full dataset.

Evaluation Protocol: For evaluation, we use greedy decoding (temperature =0) across all datasets,
covering both recognition and VQA tasks. We convert the object recognition task to a four-way
multiple-choice questioning task, following Gavrikov et al. (2024). For the VQA tasks, we employ the
official dataset prompts and append the same multiple-choice instruction to standardize responses. Two
exceptions are made: for Capture, we use free-form answers as recommended by Pothiraj et al. (2025),
and for MME, we convert yes/no questions into a multiple-choice format. Performance is measured
by accuracy against the ground truth for recognition and VQA tasks, while for Capture we report
1−symmetric mean percentage error (Pothiraj et al., 2025). For all the zero-shot results we do not employ
any chain-of-thought prompting (Wei et al., 2022), because that evaluation setting is more fair with the
setting employed in our work.

B DATASET DESCRIPTION

To comprehensively evaluate our method, we curated a diverse set of recognition and VQA benchmarks
that span multiple task-specific challenges. Table 8 provides detailed statistics of the datasets used in our
experiments, including both the original test sizes and the number of images retained after preprocessing.

We employed several widely used recognition datasets that test the robustness and generalization capability
of models across distribution shifts. Specifically, we included ImageNet (Deng et al., 2009), ImageNet-
V2 (Recht et al., 2019), and ImageNet-A (Hendrycks et al., 2021b) to capture generic object recognition
in both standard and adversarial settings. In addition, ImageNet-Sketch (Wang et al., 2019) and ImageNet-
R (Hendrycks et al., 2021a) were incorporated to examine robustness under edge-based and texture-based
distortions, respectively. To further assess fine-grained and material recognition, we used Food101 (Bossard
et al., 2014) and DTD (Cimpoi et al., 2014), which emphasize category-level detail and texture variation.

To test higher-level reasoning, we included a wide range of VQA datasets spanning mathematical ability,
general understanding, and compositional reasoning. Mathematical reasoning was evaluated using
Mathverse (Zhang et al., 2024a) and MathVista (Lu et al., 2024), while Seed (Li et al., 2023a) and
MME (Yin et al., 2023) were selected for general multimodal understanding. RealWorldQA (AI, 2024)
was used to benchmark models against real-world scenarios, where all images were first standardized
to a maximum resolution of 1000 × 1000 for consistency across experiments. We also included
Capture (Pothiraj et al., 2025) to probe counterfactual reasoning, CRPE (Wang et al., 2024) to evaluate
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Dataset Used Test Size Original Test Size Focus
ImageNet-A (Hendrycks et al., 2021b) 7,467 7,500 Generic
ImageNet-V2 (Recht et al., 2019) 9,772 10,000 Generic
ImageNet (Deng et al., 2009) 49,032 50,000 Generic
ImageNet-Sketch (Wang et al., 2019) 35,350 50,000 Edges
ImageNet-R (Hendrycks et al., 2021a) 28,506 30,000 Texture
DTD (Cimpoi et al., 2014) 5640 5,640 Edges, Texture
Food101 (Bossard et al., 2014) 25,250 25,250 Fine-grained
Resisc45 (Cheng et al., 2017) 4,500 4,500 Satellite Imagery

Mathverse (mcq) (Zhang et al., 2024a) 1631 2180 Mathematical Ability
Mathvista (Lu et al., 2024) 490 1000 Mathematical Ability
Seed (Li et al., 2023a) 3,881 13,991 General Understanding
MME (Yin et al., 2023) 1576 2,370 General Understanding
RealworldQA (AI, 2024) 765 765 Realworld Understanding
Capture (Pothiraj et al., 2025) 817 962 Counterfactual Understanding
CRPE (Wang et al., 2024) 7575 7575 Compositionality and Halluncination
AI2D (Kembhavi et al., 2016) 2704 3090 Grpah and Chart Understanding

Table 8: Statistics of Recognition and VQA datasets used in TTRV. We drop images with resolution
higher than 1000×1000. Hence, we report both i) the original number of test images and ii) the used
number of test images (i.e., those below the 1000×1000 threshold).

compositionality and hallucination resistance, and AI2D (Kembhavi et al., 2016) to study performance
on diagram, graph, and chart-based understanding tasks.

For computational resons, we filtered out images exceeding a resolution of 1000×1000 pixels across
all datasets, retaining only those within this threshold. The reported “used test size” in Table 8 reflects
this preprocessing step. In particular, for the RealWorldQA dataset, where image dimensions were highly
inconsistent, we explicitly resized all images to 1000×1000 resolution to ensure compatibility with our
evaluation pipeline.

Overall, the curated dataset collection provides a broad coverage of recognition, reasoning, and real-world
understanding challenges, allowing us to rigorously evaluate the generalization capability of our proposed
approach.

C TTRV PROMPT DETAILS

In this section, we provide the prompts used in our experiments. For each dataset, we present a
representative example of the prompt employed in our study. While the specific prompts may vary
depending on the nature of the question, particularly in VQA tasks, we provide a general outline illustrating
the structure and format of the prompts used across different datasets.

• ImageNet:
<image> \n Look at the given image and identify what it shows.
Choose the correct answer from the options below and respond
with only the corresponding option letter (A, B, C, or D).
Do not include any explanation or extra text.
\n Options:\nA. neck brace\nB. shopping cart\nC. guillotine
\nD. garbage truck.

• ImageNet-V2:
<image> \n Look at the given image and identify what it shows.
Choose the correct answer from the options below and respond with
only the corresponding option letter (A, B, C, or D). Do not
include any explanation or extra text. \n Options:\nA. cuirass
\nB. dial telephone, dial phone\nC. beaver\nD. desk.

• ImageNet-R:
<image> \n Look at the given image and identify what it shows.
Choose the correct answer from the options below and respond with
only the corresponding option letter (A, B, C, or D). Do not
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include any explanation or extra text. \n Options:\nA. skunk
\nB. panda\nC. german_shepherd_dog\nD. orangutan.

• ImageNet-S:
<image> \n Look at the given image and identify what it shows.
Choose the correct answer from the options below and respond with
only the corresponding option letter (A, B, C, or D). Do not
include any explanation or extra text. \n Options:\nA. lab coat
\nB. cheetah\nC. ptarmigan\nD. canoe.

• ImageNet-A:
<image> \n Look at the given image and identify what it shows.
Choose the correct answer from the options below and respond with
only the corresponding option letter (A, B, C, or D). Do not
include any explanation or extra text. \n Options:\nA. feather boa
\nB. garter snake\nC. soap dispenser\nD. tank.

• Food101:
<image> \n Look at the given image and identify what it shows.
Choose the correct answer from the options below and respond with
only the corresponding option letter (A, B, C, or D). Do not
include any explanation or extra text. \n Options:\nA. Greek
salad\nB. Red velvet cake\nC. Bibimbap\nD. Pork chop.

• DTD:
<image> \n Look at the given image and identify what texture it
shows. Choose the correct answer from the options below and
respond with only the corresponding option letter (A, B, C, or D).
Do not include any explanation or extra text. \n Options:\nA.
banded\nB. crosshatched\nC. freckled\nD. marbled.

• Resisc45:
<image> \n Look at the given image and identify what it shows.
Choose the correct answer from the options below and respond with
only the corresponding option letter (A, B, C, or D). Do not
include any explanation or extra text. \n Options:\nA. industrial
area\nB. sea ice\nC. circular farmland\nD. golf course.

• Mathverse:
<image> \nPlease directly answer the question and provide the
correct option letter, e.g., A, B, C, D.\nDo not include any
explanation or extra text.\nQuestion: Emile is observing a wind
turbine. The vertical distance between the ground and the tip of
one of the turbine's blades, in meters, is modeled by $H(t)$
where $t$ is the time in seconds. What is the meaning of the
highlighted segment?\nChoices:\nA:The turbine's center is 35
meters above the ground.\nB:The turbine completes a single
cycle in 35 seconds.\nC:The length of the blade is 35 meters.
\nD:The turbine has 35 blades.

• Mathvista:
<image> \nHint: Please answer the question and provide the correct
option letter, e.g., A, B, C, D, at the end.\nDo not include any
explanation or extra text.\nQuestion: In the figure above,
triangle ABC is inscribed in the circle with center O and diameter
AC. If AB = AO, what is the degree measure of angle ABO \nChoices:
\n(A) 15*\\degree\n(B) 30*\\degree\n(C) 45*\\degree\n
(D) 60*\\degree\n(E) 90*\\degree.
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Food101 DTD Resisc45 ImageNet ImageNetv2 ImageNetR ImageNetS ImageNetA

InternVL3-2B 67.19 37.24 72.28 56.00 67.43 66.01 62.19 67.92
TTRV 20 samples 95.60 89.73 90.06 98.31 98.25 96.89 94.74 96.31
TTRV 500 samples 96.20 89.99 93.67 98.89 98.95 97.85 95.54 96.38

InternVL3-8B 78.32 59.11 83.62 79.47 62.58 59.32 54.48 57.03
TTRV 20 samples 87.13 77.92 89.19 91.43 85.27 63.51 53.79 81.43
TTRV 500 samples 97.20 89.37 93.82 99.31 97.24 96.88 95.03 96.86

Table 9: Number of Samples for Adaptation. Top-1 Accuracy (%) obtained by sampling varying data
points from the test data.

• SEED:

<image> \nWhat is the main color of the dress worn by the woman
with the density value of [0.6536, 0.5600, 0.7431, 0.7743]?
\nChoose the correct answer from the options below and respond
with only the corresponding option letter (A, B, C, or D). Do not
include any explanation or extra text.\nOptions:\nA. Red\nB.
None of the above\nC. Brown\nD. Tan

• MME:

<image> \n Is this photo taken in a place of home office? Please
answer with yes or no. Please respond with only the corresponding
option letter (A or B). Do not include any explanation or extra
text. \n Options:\nA. No \nB. Yes.

• RealWorldQA:

<image> \nHow many lanes are there on the left?\n\nOptions are:
\nA. 4\nB. 3\nC. 2\nD. 5\n\nPlease answer directly with only the
letter of the correct option and nothing else.",

• Capture:

<image>\nCount the exact number of sunglasses in the image. Assume
the pattern of sunglasses continues behind any black box. Provide
the total number of sunglasses as if the black box were not
there.\nPlease reason step by step, and put your final
answer within \\boxed{}.

• CRPE:

<image> \nWhat is the person in front of?\nA. The person is in
front of the person.\nB. The person is in front of the tree.\nC.
The person is in front of the mirror.\nD. The person is in front
of the shelf.\nAnswer with the option's letter from the given
choices directly and do not include any explanation or extra text.

• AI2D:

<image> \nWhat is the line that divides the two different plates?
\nChoose the correct answer from the options below and respond
with only the corresponding option letter (A, B, C, or D). Do not
include any explanation or extra text.\n\nOptions:\nA. ground\nB.
fault line\nC. dirt\nD. earthquake.
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Latency (avg± std) Overhead vs. Normal Inference

Normal Inference 25.5±4.5 s –

Adaptation:
1 sample 2.75±0.43 m ≈+2.7 m
20 samples 3.77±0.63 m ≈+3.8 m
500 samples 1 hr 38 m±16 m ≈+1 hr 38 m

Table 10: Computation Overhead. Inference and adaptation latency through TTRV. Seconds: s, Minutes:
m, Hours: h.

DTD Imagenet-A Imagenet-V2 AI2D Mathverse

InternVL2.5-4B 46.78± 0.03 90.58± 0.05 83.01± 0.03 51.73± 0.01 52.67± 0.55
w/ TTRV 81.87± 0.80 96.09± 0.01 96.77± 0.06 64.75± 2.34 53.59± 0.45

Table 11: Variance of Results. Results obtained by employing TTRV across 5 independent runs.

Mathvista→Mathverse Food→Mathvista DTD→ Seed IN-V2→ IN-R IN-V2→ IN-A IN-A→ IN-V2

InternVL2.5-4B 51.69 65.49 56.25 79.53 90.67 83.07

w/ TTRV 52.00 67.14 59.07 95.42 96.30 96.14
∆ +0.31 +2.52 +2.02 +15.89 +5.63 +13.07

Table 12: Cross-dataset generalization. Performance on different dataset combinations, where X →
Y denotes training on dataset X and testing on dataset Y. ”IN” in the table refers to ImageNet.

D ADDITIONAL EXPERIMENTS

D.1 LATENCY VERSUS NUMBER OF SAMPLES

To further substantiate our claims, we conducted experiments aimed at analyzing the adaptability of the
model under varying conditions. The first experiment investigates how the model’s performance changes
when it is allowed to adapt using different numbers of training samples. Specifically, we compare the
outcomes when the model is adapted with only 20 samples versus when it is adapted with 500 samples. As
shown in Table 9, the results demonstrate a consistent improvement in performance as the number of adapta-
tion samples increases. This suggests that providing the model with a richer set of examples enables it to bet-
ter align with the target task, thereby yielding higher accuracy and robustness. However, this improvement
does not come without trade-offs. Increasing the number of samples also leads to a higher computational bur-
den, both in terms of memory consumption and processing time. This is particularly important in real-world
applications where inference latency is a critical factor. To quantify this trade-off, we conducted an ad-
ditional experiment measuring the latency associated with adaptation on different sample sizes. The results
in Table 10, reveal that while larger adaptation sets enhance task performance, they simultaneously increase
the time required for inference, thereby highlighting an inherent balance between accuracy and efficiency.

All experiments were conducted using the vLLM inference engine, one of the fastest and most recent
frameworks for large language model inference. Despite its efficiency, optimized inference remains an
active research area, and ongoing improvements in frameworks such as vLLM are expected to further
reduce latency. Moreover, the reported times are dependent on the underlying hardware. Access to more
powerful GPUs would likely accelerate both inference and adaptation, thereby reducing the overall time
required for these tasks.

D.2 ROBUSTNESS

To evaluate the robustness of our method, we conducted experiments to measure the variance in its
performance. The results are summarized in Table 11. As shown, our method, when evaluated using
greedy decoding, demonstrates strong robustness and is only subject to minor variations attributable to
hardware and software factors.
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D.3 FURTHER CROSS-DATA GENERALIZATION EXAMPLES

In addition to the results shown in Figure 3, we present challenging cross-dataset evaluation results in
Table 12. Our method consistently improves performance across all transfer settings, demonstrating its
effectiveness not only in within-domain accuracy but also in transferring knowledge across diverse domains.
For instance, training on ImageNet-V2 leads to significant gains when tested on ImageNet-R (+15.89%)
and ImageNet-A (+5.63%). Similarly, training on ImageNet-A improves performance on ImageNet-V2
by +13.07%. We also observe positive transfer in mathematical reasoning tasks, with a gain of +0.31%
when training on MathVista and evaluating on MathVerse. Notably, even when models are trained on
visual recognition datasets and evaluated on VQA benchmarks, such as training on Food and testing on
MathVista, we achieve a performance improvement of +2.52%. These results indicate that our approach
enhances visual understanding in a way that generalizes well across heterogeneous tasks and domains.
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E PSEUDOCODE

The following pseudocode illustrates the main steps of our method, including rollout generation, reward
computation, advantage estimation, and policy update.

Pseudocode: Test-Time Reinforcement Learning for Vision Language Models

def inference_time_grpo(model, test_sample, N=32, alpha=0.75, lr=0.001):
"""
Args:

model: decoder-based VLM with parameters theta
test_sample: (x) consisting of image + text prompt
N: number of rollouts per test sample
alpha: weight for entropy regularization
lr: learning rate for policy update

Returns:
updated_model: model with adapted parameters

"""

# 1. Generate rollouts
responses = [model.sample(test_sample) for _ in range(N)]
unique_responses = set(responses)

# 2. Empirical probabilities
freq = {y: responses.count(y) for y in unique_responses}
probs = {y: freq[y]/N for y in unique_responses}

# 3. Compute rewards
r1 = {y: probs[y] for y in unique_responses} # Frequency-based reward
H = -sum(p * log(p) for p in probs.values())
r2 = -H # diversity control reward
R = {y: r1[y] + alpha * r2 for y in unique_responses} # total reward

# 4. Convert rewards -> relative advantages
mean_R = sum(R[y] for y in responses) / len(responses)
std_R =

(sum((R[y] - mean_R)**2 for y in responses) / len(responses))**0.5
if std_R < 1e-8: # avoid divide by zero

A = {y: 0.0 for y in responses}
else:

A = {y: (R[y] - mean_R) / std_R for y in responses}

# 5. Policy update (GRPO)
grad_estimate = 0
for y in responses:

logprob = model.log_prob(test_sample, y)
grad_estimate += A[y] * grad(logprob, model.params)

grad_estimate /= N

for param in model.params:
param += lr * grad_estimate[param]

return model
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