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Abstract

We demonstrate substantial performance gains001
in zero-shot dialogue state tracking (DST) by002
enhancing training data diversity through syn-003
thetic data generation. Existing DST datasets004
are severely limited in the number of appli-005
cation domains and slot types they cover due006
to the high costs of data collection, restricting007
their adaptability to new domains. This work008
addresses this challenge with a novel, fully009
automatic data generation approach that cre-010
ates synthetic zero-shot DST datasets. Distin-011
guished from previous methods, our approach012
can generate dialogues across a massive range013
of application domains, complete with silver-014
standard dialogue state annotations and slot de-015
scriptions. This technique is used to create the016
D0T dataset for training zero-shot DST mod-017
els, encompassing an unprecedented 1,000+ do-018
mains. Experiments on the MultiWOZ bench-019
mark show that training models on diverse syn-020
thetic data improves Joint Goal Accuracy by021
6.7%, achieving results competitive with mod-022
els 13.5 times larger than ours.023

1 Introduction024

A critical task for building task-oriented dialogue025

(TOD) systems is Dialogue State Tracking (DST),026

which aims to maintain a structured representa-027

tion of the key task-related information provided028

throughout a dialogue. Conventionally, the state029

representation is composed of a set of task-specific030

slot-value pairs, where slots are information types031

provided by a predefined slot schema. While DST032

has been studied in fully supervised (Heck et al.,033

2020; Xie et al., 2022; Won et al., 2023) and few-034

shot settings (Lin et al., 2021; Shin et al., 2022;035

Chen et al., 2023), these settings rely on a substan-036

tial amount of labeled training examples within037

the targeted task domain. To this end, zero-shot038

DST has recently gained attention, as it requires the039

DST model to adapt to an unseen target domain for040

which no training examples are available (Gupta 041

et al., 2022; Wang et al., 2023; Heck et al., 2023). 042

Leveraging slot descriptions to perform cross- 043

task transfer is shown to be effective for zero-shot 044

DST (Lin et al., 2021; Gupta et al., 2022; Zhao 045

et al., 2022; Tavares et al., 2023). In this approach, 046

a model is trained to interpret the slot descriptions 047

to perform DST using gold supervision in several 048

data-rich domains. During inference, the model 049

interprets new slot descriptions to perform DST in 050

unseen target domains without any training data. 051

However, for this approach to succeed, sufficiently 052

diverse training data must be available to enable 053

the model to generalize and handle new slot types. 054

We hypothesize that existing training data for DST 055

is a bottleneck, as the two most popular datasets 056

for DST training, MultiWOZ (Budzianowski et al., 057

2018) and SGD (Rastogi et al., 2020), only cover 7 058

and 16 domains, respectively. 059

This work aims to explore the impact of increas- 060

ing training data diversity on zero-shot DST per- 061

formance. Since traditional methods of creating 062

diverse DST training data are costly and difficult to 063

scale, we develop a novel, fully automatic data gen- 064

eration approach for zero-shot DST. This approach 065

leverages the capabilities of instruction-tuned large 066

language models (LLMs) to create new task do- 067

mains from scratch. Synthetic dialogues are gener- 068

ated for each domain, and are automatically anno- 069

tated for dialogue state, complete with descriptions 070

of labeled slots. This approach is leveraged to gen- 071

erate a synthetic DST dataset of unprecedented di- 072

versity, including over 1, 000 task domains. Experi- 073

ment results demonstrate a substantial performance 074

boost provided by this synthetic data on standard 075

benchmarks. In summary, our contributions are: 076

1. A novel approach for generating domain- 077

diverse DST data. 078

2. A synthetic DST dataset with 1, 000+ do- 079

mains for training zero-shot models. 080
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3. Efficient state-of-the-art models that robustly081

handle diverse domains for zero-shot DST.082

We make all models, code, and data publicly avail-083

able to support future work.1084

2 Related Work085

Zero-Shot DST Current state-of-the-art (SoTA)086

approaches to zero-shot DST use sequence-to-087

sequence (S2S) modeling to predict appropriate088

values given a natural language specification of089

each slot to track (Gupta et al., 2022; King and090

Flanigan, 2023). Such S2S modeling has been ef-091

fective for adapting to new slot types, since models092

can leverage descriptions of a new, unseen slot093

type via in-context learning (ICL) when making094

predictions. Recently, models using LLMs have095

achieved state-of-the-art results on this task due to096

the excellent zero-shot ability of LLMs (Hu et al.,097

2022b; King and Flanigan, 2023). However, the098

cost of LLM decoding is often too steep for many099

task-oriented dialogue (TOD) applications. Thus,100

ongoing work aims to achieve SoTA results with101

smaller models using cross-task transfer, where the102

model is trained on an existing set of task domains103

before being transferred to the unseen target do-104

main (Wang et al., 2023; Aksu et al., 2023).105

DST Data Collection Successful modeling of106

a low-cost zero-shot DST model that generalizes107

to unseen domains depends on the quality and di-108

versity of its training data; however, collecting109

a training resource that covers diverse TOD do-110

mains is costly. The most popular dataset, Mul-111

tiWOZ, was collected using a wizard-of-oz setup112

using human participants, yet only covers 7 do-113

mains (Budzianowski et al., 2018). The Schema114

Guided Dialogues (SGD) dataset was created in115

an attempt to increase the diversity of available116

DST resources using a rule-based data generation117

approach, where the final dialogue text was para-118

phrased by crowdworkers to improve naturalness119

(Rastogi et al., 2020). Even with this more cost-120

effective collection technique, SGD only covers121

16 domains in its training split. Moreover, both122

datasets suffer from high inter-domain similarity.123

In the case of MultiWOZ, each domain covers124

a component of a travel planning application, in125

which a user talks to an artificial travel agent. As126

a result, there is a high degree of topical and struc-127

tural similarity between dialogues, and all domains128

1https://github.com/anonymous

share a similar focus on scheduling. This results in 129

many overlapping slots between domains to cover 130

scheduling details such as dates, times, and loca- 131

tions. SGD has a more diverse array of domains, 132

yet most are similar to MultiWOZ in that they focus 133

on booking and scheduling. In particular, the Bus, 134

Calendar, Event, Flight, Hotel, RentalCar, Service, 135

and Train domains all share this scheduling focus. 136

As a result of this limited diversity and the cost of 137

additional data collection, it is unknown whether 138

the domain coverage of existing DST resources is a 139

bottleneck for training a zero-shot DST model with 140

robust cross-task transfer. 141

DST Data Generation Several previous works 142

explore data augmentation methods for improving 143

the diversity of limited DST data. Nearly all of 144

these approaches target the few-shot setting, where 145

a limited number of labeled examples are used as 146

a seed set to be augmented with additional, syn- 147

thetic examples. This can be done using simple ap- 148

proaches to improve the lexical (Quan and Xiong, 149

2019; Yin et al., 2020) or semantic (Summerville 150

et al., 2020; Lai et al., 2022) diversity of training ex- 151

amples, or by synthesizing entire dialogues (Cam- 152

pagna et al., 2020; Aksu et al., 2021, 2022; Mehri 153

et al., 2022; Mohapatra et al., 2021; Kim et al., 154

2021; Wan et al., 2022) to create additional train- 155

ing resources. These previous works in DST data 156

generation demonstrate that automatic methods for 157

data augmentation and generation can help address 158

the limitations of existing training resources and 159

improve transfer to data-poor domains. Additional 160

detail regarding related work in DST data genera- 161

tion is provided in Appendix A. 162

Our DST data generation approach is distinct 163

from all previous methods because it generates 164

entirely new task domains, in addition to new 165

dialogues with silver annotations. Furthermore, 166

our approach is fully automatic, requiring no few- 167

shot data or manual creation of domain-specific 168

resources, making it ideal for scaling up the diver- 169

sity of training resources for zero-shot DST. 170

3 DST Data Generation 171

This section presents our fully automatic data gen- 172

eration approach to support training DST models 173

capable of zero-shot domain transfer. Our goal is 174

to create a set of dialogue data covering many di- 175

verse task domains, with silver dialogue state labels 176

and natural language slot descriptions. Given the 177

exceptional zero-shot performance of instruction- 178

2

https://github.com/anonymous


tuned large language models (LLMs) on a wide179

variety of tasks (Brown et al., 2020; Kojima et al.,180

2022; Heck et al., 2023), our approach explores181

using instruction-tuned LLMs for data generation.182

We use GPT2 in all of our presented experiments,183

although any LLM can be used for our approach in184

principle.185

The approach consists of four stages, which are186

summarized in Figure 1. First, domains are derived187

through an iterative process of generating and re-188

fining dialogue scenario descriptions (§3.1). Next,189

a dialogue is crafted based on the scenario descrip-190

tion and a generated unstructured information list191

corresponding to the scenario (§3.2). Third, each192

turn in each dialogue is automatically annotated193

with silver dialogue state labels (§3.3). Finally, a194

slot description is composed for each silver slot-195

value pair annotation (§3.4). All prompts included196

in the approach are provided in Appendix B.197

Musician talks to sound technician to adjust 
levels.

Information Types
1. Specific frequency ranges that need to be 
changed
2. Desired tone or feel of the overall mix
3. Desired volume levels for individual 
    instruments and vocals

Dialogue
Artist: Right now, the guitar is a bit too loud 
compared to the vocals. Can we bring the 
guitar down and bring the vocals up?
Tech: Got it. What levels are we at right now?
Artist: The guitar is at about 80, vocals at 60.
Tech: Okay, I'm lowering the guitar to 60 and 
bringing the vocals up to 70. How does that 
sound?

Question-Answer Pair Generation
What level is the guitar at now? 

The guitar is now at 60.
What level are the vocals at now? 

The vocals are now at 70.
How does the new sound balance sound? 

[Unknown]

Slot-Value Translation
guitar level = 60
vocal level = 70
sound balance = ?

guitar level: Current guitar volume [60, 5, etc.]
vocal level: Current vocal volume [70, 23, etc.]
sound balance: Quality of the sound mix 
[balanced, vocal-forward, etc.]

Scenario 
Derivation

Dialogue 
Generation

Slot 
Description 
Generation

State 
Annotation

Figure 1: The four-stage DST data generation pipeline.

2gpt-3.5-turbo-0301 is used for all stages of the approach,
except for QA Pair Generation in which gpt-4-0314 is used.

3.1 Scenario Derivation 198

Algorithm 1 shows our scenario derivation method. 199

GPT is iteratively prompted to create a mini-set of 200

k dialogue scenario descriptions (L3). Each mini- 201

set is combined with the scenarios obtained from 202

previous iterations, where each scenario descrip- 203

tion is encoded into an embedding by Sentence- 204

BERT3 (Reimers and Gurevych, 2019) and the re- 205

sulting embeddings are clustered through a commu- 206

nity detection algorithm (L4).4 A deduplicated set 207

of scenario descriptions is created by selecting one 208

embedding from every cluster, which is mapped 209

back to its corresponding scenario description (L5). 210

This iteration continues until the set reaches the re- 211

quested size (L2). In our case, k = 100, n = 1000. 212

Appx. C gives a sample of the generated scenarios. 213

Algorithm 1: Scenario Derivation
Input :k: mini-set size, n: final set size.
output :S: the final set containing n scenarios.

1 S ← ∅
2 while |S| < n do
3 S′ ← gpt_generated_scenarios(k)
4 E← cluster(embed(S ∪ S′))
5 S ← {∀C∈E. map(one(c)) : c ∈ C}
6 return S

3.2 Dialogue Generation 214

In a pilot analysis, generating dialogues directly 215

from scenario descriptions (§3.1) using GPT re- 216

sulted in generic contents that lack sufficient details 217

for effective DST model training. To address this 218

issue, we generate dialogues from scenario descrip- 219

tions in two steps. First, GPT is asked to generate 220

a comprehensive list of information types based on 221

the provided scenario, which serves as a de-facto 222

ontology for representing the properties of the sce- 223

nario. Second, given a scenario and its associated 224

information types, GPT is then asked to generate a 225

dialogue. The prompt encourages GPT to provide 226

detailed responses and make up values for the in- 227

formation types in order to encourage generating 228

concrete values to serve as targets for DST. 229

3.3 State Annotation 230

Each turn in the generated dialogues is automati- 231

cally annotated with a dialogue state update using 232

two components: Question-Answer (QA) Pair Gen- 233

eration to deduce the key information in each turn 234

and Slot-Value Translation to transform those QA 235

3SentenceBert model: all-MiniLM-L6-v2
4https://www.sbert.net/docs/package_reference/util.html
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guitar level 60Okay, I'm lowering the guitar to 60 
and bringing the vocals up to 70. 

How does that sound?

That's better. Can we also adjust 
the feedback and distortion levels 

while we're at it? 

Q: What level is the guitar at now?
A: The guitar is now at 60.

Q: What level are the vocals at now?
A: The vocals are now at 70.

Q: How does the new sound balance sound?
A: That's better.

Q: Can we adjust the feedback levels?
A: [Unknown]

Q: How does the new sound balance sound?
A: [Unknown]

Q: Can we adjust the distortion levels?
A: [Unknown]

vocals level 70

sound balance ?

sound balance improved

adjust feedback levels ?

adjust distortion levels ?

Figure 2: Example turn outputs from the automatic state annotation component of the DST data generation pipeline.

pairs into slot names and values. Figure 2 illustrates236

the automatic state annotation approach.237

Question-Answer Pair (QA) Generation To238

generate a state update Ut given a dialogue history239

D1..t, we use a prompt PQA
t containing the last240

two turns Dt−1,t, and instruct GPT to break down241

all the information in turn t as a set of QA pairs.242

Only the last two turns are included to reduce irrel-243

evant information from previous turns that could244

misguide the state update for the current turn t. To245

further mitigate this issue, every turn is prepended246

with a speaker tag, allowing GPT to soley focus on247

turn t by referring to the corresponding speaker. A248

set of QA pairs QAt = {(qt1, at1), . . . , (qtk, atk)} is249

generated by this method, where each question qti250

represents an information type either shared or re-251

quested during the turn and its answer ati summa-252

rizes the information value.253

State updates are produced to monitor the change
in values of slots throughout the dialogue, enabling
us to track whether information requests from one
speaker are satisfied through information shared by
the other speaker. To implement this, PQA

t explic-
itly designates the answer Unknown for use in any
QA pair, where the question represents an informa-
tion request made by the current speaker. There-
fore, for each turn, a set of unanswered questions
for the prompt PQA

t can be identified as follows:

Rt = {∀i. qti : 0 < i ≤ k ∧ ati = Unknown}

A second prompt PA is used to answer each ques-254

tion in Rt using two turns Dt,t+1, which produces a255

set of QA pairs QA′
t+1 comprising slots from turn t256

filled with values in turn t+1. Included in PA is an257

instruction to use Unknown for questions whose an-258

swers are not present in turn t+1. Such unanswered 259

questions are removed from QA′
t+1, leaving only 260

QA pairs with information requested in turn t and 261

shared in turn t+ 1. QA′
t+1 are then appended to 262

the next prompt PQA
t+1 to generate a new set QAt+1 263

for turn t + 1. Including QA′
t+1 in PQA

t+1 guides 264

GPT to generate only new QA pairs that have not 265

already been covered by QA′
t+1. 266

Slot-Value Translation After summarizing key 267

dialogue information as QA pairs, every QA pair 268

in QAt is translated to a slot-value pair. GPT tends 269

to generate overly detailed slot names when an- 270

swers are provided along with questions. Hence, 271

slot names and values are derived using separate 272

prompts. First, a prompt PS is used to translate all 273

questions in QAt into corresponding slot names. 274

No context from the dialogue is provided, nor do 275

we include any answers from QAt in PS . The re- 276

sult is a set of slot names Nt = {st1, . . . , st|QAt|} 277

representing information types mentioned in turn t. 278

Finally, a prompt P V , comprising questions 279

and answers in QAt as well as the slot names 280

in Nt, is used to translate each answer into a 281

value for the corresponding slot name. In addi- 282

tion, P V highlights that a value can be a concise 283

phrase, number, span, category, score, boolean, 284

list, or other form, aiding the model in generat- 285

ing values suitable for the respective slot names, 286

rather than always using natural language phrases 287

as values. QA pairs with the Unknown answer 288

are excluded from P V , as they are translated into 289

a special token ? to represent a requested slot. 290

Pairing each generated value with its correspond- 291

ing slot name results in the dialogue state update 292

Ut = {(st1, vt1), . . . , (st|QAt|, v
t
|QAt|)}. 293
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3.4 Slot Description Generation294

For each state update Ut produced by automatic295

annotation (§3.3), GPT is instructed to generate296

a specification of each slot in Ut using a single297

prompt. The prompt includes each slot value pair298

(sti, v
t
i) in Ut as well as each question qti correspond-299

ing to each slot. GPT is asked to generate a descrip-300

tion for each slot as a short natural language phrase301

dti, in addition to a few comma-separated example302

values eti that could fill the slot.303

4 New Dataset for Zero-Shot Tracking304

Using our DST data generation approach (§3), we305

create a Diverse 0-shot Tracking dataset: D0T.306

Since we aim to measure the impact of increas-307

ing the diversity of DST training resources, we308

generate D0T to include unprecedented 1, 000+309

domains and 5 dialogues per domain. Applying310

automatic state annotation (§3.3) to the generated311

dialogues yields 324, 973 slot-value pairs in state312

updates. Since compiling each dialogue state St =313

update(St−1, Ut) produces an excessive ≈ 6.5314

million total slot-value pairs for DST training, slot-315

value pairs are downsampled using a method that316

maintains slot type diversity. We randomly sample317

exactly 1 example for each of the original 324, 973318

slot-value updates from the set of final slot-values319

where that slot is filled (non-empty), resulting in320

n = 324, 973 filled slot-value examples. To in-321

clude examples of empty slots, we randomly sam-322

ple m empty slot-value pairs from the final com-323

piled states, where m = 0.5 ∗ n = 162, 487. Ta-324

ble 1 presents the final statistics of the dataset, and325

Table 2 presents a comparison to existing data.326

Metric Value Metric Value

Scenarios 1,003 Unique Slots 173,572
Dialogues 5,015 Unique SlotsS 244.6
Turns 100,471 Unique SlotsD 64.9
TurnsD 20.0 Unique SlotsT 3.3
Tokens 2,061,332 Turns w/o SV 1,583
TokensT 20.5 TokensSN 2.4
Slot-Values 487,460 TokensSV 2.0

Table 1: The statistics of the D0T dataset with di-
alogue state update labels created using our fully
automatic generation pipeline (§3). SN/SV: slot
names/values respectively, *D/T/S/SN/SV : * per di-
alogue/turn/scenario/SN/SV, respectively.

We validate the quality of the dataset by recruiting 3327

human evaluators to annotate 60 randomly sampled328

turns, judging (1) whether each slot-value correctly329

represents information in the corresponding turn330

and (2) whether each state update Ut is missing 331

any important information in the turn. 82% of slot- 332

value pairs were judged correct and 7% of state 333

updates were missing important information. 334

Dataset Dom. Dial. Turns SV US

MWOZ 7 8,438 113,556 4,510 24
SGD 16 16,142 329,964 14,139 214
D0T 1,003 5,015 100,471 487,460 173,572

Table 2: Comparison of D0T to the train splits of Multi-
WOZ 2.1/2.4 (MWOZ) and SGD, compared on number
of domains (Dom.), dialogues (Dial.), turns, slot-values
(SV), and unique slot names (US).

5 Experiment Setup 335

Evaluation Data Our experiments on zero-shot 336

DST use the standard MultiWOZ benchmark 337

(Budzianowski et al., 2018). This evaluation was 338

designed using a leave-one-out setup in which a 339

zero-shot DST model is tested on each of five do- 340

mains (Attraction, Hotel, Restaurant, Taxi, Train) 341

after being trained on the other four, to test zero- 342

shot transfer to new domains. Joint Goal Accu- 343

racy (JGA) is the evaluation metric, measuring the 344

proportion of turns for which the entire dialogue 345

state is correctly inferred. The MultiWOZ 2.4 (Ye 346

et al., 2022) variant is used as the main evaluation 347

dataset since it contains corrected gold labels in 348

the validation and test splits. We additionally in- 349

clude an evaluation on the uncorrected MultiWOZ 350

2.1 variant (Eric et al., 2020) to facilitate further 351

comparison to previous work. 352

Since MultiWOZ does not contain slot descrip- 353

tions, a single-sentence description is written for 354

each MultiWOZ slot to provide slot definitions. De- 355

scriptions are authored based on Lin et al. (2021) 356

but with improvements in detail and grammar. Ad- 357

ditionally, descriptions are augmented with 4 value 358

examples for each slot. No prompt engineering or 359

validation experiments are performed when creat- 360

ing slot descriptions and value examples, to reflect 361

the performance of the model in real-world settings 362

without requiring extensive development effort. 363

Models The impact of domain-diverse training 364

data on zero-shot DST is evaluated by compar- 365

ing models that leverage the domain-diverse D0T 366

dataset as a training resource against baselines 367

trained only on the standard training splits of bench- 368

mark data. Models leveraging D0T (+D0T) are 369

trained in two sequential training stages. Models 370

are first trained on D0T to acquire domain-general 371
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state tracking ability, and then refined in a second372

training stage using the standard training split of373

benchmark data.374

Two base models, T5 1.1 (Raffel et al., 2020)375

and Llama2-Chat (Ouyang et al., 2022), are used376

in our experiments. We use the 11B and 13B vari-377

ants of the T5 and Llama2 models, respectively;378

however, for greater efficiency and robustness for379

two-stage model training, we additionally leverage380

the QLoRA (Dettmers et al., 2023) quantization381

and training method. Models are trained using the382

sequence-to-sequence format shown in Figure 3383

which follows the "independent" formulation from384

Gupta et al. (2022). Appendix D provides imple-385

mentation details such as model hyperparameters.386

A: Good afternoon, Mr. Smith. I’m here today to survey your
land and assess its value.
B: Of course, please go ahead.
A: Firstly, can you tell me the location and size of the land?
B: Sure. The land is located on the outskirts of town, about 10
miles away from the city center. It’s approximately 20 acres.
A: That’s helpful. Can you also tell me about the type of
terrain and land features on the property?

Identify the information from the above dialogue:
land size : the area encompassed by the property, typically
measured in units such as acres, hectares, or square miles.

(e.g. 50 hectares, 2 square miles )?
ex. The floodwaters have submerged over 150 hectares

of farmland. land size? -> 150 hectares
ex. Yes, we’re finalizing a purchase of 50 acres in the valley.

land size? -> 50 acres

Figure 3: An example of an input token sequence from
the D0T dataset used for training. [YELLOW]: dialogue
context D1..t [PEACH]: slot sti [GREEN]: slot descrip-
tion dti [RED]: value examples eti [BLUE]: In-context
demonstrations (+ICL only)

Additionally, since recent work in zero-shot DST387

has shown performance improvements from includ-388

ing demonstrations in slot descriptions using in-389

context learning (Gupta et al., 2022; Hu et al.,390

2022b; King and Flanigan, 2023), we also ex-391

periment with this approach using the Llama2392

base model, to observe the interaction between393

domain-diverse training and in-context demonstra-394

tion. Models leveraging in-context demonstrations395

(+ICL) are trained and tested with slot descriptions396

that include up to k = 3 in-context demonstrations,397

where k is a per-domain hyperparameter selected398

by validation performance.399

For MultiWOZ, demonstrations are collected for400

each slot by manually constructing 3 single-turn401

examples of the slot being updated with an ap-402

propriate value. For D0T, we collect in-context 403

demonstrations using a fully automatic method in 404

order to preserve the fully-automatic nature of the 405

data generation approach. This is done by aug- 406

menting slot descriptions in the D0T dataset by 407

sampling slot-value labels that share similar se- 408

mantics to the target slot. Similar slot-value ex- 409

amples are found for demonstration sampling by 410

encoding every silver slot-value update label in 411

D0T as the token sequence "s: v" using SBERT 412

(Reimers and Gurevych, 2019) and then cluster- 413

ing the encoded slot-values using HDBSCAN 414

(McInnes et al., 2017). Then, for each training 415

example of slot name, value, and slot description 416

(s, v, d), up to 3 demonstrations are randomly sam- 417

pled from other training examples that appear in 418

the same cluster and the same domain, but differ- 419

ent dialogues. The description d is augmented by 420

appending each sampled demonstration value with 421

the text of the dialogue turn in which it appears, 422

using the format exemplified in Figure 3. 423

6 Results 424

Impact of Domain-Diverse Training Table 3 425

presents the results of the zero-shot DST evaluation. 426

Training on the domain-diverse synthetic dataset 427

D0T results in substantial performance gains across 428

all models. On MultiWOZ 2.4, T5 and Llama2 gain 429

+8.6 and +6.7 average JGA respectively. Gains on 430

MultiWOZ 2.1 are more moderate at +7.3 for T5 431

and +4.4 for Llama2, which is expected as noisy 432

gold labels make improvements less observable. 433

Interestingly, our models benefit from the gold 434

label corrections of MultiWOZ 2.4 more than pre- 435

vious approaches. Llama2 +D0T +ICL benefits the 436

most of any model from the MultiWOZ 2.4 correc- 437

tions, indicating that it is punished for a substantial 438

amount of correct predictions on MultiWOZ 2.1. 439

Llama2 demonstrated far better performance 440

than T5 for both baseline and +D0T settings. With 441

the improvements from D0T training, our Llama2 442

models achieve performance that is competitive 443

with approaches based on language models of 444

much larger (≈ 175 billion) parameter counts such 445

as ChatGPT3.5 (Heck et al., 2023; Wu et al., 2023) 446

and OpenAI Codex (Hu et al., 2022b; King and 447

Flanigan, 2023), and our best Llama2 +D0T +ICL 448

model is within 0.2% of the current SoTA. 449

Impact of In-Context Demonstrations Adding 450

in-context demonstrations to slot descriptions re- 451

sults in a consistent 2-3% performance gain for 452
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data model params avg. attr. hotel rest. taxi train

MWOZ 2.4

IC-DST (Hu et al., 2022b) 175B 58.7 62.1 53.2 54.9 71.9 51.4
ParsingDST (Wu et al., 2023) 175B 64.7 65.6 46.8 67.7 80.6 62.6
RefPyDST (King and Flanigan, 2023) 175B 68.8 74.5 56.6 68.2 68.5 76.1

T5-QLoRA 11B 47.1 63.9 24.1 65.5 29.4 52.9
+D0T 11B 55.7 (+8.6) 68.1 32.0 72.3 50.6 55.8

Llama2-QLoRA 13B 59.2 62.2 44.9 69.8 49.1 70.2
+ICL 13B 62.0 (+2.8) 74.7 44.9 69.8 49.1 71.3
+D0T 13B 65.9 (+6.7) 74.4 56.4 76.0 54.7 68.3
+D0T +ICL 13B 68.6 (+9.4) 76.8 56.4 78.8 54.7 76.1

MWOZ 2.1

D3ST (Zhao et al., 2022) 11B 46.7 56.4 21.8 38.2 78.4 38.7
ChatGPT (Heck et al., 2023) 175B 56.4 52.7 42.0 55.8 70.9 60.8
IC-DST (Hu et al., 2022b) 175B 57.0 60.0 46.7 57.3 71.4 49.4
ParsingDST (Wu et al., 2023) 175B 63.4 65.0 46.8 67.0 80.3 62.8
RefPyDST (King and Flanigan, 2023) 175B 64.7 70.9 51.2 65.6 67.1 69.2
SDT (Gupta et al., 2022) 11B 65.9 74.4 33.9 72.0 86.4 62.9

T5-QLoRA 11B 42.6 55.7 20.8 60.7 27.2 48.7
+D0T 11B 49.9 (+7.3) 61.1 27.6 64.3 46.9 49.7

Llama2-QLoRA 13B 51.8 55.4 38.8 59.0 44.8 61.2
+ICL 13B 54.0 (+2.2) 63.8 38.8 59.0 44.8 63.5
+D0T 13B 56.2 (+4.4) 63.1 43.8 64.7 48.8 60.8
+D0T +ICL 13B 58.5 (+6.7) 66.6 43.8 67.2 48.8 66.5

Table 3: Zero-shot DST results on MultiWOZ (JGA). Parentheses indicate the difference in performance compared
to the baseline within base model groups. +D0T indicates training on D0T in an initial stage of training. +ICL
indicates use of in-context demonstrations.

both +D0T and baseline Llama2 models. This is453

consistent with previous work that tests the impact454

of in-context demonstrations (Gupta et al., 2022).455

Encouragingly, the performance benefits of +ICL456

and +D0T appear to stack, yielding a combined im-457

provement of +9.4 average JGA on MultiWOZ 2.4.458

459

Comparison of Domain-Diverse Data To fur-460

ther verify the effectiveness of D0T as a domain-461

diverse training resource, we compare against the462

most domain-diverse existing dataset, Schema-463

Guided Dialogues (SGD) (Rastogi et al., 2020). We464

train a Llama2 model using the entire SGD training465

split as a first training stage to replace D0T train-466

ing, before fine-tuning on MultiWOZ in the second467

stage to make a direct comparison. As shown in468

Table 4, the model leveraging D0T training out-469

performs a model that utilizes SGD instead. This470

demonstrates the power of the massively increased471

domain diversity covered by D0T, despite it being472

a synthetic dataset created with no human interven-473

tion. This result also validates the effectiveness474

of our automatic generation pipeline since it can475

yield useful training resources while only incurring476

a small fraction of the time and cost compared to477

traditional data collection methods.478

One limitation of evaluating SGD as a domain-479

diverse training resource on the MultiWOZ bench-480

mark is that SGD contains an approximate superset481

TD F avg. attr. hotel rest. taxi train

SGD 65.1 76.0 51.6 76.8 53.5 68.0
SGD ✓ 61.8 75.6 45.1 77.0 46.8 64.5
D0T 65.9 74.4 56.4 76.0 54.7 68.3
D0T ✓ 66.3 78.8 53.9 75.0 53.0 71.1

Table 4: Zero-shot DST results on MultiWOZ 2.4 (JGA),
comparing the efficacy of D0T versus SGD as a domain-
diverse resource for stage one training. Llama2 is used
as a base model with QLoRA training. TD: Stage one
training dataset. F: Checked if domains similar to Mul-
tiWOZ are filtered out before training.

of the domains in MultiWOZ. Consequently, the 482

ability of SGD to train a domain-generalizable DST 483

model is not tested. To address this, we simulate 484

the effectiveness of SGD to improve zero-shot per- 485

formance for new domains by filtering out all train- 486

ing examples that belong to a domain analogous 487

to those seen in MultiWOZ. Specifically, we filter 488

out the Travel, Hotel, Restaurant, RideShare, and 489

Trains domains and train another baseline model 490

using this filtered datatset. As shown in Table 4, 491

zero-shot performance is impacted by -3.3 average 492

JGA as a result of this filtering. Although D0T 493

can be trivially extended to new domains using our 494

automatic data generation pipeline, we similarly 495

test its capability for training models that gener- 496

alize to new domains by training a model using a 497

filtered version of D0T. Filtering is performed by 498

manually reviewing all 1, 003 domains and exclud- 499
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ing any that include attractions, hotels, restaurants,500

taxis, trains, or general travel planning as a primary501

theme. Model performance remains virtually iden-502

tical (+0.4) regardless of whether D0T domains are503

filtered based on similarity to MultiWOZ domains,504

which is evidence that the benefits of training on505

D0T generalize to unseen domains.506

Impact of Trainable Parameter Size We in-507

vestigate the interaction between the parameter508

efficient training technique QLoRA and domain-509

diverse training by evaluating a variant of our T5510

model with full finetuning and without quantization511

(i.e. without QLoRA). Additionally, a 3 billion T5512

base model is compared to evaluate the impact of513

model size. Results are presented in Table 5. Con-514

sistent with previous work, we find that increasing515

model size yields substantial performance improve-516

ments on zero-shot DST. Whereas the T5-3B bene-517

fits from training on D0T, we observe a slight per-518

formance loss when training T5-11B, likely due to519

catastrophic forgetting when training on noisy D0T520

labels. Although QLoRA appears to moderately521

harm performance when training the T5-11B base-522

line, the T5-11B-QLoRA model actually achieves523

the best overall performance when first trained on524

D0T, likely due to the ability of QLoRA to protect525

against catastrophic forgetting.526

model avg. attr. hotel rest. taxi train

3B 49.2 63.2 26.0 71.7 29.8 55.8
+D0T 51.5 69.1 29.9 73.2 29.2 56.2

11B 53.8 65.0 27.6 71.0 37.5 68.2
+D0T 52.4 70.3 29.1 66.8 36.1 59.9

11B-QLoRA 47.1 63.9 24.1 65.5 29.4 52.9
+D0T 55.7 68.1 32.0 72.3 50.6 55.8

Table 5: Zero-shot DST results on MultiWOZ 2.4 (JGA),
comparing 3B, 11B, and 11B-QLoRA variants of the
T5 base model. +D0T indicates training on D0T in an
initial stage of training.

Analysis of Training Stages The efficacy of D0T527

as a training dataset for zero-shot DST is further528

investigated by comparing the performance of the529

Llama2 model at the conclusion of each stage of530

training. Table 6 presents results on the MultiWOZ531

2.4 benchmark for the stage one model trained only532

on D0T versus the stage two model additionally533

trained on MultiWOZ. As expected, the second534

stage of training is revealed to be crucial as the535

stage one model achieves only 23.6% average JGA.536

This reflects the effect of training on noisy dia-537

logue state labels produced by automatic genera-538

tion, which humans judged to have a slot-value pair539

correctness rate of 82%5. Taken together with the 540

results in Table 4, this result suggests that the ben- 541

efit provided by D0T is due to its diversity rather 542

than its overall quality compared to existing data. 543

Further refinements to the automatic data gener- 544

ation pipeline presented in Section 3 to generate 545

more accurate state labels may yield additional per- 546

formance gains. An error analysis of stage one and 547

stage two models is provided in Appendix E. 548

Stage avg. attr. hotel rest. taxi train

1 23.6 26.7 11.4 39.7 13.9 26.9
2 65.9 74.4 56.4 76.0 54.7 68.3

Table 6: Zero-shot DST results on MultiWOZ 2.4 (JGA),
comparing Llama2 with QLoRA after training only on
D0T (Stage 1) versus after additionally training on Mul-
tiWOZ (Stage 2).

7 Conclusion 549

The costly nature of DST data collection has been 550

a limiting factor for the domain diversity of ex- 551

isting datasets for years. By introducing the first 552

automatic data generation method capable of cre- 553

ating new domains and slot definitions for DST, 554

this work both reveals and alleviates a performance 555

bottleneck caused by the limited domain coverage 556

of existing DST data. Training on the synthetic, 557

domain-diverse D0T dataset produces substantial 558

performance gains (e.g. +6.7% average JGA) for 559

zero-shot DST, and this performance gain is sta- 560

ble even when testing on domains with no similar 561

analog in synthetic data. These results show the 562

power of domain diversity for training zero-shot 563

DST models, as it allows our models to achieve 564

competitive or better performance to LLM-based 565

DST approaches with over 13.5× the parameters. 566

The success of our data generation approach also 567

demonstrates the potential of LLM-based data gen- 568

eration to alleviate the high costs of traditional data 569

collection. Our work marks a pioneering step in the 570

creation of similar fully automatic data generation 571

approaches. By continuing to improve the diversity 572

and correctness of synthetic datasets, we anticipate 573

even greater advancements in zero-shot DST per- 574

formance, driving the development of more robust 575

and adaptable dialogue systems. We look forward 576

to future research and application development in 577

task-oriented dialogue that builds upon our experi- 578

mental insights and released models and data. 579

5Note that JGA is a more punishing metric than the percent
of correct slot-values
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8 Limitations580

Redundancy of Slot Types Although our pre-581

sented data generation method successfully pro-582

duces useful training data for zero-shot DST, it is583

important to note that this method does not produce584

a set of slot definitions where each slot is seman-585

tically unique. Our method attempts to maintain586

some consistency in tracking slots by modelling587

when requested slots are filled by a value. However,588

apart from tracking requested slots, slot-value up-589

date labels are generated relatively independently590

and without the notion of a centralized slot schema.591

This results in some cases, particularly across dif-592

ferent dialogues belonging to the same domain,593

where slot labels are created with similar seman-594

tic meanings but different surface forms for slot595

names and descriptions. For training a zero-shot596

DST model this limitation is not an issue, since597

zero-shot DST models are expected to adapt to any598

provided slot name and definition to identify the599

correct value from the dialogue. However, the issue600

of inconsistent slot naming and lack of a central-601

ized slot schema prevents datasets generated with602

our method from being used directly for few-shot603

training or DST evaluation.604

Noise in Silver State Labels Since our data gen-605

eration technique is fully automatic, it is expected606

that some noisy silver labels of dialogue state occur.607

The 82.0% slot-value correctness rate judged by608

our human annotators is interpretable as about 1609

in 5 noisy slot-values. The limitation of this noise610

is that our experimental estimates of the impact of611

training data domain diversity on zero-shot DST612

are almost certainly under-estimates, as models613

trained on D0T were trained to predict this noise.614

Ideally, a dataset of similar diversity to D0T but615

with gold dialogue state labels would be used in616

our experiments; however, no such dataset exists,617

which is one of the primary motivations of our618

work. Our work thus serves as an investigation619

into the relationship between training domain di-620

versity and zero-shot DST performance, but not621

one that conclusively quantifies this relationship.622

Future work should aim to reduce the noise in auto-623

matically generated DST labels or find more cost-624

efficient traditional data collection methods in order625

to achieve better experimental accuracy for measur-626

ing the impact of training domain diversity and in627

order to train higher-quality models.628

9 Ethical Considerations 629

Risks of this work are minimal; one risk intro- 630

duced is through the use of GPT models to generate 631

dialogue data, since it is theoretically possible for 632

language model generations to populate synthetic 633

dialogues with personal information of real people 634

gathered from their training data. We believe the 635

risk of this is low; after manually reviewing hun- 636

dreds of dialogues in our D0T data, we observe 637

that most potentially sensitive information is gener- 638

ated by GPT in anonymized form (e.g. the phone 639

number 555-5555). 640

Languages used in this work are restricted to 641

English, since it was required for all the authors 642

to understand model outputs during prompt de- 643

velopment and error analysis. The methodology 644

presented in this work fundamentally language- 645

agnostic however, and can be adapted to new lan- 646

guages by translating prompts. Since D0T is gen- 647

erated with a fully automatic method, analogous 648

datasets in new languages can be created easily 649

after prompt translation. 650
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A Related Work in DST Data Generation935

This section reviews previous work in DST data936

generation and augmentation, which targets few-937

shot DST. The theme of these works is to leverage938

a set of few shots as a seed set of examples used to939

generate additional synthetic examples in the target940

domain. By doing so, a limited set of training941

examples can be augmented for more robust DST942

training in the target domain.943

Lexical Diversification Some early approaches944

use paraphrasing techniques to improve lexical di-945

versity on the turn-level. Quan and Xiong (2019)946

experiment in this direction with a variety of meth-947

ods such as back-translation and synonym replace-948

ment, and Yin et al. (2020) use a reinforcement949

learning approach to learn to replace token spans950

with paraphrases. These works demonstrate the951

potential of data augmentation to improve existing952

training resources, but their focus on paraphrasing953

fundamentally limits the extent to which the origi-954

nal data can be altered since the goal is to maintain955

the semantic content of original examples.956

Semantic Diversification Other approaches look957

to improve the generalizability of trained DST mod-958

els to handle new values and dialogue contexts959

by modifying the semantic content of original dia-960

logues. Summerville et al. (2020) focus specifically961

on the problem of DST models’ ability to gener-962

alize to new slot values, using external corpora to963

augment training data with with additional values964

for open-ended slot types. Lai et al. (2022) syn-965

thesize new training examples by generating a new966

response to the context of existing dialogues. Their967

response generator is conditioned on the dialogue968

act and state, but is given a new dialogue act and969

state during augmentation to increase the semantic970

diversity of the training pool. These works success-971

fully augment the lexical and semantic content of972

DST training data on the turn- or slot-value-level.973

Dialogue Reconstruction Some works augment974

existing data by synthesizing entirely new dia-975

logues from an initial seed set. Three works ex-976

plore methods that take advantage of the state rep-977

resentations in DST data to create a state transition978

graph, and then generate entirely new dialogues by979

traversing transition paths that are not represented980

in the initial dataset (Aksu et al., 2022, 2021; Cam-981

pagna et al., 2020). Once a new state transition982

path for a synthetic dialogue is sampled from the983

transition graph, the turns from the original dia- 984

logues corresponding to each transition are used 985

as templates and filled with new slot values to pro- 986

duce a final natural language dialogue. This ap- 987

proach introduces new variations in the structure 988

and content of training data. However, the synthetic 989

dialogues produced will share many of the same 990

features as the original seed data, especially due 991

to the reliance on templates. Mehri et al. (2022) 992

use a similar approach but eliminate the reliance on 993

seed dialogues by using slot schema specification 994

to create the state transition graph, and GPT-3 is 995

used to paraphrase each template-generated turn 996

to be more natural and coherent. It is difficult to 997

evaluate the efficacy of their method however, since 998

less-common evaluation data MixSNIPS/MixATIS 999

(Qin et al., 2020) are used making comparison to 1000

related work difficult. 1001

Full Dialogue Generation Three recent works 1002

generate new DST data by training PLMs to gen- 1003

erate new dialogues from a task goal and schema 1004

definition. Kim et al. (2021) trained a dialogue 1005

generator model to produce dialogues given a goal, 1006

schema, and queryable database of schema values, 1007

and trained separate dialogue state labeler model to 1008

label the generated dialogues with dialogue states. 1009

Mohapatra et al. (2021) train a pipeline of sep- 1010

arate PLMs to model a user response generator, 1011

user response selector, dialogue state generator, 1012

system response generator, and system responses 1013

selector. Wan et al. (2022) similarly trained sepa- 1014

rate PLMs for to simulate user and system agents. 1015

They demonstrated improved transfer to generating 1016

synthetic data on low-resource target domains by 1017

pre-training their simulation agents on 12 differ- 1018

ent training data from previous work. All three 1019

of these approaches target low-resource DST by 1020

training their dialogue generation models on a lim- 1021

ited amount of in-domain data, then train the DST 1022

model on synthetically generated data. Their re- 1023

sults demonstrate the power of using PLMs to gen- 1024

erate data to domains where substantial training 1025

resources are unavailable. 1026

B Prompts 1027

Eliciting high-quality generations from an LLM on 1028

a particular task requires finding a suitable prompt. 1029

The prompt is the token sequence input to the LLM 1030

that includes both task-specific instructions and a 1031

formatted linearization of all inputs needed to com- 1032

plete one task sample. Searching for a prompt that 1033

13



maximizes task performance can be done manu-1034

ally or using automatic or semi-automatic search1035

methods (Prasad et al., 2023). For complex tasks,1036

multiple prompts can be used that decompose the1037

task into more manageable subtasks. Due to the1038

exploratory nature of our investigation into di-1039

verse DST data generation, we develop prompts1040

through a manual development process where gen-1041

erations are hand-checked for quality. This allows1042

us to quickly try different strategies for writing1043

prompt instructions and breaking the data genera-1044

tion pipeline into subtasks. The prompts developed1045

for the data generation pipeline (§3) are shown in1046

Figures 4 - 11.1047

C Domains1048

To show the kinds of scenario descriptions gener-1049

ated for D0T (§3.1) that were used as task domains,1050

we randomly sample 40 scenario descriptions from1051

the complete set of 1,003 and present them in Table1052

8.1053

D Implementation Details1054

Llama-13B-Chat is a 13 billion parameter1055

decoder-only transformer model trained on a va-1056

riety of long-form texts, then further trained on1057

instruction data using the Reinforcement Learning1058

from Human Feedback (RLHF) technique (Ouyang1059

et al., 2022). Due to the computational expense of1060

its 13B parameter size, the model was quantized1061

using QLoRA (Dettmers et al., 2023), which uses1062

4-bit nf4 quantization, and freezes the base model1063

parameters while only training the parameters of a1064

Low-Rank Adapter (LoRA) (Hu et al., 2022a) of1065

rank 32. Training used a learning rate of 2e − 5,1066

and a batch size of 256, with no dropout or weight1067

decay.1068

T5-11B (Raffel et al., 2020) is a 11 billion param-1069

eter encoder-decoder transformer model trained on1070

a variety of sequence-to-sequence tasks such as1071

summarization and translation. The T5 1.1 variant1072

was used, following Gupta et al. (2022). QLoRA1073

training used a rank of 32, alpha of 64, with a learn-1074

ing rate of 1e − 2 and batch size of 256, with no1075

dropout or weight decay. Full fine-tuning used a1076

learning rate of 1e− 3 with weight decay 5e− 3.1077

E Error Analysis1078

The impact of diverse DST training data is further1079

investigated by conducting an error analysis on 1001080

Error Definition Stage Stage
1 2

Agent
Value
Miss

No value is outputted for the
indicated slot, even though the
information is present in the
system’s turns.

13 13

No
Prefer-
ence

Indications of no preference
are inappropriately under-
stood, either by failing to
recognize when no preference
is given or by incorrectly
interpreting an indication
of no preference from the
dialogue.

13 9

Value
Change

The appropriate value for the
indicated slot has been up-
dated in the dialogue turn, but
the predicted value remains as
the original.

10 19

Halluc-
ination

A value is predicted for the in-
dicated slot that does not exist
in the dialogue.

9 5

Miss No value is outputted for the
indicated slot, even though the
information is present in the
user’s turns.

7 13

Wrong
Value

Information in the dialogue is
incorrectly attributed to the in-
dicated slot.

6 8

Other Errors not explained by any of
the other error patterns.

16 11

Correct The predicted value for the in-
dicated slot is correct, but is
missing from the gold annota-
tions in MultiWOZ due to an
annotation mistake.

26 22

Table 7: Error analysis on 100 randomly sampled erro-
neous outputs on MultiWOZ 2.4 of the best-performing
finetuned Llama-13B-Chat model with QLoRA train-
ing (Stage 2) and the same model trained only on D0T
(Stage 1), before fine-tuning on MultiWOZ.

randomly sampled errors from the best-performing 1081

Llama2 +D0T +ICL model. The model was eval- 1082

uated for both Stage 1 (D0T training only) and 1083

Stage 2 (subsequent training on MultiWOZ), and 1084

the results of the error analysis can be seen in Ta- 1085

ble 7. As expected, some of the errors made by 1086

these models are due to slot semantics specific to 1087

the MultiWOZ task that are difficult to encode in a 1088

single-sentence slot description. For example, the 1089

dontcare value (represented as any to the model) 1090

is a frequent source of errors, as the model consis- 1091

tently overpredicts it in the Hotel domain. Many 1092

errors also stem from a slot being filled with a 1093

wrong value that does indeed appear in the dia- 1094

logue, but does not quite fit the specifics of the 1095

definition of the MultiWOZ slot. However, the 1096

14



majority of errors made are due to limitations in1097

the training formulation using the synthetic dataset.1098

For example, the dialogues generated by GPT-3.51099

rarely include corrections or clarifications where1100

slot value would change, resulting in consistent1101

errors when the user speaker changes their mind1102

or self-corrects in MultiWOZ. Also, the military1103

time format used in MultiWOZ for time slots was1104

a consistent source of hallucinations, as this for-1105

mat rarely or never appears in the synthetic D0T1106

data. Finally, the models frequently missed slot val-1107

ues entirely, particularly when the value originated1108

from the system travel agent speaker.1109
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Parent talks to pediatrician in order to schedule vaccinations.
Pet owner talks to veterinarian in order to schedule a check-up
Event organizer talks to security personnel in order to ensure safety at an event
Presenter talks to audio technician in order to test the sound system before a conference
Bartender talks to bouncer in order to assist with maintaining safety and order in a bar or club
Performer talks to stage crew in order to coordinate a show
Retail sales associate talks to customer in order to assist with an item purchase
Executive talks to assistant in order to delegate tasks and schedule appointments.
Hair stylist talks to bride in order to plan a wedding up-do
Parent talks to teacher about afterschool programs.
Parent talks to nutritionist in order to receive guidance on healthy eating for their family
Blogger talks to other bloggers in order to collaborate on blog content.
Coworker talks to mentor in order to receive guidance on career development.
Homeowner talks to landscaper in order to plant new flowers.
Mover talks to customer in order to move their belongings
Fortune teller talks to client in order to provide a fortune prediction.
Proofreader talks to author in order to check for grammatical errors and typos in writing
Coworker talks to coworker in order to discuss a workplace policy.
Magazine editor talks to writer in order to edit their piece.
Talent agent talks to actor in order to develop a career plan.
Comedian talks to event planner in order to discuss comedy act material
Participant talks to moderator in order to ask a question during a session.
Significant other talks to partner in order to make plans for the future.
Passenger talks to flight attendant in order to ask for an extra pillow.
Survivor talks to counselor in order to receive support after traumatic event.
Animal behaviorist talks to zookeeper in order to observe and analyze animal behavior patterns
Freelance writer talks to editor in order to pitch article ideas
Tourist talks to tour guide in order to learn about a city’s history.
Manager talks to HR representative in order to review job applications
Job seeker talks to employment agency in order to find a job.
Legal assistant talks to client in order to assist with legal paperwork
Pets blogger talks to subscribers in order to provide information about pets
Salesperson talks to manager in order to receive training
Motivational speaker talks to audience in order to inspire them
Dentist talks to insurance adjuster in order to find out what procedures are covered
Box office attendant talks to patron in order to sell tickets.
Boss talks to employee in order to give feedback on a project.
Attendee talks to speaker in order to say thank you after a presentation.
Project manager talks to stakeholders in order to provide updates
Postman talks to colleague to coordinate deliveries

Table 8: Random sample of 40 scenario descriptions generated for D0T (§3.1) to serve as task domains.
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List 100 diverse examples of everyday tasks that require talking to another person.
Format each list item like:

N. <Role of person 1> talks to <role of person 2> in order to <task goal>

Figure 4: GPT-3.5 prompt for generating dialogue scenarios/domains.

List examples of as many different types of information as you can that would be
shared during the dialogue scenario: {domain}

Figure 5: GPT-3.5 prompt for generating a list of information types for each dialogue domain.

Dialogue Scenario:
{domain}

Information Types:
{info types}

Write a dialogue for the above Dialogue Scenario. Include specific examples of the
Information Types above being shared and implied throughout the conversation.
Make up actual names/values when specific information examples are shared.

Figure 6: GPT-3.5 prompt for generating a dialogue for a given task domain.

Two people, {speaker} and {listener}, are having a dialogue in which the
following was just said:

{dialogue context}
{speaker}: {last turn}

Please break down and summarize all the information in what {speaker} just
said into as many question-answer pairs as you can. Each question-answer pair
should be short, specific, and focus on only one piece of information or value.

For information {speaker} shared, use the question-answer pair format:

{listener}: <question>
{speaker}: <answer>

For information {speaker} requested or indicated not knowing,
use the answer "Unknown." in a question-answer pair format like:

{speaker}: <question>
{listener}: Unknown.

{answered qa pairs}

Figure 7: GPT-4 prompt for generating question-answer pairs for a dialogue context.

Two people, {speaker} and {listener}, are having a dialogue in which the
following was just said:

{dialogue context}
{speaker}: {last turn}

Please identify the information or values {speaker} gave as short answers to the
following questions (use the answer "Unknown." if the question is not answered by
{speaker} in the dialogue):

{unanswered qa questions}

Figure 8: GPT-4 prompt for answering questions from the previous turn that were not previously answered.
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{qa pairs}

Translate each question above into variable names.
Each label should be very short, usually one or two words,
but specific to the details of the question. Write each question before
translating it into a variable name, in the format:

<question> -> <variable name>

Figure 9: GPT-3.5 prompt for translating questions into slot names.

{qav tuples}

Translate each answer to the above questions into a value for the
corresponding variable. Values should be short, usually one word,
very short phrase, number, span, category, score, boolean, list,
or other value. Copy each answer before translating it into a value,
in the format:

Question: <question>
Variable: <variable>
Answer: <answer>
Value: <value>

Figure 10: GPT-3.5 prompt for translating answers into slot values.

{slots with corresponding questions and values}

For each Info Type above, write a comma-separated list of all Possible Values
(if there are many Possible Values, write ", etc." after a few examples),
and a short phrase as a description for each Info Type. Use the format:

Info Type: <info type>
Possible Values: <value 1>, <value 2>, <value 3>
Description: <phrase>

Figure 11: GPT-3.5 prompt for generating descriptions and value examples for each slot.
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