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Abstract

In stochastic optimization, a widely used approach for handling large samples sequentially is
the stochastic gradient algorithm (SGD). However, a key limitation of SGD is that its step
size sequence remains uniform across all gradient directions, which can lead to poor perfor-
mance in practice, particularly for ill-conditioned problems. To address this issue, adaptive
gradient algorithms, such as Adagrad and stochastic Newton methods, have been developed.
These algorithms adapt the step size to each gradient direction, providing significant ad-
vantages in such challenging settings. This paper focuses on the non-asymptotic analysis of
these adaptive gradient algorithms for strongly convex objective functions. The theoretical
results are further applied to practical examples, including linear regression and regularized
generalized linear models, using both Adagrad and stochastic Newton algorithms.

Keywords: Non asymptotic analysis; Online estimation; Adaptive gradient algorithm; Adagrad; Stochastic
Newton algorithm.

1 Introduction

A usual problem in stochastic optimization is to estimate the minimizer 6 of a convex functional G : R — R

of the form
G(h) =E[g(X, h)]

where g : X x R? — R, and X is an X-valued random variable. This framework encompasses numerous
classical problems, such as linear and logistic regression (Bach)|2014)), or the estimation of geometric medians
and quantiles (Cardot et al.,|2013;[2015; |Godichon-Baggioni), |2016|) to name a few.Various methods have been
developed to solve this optimization problem, generally categorized into iterative and recursive approaches.
Iterative methods involve approximating the minimizer of an empirical function derived from the sample
using convex optimization techniques (Boyd & Vandenberghel 2004), or more advanced refinements like
mini-batch algorithms (Konecny et al., 2015). While effective, these methods face scalability issues with
large datasets and are unsuitable for sequential data. In contrast, recursive methods adapt naturally to
sequential data and are computationally efficient.

Among recursive methods, the stochastic gradient algorithm (SGD) (Robbins & Monrol |1951)) and its aver-
aged version (Ruppert, 1988; Polyak & Juditsky), [1992)) are particularly well-known. Given sequential data

X1,..., X0, Xn+1,. .., the stochastic gradient algorithm (6,,),>0 and its averaged version (6,,),>0 are defined
recursively for all n > 0 by

0n+1 - 977, - 771—&-1th (Xn+17 on) 5 §n+1 - on +

n + 2 (0n+1 - on)
where (v,,) is a positive step sequence converging to 0. These algorithms have been extensively studied, with
asymptotic results in works like (Pelletier] |1998;|2000]) and non-asymptotic results focusing on quadratic mean
convergence (Bach & Moulines| 2013} |Gadat & Panloup, [2017; |Gower et al., |2019)). Averaged estimates are
particularly appealing as they achieve asymptotic efficiency under regularity conditions, often attaining the
Cramer-Rao bound (up to negligible terms).
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Despite these advantages, a significant limitation of SGD lies in its step size sequence (7, ), which cannot
adapt to varying gradient directions, leading to suboptimal performance in ill-conditioned problems. This
issue has motivated the development of adaptive stochastic gradient algorithms. These methods take the
form:

en-‘rl = 9n - ’Yn—i-lAnvhg (Xn+17 en)

where (4,,) is a sequence of (random) matrices which enables the descent step to be adapted in each coordi-
nate. Prominent examples include Adagrad (Duchi et al.,|2011)), which effectively standardizes the gradient,
and stochastic Newton algorithms that use estimates of the inverse Hessian (Bercu et al., |2020; Boyer &
Godichon-Baggionil 2020)). These methods are particularly advantageous when the Hessian has eigenvalues
of different magnitudes.

While asymptotic properties of adaptive methods are well-studied (e.g., (Leluc & Portier, 2020; |Gadat
& Gavra, 2020))), non-asymptotic results remain less explored. Notable exceptions include high-probability
bounds for Kalman recursions in logistic regression (De Vilmarest & Wintenberger} 2021) and L? convergence
rates for Adagrad and Adam (Défossez et al., 2020)). Furthermore, Bercu et al. (2021) obtain the rate of
convergence in quadratic mean of stochastic Gauss-Newton algorithms for optimal transport. However, these
results often assume uniformly bounded gradients, a condition violated in cases such as linear regression.

This paper addresses these gaps by focusing on non-asymptotic convergence rates for strongly convex func-
tions with unbounded gradients. Our contributions include: (i) establishing convergence rates for adaptive
methods when A,, may diverge, with a controlled divergence bound, (ii) deriving standard convergence
rates under the additional assumption that A, has uniformly bounded fourth-order moments, (iii) provid-
ing a general framework for analyzing the convergence of stochastic Newton and Adagrad algorithms, with
applications to linear regression and ridge-regularized generalized linear models.

The paper is organized as follows: Section [2] introduces the general framework. Section [3] presents the
algorithms and theoretical convergence results. Applications to linear regression and generalized linear
models are detailed in Sections [4] and [5] respectively. Proofs are provided in Section [7] and the Appendix.

2 Framework

In what follows, we consider a random variable X taking values in a measurable space X and fix d > 2. We
focus on the estimation of the minimizer 6 of a strongly convex function G : R? — R defined for all h € R?
by

G(h) :=E[g(X,h)],

with g : X x R* — R. Let us suppose from now on that the following assumptions are fulfilled:

(A1) For almost every z € X with respect to the distribution of X, the functional g(x,.) is differentiable
on R?. Moreover, there exist p > 2 and non-negative constants C’l(p ), C’Q(p ) such that for all h € R4,

E[IVag (X, W] < P+ |In - 0]

(A2) The functional G is twice continuously differentiable.

(A3) The Hessian of G is uniformly bounded on R¢, i.e there is a positive constant Ly such that for all
h € R?,

V2G(n)|| , < Lva

O;

where ||.||op is the usual spectral norm for matrices.

A4) There exists © > 0 such that the functional G is u-strongly convex : for all h, b’ € R?
( j 2 gly ; ;

GW) = G(h) = VG (W =)+ £ [1 = h|%
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Let us now discuss these assumptions. First, note that Assumption (A1), for p = 1, ensures that the second-
order moment of the gradient is bounded by a constant and a term that, at worst, grows quadratically—an
assumption already present in the literature (Bach & Moulines| 2013). When combined with Assumption
(A3), this can be linked to the expected smoothness condition (Gower et all [2019). Remark that we
require a higher order of boundedness in Assumption (A1), compared for example to (Bach & Moulines|
, because of the presence of the random preconditioning A,. Assumption (A2) justifies the use of
gradient-based algorithms, while twice differentiability is crucial for Newton-type methods.

It is worth noting that Theorems and which only concern the convergence of G(6,,), remain valid
even without assuming strong convexity or the convexity of the function G, provided that G satisfies the
Polyak-Lojasiewicz condition (see|Guo et al.| (2025]); |Gower et al.| (2021)); Karimi et al.|(2016]), among others).
That is, if the following condition holds:

(A4’) There is > 0 such that for all h € R?,

IVG(h)|I” > 21 (G(h) — G(6)).

Thooromhowcvcr needs strong convexity in order to translate the convergence of G(6,,) into a convergence
of 0,,. In the case where the convergence of A, only requires the one of G(6,,), (A4) can be replaced by
(A4’) for Theorem to hold with 6,, replaced by G(6,,).

3 Adaptive stochastic gradient algorithms

3.1 The algorithms

Let Xq,..., Xy, Xnt1, ... be an i.i.d sequence of random variables with the same distribution as X. Then,
an adaptive stochastic gradient algorithm is defined recursively for all n > 0 by

9n+1 = on - ’Yn-i—lAnvhg (Xn+179n) 3

where 6 is arbitrarily chosen, v, = c¢yn™" with ¢, > 0, v € (0,1) and A, is a sequence of symmetric and
positive matrices such that there is a filtration (F,),, -, satisfying:

e Foralln >0, A, is F,-measurable.

e X, 1 is independent of F,.

Typically, one can consider A, only depending on Xi,...,X,,0,...,0, and consider the filtration
generated by the sample, ie F, = o(Xi,...,X,). Considering A, diagonal with (An)k,k =

~1/2
(n+-1 (ak+2?=1 Vrg (Xi,Hi_l)iz)) leads to Adagrad algorithm (Duchi et al.,, [2011). The case

where A, is a recursive estimate of the inverse of the Hessian corresponds then to the stochastic New-
ton algorithm (Bercu et al) [2020} [Boyer & Godichon-Baggionil [2020), while the case where A, =
-1

n+r1 ((Ao + 30 Vig (Xi,0i21) Vg (Xi,Hi_l)T» corresponds to the stochastic Gauss-Newton algo-

rithm (Cénac et al., 2020; Bercu et al, 2021)).

3.2 Convergence results

3.2.1 A first convergence result

In order to obtain a first rate of convergence of the estimates, let us now introduce some assumptions on the
sequence of random matrices (A,),~(:

(H1 ) One can control the smallest and largest eigenvalues of A,:
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(H1a) There exist (vy)n>0, Ao > 0 and d,¢ > 0 such that
P [)‘min (An) < )\Ot] < Un+1tq(n + 1)_6,

for 0 <t <1, with (vs,11(n +1)7%),>0 decreasing.

If 4 < 1/2, one also assumes the stronger hypothesis of the existence of A, = \y(n+ 1)~ with
Ay > 0, X <~ such that for all n > 0,

>\min (An) Z )\{ﬂ .

(H1b) There exists a sequence 3, = cgn? for n > 0 with ¢g > 0 and 0 < 8 < 2 if v < 1/2 or
0< B <vy—1/2ify>1/2 such that for all n > 0,

||An||op S Bn+1-

Remark that the case § = 0 is allowed in (H1a) and that one can always choose 8 in the allowed range of
(H1b). In most cases and especially for Adagrad and stochastic Newton algorithm, (H1a) is easily verified.
The presence of the decreasing term v,, in (H1a) takes into account a general phenomenon (usually implied
by Rosenthal inequality) that error contributions from higher moments of X, albeit dominant for small n,
fade as n goes to infinity. Concerning (H1b), some counter-examples showing that the estimates possibly
diverge in the case where this last assumption is not fulfilled are given in Appendix [F] meaning that this
assumption is unfortunately crucial. Up to our knowledge, it is still an open problem to know whether such
assumption can be lifted in the specific case of the linear or logistic regression.However, it is apparent in the
proofs and counterexamples that the failing of the convergence in quadratic mean is due to the exponential
explosion of the algorithm on an event of negligible probability. It is then still possible to deduce good
quadratic bounds on the convergence of 6,, even without Assumption (H1b), see for example Corollary
for such a result for the linear regression.

Anyway, an easy way to enforce Assumption (H1b) is to replace the random matrices 4,, by

min { |4, B |

" ||An||op "

and one can directly check that HA"HOP < Bnt1. Similar adjustment can be used to ensure (H1a) in the
case v < 1/2. Tt is worth noting that when the matrix A4,, is not diagonal, computing the operator norm can
be too costly. In this case, we instead consider the Frobenius norm. This does not affect the results, and the
proofs remain strictly analogous.

Let us consider the case of Newton’s method, and especially the case where the estimates of the Hes-
sian are of the form H, = n+_1 (Ho —|—ZZ=1 akéki)f) and which can be so recursively invert with the
help of Riccati/Shermann-Morrisson’s formula (see Bercu et al.| (2020); Boyer & Godichon-Baggionil (2020));
|Godichon-Baggioni et al.| (2022)), Assumption (H1b) can also be enforced by considering the following

version of the estimate of the Hessian

1 "~ Cs T
H,=H,+ n—_’_l;k—ﬂekek

where ey, is the k-th (modulo d) canonical vector (see Bercu et al(2021)); |Godichon-Baggioni et al.| (2022)).

Regardless, these assumptions remain less restrictive than the standard ones in the literature. For instance,
in the literature on stochastic Newton algorithms (see [Byrd et al| (2016); [Ye et al| (2017)); |Agarwal et al.|
, among others), it is often assumed that Hessian estimators are uniformly bounded from above and
below, implying that their inverses are also uniformly bounded.

Similarly, in the literature on Adagrad, a penalty term is introduced to upper bound the largest eigenvalue
of A,,. This corresponds in our framework to setting ax = n(n+ 1) (see oquation, where 7 is the penalty :
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this would amounts to choose the strictest hypothesis 5 = 0 in Assumption (H1b). Likewise, it is generally
assumed that gradients are bounded in order to ensure a uniform lower bound on A,, (see
(2020) and Duchi et al| (2011)), for example) : this would then amounts to choose v,=1 = 0 in Assumption
(H1a). It is worth noting that in [Guo et al| (2025)), gradients are not assumed to be bounded, yet the
"regularization” term is still present.

Finally, one can examine the proofs of Theorems and [5.2] to understand how these assumptions
can be verified in practice.

We can now obtain a first rate of convergence of the estimates. For the sake of simplicity, let us now denote
the risk error by V,, := G (6,,) — G(0). Note that since G is p strongly convex, one has ||6,, — 0]|* < %Vn.

Theorem 3.1. Suppose Assumptions (A1) to (A4) and (H1) hold. Then, for all n > 1 and for any
)\<m1n{’y—2ﬂ,17'y},

E[V,] < exp (—cy,u)\onl_(“”)(l - g(n))) (K@ + K | nax k7—26—6/2—(q/2+1)x\/ﬁ>

+ Kél)n*('Y*?ﬁ*)\) + Kél)\/WTL*(éHM)/Q,

with e(n) = o(1) given in equation and KF), K{,l), K;l), K:gl) constants respectively given in equation
and equation [21].

In the particular case where §/2 > v — 28 (which happens as soon as § > 1), one can simply set A = 0
in the above formula : we will see that it is the case for the generalized linear model with the stochastic
Newton algorithm. However, for Adagrad algorithms, one can not avoid using first A > 0, since A,, depends
on Vg(X,-) rather than V2g(X,-) (while the expectation of the latter is bounded on R? the one of the
former is generally unbounded). To get rid of this weaker statement, we will need the following equivalent
of Theorem for higher moments.

Proposition 3.1. Suppose that Assumptions (A1) with p > 2, (A2) to (A83) and (H1) hold. Then for
any 2 <p' < p and any A < min{y — 26,1 — ~},

v < (_ =) (1 _ o ) 1) (1) y—28-2— 2= (54q0), T
E [Vn } < exp | —cypAon 1-e'n)) (K "+K 1§11£1Sa,7>l<+1k v,

’

+ Kél/)n_p/(W_Qﬂ_)\) n K?El/)vﬁj (n-|- 1)_17—1)1’ (6+q)\),

with € (n), K{l,), Kf,l/), K2(1,) and Kg()l,) constants respectively given in equation@ equatz’on and equa-
tion [70.

3.2.2 Convergence when A, has bounded moments

In order to get a better rate of convergence, let us now introduce some new assumptions on the sequence of
random matrices (4,):

(H2a) The random matrices A,, admit uniformly bounded second order moments. There exists Cis > 0
such that for all n > 0:

E [Il4.1°] < 2.

(H2b) The random matrices A,, admit uniformly bounded fourth order moments. There exists Cs > 0
(which can be taken equal to the one of (H2a), up to increasing the latter) such that for all n > 0:

E [l4a01'] < 4.

For a simpler statement, we assume here and in the next paragraph that ¢ > 0 in (H1a), although similar
bound would hold in full generality.
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Theorem 3.2. Suppose Assumptions (A1) to (A4) for some p > 2, (H1) and (H2a) hold with 6 > 0.
Then, for all n > 0,

1- (2) (2) L _op_p=i;
E [Vi] < exp (—cypuron' =7 (1 —e(n))) - <K1 + K7, | pax vy K2 )

) 2 (x=1)

+K2( Vpso 7 5+K§2)n_7,

where e(n) = o(1) is given in equation and Kfz),Kf,z),Kéz),KéQ) are constants respectively given in
equation [25, equation[20 and equation [27

It is worth noting that, using calculations analogous to ours and those in [Bach & Moulines| (2013)), a bound
in the case of the online stochastic gradient algorithm would take the form

E[Vn] < Koefknlml*" + Kin 7.

Thus, we obtain similar bounds, but with the additional presence of the term Ay in the exponent, which
arises from the smallest eigenvalue of the conditioning matrix, as well as the term v,,, which controls the
extent to which our conditioning matrix cannot be smaller than this value.

Similar to the gradient method, we obtain a bound with two phases: (i) an exponential decay for the
initialization error, followed by (ii) a convergence rate of order n~7 once the algorithm has stabilized. One
might be tempted to choose v = 1, but this would result in the loss of exponential decay (or an increase
in variance). Thus, finding an optimal trade-off for the choice of v is challenging. In any case, a common
approach to accelerate convergence is to introduce an averaging step (see Ruppert| (1988)), [Polyak & Juditsky|
(1992), Boyer & Godichon-Baggioni| (2020]), among others).

Finally, in order to get the rate of convergence in quadratic mean of stochastic Newton estimates, we now
give the L? rate of convergence of G (6,,) when v > 1/2.

Proposition 3.2. Suppose Assumptions (A1) to (A4) for some p > 2, (H1) and (H2b) hold with v >
1/2,6 >0 and B8 <~y —1/2. Then

3 ‘ ' =2
E [V?] <exp (—507)\0/”11_”) (Kl(Q )+ k) nax_ v, kv—TQ(s)

+ Kézl)n_g'y + K§2/)UEZ722J)/pn_5(p_2)/” =: M,.

with K{Q,), Kf?/), K2(2l), K§2/) constants respectively given in equatz’on equation and equation .

— min{2'y, 6(”;2) }

In other words, one has M,, = O (n . Hence, for ¢ large enough (namely § > pQTva), the

main contribution comes from the second term of the latter bound, i.e we obtain the good rate of convergence

O(n=).

3.2.3 Convergence results for stochastic Newton algorithms

Let us now focus on the rate of convergence of stochastic Newton algorithm. To this end, let us set H :=
V2G(0) and suppose from now that the following assumptions are also fulfilled:

(A1) There exists Ly, > 0 such that for all h € R?,
E (Vg (X,1) = Vg (X,0)|*] < Ly, |In - 6] (1)

(A5) There is a non negative constant Ls such that for all h € R?,

|[VG(h) — V2G(0) (0 — h)|| < Ls || — 0]
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(H3) The estimate A,, converges to H~!: there is a decreasing positive sequence (v An)p>o Such that for
aln >0, B

E || A0 = H ] < vam.

Observe that assumption (A1”) is often called expected smoothness in the literature (Bach & Moulines, 2013))
and is satisfied in most of examples such as linear and logistic regressions (Bach & Moulines, 2013; [Bach,
or the estimation of geometric quantiles and medians (Cardot et al., [2013)) among others. Concerning
(A5), under (A3), it is satisfied as soon as the Hessian is Lipschitz on a neighborhood of #. For instance,
in the case of the linear regression, Ls = 0. Finally, Assumption (H3) is satisfied if having a first rate of
convergence of the estimates of 6 (thanks to Theorem or Proposition for instance) leads to a first rate
of convergence of A,,, which is often verified in practice (see Boyer & Godichon-Baggioni (2020) for instance,
see also Lemma in the specific case of the linear regression).

Theorem 3.3. Suppose Assumptions (A1’), (A1) to (A5), and (H1) to (H3) hold with v > 1/2, 6 >0
and B <~y —1/2. Then,

E“wn—GW}ge?W1W<KPW+K§%%§Ak+1W@>

K®
o (23+ch Tr(H'SH™Y) + Tzv + K 0 |+ dingay-

where ¥ is the covariance matriz of X, Ki(?)), 1= 1,1,2,2" are defined in equation % equatz’on and
equation [30, and dy. only depending on My, and va i is given in equation [29

Recall that My is given by Proposition Remark from equation that di, < C(vak + My) for some
constant C' > 0. The latter results can be further simplified if we also assume a sufficiently large exponent
§ in (H1a).

. . 2
Corollary 3.1. Suppose Assumptions (A1°), (A1) to (A5), and (H1) to (H3) hold with~y > 1/2,§ > ]%
and B <~y —1/2. Then,

53 , ,
E{wnHW]gn’7<?+%wﬂ(H5311)+;;+1§?%Amm+1éilﬁmmm

~
)

e
with Ki(S,), 1= 1...2" given in equation and equation

Then, if va,, converges to 0, we obtain the usual rate of convergence n% Indeed, under analogous as-

sumptions, a bound for the online stochastic gradient algorithm would take the form (Bach & Moulines|

2013):

e de,CW
£ {Hen - 9”2} < Kvoe_i('”lm1 + e Lt
o

However, we can observe two interesting differences compared to standard gradient algorithms: (i) the
smallest eigenvalue no longer influences the exponential decay of the first term, and (ii) the variance term is
modified. Observation (i) is one of the main advantages motivating the use of a stochastic Newton algorithm.

n 7.

3.2.4 Convergence results for adaptive gradient (Adagrad)
Recall that the Adagrad algorithm amounts to specify d initial parameters ai,...,aq € R, and choose A,

diagonal with
1

\/ bt (ke + 05 7 (Vag(Xisr, 000)°)

(An)kkr = Ok (2)
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The original Adagrad algorithm would then amount to take v = 1 /2. To guarantee non-degeneracy of the
matrices (A,,)n>0, we assume some minimal fluctuation of the gradient at the minimizer 6.

(A6) There is @ > 0 such that for all 1 <14 <d,

E[(Vag(X.0))?] > a. 3)

A6’) Thereis a > 0 such that forallh e R and 1 <i < d
( ;

E[(Vag(X.m)}] > o @

Remark that (A6’) is much stronger as (A6). However, the former is often satisfied, as it is the case for
the linear regression with noise. Then, we consider the following modification of A,,: (Ap)ke = (Ap)gs for
k # k' and

min {egn”, (An)ei}, if v >1/2

_ , 5
max {min {cﬁnﬂ, (Ap)kk Ao~ } . ify<1/2 ®)

(An>kk =

for 1 < k < d, where 3, = cgn® with 8 < min{y/2,1/4} and X' < 5 (where )\ and cg > 0 are chosen
arbitrarily).

We then have the following convergence result for the mean quadratic distance. We only state the result for
v < 1/2, but a similar statement holds for 1/2 < v < 1 with different constants.

Theorem 3.4. Suppose Assumptions (A1’), (A1) to (A4) and (A6) are satisfied for v < 1/2 and § <

min (8_4(%%, 1/4). Then, with (Ap)n>1 given in equatz’onH

-1 _ (=1 . 20—y)v(v=28)p
P m mm{ R 71}

E [[6n — 0°] < K1 exp (—eyuhon' 7 (1= (n)) + K5V log(n +1) 7 n
+ f(?(f)n_“’,

with €(n) given in equatz’on vp, = volog(n + 1), with vy, C& and o given in equation 85, equation

and equation with p' = 2(%_,7)]3, In addition, K§4), K§4) and K§4) are given in equation . If (A6’) is

satisfied, the same conclusion holds for B < 1/4 with Cs given in equatz’on taking p' = 2(%7,;’)]9,

In the special case where v = 1/2, which corresponds to the usual Adagrad algorithm, we get

E [[[6n — 0]] < K{V exp (—cypdov/n (1 — £(n)))

(1-48)(p—1)
6

K§4) log(n + 1)n1/2_ + K§4)) ,

+—=

1

and we so achieve the usual rate of convergence 7/ @8 soon as 1/2— % 1-5

p=1) <0, i.e as soon as p > 415

Remark that the advantage of using Adagrad algorithm compared to a standard stochastic gradient algorithm
does not appear in the bounds of Theorem Since Adagrad algorithm amounts to a regularization of the
gradient descent by a diagonal matrix, not much can be deduced in full generality. However, one expects
better bounds to hold in the case where the Hessian matrix at the minimizer is also diagonal. For example in
practice, the parameter 5 should be tuned in such a way that CanB >> Amin(H) ™! at the time n of interest,
where Apin(H) is the smallest eigenvalue of the Hessian at the minimizer : the influence of such a choice
of the parameter 8 would appear in the first term of the bound of Theorem in the case of a diagonal
Hessian at the minimizer.
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4 Application to linear model

Let us now consider the linear model Y = X7 + ¢ where X € R? and ¢ is a centered random real variable
independent from X. We suppose from now on that E [X X T] is positive. Then, 6 is the unique minimizer
of the functional G : R* — R defined for all h € R? by

G(h) = %IEJ [(Y - XTh)z] .

If X admits a second order moment, the function G is twice continuously differentiable with VG(h) =
—E[(Y — XTh) X] and V2G(h) = [XXT]

4.1 Stochastic Newton algorithm

The stochastic Newton algorithm is defined recursively for all n > 0 by (Boyer & Godichon-Baggioni, [2020)

Oni1 = On + Ynt1Sy " (Va1 — X0 100) X (6)

where S, = o (mSO +30, XiXZ-T) with Sy positive, m > 1 and (a,)>0 a deterministic modulating
sequence satisfying, for some 0 < a— < ay and a > 0,

16
a_ <a,<ai, and |a,—-1]<—=, n>0.

3

The parameter m > 1 reflects the expected quality of the initial approximation of the Hessian at the
minimizer by Sp. The usual stochastic Newton algorithm corresponds to the choice m = 1, o,, = 1. Build
then a regularized version by setting

5l _ min (||S7j1’1|op ,5n+1> =
157,

with 3, = csn?. Remark that 5’7;11 can be easily updated with only O (dz) operations using Sherman
Morrison (or Ricatti’s) formula. More precisely, considering S,, = (n + 1)S,,, one has

-1

St =8 = (U + X108 X)) S X XL st

Then, one can easily update S, and S,. We call regularized stochastic Newton algorithm the algorithm
equation |§| with S, replaced by S,,.

In order to avoid singularities in the estimation of the Hessian, we will assume in the sequel that the
distribution of X is non-degenerate on R%. Formally, this amounts to suppose the existence of a constant
Ly > 0 such that for any h € S¥!, \/E[hXXTh] < Ly xE HXThH We can now rewrite Theorem
for the regularized algorithm as follows:

Theorem 4.1. [Regularized Stochastic Newton] Suppose that there is p > 2 such that X and € respectively
admit a moment of order 4p and 2p. Suppose also that there is a positive constant Lyrx such that for any
h €St JERXXTh] < LygE HXThH Then, for any 1/2 < v < 1, the regularized algorithm (0,,)n>0
satisfies the mean quadratic error

B (16, - 017] < et (K{% o+ K{ g i+ 1))

(3)
K lin
+n7 (23”@1@ [€] Tr(H') + fL +KS )lm'UH n/2 + nvdmm)

where Ko jin, K2(, )lm,Kl(?’l)m,Kf,B 1ins An aTe given by equation |44 while vy, is defined in equation .
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Observe that n'd,, = O (W) and vy, = O (n_l), and since p > 4, these terms are both

negligible. Using this theorem, it is possible to prove a non-asymptotic quadratic concentration bound for
the convergence of the original stochastic Newton algorithm, at the cost of imposing a sub-gaussian decay
on the tail of X. Namely, following (Vershynin| [2018 Sec. 2.5), we say that X is sub-gaussian if there exists
¢ > 0 such that

P[|X| > 1] < 2exp(—t*/c)

for all t > 0, and we then define the sub-gaussian norm || X ||y, of X as
Xl = inf {t > 0,E [exp(| X |*/£)] < 2}

Remark that any gaussian distributed or bounded random variable is sub-gaussian. Under a sub-gaussian
hypothesis for X, we then have the following concentration bound.

Corollary 4.1 (Original stochastic Newton). Suppose that X is sub-gaussian with sub-gaussian norm
I Xlp, > 0 and € admits moments of order 2p, p > 2. Suppose also that there is a positive constant

Ly such that for any h € S, \/JE[hXXTh] < Ly xE [|XThH. Then, for any 1/2 <~ < 1, we have for
all 6 > 0 and n > ¢y, with ¢y only depending on Sy, d, v and the second moment of X,

1 1
P (|6, — 0| > 9) §6—2 n~ 12 E [€] Tr(H ) + G (e zen'” "E[VPHP + >} + Cyn™2,

with ¢, Cy, Co depending on the parameters of the algorithm, Lk, the first 4p moments of X and || X ||y,,
and the first 2p moments of e.

In view of the central limit theorem proven in Boyer & Godichon-Baggioni| (2020), this non-asymptotic bound
is optimal in the fluctuation regime up to the numerical constant 2*t7 and the error terms.

4.2 Adagrad algorithm
For linear model, we define Adagrad algorithm for all n > 0 by
9n+1 - 971 + A/n+1D;1 (YnJrl - XZ+1971) XnJrla

with D,, diagonal with, for v < 1/2,

’
niﬁ n?

n—1
_ . 2
(Dn)kk =min § max4§ —, 1 (ak + Z L+1 z+10i) (Xi+1)k) ) 7)\7/
0

(%} -l-l

where 0 < 8 < (y — X)/2 for some a, > 0 and if v > 1/2,

n—B

— 2
(Dn) ik = max o ﬁ (ak + Z Yigr — XT10;) (Xiv1)k) > )

for some 0 < 8 <y — 1/2. The usual Adagrad algorithm is done with v = 1/2, which yields for us
(Y1 — X710n) (Xng1)i
min {max {715“/2 \/ ar + Y0 (Yies — XT,0:) ( z+1)k)2} ’ nxi\zl/z}
Note that a first convergence analysis yields that almost surely there exists ng > 0 such that for n > ny,
(Y”H - Xgﬂgn) (Xnt1)k
\/&k + 30 (( i1 — X{000) ( z+1)k)2

which is the usual Adagrad algorithm. We can then rewrite Theorem as follows (remark that we only
state the result for v < 1/2, but a similar statement holds for 1/2 <~ < 1 with different constants).

(0n+1)k = (en)k +

(9n+1)k = (9n>k +

)

10
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Theorem 4.2. Suppose that there is p > 2 such that X and € admit a moment of order 2p. Then, for
v <1/2 and § < 1/4, we have

E [[|6n — 0)1°] < K792, exp (—cy Amin G50, ™7 (1 — 292.))

1,lin

p=1 _ (=1 4, [20-9)v(=28)p 4 _
+ K39 log(n + 1) 0T mn HTRETEAY | peade oo

where E?L‘?ﬁn = o(1) is given in equation and K ‘fﬁfm Kgy‘%fn K g‘f’fn are given by equatz’on equation and
equation [54)

Observe that in the case where v = 1/2, the ﬁ rate of convergence is achieved as soon as (p—1)(1—48)/3 >
1/2, i.e as soon as p > 2(51%1%).

5 Application to generalized linear models

The framework of the linear regression can be easily generalized to the more general setting of finite dimen-
sional linear models. Let £ : Y x Y — R be a cost function on some domain ) C R. The general learning
problem is to solve the minimization problem

argminE [¢(Y] f(X))],
fer

with (X,Y) ~ P and F is a given class of measurable functions from X' to Y, where X is a measurable space.
In the case of finite dimensional linear models, Y = R and F = {hT(I)(-), h e Rm}, with @ : X — R™ a known
design function (remark that the setting can be easily generalized to the case ) = R and ® : X — R™ and
h € My, ,(R)). Then, assuming that ¢ is convex and adding a regularization term on 6, the minimization
problem turns into the framework of this paper with

G(h) =E[g(Z,h)],

with Z = (Y, ®(X)) := (Y, X) and for all h € M,, ,(R), g(Z,h) = £(Y,hT X). In what follows, let us suppose
from now that the cost function ¢ is twice differentiable for the second variable and that there is a positive
constant Ly; such that for all h € R?

Vae (Y, h"X)| < Lv, (7)
where V2/(.,.) is the second order derivative with respect to the second variable. Remark that such a
bound is generally assumed if we require that |[V2G(h)|lop < Lye < +oo for all b € R% This is for
example satisfied when £(y,y) = f(y — v') with sup, |f”(y)| < +oo. For example, in the simplest case of
the logistic regression, we consider a couple of random variables (X,Y) lying in R? x {—1,1}, ® = I, and
y,y") = log(1 + exp(—yy')), and we indeed have for all h and YV € {-1,1}

1 1

WY, h"X) = . <1.
Vit(y, ) 1+ exp(hTX) 14exp(—hTX) —

There are then two main cases to deal with the convexity of the minimization problem : either assume strong
convexity or use a regularization. The first consists in assuming that the functional h — E [E (Y, hTX )] is
strongly convex, which is in particular verified when there exists a > 0 such that

Jnf Villy.y) > e (8)

and E [X X T} is positive. This case is called the elliptic case in the sequel and the results are very analogous
to the ones for the linear regression and are thus not repeated. We will then focus on the regularized
case. Without uniform lower bound on V#/(y,y’), one needs a regularization term, yielding the following
regularized minimization problem

argminE [£(Y, (0,67 X))] + Mk (9)
OcR™ 2

for some ¢ > 0. In what follows, we suppose that the minimizer exists and we denote it by 6.

11
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5.1 Stochastic Newton algorithm
The stochastic Newton algorithm is defined recursively for all n > 0 by

Oni1 = On — Yns15n (Val (Yay1, 07 Xpi1) Xop1 + 00) ,

where, using the trick introduced in Bercu et al|(2021) and developed in |Godichon-Baggioni et al.| (2022),
S, is the natural recursive estimate of the Hessian given by

. 1 n—1 od n
Sp = m Z V;Qlf(yi-i-ly (0s, Xz‘+1>)Xi+1XiT.;.1 + m Z ei[d]+1€£d]+1’ (10)
i=0 i=1

with i[d] denoting i modulo d. Remark that one can easily update the inverse using the Riccati’s formula
used twice, i.e considering S, = (n + 1)S,, and

_ _ _ -1 ,_ _
S = Sn t— ViE(Yn_H, <9na Xn+1>) (1 + V%K(Yn_;,_l, <9na Xn+1>)Xg+1Sn 1Xn+1) Sn 1Xn+1Xz;+1Sn !

1
n+3

-1
1 T -1 -1 T -1
Sn+1 = Sn+% —od (1 + Ude(n+1)[d]+lsn+%e(n+1)[d]+1) Sn+%@(n+1)[d]+16(n+1)[d]+15n+%,

one has g;lrl =(n+ 2)5;_&1. In what follows, let us suppose that the following assumptions hold:

(GLM1) There is Lyzy > 0 such that the function h — E [V%E (Y, hTX) XXT] is Ly2r-Lispchitz with
respect to the spectral norm.

(GLM2) There is p > 2 such that X admits a moment of order 2p and such that there is a positive constant
L, satisfying for all 0 < a < 2p

E [Vt (v, X70,) X + 00, |*] < Lz

Remark that Assumption (GLM1) is verified when for all y, V2¢(y,.) is Lipschitz and X admits a third
order moment, which can be easily verified for the logistic regression for instance. Assumption (GLMZ2) is
verified when the random variable V¢ (Y, X T(‘)U) X admits a moment of order 2p.

Theorem 5.1. Suppose Assumptions (GLM1) and (GLM2) hold. Then,

~

E 162 — 0]7] < e~ (Kf’ém + K{Dorar max (k + 1>deﬁcm)

(3)

_ — — K2 GLM 3
+n7 (23”67 Tr(H,;'S,H; ') + T + K§/7)GLMUZ,TL/2 +n7d|ns2),cLm | 5

where Hy = E [V3£ (Y, X70,) XXT]+014, So = B [ (Val (Y, XT0,) X + 00,) (Vnl (Y, X76,) X + 06,)" |,

KE%LM, K{‘?’)GLM, K;?)GLM, K;?’)GLM, dn,crm are defined in equations equation @ equation and equa-

tion[69, and vy, is defined in Proposition[7.5,
Remark that n7d|,/2).qLm = O(n~ min(v,1=7)) " see Section
5.2 Adagrad algorithm

For generalized linear model, Adagrad algorithm is defined for all n > 0 by
0n+1 - en - 'Yn—&-lD;lvhg (Yn+1a 0;1;Xn+1) Xn+17

where D,, is diagonal and for v > 1/2,

— n=8 1 s 2
(Dn)kr = max o\ nt1 (ak + ; (Vi (Yig1, 07 Xi1) (Xig1)r + 0 (0:)r) )

12
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for some 0 < 8 <~ —1/2, and for v < 1/2,

_ ) n_ﬁ 1 n—1 5 nA/
(Dn)kr = min ¢ max o A\ n+1 (ak + ; (Vil (Yig1,0F Xig1) (Xiz1)k + 0(65)k) N

where 0 < 8 < (y — X)/2 and aj, > 0. The usual Adagrad algorithm is done with v = 1/2, which yields for
us

Vil (Yos1, 00 Xnt1) (Xns1)k + 0 (0n)k
min {max {"i;l/z \/ ak + >y (th( Yig1, 07 Xi1) (Xiv1)e + O'(ei)k)z} , nw;l/z}

0

(6n+1)k = (en)k +

Like the linear regression, the general linear model needs minimal randomness to ensure the expected rate
of convergence of Adagrad. Indeed, in the extreme case of a deterministic sequence (X,,Y,)n>0, Ada-
grad algorithm may diverge in the unfortunate situation where Vhﬁ( 2+1791 XZ+1) (Xit1)k vanishes or
remains very small. Such behavior can be averted by requiring at the minimizer 6, a minimal variance for

Vil (Y,Q?;X) (X)) forall 1 <k <d.

(GLMS3) There is a positive constant o, > 0 such that for all 1 < k <d

Var [Vl (Y, X"0,) (X)1] > ao.

Remark that
Var [Vl (Y, X70,) (X)i] = E [Vl (V. X70,) (X)i + o(00)e["] (11)

so that (GLM3) can be seen as a mirror assumption to (GLM2). We should stress that the existence of
such a, is almost automatic when a minimal randomness between X and Y is assumed. Indeed, having
Vil ( Y, 0T X ) X}, deterministic would imply an analytic relation between Y and X. The main computational
issue is to estimate a concrete value of ;. An example dealing with the logistic regression is given in Section

[El

When (GLM3) is assumed, one can show using Theorem that there exists almost surely ng > n such
that for n > ng,

Vil (Yos1, 08 Xnt1) (Xns1)k + 0 (0n)k
Ve + X773 (Val (Yirr, 07 Xirn) (Xen)i + 0(0)0)

(9n+1)k = (en)k +

)

so that we recover the usual Adagrad algorithm for large n. We can then rewrite Theorem as follows

(remark that we only state the result for v < 1/2, but a similar statement holds for 1/2 < v < 1 with

different constants).

Theorem 5.2. Suppose Assumptions (GLM1), (GLM2) and (GLMS3) hold. Then, assuming thaty < 1/2
: (=7

and § < min (WM, 1/4), we have

E 162 — 01| < Ki%parexp (~¢,000,aram! (1~ £(n))

(=1 . 20— v(v=28)p
- mln{ 5= ,1}+ ada

ada =1 —
K5Grylog(n+1) 7 n K3 Grumn ™7,

where e(n) = o(1), Kf)délLM, KgdélLM and K&%‘LM have explicit formulas depending on the parameters of the
model.

We do not specify the exact value of the constants here, since they can easily be obtained along the hnes of

previous results. Once again, when v = 1/2, the ﬁ rate of convergence is achieved as soon as p > 50 44%)

13
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6 Simulation study
In this simulation study, we consider the following scenarios:

Stochastic Newton Algorithm: We set ¢, = 1 and initialize A,, = 1—10[d to stabilize the algorithm during
the first iterations. Additionally, and again for stabilization purposes, as suggested in [Boyer & Godichon-|

(2020)), we use a modified step size, taking v, = (n_f_jigo)w. We consider:

o The choice of v: v = 0.66 or v = 0.75.

o The use of truncation or not, with ¢ =1 and 8 = v — 1/2, while employing the Frobenius norm.

Adagrad: We set ¢, = 1 and initialize A,, = I;. For stabilization purposes, as suggested in
Godichon—Baggionil (]2020[), we use a modified step size, taking v, = We consider:

Cy
(n+20)7 *

e The choice of v: v = 0.5 or v = 0.75.

o The use of truncation or not, with cg = 1, A\[; = 1, 8 = 0.25 (resp. 0.125) and X' = 0.385 (resp.
0.25) if v = 0.75 (resp. if v = 0.5).

6.1 Linear model
We consider the linear model:
Y =XT0+e, where X ~ N(0,diag(l,...,d)) and e~ N(0,1).
The parameter 0 is set as § = (—d/2,—(d — 1)/2,...,d/2). In the following experiments, we set d = 10

and generate 50 datasets of size n = 10°. Moreover, we consider random initializations y =  + U, where
U ~ N(0,1;). In Figures [l] and [2} we analyze the evolution of the quadratic mean error of the estimates

. 1le+02

o

5 —_— y=0.66
S - y=0.66, truncated
@ 1e+00

E —_— y=0.75
'g » y=0.75, truncated
-‘E le-02 - [0 n 066
(04 — 0 n—o.75

le+01 1le+03 1le+05

Figure 1: Evolution of the mean squared error of the estimators obtained using the stochastic Newton
algorithm in the linear model as a function of the sample size n, for v = 0.66 or v = 0.75, with or without
truncation.

as a function of the sample size n. Unsurprisingly, we observe that the estimators achieve the expected
convergence rates. Although it is possible to construct counterexamples where truncation is essential, we
see here that it has little to no impact on the quality of the estimators. This is not surprising, considered
Corollary obtained for the linear regression : the possible failing of the convergence in quadratic mean
would be due to an event of exponentially small probability, and such an event would only appear with
reasonable probability on a very large sample of datasets.

14
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1le+01
S
S o — y=0.5
§ y=0.5, truncated
g o — y=0.75
g « y=0.75, truncated
g . -0.5
S 1e-02 0n
ot —_ 0 n—0.75

1e-03

le+01 1e+03 le+05
n

Figure 2: Evolution of the quadratic mean error of the estimates obtained using the Adagrad algorithm in
the linear model as a function of the sample size n, for v = 0.5 or v = 0.75, with or without truncation.

6.2 Logistic regression

We now consider the logistic regression case:

6.16

14 e’

YIX ~B(r(0"X)), where X ~N(0,diag(l,...,d)) and =(z)=

It is well known that € is the minimizer of the functional G' : R — R defined for all h € R? by
G(h) =E[log (1+exp (XTh)) —YXTh].

However, this function is not strongly convex. To address this, we consider Ridge logistic regression, where
we aim to estimate the minimizer of the penalized function G, : R? — R defined for all h € R? by

Go(h) =E[log (1 +exp (XTh)) = YX"h] + %Hh”2

In the sequel, the parameter 6 is set as 0 = (—d/2,—(d — 1)/2,...,d/2). In addition, we set ¢ = 0.1
and denote by 6* the minimizer of G, (in practice, we generate a sample of size 107 and approximate the
minimizer using the R function glmnet). Moreover, we generate 50 datasets of size n = 10° and we consider
random initializations 6y = 6% + U, where U ~ N (0, 14). In Figures[8|and [} we analyze the evolution of the
quadratic mean error of the estimates as a function of the sample size n. Unsurprisingly, we observe that the
estimators achieve the expected convergence rates. Contrary to the linear case, we can see here that there
is a little impact of the truncation on the behaviour of the estimates, especially for Adagrad algorithm with
v = 0.5. Indeed, the truncation seems to have a little impact on the rate of convergence.

Conclusion

In this paper, we have proposed a relatively simplified framework in which we can establish the conver-
gence rates of adaptive algorithms. More specifically, the relaxation of assumptions primarily concerns the
conditions imposed on adaptive step sizes to achieve the desired convergence results.

However, it is now necessary to complement these relaxed assumptions on step sizes with a similar relaxation
of assumptions on the studied functions, particularly by providing theoretical guarantees in the non-convex
setting. This is especially important since, in most machine learning applications, and particularly in deep
learning, the function to be minimized is typically non-convex (typically, for neural networks).

15
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le+0]  mem———

S

5 texto ~ _— y=0.66
§ - - y=0.66, truncated

1e-01 "

E y=0.75
g 1e-02 - y=0.75, truncated
S [] n~068
O 1e-03 - ARG

le+01 1e+03 1le+05

Figure 3: Evolution of the mean squared error of the estimators obtained using the stochastic Newton
algorithm in the ridge logistic model as a function of the sample size n, for v = 0.66 or v = 0.75, with or
without truncation.

le+01
2 1e+00 =
E —_— y=0.5
§ y=0.5, truncated
€ 1e-01 y=0.75
-é - y=0.75, truncated
g 1e-02 On®®
(o4 — On°7™

1e-03

1e+01 1e+03 1e+05
n

Figure 4: Evolution of the quadratic mean error of the estimates obtained using the Adagrad algorithm
in the ridge logistic model as a function of the sample size n, for v = 0.5 or v = 0.75, with or without
truncation.

7 Proofs

Throughout our proofs, to alleviate notations, we will denote by the same way ||.|| the Euclidean norm of R?
and the spectral norm for square matrices.

7.1 Sketch of the proof and a useful proposition

Main of the proof rely on the following Taylor’s decomposition of the function G. Denoting V,, = G (6,,)—G(0)
and g;hul = Vg (X71+1',« en)a

L
T VG 2 2
Vn,+1 < Vn, - 771,+IVG (en) Ang;z-&-l + T’\//TQH-I ||AHH Hg/n—&-IH

Then, taking the conditional expectation, it comes

Lvg
E [V,,,.,.ﬂf,,,] <Vi =Y+ VG (971,)T A VG (en) =+ ZC 712L+1 HA'n||2 E |:Hg;L+1 H2 |J:'n}

16



Under review as submission to TMLR

Furthermore, since Assumption (A4) implies that G(h) — G(0) < iHVG(h)HQ for h € R, and thanks to
Assumption (A1) it comes

Colve 2

CiLvg
E [Vn+1] < (1 — 20Yn+1Amin (An) + 7 Tn+1 HAn” > [ ] + = .

2
9 ’Yn-&-l HATIH N

A more detailed version of these calculus is given thereafter. Then, the aim of the proof is to control
the eigenvalues of A,, before applying the following technical result from (Godichon-Baggioni et al. [2021]
Proposition A.5).

Proposition 7.1. Let ()i>1, ()e>1, and (v)i>1 be some positive and decreasing sequences and let (8;)>0,
satisfying the following:

o The sequence 0; follows the recursive relation:
0 < (1 = 2wy + neve) 6p—1 + ey, (12)
with 69 > 0 and w > 0.
o Let v, and ny converge to 0.

o Letto=inf{t>1:m <w}, and let us suppose that for allt >ty + 1, one has wy; < 1.

Then, for all t € N, we have the upper bound:

t t

v; 1

5, < — : 25 i | (G0 +2 max 2 ) + =

s | e ) o (250 ) (v 2 ) + e
j= =

t/2

with the convention that ) ,'" =0 if t/2 <.

Moreover, we denote by Cy,C}, Cy, C constants such that for all h € RY,

E|IVag (X,0IF| <CLtColln=0F,  E[IVag(X0)'| <€ +Chlln—0]". (13)

7.2 Proof of Theorem 3.1

Remark that thanks to a Taylor’s expansion of the gradient, denoting V;, = G (6,,) — G(¢) and g, ., =
Vg (Xni1,0n),

L
ZG 2+1 | An H H9n+1||

LVG 22

Va1 < Vi — 41 VG (9n)T Angrg1 +

<Vi—"m1VG (Hn)T Ang;m-l +— (14)

where we used Hypothesis (H1b) on the last line. Then, taking the conditional expectation, thanks to
assumption (A1), and since ||6,, — 0|]> < %Vn,

CsL C1L
BVlR] < (14 CIC R 02 )V 0 V6 007 A,V 0) + S50

Furthermore, since Assumption (A4) implies that G(h) — G(9) < ﬁHVG(h)H2 for h € RY, it comes

VG (0,)" AV G (61) > Ain (An) [IVG (6)]?
= 20 1Vl i (A) >N
= 2)\nMVn - 1)\mm(An)<)\n2A"/”’LV”7 (15)

17
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with A\, = Ag(n + 1)* with 0 < A < 1 — ~. Applying Cauchy-Schwarz yields

E VG (0,)" AVG (0,)| 2200 1E [Vi] = 200 pVE[VEVP Panin (An) < An]

>20 1 (V] = 20,6V /P [Amin (A1) < Al

with V2 > sup, 5o E[V;?] calculated later. Then, Assumption (Hla) gives P [Amin (An) < An] < vpy1(n +
1)=°=9 := v, so that

CsL
E[Viq] < (1 —2pxo(n+ 1) Mg + ZMVG n+17’r2b+1) E (V2]

_ - L
+2X0(n + 1) VY1V, + @ QVG Vo185t

In order to apply Proposition [7.1} let us denote

C LchQC 2y—28 =262
CM = max {257, (/L)\O) :H Cy X ,
1

(16)

the last upper bound being added so that the terms of equation below satisfy the third condition of
Proposition Set 4, = cvn_(/\‘”), and remark that

E [Vas1] € (1= 2pX09n11 + Car(n 4+ 1272775, 1) E [Va] + 2004V V0rAn+1
Cilvg N
+ T(n + D)1 82 Ant - (17)
Then, since 2y — 25 — 1 # 1, with the help of Proposition and an integral test for convergence to get

+ —
ST RO S L B and Y0 677 2 1550 20l for y € (0,1)

(1+28-27)F
E [Vn} S exp (707/1)\077,17()\+’Y)) exp <2OMC'y <1 + ;m)) .

ot CILVGC 2 L
Y—2B—X B = LUVG X2
<E Vo] +4 C]\/I 1<k<nk VU Cor + 2V /U2 + 21+/\M)\0n Bn/2’yn/2, (18)

where we recall that v, = v, 41(n 4+ 1)7°7% > P [A\pnin (4,) < A,]. Remark that
B i = ek 1772 k4 1)/ = (1) 72/

so that maxo<p<n(k + )72/, = Maxi<k<n+l kr—26-0/2=(a/24 DX /50 Hence, we get

p(1+28-27)*
E [Vn] S exp (—cvu)\onlf(AJW)) exp <QCMC»Y <1 + m

AopV’ Y=26-6/2=(a/24 DA /| CiLvae,c
<]E [VO] +4 CM 1<Il?<a'lzb(+1k CM
2
i 21+(5+q*)/2V\/Wn*(5+qA)/2 1 91—26-2-1 Cilvge,cs 262

1A

where V is defined in Lemma Hence, as long as v + A + (1 + 28 — 2y)™ < 1 ,which is satisfied since
A < min{y — 23,1 — ~}, we have

E[V,] < exp (_C’le)\Onl_(A-PY)(l —5’(n)) (K(l) +K(1) max EY—28-6/2— (q/2+1)/\\ﬁ>
1<k<n+1

+ Kél)n*wf?ﬁ*)\) + Kél)mnf(ﬂqk)/?’

18



Under review as submission to TMLR

with

2 —1+A+y (14+28—2y)"
() = 2T 1+ ,
N 2y — 28 —1]

CyiLygc,c? , oV
Kfl): E [Vy] + 1bvaeycg 7 K§1)24 op ’
CM C(M

where C)y is given in equation [I6land V' in Lemma [7.1] and

ClLVGc,yC%
)

K(l) — 97—26-A-1
? HAo

K?El) _ 9l+(3+aN)/2y/

(21)

Lemma 7.1. Suppose Assumption (A1) for p > 2 and (H1b) hold. Then, for allm >0, if v > 1/2 then

E[VP] < €% ETEET max {I,E [V(ﬂ } =VP

n

and if v < 1/2 then

1+(C”C§‘7”) - 1+(C”c§‘7”) o
E[VP] < —puNye, | 1 P2 224, | 1 PH%o
[VP] <exp | —pprocy | 1+ [ +eegap [ 1+ 1= 27+ 28

with as given in equation @ and ay is given by equation@ forp> 2.
The proof of this Lemma is given in Section [B]
7.3 Proof of Theorem

Remark that thanks to Assumption (H1b), one has

CoLlva

Vi

oL
E [I14all? [|g s [* 1] < CullAall® + fubn

1Aul® Vi < CullAnll® + B

Moreover, with the help of Assumption (H2a),

CyL
E 14l o] < 1O+ B2 =27 Wa

leading as in the proof of Theorem to

CoLva
E[Vig] < (1 — 20 Yn+1 + 2#v TQL+1%2L+1> E [Vi] 4 220741 0E [1x,. (40 <x Vil

C1LycC?
2 OlvaCi, |

Using Holder inequality with p yields then

p—1

p—1
E [Ln(an)<re Vo] < (B [Lannan<rn]) 7 EVZY? < 5.7 1,

with 0, = vp41(n+1)7% and Vp given in Lemma Considering C); defined by

CyLyachey 2y-28 =26
)
L

O = s { SIS (02 5

19

= VP

(22)
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one has
p—1
E[Vas1] < (1= 2pA0Yn41 + Car(n 4 1> 95 00) B [Vi] + 2006V, 00” Yng1
C1LyaC?
T SR

Then, applying Proposition and with the help of integral tests for convergence, it comes

1 n(1+28—2m)7"
E[V,] < —Cypron” 2 Vo511 )
[Va] < exp (—cypdon’ ™) exp | 20e, { 1+ 2y —28 -1

p—=1

p—1
)\ON‘/p maxi<ig<n k’yfzﬁ’[)kp n ClLVGC'ng*
/2

E [V, 4
[Vo] + Cor cor

+ 2V, vn

+ 2,),_ ClLVGC'yCS
N
Concluding as in the proof of Theorem [B.I] we get
< _ 1=y (1 _ (2) (2) eet y—28-2215
E[Vi] < exp (—cypuron' ™7 (1 —e(n))) - <K + K, 1<rjn<a7>1(+1vk k

(p— 1)5

+K§ ULH/ZJ K(z)n’w,

with

e(n) =

20 n~ 1+ n(1+26—27)*
_|_
Ao |2y — 28 — 1

where C'); is defined by equation [22] and

i

L 2 A
K® = (E o] + G1fveeCs VGC”CS>, K® — 420

CM C’M
K§2) _ 21+5%Vp7
K = g1 Gilvee,C5.

Ko
7.4 Proofs of Theorem [3.3] and Corollary [3.1]
Proof of Theorem[3.3 Remark that one can rewrite

Oni1—0=0n—0 =y H gl —Yogr (A — H ') gl
leading, since H is symmetric, to
1611 = 01" < 116 — 011" = 2941 (g1 H ™ (0 = 0)) = 2941 {(An = H ') g1, 00 — 6)
_ 2 12 2
+ 2% [H g |+ 20050 [[An = H | [|g7 |

First, thanks to Assumption (A3) and by Cauchy-Schwarz inequality,

%) 1= [E [29n41 ((An = HY) ghy15 0 — 0) | Fa] | = 2941 [((An = H™Y) VG (0n) , 0 — 0)]|
< 2LyYnt || An — H7 M| 160 — 0%

Then, using Assumption (A1’), one has

() == B (2920 [ H gl |* 1] < 4020 (HSHY) 4 4924, B Loy 16, — 617

20
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Finally, one has
(k5 %) = E [=29n11 (Ghprs H ' (6 = 0)) [Fn] < =29n41 [16n = 01 + 2941 [[H | 16211 1162 — 6]
with, using Assumption (A5), |6, := VG (8,) — H (8,, — 0)|| < Ls ||6,, — 6]|>. Hence,
(%) < =2y [0 — 01" + 290 [ H Y| Ls 116 — 01,
which yields, using that [|6,, — 0]> < 2 [0, — 0|° + 210, — 0]|* with a = |[H~"|| Ls,
112
(45 %) < =Ygt 100 = O+ ygr |H L3 16 — 0"
Furthermore,
_112 2
() 1= E (29241 [[An = B [lgh|* 1]
112 _112
<292, Ay - B G 232, Ca A — B 16, - 0]
_1)12 _114
<292 1 || An — H7Y|" C1 + Covnsr 10n — 0] + Cond 1 || An — H7Y|.
As a conclusion, one has (after using Cauchy-Schwartz inequality on (x)),
112 _ _
E (16041 = 617] < (1= vnss + 4| H* 921 Lwg ) E 160 = 6] + 492, Tr (H'2H )

s (| 23+ Co) B [160 = 01] + CondE [[[4n — 7]

+ 200 B [||An — B + 2%“1;%@ (16— 011" E [l14, — B,

leading, using Proposition [3.2| with the fact that E [[|6,, — 6]|*] < %E [V;Z] by (A2), and (H2b) and (H3),
to

E (16241 = 017] < (1= vns1 + 4| B " 2211 Loy ) E (162 — 6] + 492, Tx (H'SH)

+ Yn+1 (HHAH2 L+ Cz) % +Coy 128 <C§ + :4>

+ 201772l+1vA7n + 2’771-&-1 MnUA,n

< (1= + 41 H " 221wy E [16, - 01°]

o 12 AM,
+ Vg1 - |4 T (H'SH™) + <g + 02) 5
u 7
2 o3 (a1 Lvc
+Ca7,112° | Cs + A +2C1 Y1V, + 47 Mpvaq|.

1

Finally, let us denote C4 = ¢, max {4 HH’l H2 Lyg, L } Then, with the help of Proposition one has

2 Cleyn'™Y 204es 22 2 8Tr (H~'SH™Y) 16Co (n*+C%)  4C1va0
£ [l o] bt eroses (s o, o] TEUBI)  a00 ) s

1— Y L2 -2 C L
L e—dom 7@2&;@% max (k + 1) - <8WMk_1 + 8% /Mk—lﬂA,k—1>

1<k<n u2Ca
L2
23t7e Tr (H-'SH! 8 (Tg + 02) 8Lva
+ Y ( > ) + 5 Mn/2 + \/m
n o K
N 24+27CQCA/ (M_4 + Cg) C% n 22""701671}147”/2
n2v ny ’

21
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Finally,
E [Hen —9||2} < ez’ <K<3> +K® max di(k +1)7 )
(3) 3
+n7 23+'YC,YTI‘ (H_le_l) + -2 + Ké/ )UA,n/2 + d\_n/2j-
with
—1 —1 —4 4
(3) 2CAc = N2 8Tr (H YH ) 16C, (,Uf + Cs) 4011}‘4)0
K] Sty (]E [||9O o } + o + ¢y o + o ) (28)
1 L2 -2
Kﬁ’) 70 2CAC“’ 27 tr dn = 8LVG \V anA,n + 8W72—’_C2Mna (29)
A H

where we recall that C'4 = ¢, max {4 HH*H2 Ly, i}, and

K(g) 22 Chey (Wt + CF) 03, K2(§) =22"1Cc,. (30)

Proof of Corollary[3.1, Remark that as long as ¢ E > 2, by Proposition and the following discussion,

L2u=2 + Cy
v — vy [
Or<n]?i<n di(k+1) Or<nkaxn ((k +1)"8Lve\/Mirvay + 8 e M;,

SLVG\/UAa Lin=2 + Co
87 o (77)-
. Vweo(27) + Woo (V)
Likewise,
2w (27)
Mn/2 < T
Hence, plugging these inequalities into Theorem [3.3] yields
2 3 1 1 Ké?)/) 3" (39
E [Hen —9) } <n= [ 23070, Tr (H'SHY) + 22— 4 K$ 000 + K Joamsa
e

with

' "y (8Lvc/va,0 L2u=2 + C
K = K+ i (D T s B G () (31)
il
’ L2 -2 C ’
E$) = k() ool T2 H;L 20w (2y), K§) = K, K$) = 227 Ly /weo(27). (32)
O

7.5 Proof of Theorem 3.4

To prove this theorem, we will apply Theorem We first need to check that (A,,),>0 satisfies Assumptions
(Hla), (H1b) and (H2). Assumption (H1b) is given by construction (see equation [5)) while (H1a) is given
by the following lemma:
Lemma 7.2. Assume (A1) is satisfied for some p > 2. Then, for all0 <t <1,

P [Amin (An) < ct] < ont??,

with
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The proof is given in Appendix [B] Remark that E[V/?] < +oo by Lemma [7.1] with (A1). Assume from now
that p > 2 and let p’ = %}”p and A = (1 —v)(y — 28). Remark that A <1—v, A <~ —28 and p' < p.
Hence, applying Proposition [3.1 with Ao = ¢g, § =0, ¢ = 2p,

P () (1 (1) | 1) 28— A—2(p—p ), BT
E [Vn } < exp( cypron' ™ (1—¢ (n)) (Kl + Ky, | Jpax Uy )

+ K (1) n—P (1=28— ’\)—i—K(l) T (n+ 1)720=P)X,

with € (n), K£1,), Kl(,l/), Kéll) and Kéll) respectively given in equation equation |68/ and equation [70| with
Ao = cg. By the choice of \,p’ one has

P(y—28-)) = pQ(Ql__J)v(v —2f8) =2(p—p)A,
so that
E {Vﬁl} < Ryexp (_C’yucﬁnl—((l—'y)(v—2,3)+’Y)(1 (n )) + Ky(n+1)~ - e I (33)
with

B =K+ KT Ry = K 4+ K0T

)

By strong convexity, one can so obtain a first rate of convergence of the estimates. The following lemma
enables to ensure that (H1a) is satisfied, but with a possibly better rate than with Lemma

Lemma 7.3. Assume (A1) is satisfied for some p > 2. Then,

Pl (Ay) < 5\0] < vg log(n + 1)

— 20—y (v— ZB) 1’

(n+1) 2=

-
vy ¥ 2(1—v) 72(173)1’ . . . . . / 2(1—v)
with A\g = By 0(2(1 7)) +1 and vy is given in equation |85 with p’ = 5— P

The proof is given in Appendix [Bl We can also deduce from equation |33|a bound on E [||An||4] in case only
(A6) holds.

Lemma 7.4. Assume Assumptions (A1)-(A6) and (A1’) hold for some p > 2. Then, for f <

min {%, 1/4}, the sequence of random matrices (A,) defined by equation verifies

E [II4.]1"] < Cs,
with C4 given in equation .

The proof is given in Appendix [B] If the stronger hypothesis (A6°) holds, an improved and simpler bound
on E [||4,]|*] can be reached, as next lemma shows.

Lemma 7.5. Assume Assumptions (A1)-(A6°) and (A1’) hold for some p > 2. Then, for § < min{y/2 A
1/4}, the sequence of random matrices (A,) defined by equation[3 verifies

E [Il4.]1"] < Cs,
with C& given in equation .

The proof is given in Appendix [B] Theorem [3.4]is then a consequence of Theorem [3.2] whose hypotheses are
satisfied thanks to Lemma and (or . We then have

E[V,] <exp (—cvﬂj\onl_"’ (1—e(n))) - <K(2) + K(Q) m<ax+1vkp k7 26—5)

9) B2 _ =Y in 2(17w)~/(772ﬂ)p71 2) _
+ K Ulny2)™ 7 S I

23



Under review as submission to TMLR

with K1(2),K§,2),K2(2) and K?()Z) respectively given in equation equation and equation with § =
min { 20=v(y=26)p 4

}7 Ao given in equation |84} v, = vplog(n + 1) with vy given in equation |85 and Cs
given in equation 86| or equation [87| depending on whether (A6) or (A6°) holds. By strong convexity

~ ~ ~ p— _®=1) hind 2=y (v=28)p
E [||6n — HHQ} < K£4) exp (—cvu)\onl_”’ (1-&(n))) + K2(4) (vg log(n + 1))71 n_ P {#= 1}
+ K§4)n_7,

with A defined in equation

20 vy~ 1+ 1= (2y=8)+~ (1+28—2v)F
En) = =M 14 = : (34)
11X 12y — 26 — 1]
with
N 2 8 okY 2k M
KW= P (Kf) i Kf)vo) . R = /j . R = : . (35)

where vg is given in equation

7.6 Proofs of Theorem [4.1 Corollary [4.1] and Theorem [4.2]
The proof relies on the verification of each assumption needed in Theorem [3.3]
Verifying Assumptions (Al), (A1’) to (A6). First, remark that
IVag (XY, R)| < [[(XTh = X760 —¢) X|| < lel |X] + IX]1* |2 — 6]
Then, if X and € respectively admit moments of order 4p and 2p, since € and X are independent,
E (Vg (X, Y. )| < 012y + Ciap) I1h = 6]

with o) = 2/ 'E[|e[ ] E[|X[]"] and C(;) = 27'E[||X||*"]. In a particular case, if p > 2, Assumption
(A1) is verified. Furthermore, since for all h, V2G(h) = E [XXT] is positive, (A2) to (A4) hold with
I = Amin (IE [XXT]) = Amins Lve = Amax (IE [XXT]) =: Amax and (A5) holds with Ls = 0. Finally
Assumption (A1’) is verified since

E[IVhg (X, Y,h) = Vag (X.Y,0)|*] =E [ X" (h - 0)X|’]
<E |IX]I*] 1n - 0]

—_——
=:Lvy

We can now prove Theorem [4.]]

Proof of Theorem[{.1 Verifying Assumption (H1) for stochastic Newton algorithm. Let us first
check Assumption (H1) for S, = 2= [mS, + > X; X[].

n+m
Lemma 7.6. Suppose that X admits 4p-moments, with p > 2. Then, for A\g = m’ we have
P |:>\rnin (ggl) < AO:I S ’Dn
with )
~ L 1-p 13 —p/2 271\ P/2 p -
Un = E[IX]2])P Ci(p)n "PE[|Z|P] + Ca(p)n (IE [\Z\ ]) +m? || So||” n ,

24
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where Z = || X||* — E[|| X||?] and Ci(p),Ca(p) are numerical constants given in Rosenthal inequality, see
Pinelid (1994)).

nE[|| X|*]

If moreover X is subgaussian with subgaussian norm || X||y, and m < 5150l 7 then one can set

_ C711E[||X||2]>

Up = 2€exp (— ,

" HX”%%
with ¢ numeric.
— -1 ~
The proof is given in Section To deal with S,, = %Sm one first needs the following control on
min(n?,||S,,

the behavior of Apin(Sy). Set H =E [XXT].

Proposition 7.2 (See Koltchinskii & Mendelson| (2015]), Theorem 1.5 and Theorem 3.3). Suppose that 0 <
Aminlg < H = E [XXT] < AmaxIq and that there exists Ly > 0 such that E [(X, t)ﬂ < LuyrE[[(X,t)]]
for all t € S4=1. Then, for n > cid,

1 n
P [)\min ( E Xz‘XiT> <c
n
i=1

< 2exp(—csn),

A2 (16 Larc)* = Amin
> =
Anin ’ 8V2L2,

1
and €3 = g7 -

with ¢; = .
MK

Remark that the constant c1, co and c3 are fairly explicit in terms of IL mi and Apin. For the latter result
and Lemma and Proposition we deduce Hypothesis (H1) for S,,. We will need several times the

threshold ”
i i 2150
= d 14+ — _ . 36
o m“{cl (m( ta1)) mEE (36)

Lemma 7.7. Suppose that X satisfies hypothesis of Proposition and admits 4p-moments, with p > 2.
Then, for Ag = W, we have

—1

P |:)\min (gn ) < AO:| < Un-i—l(n + 1)—;0/2
with § = p/2, vpi1 = (n+1)° for n < ng and, for n > no,

21 (Co(p)E [|22)""* + Cr(pn! PR (| ZP] + m? || Sol|” n/?)
E X[ ’

vy, = Qe><p(703n)n]"/2 + (37)

where c1, co, c3 are given in Propositz'on Ci(p) and Cao(p) are numerical constants depending on p and
Z=|XI*-E[IX]?].

In the case X is subgaussian with subgaussian norm || X||y,, for n > ng, one has instead

Uy =2 [exp(—c;),n) + exp <—W>} nP/?, (38)

with ¢ > 0 same as in Lemma [7.0
The proof is given in Section [C] In particular, in the subgaussian case and for n > ng
on = O (exp(—c'n)) (39)

for some constant ¢’ only depending on || X ||y, and E[||X||?]. As a particular case, Assumption (Hla) is
verified with a rate § = p/2 when v > 1/2.

Verifying Assumption (H2) for stochastic Newton algorithm. A straightforward deduction of the
above lemma is the following.

25
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Lemma 7.8. Suppose that hypothesis of Proposition holds and that X admits a moment of order 4p
with p > 2. Then, for all kK > 0, we have

E [|IS511"] < 28541 exp(—csn) + (a—c2/2) 7"

forn > c1dVm and

1k cd+2, . _1.1"
E[nsnln]s[l |sol|]

forn < c1dV m, with c¢1, ca, c3 given in Proposition[7.3

The proof is given in Section [C] Finally, the following proposition gives a precise bound for Assumption
(H2).

Proposition 7.3. Suppose that hypothesis of Proposition[7.4 hold and that X admits a moment of order 4p
with p > 2. Then

28 2
E [|I5;1]?] < max {20% (jf) + (a_cp/2)72, [C1d+ 2 H501||] } <3

3 a_

and

ecs a_

d mk v
[ s }

43 4
B[S, < max{?c‘é (£)" + e [2222 s } <

2

28
for all n > 0, with Cg := max { (2(:% (%) + (a_02/2)_2)

The proof is given in Section [C} Remark that Cs = O(d).

A first convergence result. Since in the case of the linear model, one as Cy = 02y, C] = 04),Co =
C(2),Cy = C(4), Lva = Amax; £ = Amin; Ao = W 0 =p/2, Propositioncan now be written as follows:

Proposition 7.4. Suppose that there is p > 2 such that X, e respectively admit moments of orders 4p
and 2p. Suppose also that there is a positive constant Lyrx such that for any h € S, \/E[hXXTh] <
Ly gE HXThH. Then, denoting Amin and Amax the smallest and largest eigenvalues of E [XXT],

3 )\min _ ’ ’ =2 _p=2
]E[VnQ] <exp —0774”1 7 (Kfli)n+K§2,11n1<r’£12‘7}f+lvkp K p2)
4 [I1x]*] Sks

+ K2(,Qh')n7”‘727 + K:flz')n'”fi;%)/pnf(pfz)/2 = Cnlin-

with v, given in equation in the general case and in equation |38 in the subgaussian case, and

2 2
’ 2v—28 247 1inC ’ 2v—28 AApnin V2.
K§2li)n _ eQaM,zmMZQﬁ <]E [Voz] + 1,lin ry) ’ Ki/Q l)m _ eQQMJmW min Yy lin ’
) a . ) 2
Mtin artin [ X]7]
142y 2 2
2" 2 al,h"CVE |:||X|| (2") 2p/2+1 %
2,lin — 3>\min ) 3,lin 3 p,lins

where, recalling the notations oy = 2'"'E “eﬂ E [HXHt} and Cyy = 2'7'E [||XH2t} ,

2v—28

=
2/\matxc((2) 2>\2 2 2 2 3>\min 128
aM,lin := Max < + S (4C2) + CyEc3) ) ey, | ————= ey ,
Ao A2, )T i

26
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min

1677, 00 E[1X1°] | owe 27, E[|| X ||]
. . i L 2 max7 (2 4 2
with Cg given by Proposztzon a1, lin = CS)\de ( /\<3) + <2) v 4 25 >)\ and

E[VP] < e 5% %251 max {1, E [VF]} :=

p lzn
where
Co | o 2 5 2 LAWY | 20 400
Ap lin ‘= P <>\m1n + T + 2P ( )p)‘max CCp 0(4 )‘12111n + Amin + )‘12111n

- 2 2p— 20C o 1 2p (1
+277%(p = )P\ ( S (0<2p>+ th p)) + b ( en + 32— ( \/C(Qp)>)' (40)

min

Remark that putting together the above expressions yields that, in the subgaussian case and for n > 2ng for
no defined in equation [36]

-2
Cniin = O (exp(—C’nl_'Y) (E [VOQ} + m7+(5_1)(p_2)/pvp2,lm) + 072 4 Vﬁzm exp < p2p c n)) (41)

Verifying Assumption (H3) for stochastic Newton algorithm. Hypothesis (H3) is then a straight-
forward combination of the convergence of S,, towards H, together with Hypothesis (H2).

Lemma 7.9. Suppose that X admits moments of order 2p with p > 4, and let suppose as well that the
distribution of X satisfies hypothesis of Proposition . Then, for n > ng (with ng defined in equation @),

1604 (||Sol| + (E [|1X][22])%/ s
ffs -] < e (Il + EOXIPNY) oy B
()\minﬁn) (TL + m) ()\minOé,CQ/2)
2|lmSo — H||3 N 20,
(n4m)2 Ammna—c2/2)*  72(Amine—c2/2)

(42)

5 (IS0l + E[IX ) = vz (43)

For n < ng, we simply bound

E[nl

Remark that vy, = O (%) uniformly on m > 1. By Lemma (H1a) is satisfied with 6 = p/2. Applying
Theorem [3.3] with the constants computed in the previous lemmas and proposition, we get finally,

— H1H2] < max {2

min

2
+2C5, vao} = VHn.

E [l 0] < e (Ki o K4 max (k4 1)7)
k<n

K®)
+n7 (23+70,,E [62] Tr (Hil) TR L K2/ NinVHn/2 | T A2

ny

with vg, defined by equation recalling that Apin and Apax are the smallest and largest eigenvalues of

4
E [X X T], and since for the linear case one has C'y = 44;,% > 4c,

min

fxi] , o

ST te OF [¢2] Tr (H—!
Kify=e o 0T (E[||90—9|2]+ e )+4C(2>(Afnin+0§)+w>,

¥ Cy
1 EIx14] 5,
Kf?)lin = Te Mo 73 n - 8)\max\/ Cn,linVH n + 8)\2(2) Cn,lin,
’ C’Y min
3 _ 3
K§, =25 Cn)e, (Oph + CH 2, K9, =22 0p)c,, (44)
and ¢y, jin and C§ are respectively defined in Propositions and O
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From the asymptotic behavior of vy ,, and ¢, i (see equation and the bound on Vj, 15, in terms of E [Vop ]
given in Proposition [7.4] we deduce that, for n > 2no,

dy, = O(exp(—C’an) (E [Vﬂ 4+ m+6-D(-2)/rg [Vop]2/;n)

-2 1
E V)P . - . 45
+E[VJ]"" exp % cn +n (45)
We can deduce Corollary from Theorem Remark first that we have the following rough bound on
E [V,fl] for the usual stochastic Newton algorithm with adaptive matrix A, = S, ! with a,, = 1, m = 1.

Lemma 7.10. Let V,, = G(6,,) for the stochastic Newton algorithm with A, = S;*. Then,

- Nlos(3 . n3—2v o nP+1)—py E P
7] < = + Clinie—— | {1+ Clina————— 7
[ ] exp ((p ) Og( )TL lin,1 3 _ 2,.)/> ( lin,2 (p + 1) p,-y> [ 0 ]

with Clin,1 and Clin 2 given in equation .

Proof of Corollary[{.1 Set mo = |Rlog(n)| + 1 with R > 0 to tune later, and let (6,,),,>0 be the sequence
induced by the stochastic Newton algorithm with m = 1, a,, = 1 for n > 1, initial estimated Hessian matrix
Sy and starting point 6y. Set Gy = Om,, and set g, for the n-step of the regularized stochastic Newton
algorithm with respect to the sequence of random variables (X, 4k, €mo+k)E>1 Parameters m = mg + 1,

initial estimator of the Hessian Sy = ﬁ(&) + 3 Xk X, an = % and 8 =0, csg = 2¢; ' (with

co given in Proposition [7.2)). Then, remark that on the event B,,, = {Uinf(gn) > co,n > 0}, 0, = Ot -
indeed on this event, by the choice of the previous parameters and a simple recursion,

én+1 :én + Oénc'yni’yfinvhg((Xmo+n+la emo+k+l)a 977,)

—1
. 1 mo+n
:9m0+n + Cy(mo + n + 1) 7 <W <SO + ; XkX]Z—'>> th((Xmo-i-n-i-h €m0+n+1)a 9m0+n)

=Omotn+1-
Hence, for n > mgy + 1, by Markov’s inequality
P (|10 — Oll > €) =P ({[|6n — 0l > €} N Bny] + P [{[|6n — 0]l > €} N By, |
<P [{lBn-my — Oll > €} N Buo] + P [Br,]
B [y — 0]

= 2

+P[Bf,]- (46)

Suppose that n > 2max(ng, mg), with ng given in equation for m = mgy. By Theorem and the fact
that n > 2my,

E [Hén_mO — 9||2] =(n—mg) 72T ¢c,E [62] Tr (H™)

1 1—v ~ 1
+0(ezcw<”m°> (E[||90—9||21+dnm<n+1>7)+n+dw2j). (47)

Set Vo = G(Ay) — G(0) and let us bound dny2 and dy,— .. By Lemma and the fact that Vo = V,,,, with
Ving = G(0m,) — G(0), and mg = Rlogn,

E[V7] = O (exp(Cmi > )E[VE]) = O (exp (C'log(n)* =) E[V)) (48)
for some constant C,C’ > 0. Hence, by equation

d, =0 (exp (—Cnl_v) ]E[Vop]z/p + i)
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for some constant C' > 0 only depending on the first moments of X and the parameters of the algorithm.
Therefore, using the strong convexity and Lemma to bound E[[|y — 0]|%] as in equation |48} we finally
get, for n > 2max(ng, mo),

1—v o 1
0 (e;cwnmw (E[llfo = 01") + dn—m(n +1)7) + — + dW?J)

=0 (e—écrﬂ” (E[Vop]Z/p) + i) ’ (49)

with ¢ > 0 only depending on the first moments of X and the parameters of the algorithm. Finally, by
Proposition and choosing R = i—;’ yields

]P)[Bfno] < Z P [Amin (;inXZT> < C2‘| <2 Z exp (—an)
i=1

n>mo n>mo
C

exp(—csmg) < pex

S p——) (%)

for some C' > 0. Putting equation [50] and equation [7] together with equation 9] in equation [46] yields, for
n > 2max(ng, mo),

1 Lopl—> -~ 1
P[]0, — 0| > d] <5 n 2B [ Tr (H') + 0 <e26" E[VF1?/P 4 n)]

+O(n=2).

Finally, since mg = |Rlogn| + lwith R = i—z and ng = max(c1d, Cmyg) for some constant C' > 0 depending
on the second moment of X, d and Sy (see equation , we deduce that n > 2max(ng,mg) as long as
n > ¢y, where ¢g is a threshold only depending on ~,d, Sy and the second moment of X. O

Proof of Theorem[].3 Let us first prove that Assumption (A6’) is fulfilled. For all h,

E [th (X,Y,h) Vig (X, Y, h)T} =E [(Y — XTh)? XXT]

—E [¢]E [XX"] +E [(X"h - X70)* XX
and (A6’) is satisfied with a = E [62] Amin- Hence, we have by equation

2
4d (1 +owu + C(4)%>

E [[|4.]1"] < 22 = C5 adas
E [62]2 )‘12nin e
with V5 given by Lemma for p = 2. Then, applying Theorem [3.4]
E [[16, — 0]°] < K%, exp (—c Amin A48, 77 (L - €7%,))
p—1 (p—1) . 2(1—~)y(v—28)
+ Kgfllfn (vgfﬁn log(n+1)) * n~ 25 min { 2= O=200 1 ) + Kg7ilgnn—7’
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2—7y

Ip(i—7)
with )\S:jl(iln = {4(;_3)1) (C (4p<1—~>) + 1)} o and, recalling that Anin and Apax are the smallest and
2—x

largest eigenvalues of E [X X TL

ads Qcﬂ%nn—lﬂl—v)(?v—ﬁ)-w N n(1+28—27)" (51)
i Amin A 3%, |2y — 26 -1
2 CW)‘maXU@)C% ada 4)‘m1n)‘8dl(zlnvaldﬁz
Kif = E[Vo] + e+ el P (52)
’ Amin sz?,lm Oﬁl,zm
1
K = 20202 (53)
’ )\min ’
27y Amax0( C?
ada __ v \max®(2)"~ S ada
Rt =55 St oY
2(1—7)
20-7) 201-9) v o2
d2777 " o aag) N2 T TC aag) B
s (192 T,
where Vo = dM(ﬁ) + (7(4(170 )+1 -
2— P
C Amaxc2c - 1=28
Cj(t;ljin = max{ @ b\ Cat] ) ()‘mm)‘gfé?ny * cy }
and
1—~v—)' 1—2~v+428
c C2aada y—2B8—X e~y c2 gada y—2B—X/
(i o5kl )
—PpAminAgcy | 1+ Fp——— +cic%az, 1+ T3 758
Vzupada =e€
where
C o 4C, 20 4C,
da __ (2) 9(2) 2 2 2 (4) (2) (2)
ag,l?n =D ()\mm + 9 ) + 2P~ ( 1) >‘max <C“/Cﬁ (U(‘l) + )\r2mn> + L + )\r2mn>
_ _ _ 2PC 5 o mo (1 2p 1
+ 2072 (p — 1)pAP ( ?Yp 20? 2 <O’(2p) + /\2( p)) +cb 2015 2 ( O(2p) T 3 ( +1/C2p) ))) , (55)
and C 2 82 C A2 C
agﬁ‘;n =09 + 3 (.2) + )\Imx o(2) + )\Z @ 4 2)\12%)( )c CB + 7)\; )cic% (56)
O

7.7 Proof of Theorem

The proof relies on the verification of each Assumption in Theorem [3.3]

Verifying Assumptions (A1), (A1’) to (A6). First, remark that taking for all 0 < a < 2p, one has
B[[[Val (v, XTh) X + oh|[*] < 207 B [||Val (Y, X76,) X + o0,"]
+ 297 [[[Val (v, XTR) X = Vil (Y, X705) X + 0 (h = 6,)|']
<207 LG + 2 E[(Lyt | X[ + 0) ] Ik — 65 (57)

(a)
=:Csrlm
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and Assumption (A1) is so verified. In a same way,
E [(Vag (X, 1) = Vg (X, 0,)I| <E [(Letll X ]|+ 0)*| I = 0" < C&ys 10— 6,
and (A1) is so verified. Remark that (A2) and (A4) are satisfied by hypothesis. For (A3), one has

|E[Vie (Y, XTh) XXT +0l]|| < LwiE [HXHQ] + 0 =: CaLm. (58)

op
Observe that Assumption (A5) is given by (GLM1) while for Assumption (A6), (GLMS3) together equa-
tion [I1] which yields
2
E {(th(X, 9v))ﬂ =E [|Vhl (Y, X"0,) X, + o0, } > g
forall 1 <k <d.

Verifying Assumption (H1). The following lemma ensures that Assumption (H1) is fulfilled.

Lemma 7.11. Assume first equation [7 and that X admits a moment of order 2p for some p > 2. In the

reqularized case defined by equation@ denoting \g = W, we have
vi

—1

P {)\min (?n ) < )\0} < Upyr(n+1)7P/2
with

(n+ 1)p/2
np—1

+ ) (“F 1)p/2 © [|T|2})”/2>,

where T = Ly, (||XH2 —-E {||X||2D +o (HZH2 - 1) and Z being a standard d-dimensional random variable
independent of X. In addition, C1(p) and C2(p) are given in|Pinelis (1994)).

Uny1 = [Soll” + C1(p)

E(|T["]

9p-1 <(n +1)p/?
(LWE [”XHZ} n U)? np

The proof is given in Appendix
Verifying Assumption (H2). The following proposition ensures that (H2) is fulfilled.

Proposition 7.5. Considering from the regularized problem given by equation[d, one has for all n >0,

15 < 2dmax{ !

)
o

solu} O

Remark 7.1. Remark that if equatz’on@ holds for some constant a > 0 and if E [XXT] is positive, under
hypothesis of Proposition[7.3, for alln >0 and for o = 0, one has

€C3

a—1)2 1 2 (28 2 -2 —11\2 2
E (IS 117 < g max 25 (=) +e ((ad+1)[[SgH)" ¢ < Ch,

€C3

a—14 1 4 (28 1 —4 —1(\4 4
E[|IS; 4] < —a max 2c3 +e3* ((ad+1)||Sg7H D ¢ < Cs.o

2
with C§ o = L max { (28% (%)25 + 62_2> ,((ad +1) HS()_1H)4}

A first result

Remark that one can rewrite Proposition [3.2] as follows:
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Proposition 7.6. Suppose there exists p > 2 such that X admits a 2p-th order moment and that there is
L, verifying

E[[Val (v, X70,)[" |1 XI7] + 065 < L. (59)

Then,

E[V2] <exp (=% p1=1) (K, + K@), max o7 k-5
me= AC e M 1,GLM v, GLM | 28X Uk
+ KS,QG)LM”JPy + KB('?G)LM”&;SJ)/Z)”%%Q)/Q =! Un,GLM;

with v, defined in Lemma Cs, defined in Lemma Cerm and C’(C?L)M defined in equations equatz’on
and equation [57,

4 2
ai1,GLM = CS,UCGLM

4CcinC® . 202 3 2
anr. G = max crmbrm G2LM (SC(GQZM + 80(5%]\/[030%,0) 0703’07 _ 90 ey
o o 4CerLm

) 2 9 2a1,GLMCg,
i Gn = o 20M,6LM 0 g E V5] + CamGim

ALACS ALA
<6 "CchM +dey LA + "CGLM)
g g

5 2 40V?2 aom
Kl(’,g}LM = €Xp <2aM’GLM27 i 1) aum GLIZ\/[CGLM

K@) _QQ'YHCLLGLMC'GLMC?y
2,GLM = 30
2+(p—2)/2
@) _ 2
Ky e = 3 Vo cLmo

VP e L VT wh
with V) gy =€ v“5.e =T max {1, E [V]} where

20® 320 a2 sc®
ap,GLM ¢ =P <;LM + L) +2°7 2 (p— DpC | 2C5, | 8L + % +—+ —g

o2

23;}710(217)

_ _ _ _ y _ _ o 2p (1 _
2 2 2 ~2 2 2 1r2 GLM 2 2 2 272 1/2 (2p)
+277%(p = V)pCe,y, (cf cer; (2 UL+ —— > + T og (2 LY+ 5 (5 + 27 \/CGLPM))> .

Remark that for p > 2, v, gra = O(n™ ™n1:27),

Verifying Assumption (H3). We prove here that (H3) holds for general linear models. We now denote
H, = E [Vl (Y,01X) XXT] + 0l

Proposition 7.7. Suppose Assumptions (GLM1) and (GLM2) hold, then for all n >0,

B 570 - ) < 2%

- L2,, 2 1 16d4C%
(LQWE [11] + 2223 v+ 1180 = H (00 |7 | + =727 =i ve,n

g 4 n2
=0

with v; grm defined in Proposition @

We can now finish the proof of Theorem In this aim, let us first remark that for all h, A/,

E [the (y, XTh) X + oh — Vil (y, XTH') X — ah’|ﬂ <2 (LQWIE [\|X||2] n 02) Ih — ).
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Then, with the help of Theorem one has

1—v

B (16~ 6nl?] < e 3o (K + K s e (6 17 onn

5
+n7 (23+707Tr (H;'SoH;') + —20LM KS)GLMUZ,n/z) + din/2),qLM;

n”

with Sy i= E [ (V€ (4, X70,) X +005) (Val (3, X705) X + 06,)" | and since e, 4S8 > Oy o =2 ey,

2)

SN 2Tr (H- 12, H 1 2I%y
Ky =€t o m (E{eomfh s 2B st (o7t 0t,) + 22200 ) (o)

Cy Cy
1 ¢au B 21 L%, 024203

Kﬁ)GLM :Eeg 2T dy, gim = 8CGLM/Un,GLM UL, + 8— L CGEM i, (61)

Ké()}LM :25”70&2131\/107 (‘774 + Cé,a) ng K2(?,)GLM = 23+7L<27¢7- (62)

Proof of Theorem[5.9 The proof follows exactly the same pattern as the proof of Theorem using As-
sumption (A6) together with Lemma [7.4] to compute the constant C's such that (H2) is satisfied. O

A Proofs of technical proposition

A.1 Proof of Proposition [3.7]

Let us recall that )
T
Vn-‘rl =Vy —Yn+1 (g;L-',-l) An/ VG (en +1 (0n+1 - 0”)) dt
0

—Uni1
Remark that for a > 2 and z,h € R such that x > 0 and x + h > 0, we have by Taylor’s expansion
(x+h)* < 2%+ az®  h +2°2a(a — 1)(x*2|h|? + |n]*). (63)
This yields for a = p’, v = V,, and h = U, 11 and after conditioning on F,
E [v,f;l\fn} < VP 4 p VIR [Uny | Fl
+ 202 (p) = 1) (B (Ui P Fa) VI 2+ E [[Unia 17 ) (64)

Since G is convex and V(G is Lipschitz,
1
’_ T .
E {Un—i-lv'f 1|]:n:| S —-E |:7n+1 (g;H-l) An/ \Y¢& (en) dt|]:n:| V',f !
0

1
‘E [v (0) A [ (VG 0) = VG (0 + 10~ 0) dtm] vy
0

IN

’ L ’
~101VG (0n)" AnVG (02) V'~ + Z3E2 L ([l gt |10 ] 1 AR ]2 v

IN

! L ’ 2 ’
Y41V G (00)" A VG (8,) VI +73+1ﬁz+1%g <01fo B %Vf ) :

By strong convexity, we have
VG (6,)" AnVG (00) VP ™ > Anin (42) [ VG (0,2 V'
> 20tV Ly (422
=20V = 215 Ay <rs AtV
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where \,, = A\o(n + 1)* with 0 < A < min{y — 28,1 —~v}. Applying Hélder inequality yields then

p—p’

E [VG 0" Anvc(en)} >\ uE [Vﬂ — A pE[VPP P (P anin (A1) < An]) 7

’

) [Vﬂ — 20,V (P Panin(An) < M) T,

with VP > sup,,~q E[V,P] given by Lemma Then, Assumption (H1a) gives P [Amin (An) < A\n] < vpi1(n+
1)=9- q)‘ = Up, so that finally

E [Unﬂv,f'—l}
< 21 AE {;ﬂ/,f’} + 2o 1 VI T ” 5 +fyn+16n+1L (0 E [vp —1} (:21[«: [V,f’D . (65)

Furthermore, since VG is Lyg-Lipschitz, one has

1 1
/ VG (0n +t (Bry1 — 0)) dtH < LVG/ (16 — O] + £ |0nss — O, dt
0 0

1
< Lo (102 = 00+ 30 1400 o] (66)
Hence, using (H1b) and the strong convexity of G yields

E[1Uns1 1Fa] < 86 1A4al” 3 [gheal” (271 160 = 617 + 2792y 14l [lghi | ) 1]

’

Y oy 20 12V 2y 2P VY
va v n+1<2p <O{p/2) e U

- 2 n+l up//Q 2

) 2P V
B (ci”’ Lol ))

Specializing the latter inequality with p’ = 2 yields then (recalling inequalities equation
E [[Unia | 1] V2

L2 2V, 22V2 4v? ,_
S VG 2+1ﬁn+1< (Cl,u+0 ’u > +’Yn+1ﬁn+1 (Ci‘i‘Cé N;))V’f 27

2
so that
E[|Uns1 |Fo] +E [[Unsa | Fa] V2
SL%/GQC{ n+1/8n+1 231)//2_;6,%?0{#/2)vﬁﬂﬂﬁlﬂff/? % 2+15 +1szflf1
L% gcl WA BL v (2217 _1L:i§cép /2) o 2”_1L5JGCSP 2 g

2P 10 1%, 205036 4 o
+T73+1 3+1+T%+1 n+1

Using the latter inequality with equation [65] in equation [64] yields then

E {Vn-&-l} <E [V’” ] = 2P/ Y1 AnE {Vé’ ] + 29 A yn 1V o +1E [P (vs1Biirs V) ]
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with P(z,y) = Agz? + Ap//Qacp/myp//Q + Ap,,lxyp/_l + Ap/,2x2yp/_2 + Ap/xyp/, where

25?'/273p/(p/ . 1)L%/GC§;D//2)

Ay =277 () = IR GCO, Ay s = T

9

Ay =pEze 2P0 - DIger

7 Ay =270 () - DL 6CY,
M

and

164 -
N’p

' LonC 93p' =3P’ C(p’/2) , . 920’ =3P C(p/) , .
D LvgL2 —I-p/(p/ . 1)< vpcl: 2 p _2Cg 2 + vale C’Q)/p _zczp 2
1

N 22 =10y L2, N 2P —102L2VG 2
#2 MQ ~CB

Applying now Young’s inequality, which implies albr’—i < ’“P + (Gl _’)b

for any ¢t > 0 and 7 € {1,2,p'/2}

for 0 <i < p' and a,b > 0, yields

’
¥

— AV ' N Y ' — )ty y?
Apaty? = (( L ) (BAm)7y)" < ( i o WDy

P z

tAnn) tAnYn) = p

so that using the latter inequality with ¢t = for i € {1,2,p'/2} and using that

3(17/ Z)u

’y ,321) 21,/ (2i—1)p’ 1o
Lﬁ = (Yng1dn)ey | P p )\0 (n +1)" v+2p B+E A
('Yn+1/\) ¢

(’Yn-‘rl)\n) i (n + 1) p (v—2B8-2X)

gives

/
E [P (vii1Ba1,Va)] <L (p;)\n%wl) (n+ 1) 072570 4 (g (N Ynt1) + Ap (Yns1B8nr1)?) E {Vf }

with
2p'—1 2p 2(1’/‘1)6?, —2 9 50’ 2p )\ p 20 Ay P’
I C,y CB A n 3ny )\O Ap/ " 07141) /2 LA
= b\ 0 1 p'/2 - —1 A1
0 lu p’zu 2 ( pep )
(3(p’—2)) 3(p'—1)
Putting together the previous inequalities and taking the expectation yield then
/ Ayrcyc? ,
E |:V7§)+1:| < (1 - le7n+1)\n + pTw(n + 1)_V+26+/\'Vn+1/\n> E [Vrf :|
/ L /
+ /\7L7n+1 <2p ,va 'Un + Z;,LL (TL + 1)71) WZQM) .
Then, recalling that ©,, = v,,11(n + 1)7°~9 and using Proposition yields
, e U - p—p’
E {Vp } < exp _Mnl_(/vm)(l —¢(n) K(l ) 4 K(l ) max kYA v, 7
A 2 1<k<n+1 k

+ K P 07200 gy L/2J(n+1)‘
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with
oy = A (s
n)=
1p' Ao 12y =28 —1]
and
ms N Ap'pVr
KM (]E[Vo]+pc’f ) K= T
M M
where .
Ayc,c? e\ S a—28-a
chy s {5 (100) T
and

K(l ) — 9P "(y—28— )\)L K(1 ) 22-&-” (5+qz\)vp

where V,, is given in Lemma [7.1}

A.2  Proof of Proposition [3.2]

Remark that with the help of a Taylor’s expansion of GG, one has
1
VnJrl = Vn + (9n+1 - en)T/ VG (Qn +1 (9n+1 - Gn)) dt
0

1
T
=V — Ynt1 (Ghs1) An/ VG (0n +t(0pi1 —0,))dt.
0

Then, using equation [66] one has

i=(%)

1
V2 < V2= 2901V (dhs)” An / VG (0 +t (Ony1 — 6,)) dt
0

1
La Al g | 24 (2 16 = 61 + 57241 14n ||g;+1|»2>

i=(x)

We now bound (%) and (x%). First, thanks to Assumption (H1) and since [|6,, — ||> < %Vn, one has
413 . Cy 8L% (o 2
E [(o0)[Fn] < VMG Vo 1A Vi + ZS’ 1An " 722 Vi
1 2L% .CY
+§L2 1’7n+1 [ An || + VG 2 4+1 [ An || vV

8LL C? 4, 1 L36Ch
< =St Al gudoma Vi + S A

2L%

+ (402 + CéC?YC%) 772L+1B721+1Vn2

Then, taking the expectation with Assumption (H2b),

8LY O3 UAQ C
E[()] < —FE o 2108+ 2B [VQ] g 1G5

12

+

(4Cy + Coc2 ) vmia Ba B [Vir] -
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Moreover, since VG is Ly -Lipschitz, one can check that

1 1
/ va(en+t(9n+len»va(en)dtH <Lva / tdtyn1 || Anll || gpa ||
0 0

L
<%G%+1 | An |l HQ;LHH :

Then, one has

E[(%)1F0] 2 290419G (62)" 4nVG (00) Vo = Lvcr2 1 |4l E [[| g0 [*170] Ve
2LvaCy

> 29,41VG (0n)" AVG (0) Vi — LyayZ iy 14al? C1Vs — — V2 || An? V2
T C3?L% HAOYn+1 2Ly cCy
> 29,11VG (0,)" AnVG (0,) Vi — 21/1;)0 %3L+1 ||AnH4 - D) + Vf 7 %2L+1ﬂn+1

Furtermore, with the help of inequality equation [15]it comes
Y11 VG (0)" AnV G (60) Vi > 200p9m11V;7 = 201 1a, <x, Vi
Then, with the help of Holder’s inequality, coupled with (H1a) for ¢ = 1, one has

ClLVG 3 4 2LvcCs 2

E[()] = >\0M%+1 — Aopyn 10DV — 21Xo S Tn1Cs — PG wnE [V
with V,, defined in Lemma [7.1|and ,, := v,,(n+ 1) 7% is the upper bound from (H1a) on P [y, (4,) < Ao).
- 2veC;y | 23 SAop\ T 2z
y a—=F
apr := max { ( vﬂG 2 /iVG (4Cy + Cyc2 cﬁ)) ¢y, (20M> ey } ; (71)
one has

E[VZ,] < (1 =3 opyns1 +ann®  Typ1) E[V,] + 4)‘0M7n+167(lp_2)/pvp2
8LL .C? (¢ C?
+oitge (e Gy Oy (72

/.t?’ /\0 2 2/1)\0

=iai1

Applying Proposition it comes (with analogous calculus to the ones in the proof of Theorem |3.1)

3 2y — 2
E [VnQ] < exp (—207)\0Mn1—7> exp (2CLM212/8€1>
2012 8\ouc, VAP =2 227q,c2
) 2 v OMCy Vp y— 5 & 01Cy n=27 2 (P 2)/p
(E Vo] + ans - ang 1<I/?37}f+1vk k * 3op * 3V [n/2]

where V), is given by Lemma and 0|, /2] < 971/225 (n+1)7%. Setting

’ 2y — 28 2a102

K@) _ 9 E [v2 b 73
1 exp(aMM%l)( W3] + 22 ), (73)

’ 2y — 28 SAouV2
K _ o (2  BhonVy 74
1 exp aM27_25_1 an ) ( )

with aps given in equation [7T1} a; given in equation [72] and V), given in Lemma and
N 224162 N 92+(p—2)8/p

K=" g2 Ty (75)

3/\0,114 3 P

37



Under review as submission to TMLR

we finally get

E V7] <ex —§C)\ n' K(2)+K(2) max v%kv—é%
n] SEXP 2 vy AO M Jpax L

_,’_Kéz/) —27+K(2) (p— 2])/17 —0(p=2)/p _ Mn-

I_n
Then, for any 0 <+ < min {27, @}, only depending on v, and -y, we have

Weo (V') := sup Mpn" < +oc. (76)
n>1

The function we, : [O,min {27, op=2) H — R can be computed numerically, but in any case note that

Woo (') < K(T) SUp;>1 {t'yl exp (—5)\0/1151_7)} + Kz(zl)

[O, min {Q’y7 =2 H ,

—+ K?(,zl), so that a function analysis yields, for 7/ €

/

5
! 2"}// ﬁ 2/ 2/
Woo (Y <K(2)<) + K8 + K¢, 77
(7)— 1 )\Oﬂe(l_'Y) 2 3 ( )
We w111 see in most applications that under suitable assumptions, 7’ can be equal to 2y (namely when
o> 'y)
2 52

B Proofs of technical lemmas

B.1 Proof of Lemma [7.1]

Observe that since the proofs are analogous, we only make the proof for p > 2, and for the case where p = 2,
if there are some differences in the proof, it will be indicated with the help of remarks.

With the help of a Taylor expansion of the functional GG, one has

1
T
Vot = Vo — Ynt1 (9h41) An/ VG (On +t(Ony1 — 0n))dt
0
Then, applying the inequality

—1)h?
(a+h)P < aP +paP~th + plp = DA° 5 ) max(1,2P73) (a2 + |h[P~2)

< aP + paP~'h +p(p — 1)2”—3h2(a”_2 + |h\p_2)

for a,a+h>0toa="V, and h = —7y,41 (giL_H)TAn fol VG (0, +t (01 — 0,))dt, one has

1
Vi S V2 =2 (gn)” A [5G 00+t 0o = 0,)) e
0
2

1
+ 2P 3p(p — 1) ’ Yrs1 (g;H)T An/ VG 0y 4+t (041 —0,))dt|| VP2
0

p

1
+ 2P 3p(p — 1) ’ Yrtl (g;LH)T An/ VG (0p +t(0py1 —0y))dt
0

Remark B.1. Observe that in the case where p = 2, one has
(a+h)? =a® 4+ 2ah + h? = aP + 2a* " h + p(p — 1)2P3h2|h|P~2

the last term on the right hand-side of previous inequality can be considered equal to 0.
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Recalling that since VG is Lyg-Lipschitz, one has

1
| 560+ 00 - en»dtH < Log (165 = 8+ vars [ Anl [ghia])

which implies

1
Vivir SV = pynsa (g;+1)TAn/ VG (0n +t(0pe1 —0n)) dtv,fl} =: ()
0
+ 272p(p = DL 62 g1l (160 = 01 + 22 2 1140l gna ) ViE~2} = ()
+ 272p(p = DI g s I 1A P (16 = 017 + 38 1Al [l s [) = (5 4)
Furthermore, one has
1
() = =PYnt1 (9;L+1)T An/ VG (0 +t (01 — 0n)) dtVE™
0
= Pt (1) AVG (0,) VI

1
st (g2) T An / (VG (B 4 (B — 00)) — VG (6,)) dVP~
0

Since A,, is positive and since VG is Lyg-lipschitz, taking the conditional expectation, it comes, since for
all a,b >0, ab < %a” + PTlep/(pfl) and with the help of Assumption (H1a),

E[(4)|1F0] € =11V 0n)" 4uVG (00) VI + 22y AP E [l gl 17| Vi

< —pYurthmin (Aa) [VG 07 VI 4+ 282002, (€1 + Ca 00— 0)7) V2

'
9 2+17n+1v

IN

pCo p
— Dl Yn+1Amin (An) VP + 7 T VE+ —

IN

pCy  Ci(p—1) el
—PiYn+1 041 1y<1/2VE +( p T e Vil = 5 ERRTARE

with A = Ayn~". We also used Assumptions (A1) on the first inequality and the fact that, by u-strong
convexity, [|6, — 8]* < %Vn < % VG (6,)]]* on the third inequality. For the same reasons, one has

4C' 2C 4C
L G N (R A R C o D

_ 4pC!
<22 (p - DIt B (201+ (@—2)01 o 2) vp)

2C 2(p—1)C 4pC.
+2p72( - 1)LVG’Yn+1ﬂn+l <'u1 + ( (p L ) : + ];22) Vr?)

In a same way, thanks to Assumptions (A1”) and (H1), one has
zpo(P)
E[(x x9lF] < 277%plp = DLl il | O + =5V

_ 1 2r /1
+ 207 2p(p — DL AL B, (2c§”> + (2 - O§P>> vgg)
Taking the expectation on E [(x)|F,] + E [(x*)|F,] + E [(x * *)|F,], applying the latter inequalities, it comes

E[VP ] <max{E[V}],1} (1 — puX, 1 ¥n+1ly<1/2 + apVos1Basi)
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Cy ) 9 9 ( ( 4C4 ) 207 40, )
a,: = + + 2P —1)pL Al + 4+ — 4+ ==
P p ( " B) (p LG B 1+ 2 0 2

(7Qﬁ 2 1
+ 2072 (p — 1)pLE < A <c<”> T >+ D22 (205”)+M§ (2+ Cé”’))) (78)

Remark B.2. Observe that in the case where p =2, one has

2C5 4L2VG SL%GCQ
CL+ 5

!
2=Cit ==+ + 203601 + —S—22ch (79)

If v > 1/2, by summation,

E[V?] < e 457551 max {1, E [VF]} = V7.
If v < 1/2, let ng be the smallest inte%er such that 2,82, 1a, > puN,Ynt1. Recording that X, =
Ny(n+ 1), we have ng = MC”C{;%)WJ. Then,

PHAG
no
E[VY] <exp (Z —PpAL Ynt1 + ap%%ﬂﬁiﬂ) max {1, E[V{’]}
n=0
cyChap \ Y—28— cycap\ v-26—
<exp | —puic 1+1+(W§6) +6202a 1+1+(W§6> = VP
=P | TPy Y Bl 1-2y+28 e
B.2 Proof of Lemma
Recall  that  (Ap) = max {min {05n5 ( )kk,} Ao~ X 7<1/2} with (Tn) " =
LY . Since Amin (4n) > Amin (7) on the event {/\min (Tn) < cB}, we

\/m (a2 (Vag(Xi1,00)0)%)
havef0r0<t<1

P Amin (An) < teg) <P [Amin (4n) < teg)

n—1
1 ) 1
< Y A .
P [1<k<dn+1 (aHZ (Vhg (Xit1,0:))k) ) > th]

C
=0 B

Then, Markov inequality for p > 2 and Jensen inequality yields

n—1
1 2 1
P i1, 0; —
1<Ic<d n+1 <ak+l§; (Vag (Xita ) ) > > cgt

n—1 p
1
2p 2p 2
<t E[<1<k<dn—|—1 (ak+ E (Vg (Xit1,0:);) )) ]

=0

<+ (ZaHZWhg m,ei)lf))p]

< chtQ?”n << ak> + Z_:IE [thg (X11+1,9i)||2p]) .

=0

2p42p
<cﬁt E
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Then, using Assumption (A1) and then (A2) we get

n—1
1 ) 1
P max 4| <ak+Z(th(Xi+179i)k) > > o
n—1
2p,2 % " 2p
<t an ((Zak) +nCY + C} ;E [Hei—en D
2pC,, n—1
< cthzp ((Zak> +nCl + MPQ Z]E[V,{’]).

=0

By the bound E [V] < V)P from Lemma [7.1} we finally get

1 n—1 ) 1
P | < 2p
1??%%1 n+1 (ak + Zz; th i1, 0 ) ) o cgt | — Unt

with

d P
1 rCyveP
Up = czﬁp <<n E ak> +Cf + :p;)) . (80)

i=1
B.3 Proof of Lemma[7.3]
Set By, =& [th (X, H)i} and 97g(h) = E [Vxg(X, h)]. Then, by Jensen’s inequality for p’ > 2,

’ /

n—1 p n—1 p
— —2p’ r_ ’_ ag 1
|(An) .| <ort ﬁzvhg( i+1,0:); — 03g (0;)| +20 ! n+1+n+1za£9(9
i=0 =0
Hence, for any = > 0,
1 2p’ [ 1= v 2’
_ B =2 o
HD|:|(A”)kk|<x:| _P“(A")kk:’ >xp} <P nHZWg i+l ) — 919 (6:) >?
: 1 n p/ 217
Qg 2 X
P 0 — . 1
+ n—|—1+n—|—1;akg( ~ o (81)
Set My =0 and for n > 1,
n—1
My, =) Vig(Xit1,60:)F — 9g(6:)-
1=0

Then, (M,),>0 is a martingale, and thus by Burkholder’s inequality, see (Hall & Heyde, [2014, Theorem
2.10) there exists an explicit constant C) such that

P’/2 n
E {|Mn|p/} < CyE <Cpyn? Py R [\Mi = M }

i=1

zn: M M’L 1
=1

n—1

p/
<C’/n”/2 IZE“V;LQ i1, ) 3k9( i) }v
=0
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where we used Jensen’s inequality on the second inequality. By Assumption (A1), the strong convexity of

G and Lemma
p/ ’ ’ ’
EKVW@&Hﬁn%—%g@D ]SWEUVW@&Hﬁnu%}ﬁWEMvW@&Hﬁ»w{
<2'c{) 4+ 27 PR [6; - 0]

’ ! ’ / Vp,
<or'C{P) 4 9% o) 2
up

Hence,
\Y% it -0 =E n P . ; 82
n+1§j n9 (Xis1,0.); — 029 () — < CESVE (82)
which yields for z > 0
P , : (@) ' AV
2p 920’ CF 7+ 2P Cy 7 2
2 (p. . £ ue
Z vhg i+1, ) - akg (91> > op’ < 22p (’I’L + l)p//2 (83)
Next, by Jensen inequality,
a 1 n—1 P’ 1 n—1
k 2 ' 2 P’
n+1+n+1;(k9< ) 1(“’“' +§|k9( )| )
Using Assumption (A1) and then strong convexity yields
/ ’ 7 ’ Vp,
kg 00" <Ci) +2cy L
so that ,
n—1 p / ~(p") n—
ag 1 2 ‘ak|p 2P Cy 1 /
059 (6; <cP VP
n+1+n+1;(kg(z)) toal T 1’ n+1§l
Hence, for ””2?, > Cfp/),
n—1 20’ / (p’) n—1
Ak 1 2 zr p, 2P0 (")
P 079(0 > — VP> C
n+1+n+1; kg( 2p/ = +1 <|a’k| + Iy ; i 2]3’
27’ P o1
1 E {|ak|p + M’Z' Y ico Vf}
S 2
n+1 o;TP _ C«(p )
_ A—y)v(v=28)p
By  equation and the fact that %ﬂ Z?:Ol (i + 1)_2 =2 < %ﬂ +
1 log(n+1) . T 1
st —2a o and denoting 1 = 1+ ,
‘1_W12(17W?(77?ﬂ)p#1 (n+1) 7= ! ‘1_W12(1*7)2’Y(7*23)P#1
- -
it comes
2?’0(1’/) n—1 ’
1 E | jax” + 2P C(p) ”zzlv Jarl” + o 2ui—o B [Vip}
——EFE ||a
nt1 |17F n+1
' o) log(n +1) o' P L =
< 2 K,1 —~ + -2 1+ |ag” + Ky exp( ey phoit (1 E/(i))
7 (n+1)WA1 P (n+1) ;
log(n + 1)
SM(ﬁ) 20=7)v(v=28)p 51
(n+1) 2=y
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with for n > 2

D (»")
() - 2

—+oo
Kol + 1+ |al” + Ky Z exp (—cwu)\onl_(’\““’)(l — 5’(71))]
n=0

Choosing
X =2 1))
yields then

/

A M (B)log(n + 1)
2p’ S 2(1—7)*/(“r—2ﬁ)p/\1 :
(n+1)" 2o

Putting the latter inequality with equation [81] and equation [83| gives then

>

ag 1 5 9
—_— 0:.q(0
n+1+n+1; k9(

d

P [Amin (An) < Xo] <3 P[|(An) | < 2]

k=1

o (AP | o A VE
MB)logms1) P (01 12 w')

- (n n 1) 2(1— 'v)'v(w 23)71/\1 (C{p/) T l)nP'/2
vo log(n + 1)

— 2(1=7)y(v=28)
721:: P Al

(n+1)

with
o (et i)

cP) 41

Vg = dM(B) +
Since P [Amin (An) < Ag] <P [)\min (Tn) < /\0}, the result is deduced.

B.4 Proof of Lemma [7.4]

Set By =E [vh (X, a)i] and 92g(h) = E [V, (X, h)2]. Then

/ n—1 P
— =2 p ’_ ].
E U(A")kk 7Ek‘ :| §2p 1]E mzvhg( i+1) ) 8kg( )
1=0
E 1 n—1 P’
op' 1 ||k~ 2k 02g(0;) — E
+ — +n+1;(k9() k)

By equation

eI e R
<P "
- (n+1)»'/2

n—1
1
715 Vig (Xit1,0:)F — 07g (6;)
1=0

Next, by Jensen inequality,

ak—Ek 1 el 2 )
] +n+12(5k9(91)—Ek)

1=

Sin-lu (ak—Ek +ZE{|8,€9
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Using Cauchy-Schwarz inequality, Assumption (A1’) and then Assumption (A1) yields

|

<E [[E[(Vag (03, ). = Vng (0, X),) (Vag (6:, X) .+ Vag (6, X)) |6:]|”

E[|079(6:) — Ba|” | = E UE Vg (6, X)} = Vag (6, X} 16}

9, 1P /2 9, 1P /2
<E|E [(Vag (6, X), = Vag (0, X)) 10:] " E |(Vag (05, X), + Vg (6, X),)° 6]
<o PR [0 — 0] (207 2 4 CF o — 0]

2p Lp /2Cp /2 93p’/2— 1Cp /2Lp /2

B[] B[V
2p LP /2017 /2 23p’/2—1c§//2L%//2
ey 9_ ..
— /,Lp /2 cl + /,Lp/ Cl?

where ¢; is given in equation Putting all the latter bounds together yields, using that Ej < Cf,

’
p

ap — Ek -
E E 8
n+1 n +1 = kg (0 )
n—1 "o’ /2.0' /2 3p’/2—1,0' /27D /2
/ / 2P L'~ C 2°P C5'°L
p =1/ P P 2 : Vg 1 - 2 Vg )
S’]’L + 1 2 (a'k; + Cl ) + — /,(,p//Q Ci + /,Lpl C;

Hence, noting that V}, < co by Assumption (A1’) and Lemma

E (@)% - Bl

e e e NV = B0 s e e 23 [2-10p /2 [/
<9p'—1 HP op'=1(4P oL Vg ~1 ’ 2 Vg ; 7
< - t o (a, +C7 )+ i:E > o Ve + > c

=Cp

_[A=nr(y=28)p
with, by equation en =0 <log(n)n (=55 Al]). Since by (A6) we have Fy > «, we deduce by
Markov’s inequality that

P|(A) < V2] =B|(A), <a/2] <

Hence, we have

v’ — =2
ar B U(A”)kk — Bk

7.

le74

p/] < 2P ¢,

E {(An)ik} =E [1(,4")M>\/g (An)ik:| +E [l(m)k-ﬁ z (An)ik:|

4
<E E
1, v - { v Bl
2p cin*be 4
4ﬂ B n o
<cin IE”[( W) < Va/ } <t
: = e =Y (1=71)y(y=28)p (1=9v(y=28)p
Since ¢, = O | log(n)n 7= , for 8 < =525+ A L we have [T A 1} —45 >0
and thus

w(B) = sup é,n*? < +oo,
n>1
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and finally

with

B.5 Proof of Lemma

First, we have by (A6)

ZE [th Xit1,0:) }

n—1 n—
— -2 1 2 1
E[(A)w) | =E Xig1,0)h| = ——
((An)xr) 1 ;th( +1 )k] Epa
Then, as in the proof of Lemma
1 n—1
i 7 1 E |: Xz 9
thg i+1 e 2 Vg (Xiga
Hence, by Markov inequality,
{((Z Jor) < a/Q <P ‘ Z Vg (Xiy1,0
a(cr+ st
S—z-
no

We deduce as in Lemma [T.4] that

B[] <epnte [y < va7a] 4 <

When § < 1/4, we finally get

with

C Proof of technical Lemma and Propositions for linear regression

C.1 Proof of Lemma

Remark that
S,

(6%
<o (m||so|+zuxxT

Hence, for A > 0,

P {Amm (g;l) < )\] =P [H§nll > 1/A] <P lcjj (

45

||> — (mIISo | +Z||X I

1

E[th( 1+150i)i > o

0

2

0.z )

=1

=1

m|Soll + Y Xl

n

)
o]

C’ +C’

2

>OZ2
1
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Taking Ao = (2a4E [||X||2])71 yields then

P i (5,1) < 2] <P [i <m Ioll + Z (1%l - & [nxn?])) >E [nXﬂ] ~

Taking the p-power, applying Markov inequality and then Rosenthal inequality yields that

P [i <m|so|| P (xR [|X||2])> >E [nxnﬂ

(i (m;ol+ > (- E 1| })D)p> (& [nxz])p}
i(||xi||2—m||xnz]>‘>p]

1 1
S EBIXE lnp <m||50 +|2

2r—1
< -
- E[IXPD

with Z = || X||? — E [|| X]|?].

<P

(1o PE(Z7] + Calphn™/2 (E[1212])"” +m? S0P n 7).

If X is a subgaussian with subgaussian norm ||X||y,, a similar reasoning yields

P [dmin (871) < 20| <P [Cj; <m||50|| S Xi|2> > Aal}

<P [Z (I — BIIXIP) > n(3* /. — BIIX|?) —m ||50||]

aexp (/0w ~ BUXIZ) = mSol)"
X[y

with ¢ > 0 absolute constant, where we used the generalized Hoeffding inequality for sub-Gaussian random
variables and the fact that centering alters the sub-Gaussian norm by a universal constant, see (Vershynin,
2018, Theorem 2.6.2) and (Vershynin, [2018, Lemma 2.6.8). Taking Ao = (2a4E [||XH2D_1 and assuming

nE[|| X|1%]
that m < SRR

yields then

P [)xmin (551) < )\0} < 2exp <_m(|]E)[(||f;||2]))

for some numeric ¢ > 0.

C.2 Proof of Lemma [7.7]

By definition of S,,, S, = Sy, on the event T}, = {Amin (gn) > }. Hence, for the same )¢ as in Lemma

o > o
P [Ain (S71) < o] =P [Tn N {/\min (5;1) < AOH +P[T]
<P i (821) < 2] + PIT. (88)
By Lemma
P [Amin (§;1) < )\0} <, (89)
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with ¥, given in Lemma Then, for n > ng, where ng is defined in equation we have n >

—-1/B
(; (m)) , and thus %02 Z c;,lnﬁ'

cgca— n

In particular, on the event {Amin (2 >0 X;X7) > 2}, we
have

Awin (Sn) =i <n e <mso £ XXT ) )

i=1
no_ 1
>— X x7 > :
n+m ( Z >_n+m02_05n5

Hence, for n > ny, {/\min (% Z?:l X,'XiT) > CQ} C T, and thus by Propositionand the fact that n > c1d,

P[Tﬁ] < P [ min < ZX X > < CQ] < eXp(—03n). (90)
Using equation 89 and equation [90] in equation [8§] yields then
P |:)\min (g,:l) < )\0} < Uy, + 2exp(—csn)
for n > ng. The statement of the lemma is then a rewriting of the latter inequality.

C.3 Proof of Lemma (7.8

Since we have

_ - 1
HS;1|| = min {|‘S7;1Haﬂn+1} = min {W7Bn+1} )

+(rmme)
Q_Co
n+m

Since S,, = g (mSo+ > X, X]) and 30 X; X! > 0, oy, > a—, we have S, > %So and thus
1S, < 1571 < @55 Y| for n > 1. Hence, for n < exd Vo, ||| < 2|51 and we finally get
the result.

for c1, cg, c3 given in Proposition n>cidVmand k> 0,

]E [||§;1||N] Sﬁ:{HP [ min ( ZXX ) < C2

<26y 1 exp(—c3n) + (a—co/2)"

C.4 Proof of Proposition [7.3]
Recall that 3, = cgn”. Sincefor £ > 0, the map g : t — (cst’)" exp(—cst) is bounded from above by
BK
3 (ET’Z) , we get,
o—1|~x 6l€ —K
sup E[||S,1]"] < 2¢ + (a_ca/2)
n>cid Cc3

Taking into account the case n < ¢1d V m yields then

_ 2 2B 9 12
supE[Hs,;wgmax{ch (ﬁ) N | }
n>1 L

€cs

and

_ 48\ ** . [eid+2 1
E 4] < 2¢4 [ — _cg/2 1 .
sup {1157 —maX{ % <603> e ] e ol |
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C.5 Proof of Lemma[7.9

First notice that

-1
n

S

S s

ik

Under hypothesis of Proposition [7.2]
P [ min (gn) < a—02/2] < 2€Xp (703’&)

for n > ¢;d V m. Since ||5’;1H < HS’;l

s Amin (S'n) > Amin (5 ) and thus we also have
P [Amin (Sn) < a—c2/2] < 2exp (—czn)

for n > ¢1d vV m. Hence, for n > ng,

——1 1 2 _ » 9 . § ,
]E n 7H H :E lAII‘iIl(ETL)Sa702/2 *H H +E 1>\Inin(§n)>a762/2 n 7H H
1 . 9 1 ;
= B (L (8) <acarz 15 — H] ]+m (115, - =)

where we used on the last equality that for n > ng, S, = S, on the event {Dmin(Sn > a_cy/2)}, as in
the proof of Lemma The first summand can be bounded using Hélder inequality with % + % =1 and

¢ =p/2as

— 2 — 1/ — 2q'11/4
E 1y, (5.)<accarz IS0 = HI| <P in (80) < aea/2] ' [|[S0 — H|™ |
_ 2/
<2exp(—es(p — 2/ [|[5n - H|"]
Using the upper bound on H and the convexity inequality (a + b)P < 2P~1(aP + bP) yields the rough bound
— 2/p — 2/p — 2/p
E(|Sn— #"]" <E [(ISu] + 181)"] " <2272 (E |5 }Hﬁwx)

<tmax {300 15217}

Since X admits moments of order 2p, we get

— 1/p
E[[Sal] " < S0l + E-E

pq1l/p
( ZIIX | ) ] < ai||So| + as (E [||X||2p})1“’.

We hence get

E (L (5)acar2 150 = HI'] < 8exp (—cs(p — 2)n/p) max { N2, 20 (I150]12 + (B [1X]1])*") }

= 164 exp (—c3(p — 2)n/p) <||S0H2 + (E [HX”Q;D])Q/P) .

For the second summand, using the relation between Frobenius norm and operator norm yields

2

lmSo + Y XpXi |
k=1

- 2 Qan—12
(|5, - 1] < T e

1 n
oF | ||—— | mS, X XT| - H

k=1

F
= Ri + Rs.
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By hypothesis, |a, — 1| < % so that by Jensen inequality the first term is bounded by

2C,
Ry < == (I1So]1” + E[IX]) ,

and the second term is bounded by
2

2 2 -
Bo < Gy NlenmSo = Hlly + m0a B 1D (X~ E [XXT])
k=1 F
2 2 2
< e S0~ Hlp+ B [IIxx7 —E [xx7]|2]
2 2
< oy ImSo = Hllp + - E [RqRE

Putting all the above bounds together yields the bound of the statement.

C.6 Proof of Lemma [7.10

Remark first that as in the proof of Lemma [7.1} one has

1
Vn+1 S an — Yn+1 (9;+1)T An / VG (en + t (0n+1 - 9n)) dt
0

Then,

1
/0 VG (0, +t(Ons1 — 0,)) dtH < Lye (100 = 0l + vns1 1Anll [[gn41]]) 5

which implies that
Va1 < Vo + vt Anl| Ly (lgnaall - 110 = 61l +nsa [ Anll - lgniall?) -
Using the fact that g/, ,; = (e + X1, (0 — 6,,))X,,+1 yields then
Var1 <Va + 1 Anll Lve (1 Xnr1l216n — 011 + lell|6n — 01l + 2vns1 | Anll - (1 Xn41[*1]6n — 6] + €2))
(1 F e )+ Mt maled gy, )

+2lel* Ly (a1 (n+ DIISG | + 97 41 (0 + 1)]S5]])

<V, 1S5 1 (2 + 1 X a1

where we used the strong convexity of G and bounded A,, by (n+1)||S;!||. Hence, taking the square in the
above inequality and taking the expectation conditioned on F,, gives, for p > 1,

_ 2(n 4+ D)ypa1 L _ 1/4
E[Vi] <2"E[VY] <1 " | )M =28 (2+E (11X 2 l1®] / )

p
4n+ 1701 Lva | - 1/2
+ P L 110 211 (1 Xn4111°]

+ 277 E [|e)*] L (rna(n+ DSy |+ via (n+ 1?15 %)"
<E[VZ]exp ((p = 1)10g(2) + Crin,1 (n + 1)°727) + Ciin 2(n + 172727,
with

2pc%LVG

Ctin1 = 1S5 (2 + E (1 X)) + 15521 [l X2 5], (1)

Ciin2 =2""'E [|e|"] L% ¢ (e 1S5 | + 2 11S5211)" -

We deduce that

n3—2v nP+1)—py
E[V?] < exp ((p = 1)log(2)n + Clin 32’Y> (1 + Clin,Q(p> E[V5].

2pcyLyva
I
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D Proof of technical Lemma and Propositions for generalized linear model

D.1 Proof of Lemma [7.11]

With the help of inequality equation |7}, it comes

n n

= 1 Lv[ 2 od 2
Snll < ——||S — X Zi||*.
s L A DI L s DI

with Z; = ejg+1. Then, a similar proof as the one of Lemma yields that for Ao =
-1
(QLWE [||X||2} + 20) :

P [Amm (E; 1) < AO]

S - Y
<P [”n” + S (X - [1x0]) + 230 (1207 - 1) > Lei® [IX]?) + o

i=1 i=1

Then, by Markov inequality for p > 1, we then get

_— E[(L 1ol + £ Sy Zow (1%02 = E [1XIP]) + 0 (1207 - 1))]
P [ (51) < o] < ToE X + o)

2p—1
<
(zei® [1X17] +0)

with 7' = Ly (|| X[1* = E [[IX]?]) + o (11 2]* - 1).

5 (077 1S0ll” + Cr(p)n PE(TI] + Ca(p)n "2 (B [IT)12])""?),

D.2 Proof of Proposition [7.5]

One directly has for all n > 2d

— In/dlec _. n+1—4d 1
AIIIII’] (S"L) - (n + 1) — d(n + 1) o — 2da’

s}

and S,, > 217150 for n < 2d — 1, so that

sup |51 < Qdmax{l,
n>1 g

D.3 Proof of Proposition [7.7|

Let us denote

n—1
— 1
H(0,) =E[Vit (Y05 X) XXT] and  H, = 3 <So + Z V2l (Yig1, (05, Xit1)) XZ-HXZ-TH) .
=0

One can decompose H,, — H (6,) as

n—1
_ 1 1
H, — H(6,) = ; V2l (Yigr, (00, Xi1)) Xia XLy + n—“so — H(6,)
1 n—1
=1 > VR (Yigr, (05, Xig1)) Xipa Xy — H (6;)
=0
1o 1
H ;) —H(6,)+ ——(So— H(0,)).
+n+1;( (6:) ( ))+n+1(50 (65))
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Let us now give a rate of convergence of each term on the right-hand side of previous equality. Set M,, :=
n—1 .

Zi:() (V%é (}/iJrl, efXZ+1) Xi+1Xz’7:t,_1 — H(QZ)) Since E [V%E (Y;‘Jrl, ezTXZ+1) Xi+1X£_1|]:Z‘] =H (91) 5 where

(Fi) is the o-algebra generated by the sample, i.e F; = o ((X1,Y1),...,(X;,Y;)). Then, (M,),>1 is a

martingale and thus

1 ) = . . TRE[IXI]
mE {HMnH } < CESIE ;E {H(VM (Yig1, 0 Xi1) Xia Xy — H(0:)) H } < —

It then remains to handle n%rl Z?;Ol (H(0;) — H (0,)). With the help of Assumption (GLM1), one has

1
n+1

E

S 6y - H )| | <2 S E[1H6) -1 6,)]
i=0 1=0

L2 ) -1 ) L2 ) n—1
<TEL YR (16— 0,0°] < 22 v,
i=0 =0

with v; v defined in Proposition Then, since
9 2

do <& do |n
=17 2 ei[dme?[dw*(n M‘U) b
i=d| %]

do <
D eilai€ia — old
i=1

and
2

LRSS v <2 (n-a[2]) 3

k=d| 5] k=d| 3]

2
T
ei[d]+16i[d}+1H S 5

it comes

- > 4 PRI £ s 1 16d40?
1S = Ho || < — <L%ZIE[X|| |+ =L 3 i+ S — H(0:) || + =
=0

Now, notice as in Lemma [7.9] that

which yields, thanks to Proposition

E |

2 2 n—1 4 2
<1 po|?] ~ 4% (o 4, L3y 1 ) | 16d'CE,
S, —H, H } S 2, (va]E [||X|| } t— z;vi,GLMJFEHSo—H(@o) P+ = (92)
=

5, -t =5, (1, -S| < |50

)

<)

|| Ho = Sul 175

- [ < Sl ]

o2

i.e one has

E |

E How to verify (GLM3) for the logistic regression

Remark that 6, is the unique solution to E [V,¢ (Y, X76,) X + 06,] = 0, so that
E[[Val (v, X705) Xic+ 0(00)e|”| = Var [Val (v, X76,) X,]

—Y exp(—-Y 6L X)

Trexp(—Y 0T %) > and thus we need

For the logistic regression, we have Y € {—1,1} and V,l (Y, X76,) =

—Y X}, exp(—Y 0L X)

to get a lower bound on the variance of — Fexp(—YVOTX)

for all 1 < k < d. To guarantee Assumptions

o1
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(GLM3), we impose a minimal randomness on (X,Y") given by the existence of a < b, n,e >0 M > 1 and
for all 1 < k < d an event Ay, € o(Y, X) with P [A, N {M~! < |X,| < M}] > 5 such that on A, we have

P> Xi(0p)i <alY,Xi| >¢ and P[> Xi(0,) > b|Y, Xy | > .
ik ik

In particular, since u “eXp(_Y“)) is C! and monotonic for all a, 3 > 0 and y € {—1,1}, for M small

148 exp(—yu
enough, there exist constants ¢, ¢t explicitly depending on M, (6, )y, a,b such that on By := Ay N{M ! <
LXk|§ A{L

P [—YXk exp(—Y 0T X)

|y, X
Trep(—verx) = ¢ Y ’“} -6

and

{YX;C exp(—Y 0T X)

Y, X .
Trep—varx) ¢ ¥ k] - e

We deduce that on the event Bj we have

~Y X exp(~Y 07 X) ct—c\?
v e Y, X, | > .
a { 1+ exp(=Y 0T X) k] =€

Hence,

—Y X exp(—Y 0L X) Y Xy, =\’
v c ) >E |15V Y, Xi|| >
R exp(-Y0TX) | — A exp(—YOTX)| k|| = e 2 ’

and we can choose
+ N
ct —¢
Qg = MNE ( 5 ) .

F Counter-example for the quadratic convergence of the stochastic Newton
algorithm without regularization

We show here that even in the simplest case d = 1, stochastic Newton algorithm may not converge in
quadratic mean. Suppose that we define here the naive Newton adaptive matrix A,

n—1 -1
1 2
— <1d+ thg(xm,ai))] :

=0

n =

Recall that is known (Boyer & Godichon-Baggioni, [2020)) that 6,, converges almost-surely to the minimizer
6o at speed n=7 for v € (1/2,1).

Counter-example with Vg almost everywhere defined

Set g((z,y),0) = (z0)% + y[#]6 and let (X,Y) be a random vector with independent coordinates such that
X ~ Ber(1/2) and P[Y = 1] = P[Y = —1] = 1/2. Then, G(9) = E [X?] 6> + E[Y]|0]6 = 6?/2 and we have
Lebesgue almost surely V,,g((z,y), h) = 22*h + y|h| and Vig((z,y), h) = 227

Let n > 1. Then, P[X; =0,...,X,, =0,Y; = —1,...,Y, = —1] = 2727 and on the event {X; =0,...,X,, =
0,Y1=-1,...,Y, =—1}, as long as 6, ¢ N for all k > 0 (which will be temporarily assumed),

1 = 1

=0
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Hence, Ar =k and (0x)1<k<n is defined recursively by
Or = Or—1 — YAk [Ok—1]Yk = Or—1 + kv [ Or—1]-
If v, = k= for some o < 1, we then have kv, = k'~%, and thus for 6y > 1
Op > (14 k' /2)0k ;.
We deduce that 6, > [];_, (1 + k'7*/2) > (n!)!=*27". In particular,
E [[|6n — 00]%] > 273" (n)) 7> == o0

when 0 ¢ N for all k¥ > 0. Since for each k > 1, 6 ¢ N for almost every 0y € (1,2], the latter hypothesis
holds for Lebesgue almost every choice of 6y €]1,2].

Counter-example with Vg continuous

Let f be such that f”(0) = 1z47-1/3,1/3[, and set g((x,y),0) = (20)% +yf(0). Let (X,Y) be a random vector
with independent coordinates satisfying X ~ Ber(1/2) and Y ~ U([-2,2]). Then, G(9) = E [X?] 62 +
E[Y]f(0) = 6%/2 and Vg((z,y),0) = 2220 + yf'(0). Then, Ay =1,

_ k -
Akl = m(Ak—ll + 2X}§ + f”(ek—l)Yk)

for k > 1 and
en = Hn—l - An—l’anhg((Xna Yn)a Hn—l) = 0n—1 - An—l'Yn(QXsen—l + Ynf,(en—l))-

Set §p = 3/2 and v, = k=7 for k > 1, and consider (X;,Y;)o<i<n satisfying the following conditions:
o X;=0forall 1 <i<mn,which yields P[X; =0,...,X, =0]=2"" and for all k£ > 1,
Ok = Ok—1 — A 176 Ye f' (Ok—1).

e 051 being known, Yj, € m ((Z+]1/3,2/3]) — Ok—1)N[—2,—1] := T}, (remark that Ty will
be shown to be non-empty).

Lemma F.1. The following facts hold for k > 1.

1. 0, > k+1,
2. A, =k+1,

3. with £ denoting the Lebesgue measure,

1
¢ (Wlklf’(ekl) ((Z+]1/3,2/3[) — Ox—1) N [-2, 1])> > 1/6.

Proof. We will prove those three facts by induction on & > 1. For £k = 1, we have 4y = 73, = 1 and
'(3/2) =1 so that 6; = 3/2 —Y;. Since

1

P —
LT Ao f/(60)

((Z+]1/3,2/3]) — Ok—1) N [-2,—1] =(—3/2 + Z+]1/3,2/3]) N [-2, —1]
=]-7/6,-1]U[-2,-11/6],

¢(T1) > 1/3. On the other hand, for Y; € Ty, 61 > 3/2+1 > 2.
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Let us show the induction. Set k > 2 and suppose the result is true for | < k — 1. Then 6§, € Z + [1/3,2/3]
for all [ < k, which implies that A;_; = k — 1. Hence,

Op = Op—1 + K" VY5 f (O—1).
By induction, ;1 > k, and since f'(6) > 6/2 for § > 0,

Tp = ((b+ aZ + a]1/3,2/3]) N [~2, —1]

with ¢ = 1/(Ak—17f (Or-1)) < kf_v < 1and b = —0,_1/a. We deduce by pigeonhole principle that
((Ty) >1/3—4-%>1/6. Finally, for Y}, € Aj, we have Y} < —1 so that

1
9k2k+§k52_72k+1.

By the previous result,

PX;==X,=0Y,€Ty,.... Y, €Tp] >27"- 6" =12"".
Moreover, from what we showed previously, on this event we have for 1 <k <n

O = 01 — YiAp_17if (Op—1) > Op—1 + k>77/2 > 0p_1k>77 /2.

We deduce that 6, > 0,_1(k —1)177/3 > (n!)?=7/2". In particular,

n—oo

E [[|0, — 0o]*] = (n!)*77/24™ 2255 0.
Remark that the latter result can be easily adapted to get a counter-example with g as smooth as desired.
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