
Learning to Teach with Student Feedback

Anonymous ACL submission

Abstract
Knowledge distillation (KD) has gained much001
attention due to its effectiveness in compress-002
ing large-scale pre-trained models. In typical003
KD methods, the small student model is trained004
to match the soft targets generated by the big005
teacher model. However, the interaction be-006
tween student and teacher is one-way. The007
teacher is usually fixed once trained, resulting008
in static soft targets to be distilled. This one-009
way interaction leads to the teacher’s inability010
to perceive the characteristics of the student011
and its training progress. To address this issue,012
we propose Interactive Knowledge Distillation013
(IKD), which also allows the teacher to learn014
to teach from the feedback of the student. In015
particular, IKD trains the teacher model to gen-016
erate specific soft target at each training step for017
a certain student. Joint optimization for both018
teacher and student is achieved by two itera-019
tive steps: a course step to optimize student020
with the soft target of teacher, and an exam021
step to optimize teacher with the feedback of022
student. IKD is a general framework that is023
orthogonal to most existing knowledge distilla-024
tion methods. Experimental results show that025
IKD outperforms traditional KD methods on026
various NLP tasks.027

1 Introduction028

Large-scale pre-trained language models (PLMs)029

such as GPT (Radford et al., 2019), BERT (De-030

vlin et al., 2019), RoBERTa (Liu et al., 2019) have031

achieved significant improvement on various NLP032

tasks. Despite their power, they are computation-033

ally expensive due to their enormous size, which034

limits their deployment in real-time scenarios.035

As an effective technique to tackle this problem,036

Knowledge Distillation (KD) (Bucila et al., 2006;037

Hinton et al., 2015) has gained much attention in038

the community. In common KD methods for com-039

pressing large-scale PLMs, the original large-scale040

PLM often serves as the teacher model, which is041

first trained on the downstream task then uses its042
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Figure 1: Comparison between traditional KD methods
and our proposed IKD. (a) Traditional KD methods use
an one-way interaction between teacher and student
while the teacher model is static during teaching student.
(b) IKD builds a co-interactive channel to achieve joint
training of both teacher and student.

generated soft targets to teach the student model, 043

which is usually a smaller PLM. Previous works 044

such as DistilBERT (Sanh et al., 2019), BERT- 045

PKD (Sun et al., 2019), MobileBERT (Sun et al., 046

2020), and TinyBERT (Jiao et al., 2020) have ex- 047

plored informative features that can be distilled, 048

including the output logits, word embeddings, hid- 049

den states, attention maps, etc. 050

However, in these existing methods the interac- 051

tion between teacher and student remains one-way. 052

The teacher model is usually fixed once trained on 053

the downstream data, resulting in static soft targets 054

regardless of the characteristics of the student and 055

its training progress. Though there are works that 056

insert a scheduled temperature into the Softmax 057

function to control the smoothness of the soft tar- 058

gets such as Annealing-KD (Jafari et al., 2021), the 059

design of the temperature and its schedule does not 060

utilize the feedback from the student and highly 061

depends on expert experience. 062

In this paper, we propose the Interactive Knowl- 063

edge Distillation (IKD) to implement a bidirec- 064

tional interaction between teacher and student. IKD 065

allows the teacher to learn to teach based on the 066

feedback from the student. In particular, the teacher 067
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model is trained to generate specific soft targets at068

each training step with the help of meta-learning,069

especially MAML (Finn et al., 2017). Figure 1070

illustrates main difference between our proposed071

IKD and traditional KD methods.072

The central idea of IKD is to make the student073

model generalize well (like achieving a lower loss)074

on a batch of unseen samples after learned from075

the teacher model, while the measurable perfor-076

mance on unseen samples is back-propagated to077

the teacher model to update its teaching strategy.078

More specifically, IKD consists of two update steps:079

course step and exam step. In course step, the stu-080

dent is trained to match the soft targets generated081

by the teacher on a batch of data called course data.082

In exam step, the student after one gradient step083

is evaluated on another batch of data called exam084

data, the cross entropy of the student on the exam085

data provides meta-gradients to be back-propagated086

to the teacher model such that the teacher model087

could get updated to generate better soft targets.088

By iteratively conducting the two steps, we can089

continually improve the student model via the soft090

targets generated by the teacher, and improve the091

teacher model via the feedback generated by the092

student.093

We conduct experiments on various NLP tasks.094

Experimental results on GLUE benchmark demon-095

strate that IKD consistently outperforms vanilla096

knowledge distillation. Further analysis is then097

conducted to shed some light on the dynamic soft098

targets and the student feedback.099

To sum up, our contributions are as follows:100

• We propose a co-interactive method for101

teacher-student framework, namely Interac-102

tive Knowledge Distillation (IKD).103

• We take an approximation to convert the it-104

erative optimization into a joint optimization,105

which is more efficient for training.106

• Our proposed IKD is orthogonal to most ex-107

isting knowledge distillation works that distill108

different feature sets, in which we empirically109

evaluated the effectiveness of IKD based on110

vanilla knowledge distillation.111

2 Method112

The intuition behind our framework is straight-113

forward: First, the teacher teaches the course to114

the student who then updates its knowledge accord-115

ing to the course. Second, the student takes exams116

and produces scores for the teacher to adjust its 117

teaching strategy. Such two steps are common in 118

real-world education. 119

Based on the intuition above, IKD can be formu- 120

lated in the context of machine learning as follows. 121

Denote the teacher model and the student model 122

as f and g respectively. Assume teacher model f 123

is parameterized by θ, student model g is parame- 124

terized by ϕ. In the course step, we optimize the 125

student model g(ϕ) by vanilla knowledge distilla- 126

tion. The student model is trained to match the soft 127

targets generated by the teacher model on a batch 128

of data drawn from the course data set Dcourse. In 129

the exam step, we evaluate the student model on a 130

batch of data drawn from the exam data set Dexam. 131

The test score of the exam, which can be instan- 132

tiated as cross entropy, provides meta gradients 133

to optimize the teacher model f(θ). The overall 134

illustration of our method is depicted by Figure 2. 135

2.1 Course Step: Student Optimization by 136

Vanilla Knowledge Distillation 137

In our setting, the teacher model f(θ) is imple- 138

mented as a deep encoder such as BERT (Devlin 139

et al., 2019), and the student model g(ϕ) is imple- 140

mented as a lightweight encoder such as a Trans- 141

former (Vaswani et al., 2017) encoder with fewer 142

layers. 143

Given a training sample (xi, yi) drawn from the 144

course data set Dcourse = {xi, yi}Ni=1, the teacher 145

model computes a contextualized embedding hTi = 146

f(xi; θ)
1, which is then fed into a Softmax layer 147

to obtain the probability for each category, i.e. the 148

soft targets, that is yTi = Softmax(W ThTi ), where 149

W T is a learnable parameter matrix and W ThTi is 150

the logits. For simplicity, W ThTi is abbreviated to 151

zTi . In practice, the temperature is often introduced 152

as a hyper-parameter to control the smoothness of 153

the soft targets, 154

yTi = Softmax(zTi /T ) =
ez

T
i,c/T∑C

c′=1 e
zi,c′/T

, (1) 155

where C denotes the number of classes, c is the 156

correct class. 157

Similarly, we can obtain the output of the stu- 158

dent model ySi = Softmax(WShSi ), where hSi = 159

g(xi;ϕ). In vanilla knowledge distillation, the KL 160

divergence of the teacher’s prediction and the stu- 161

1We use the [CLS] token embedding of the last layer as
the sentence representation.
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Figure 2: Illustration of our proposed Interactive Knowledge Distillation (IKD). IKD consists of two iterative steps:
(a) Course step to update student with the soft targets generated by the teacher, (b) Exam step to update teacher with
the feedback (i.e. cross entropy on the exam data) produced by the student. By iterating the course step and the
exam step, both of student and teacher can be optimized.

dent’s prediction should be minimized,162

LKD = KL(yT , yS) = − 1

N

N∑
i=1

C∑
j=1

yTi,j log
ySi,j

yTi,j
,

(2)163

where KL means Kullback-Leibler divergence.164

In practice, the cross entropy between the stu-165

dent’s prediction and the ground truth is also incor-166

porated to be minimized, i.e.,167

LS
CE = − 1

N

N∑
i=1

C∑
j=1

yi,j log y
S
i,j . (3)168

Thus the overall loss function for the student169

model can be written as:170

Lstu = λLKD + (1− λ)LS
CE , (4)171

where λ is a hyper-parameter to balance the knowl-172

edge distillation loss and the cross entropy loss.173

The student model is then updated by taking one174

gradient descent step with the loss function above,175

i.e.176

ϕt+1 = ϕt − α∇ϕtLstu, (5)177

where α is the learning rate of the student model.178

2.2 Exam Step: Teacher Optimization by179

Student’s Feedback180

It is expected that the student with the post-update181

parameters will generalize well on unseen samples.182

Therefore, the updated student is then evaluated183

on another batch of samples drawn from the exam184

data set Dexam = {x′i, y′i}Mi=1. The performance185

of the student is measured by the cross entropy186

loss on the batch of exam data, which is called 187

meta loss since it is calculated on the post-update 188

parameter ϕt+1 thus provides meta gradient w.r.t. 189

the teacher’s parameters. 190

Lmeta = CE(y′, y′St+1) (6) 191

= − 1

M

M∑
i=1

C∑
j=1

y′i,j log y
′S
i,j(ϕt+1). (7) 192

Our goal is to minimize Lmeta by optimizing the 193

teacher model, therefore the gradient of Lmeta is 194

w.r.t. the teacher’s parameters θ, so is a second- 195

order gradient (gradient of gradient). To explicitly 196

show this, we can re-write y′Si,j(ϕt+1) in the above 197

equation as: 198

y′Si,j(ϕt+1) = y′Si,j(ϕt − α∇ϕtLstu(θt)), (8) 199

in which we know that the gradient can flow into 200

θt through the knowledge distillation in the course 201

step. Figure 3 shows the computational graph of 202

the forward pass and the backward pass. 203

Although it is computationally available by con- 204

ducting an additional backward pass under current 205

deep learning libraries that support automatic dif- 206

ferentiation, we use the first-order approximation 207

for its efficiency (Finn et al., 2017; Nichol et al., 208

2018). 209

In the context of meta-learning, the teacher can 210

be regarded as the meta-learner, while Dcourse and 211

Dexam can be analogous to support set and query 212

set respectively. 213

Also, the standard cross entropy loss between 214

the teacher’s prediction and the ground truth can 215
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Figure 3: Computational graph to show how gradients
are back-propagated into the teacher’s parameters. Cir-
cles represent variable and squares represent operation.
"Opt" stands for the optimizer, which is one gradient
descent step. For simlicity, we omit the cross entropy
loss for the student LS

CE and for the teacher LT
CE in the

course step.

be incorporated,216

LT
CE = − 1

N

N∑
i=1

C∑
j=1

yi,j log y
T
i,j . (9)217

Thus, the overall loss function for the teacher218

model is219

Ltea = γLmeta + (1− γ)LT
CE , (10)220

where γ is another hyper-parameter to balance the221

meta loss and the cross entropy loss.222

Thus, the teacher model can also be optimized223

by taking gradient descent:224

θt+1 = θt − β∇θtLtea, (11)225

where β is the learning rate of the teacher model.226

Putting the student optimization in course step227

and the teacher optimization in exam step together,228

the overall loss function of IKD is defined as229

LIKD = Lstu + Ltea. (12)230

By iterating the course step and the exam step, the231

student model learns from the soft targets generated232

by the teacher while the teacher model learns from233

the feedback generated by the student.234

2.3 Discussion and Implementation235

To take a closer look, in this section we further236

analyze the expanded form of the meta-gradient,237

which provides insights into the student’s feedback238

and sheds light on how to take an approximation to 239

achieve efficient training. 240

According to the chain rule, we can unfold the 241

meta gradient ∇θtLmeta as follows2, 242

∇θtLmeta = ∇ϕt+1Lmeta · ∇θϕt+1

= ∇ϕt+1Lmeta · (−α∇θ∇ϕtLstu)

= α∇ϕt+1Lmeta · ∇θ∇ϕt log y
S
t · yTt

= α∇ϕt+1Lmeta · ∇ϕt log y
S
t︸ ︷︷ ︸

feedback

·∇θty
T
t .

(13) 243

Note that ∇ϕt+1Lmeta is the Jacobi matrix of 244

shape |ϕ| and ∇ϕt log y
S
t is of shape |ϕ| × C.3 245

Therefore, ∇ϕt+1Lmeta · ∇ϕt log y
S
t is actually a 246

weighting vector of shape C to adjust the gradient 247

of teacher’s prediction w.r.t. its parameters ∇θty
T
t . 248

It is easy to find that the weighting vector only 249

depends on the student’s gradient, therefore it is 250

exactly the student’s feedback. 251

The behavior relationship between the weighting 252

vector and the teacher’s prediction is analyzed. It is 253

worth noticing that the weighting vector should be 254

detached from the computational graph to forbid 255

the gradient flow into the student. By this, the 256

meta loss will only contribute to the update of the 257

teacher’s parameters. 258

In practice, the difference between ϕt and ϕt+1 259

is usually very small, which motivates us to take an 260

approximation ϕt+1 ≈ ϕt such that ∇ϕt+1Lmeta ≈ 261

∇ϕtLmeta. By this approximation, Eq. (13) can be 262

simplified as 263

∇θtLmeta ≈ α∇ϕtLmeta · ∇ϕt log y
S
t · ∇θty

T
t .
(14) 264

Besides, note that ∇ϕtLmeta, ∇ϕt log y
S
t and 265

∇θty
T
t are mutually independent, therefore we can 266

calculate them independently and achieve joint op- 267

timizing in an efficient way. In our experiments 268

we set Dcourse = Dexam = Dtrain for efficient 269

optimization. Though, it should be mentioned that 270

in our framework the course data set can be unla- 271

beled, i.e. Dcourse = {xi}Ni=1. In this case, the 272

cross entropy loss between the student’s prediction 273

and the ground truth is removed such that the loss 274

for the student is exactly the knowledge distillation 275

loss. Thus, only the supervision signal of Dexam 276

is required. We leave IKD in this semi-supervised 277

setting as future work. 278

2For the simplicity of derivation, we set N and M to 1,
and omit the constant scalar λ.

3For matrix multiplication, ∇ϕt log y
S
t should be in the

transpose form, which is omitted here for the simplicity.
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3 Experiments279

Though IKD is orthogonal to most current knowl-280

edge distillation methods to compressing large-281

scale PLMs such as DistilBERT (Sanh et al., 2019)282

and TinyBERT (Jiao et al., 2020), which distill283

different feature sets (such as logits, embeddings,284

hidden states, attention maps, etc.), it is exhaustive285

to test IKD with these different distillation features286

and their combinations. Thus, in our experiments287

we mainly evaluate the effectiveness of IKD based288

on the vanilla knowledge distillation and BERT-289

PKD (Sun et al., 2019).290

3.1 Datasets and Models291

We conduct experiments on the General Lan-292

guage Understanding Evaluation (GLUE) bench-293

mark (Wang et al., 2019) with the backbone of294

BERT (Devlin et al., 2019), and on ChemProt295

dataset (Schneider et al., 2020) and SciCite296

dataset (Cohan et al., 2019) with backbone of SciB-297

ERT (Beltagy et al., 2019).298

GLUE Benchmark We use seven text classifi-299

cation tasks in the GLUE benchemark: The Cor-300

pus of Linguistic Acceptability (CoLA) (Warstadt301

et al., 2019), The Stanford Sentiment Treebank302

(SST-2) (Socher et al., 2013), Microsoft Research303

Paraphrase Corpus (MRPC) (Dolan and Brock-304

ett, 2005), Quora Question Pairs (QQP) (Wang305

et al., 2019), Multi-Genre Natural Language In-306

ference (MNLI) (Williams et al., 2018), Question307

Natural Language Inference (QNLI) (Rajpurkar308

et al., 2016) and Recognizing Textual Entailment309

(RTE) (Wang et al., 2019).310

Domain Tasks We use ChemProt (Schneider311

et al., 2020) and SciCite (Cohan et al., 2019) to312

evaluate the performance of our method on do-313

main specific tasks. ChemProt consists of 1,820314

PubMed abstracts with chemical-protein interac-315

tions annotated by domain experts. SciCite is a316

dataset containing 11k annotated citation intents in317

biochemical and computer science domains. The318

standard metrics are micro F1 for ChemProt and319

macro F1 for SciCite. We evaluate our method on320

both tasks with the backbone of SciBERT (Beltagy321

et al., 2019).322

3.2 Experimental Setup323

Our implementation is based on PyTorch (Paszke324

et al., 2019). The training and evaluation are per-325

formed on a single RTX 2080Ti or RTX 3090 GPU.326

For downstream tasks in GLUE we first fine-tune 327

the teacher model for 3 epochs with learning rate 328

of 2e-5. For domain tasks the teacher is fine-tuned 329

for 4 epochs. The batch size is 32 for all tasks. 330

The student model is initialized with the parame- 331

ters from the first k layers of BERT base(12 layer), 332

where k is the number of the student’s layer. In our 333

experiments we mainly evaluate our method when 334

k = 4 and k = 6. The total number of parameters 335

of BERT24, BERT12, BERT6 and Bert4 are 340M, 336

110M, 67M and 52M respectively. The batch size 337

is set to 4 for all downstream tasks. We conduct 338

3 experiments for each dataset and the median is 339

reported. 340

3.3 Experimental Results 341

We report our results on GLUE benchmark. The 342

results are presented in Table 1. We denote BERTk 343

as a BERT with only k layers. BERT4-FT is to 344

directly fine-tune the first 4 layers of the pre-trained 345

BERT. BERT4-KD represents student trained with 346

vanilla knowledge distillation loss, i.e., Eq. (4). We 347

also exhibit the reported result of TAKD (Mirzadeh 348

et al., 2019) and Annealing KD (Jafari et al., 2021) 349

for a direct comparision. 350

Results on GLUE Benchmark As shown in Ta- 351

ble 1, IKD surpasses the vanilla knowledge distil- 352

lation method on all tasks. For RTE, IKD outper- 353

forms directly finetuning by 3.2% and knowledge 354

distillation by 2.9%. For QNLI and MRPC, al- 355

though the performance of knowledge distillation 356

compared with directly fine-tuning is even detri- 357

mental, IKD can consistently improve the students. 358

We also evaluate our method on the GLUE test 359

server and we show the results in Table 1. On 360

the GLUE leaderboard our method consistently im- 361

proves the performance. 362

Results on Domain Tasks Experimental results 363

on the ChemProt and SciCite test set are shown 364

in Table 2, which demonstrate the effectiveness of 365

IKD on domain specific task. It’s worth noting that 366

on the SciCite dataset our approach is even able to 367

make the student outperform the teacher. 368

Compatibility with Patient Knowledge Distilla- 369

tion To evaluate the compatibility of IKD with 370

more competitive distillation methods, we further 371

apply IKD on BERT-PKD (Sun et al., 2019) (de- 372

noted as BERT-PKD-IKD) with teacher model 373

as BERT-base (12 layers) and student as BERT6. 374

BERT-PKD exploits information from hidden fea- 375
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Method
MNLI QQP QNLI SST-2 CoLA MRPC RTE Macro
(393k) (364k) (105k) (67k) (8.5k) (3.7k) (2.5k) Score

Dev Set

BERT24 (Teacher) 87.0 88.7 92.6 93.2 63.4 88.8 70.0 83.4
BERT4-TAKD† 72.4 87 82.6 89.1 34.2 85.2 59.6 72.9
BERT4-Annealing KD† 74.4 86.5 83.1 89.4 36.0 86.2 61.0 73.8
BERT4-FT 78.2 85.9 85.4 88.0 28.6 85.1 63.2 73.5
BERT4-KD 78.5 86.4 85.2 88.8 30.4 84.6 63.5 73.9
BERT4-IKD 79.1 86.5 85.5 89.1 30.9 86.0 66.4 74.7

Test Set

BERT4-KD 78.2 68.8 84.6 90.1 27.7 82.5 63.5 70.8
BERT4-IKD 78.4 68.9 85.3 90.1 30.6 83.2 62.9 71.3

Table 1: Comparisons between IKD and Vanilla KD on the dev and test set of GLUE tasks. The teacher network is
BERT24 and the student network is BERT4. FT indicates that the student is directly fine-tuned without any soft
targets. KD means that the student learns using vanilla knowledge distillation. IKD reprensents our method. The
best results for each task are in-bold. Methods with † denote results reported from Jafari et al. (2021).

Method
ChemProt SciCite

(4.2k) (7.3k)

SciBERT12(Teacher) 84.5 86.1
SciBERT6-FT 78.1 85.0
SciBERT6-KD 79.3 85.7
SciBERT6-IKD 79.9 86.6

Table 2: Experimental results of SciBERT on the test
set of ChemProt and SciCite.

Method QNLI SST-2 MRPC RTE

BERT12(Teacher) 90.4 92.4 88.9 68.2
BERT6-PKD 88.3 89.1 87.6 66.8
BERT6-PKD-IKD 88.7 90.3 87.7 67.1

Table 3: Performance based on patient knowledge distil-
lation on GLUE dev set. PKD represents patient knowl-
edege distillation and PKD-IKD means combination of
PKD and IKD.

tures for distillation. We follow PKD-Skip strategy376

which is shown to be better than PKD-Last as sug-377

gested by Sun et al. (2019). Experimental results378

are listed in Table 3, which demonstrate the versa-379

tility of IKD with stronger baselines.380

4 Analysis381

In this section, we take a closer look at IKD by con-382

ducting empirical analysis to provide some insights383

to understand how it works. In particular, we focus384

on the dynamic of generating soft targets and the385

feedback from the student.386

Dataset Epoch 1 Epoch 2 Epoch 3

MRPC 0.2637 0.1076 0.0343
RTE 0.4461 0.2313 0.0845
ChemProt 0.5049 0.2686 0.1451

Table 4: The average entropy of output distribution for
each epoch on MRPC, RTE and ChemProt dataset.

4.1 About the Soft Targets 387

Since IKD allows the teacher to dynamically adjust 388

its soft targets by using the feedback from the stu- 389

dent, it would be interesting to see how the output 390

of the teacher changes as the training goes on. In 391

Figure 4 we visualize the output soft targets of the 392

teacher output in different training epochs. We can 393

find that the soft targets are relatively smooth at the 394

beginning and become sharper as the training pro- 395

gresses. This is consistent with the hand-designed 396

smoothing schedules (Dogan et al., 2020; Jafari 397

et al., 2021), which introduce a hyper-parameter 398

to control how quickly the soft targets converge to 399

the one-hot distribution. In contrast, our method 400

automatically learns to adjust the smoothness of the 401

soft targets based on the feedback from the student. 402

In Table 4 we further use entropy to measure the 403

smoothness of output targets in different epochs 404

on full training sets of MRPC, RTE and ChemProt. 405

The average entropy goes down over the training 406

process as shown, which confirms our observation 407

as well. 408
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Epoch 1 Epoch 2 Epoch 3 True Label

Sample #1

Sample #2

Sample #3

Figure 4: Visualization of the generated soft targets of three training epochs on ChemProt dataset produced by the
corresponding teacher. We can find that the soft targets are softer at the early stage and become sharp as the training
goes on. Finally the soft targets are quite similar to the one-hot distribution.

4.2 About the Feedback409

As mentioned in 2.3, the gradient of the meta loss410

can be viewed as a weighted sum of the gradient of411

teacher’s prediction w.r.t. its parameters, i.e. ∇θy
T412

(See Eq. (14)). The weighting vector α∇ϕLmeta ·413

∇ϕ log y
S can be regarded as the feedback of the414

student. Assume fb = α∇ϕLmeta · ∇ϕ log y
S , Eq.415

(14) can be written as416

∇θLmeta ≈ fb · ∇θy
T = ∇θ

C∑
i=1

fbi · yTi , (15)417

where fb ∈ RC , yT ∈ RC , C is the number of418

classes.419

In this section, we attempt to analyze the rela-420

tionship between the student’s feedback fb and421

the teacher’s prediction yT . In particular, we plot422

(fbi, y
T
i ) for each i ∈ {1, · · · , C} in Figure 5. The423

data points are collected from the 7,500 training424

steps on CoLA dataset. CoLA is a binary classifi-425

cation task so we can plot C = 2 data points for426

each training step such that there are 15,000 data427

points in total.428

Note that The greater the student’s feedback fbi429

for class i, the greater the penalty of teacher’s pre-430

diction on class i. As shown in Figure 5a, the stu-431

dent’s feedback is always non-positive for teacher’s432

prediction on target label, which can also be re-433

vealed by the expanded form of the feedback:434

α∇ϕLmeta∇ϕ log y
S
c = −α(∇ϕ log y

S
c )

2, (16)435

where c is the target label. Besides, we can see436

that the student’s feedback is usually non-negative437

(a) Feedback of target vs. non-target.

(b) Feedback in different training stage.

Figure 5: Visualization results to show the relationship
between student feedback and teacher prediction scores
on CoLA dataset.

for teacher’s prediction on non-target label. Thus, 438

the teacher’s prediction is always encouraged to 439

approach the one-hot distribution where only the 440

target label is 1, which has been verified in analysis. 441

Also, we find that the range of feedback on target 442

prediction is approximately three times larger than 443

the range of feedback on non-target prediction. 444
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In addition, the student’s feedback can be dif-445

ferent even when the teacher’s predictions are the446

same. To take a deeper look, we demonstrate the447

value of feedback of the student at different training448

stage in Figure 5b. We can see that the student feed-449

back converges to zero as the training goes, which450

implies that IKD works mainly at the immediate451

training stage.452

5 Related Work453

Our method draws on the idea of meta-learning and454

applies it to knowledge distillation for NLU. Thus,455

there are two lines of work that are related: (a)456

Knowledge distillation methods for language un-457

derstanding, (b) Optimization-based meta-learning.458

We will introduce the two lines of work in Trans-459

former Based KD and Optimization-Based Meta-460

Learning, and the intersect of the both lines in461

Teacher-Student Framework with Meta-Learning.462

5.1 Knowledge Distillation for NLP463

Knowledge distillation (KD) was originally pro-464

posed in domains other than NLP (Bucila et al.,465

2006; Hinton et al., 2015). With the emergence466

of large-scale pre-trained language models (PLMs)467

such as GPT (Radford et al., 2019), BERT (Devlin468

et al., 2019), and RoBERTa (Liu et al., 2019), KD469

has gain much attention in the NLP community due470

to its simplicity and efficiency in compressing the471

large PLMs. Much effort has been devoted to com-472

press BERT via KD, including BERT-PKD (Sun473

et al., 2019), DistilBERT (Sanh et al., 2019), Mo-474

bileBERT (Sun et al., 2020), and TinyBERT (Jiao475

et al., 2020). These methods have achieved great476

success by exploring informative features to be dis-477

tilled, such as word embeddings, attention maps,478

hidden states, and output logits. Different from479

these work, our proposed IKD focuses on the inter-480

action between teacher and student therefore is or-481

thogonal to these work. Gou et al. (2021) provides482

a survey of online knowledge distillation where483

both the teacher and the student are updated simu-484

latenously. Our IKD can be regarded as a special485

case of online KD.486

5.2 Optimization-Based Meta-Learning487

Optimization-based meta-learning intends to learn488

a group of initial parameters that can fast con-489

verge on a new task with only a few gradient steps,490

in which the learner and meta-learner share the491

same architecture. As a representative method,492

Model-Agnostic Meta-Learning (MAML) (Finn 493

et al., 2017) uses a nested loop to find an optimal 494

set of parameters on a variety of learning tasks, 495

such that they can adapt well after a small number 496

of training steps. To tackle the high-order deriva- 497

tive, Finn et al. (2017) also propose First-Order 498

MAML (FOMAML) to perform the first-order ap- 499

proximation to reduce the computation. Similar 500

to MAML, Reptile (Nichol et al., 2018) utilizes 501

the weights in the inner loop instead of gradient 502

to update meta parameters and achieves competi- 503

tive performance on several few-shot classification 504

benchmarks. 505

5.3 Teacher-Student Framework with 506

Meta-Learning 507

Meta-learning has been proved efficient when com- 508

bined with the teacher-student framework. Liu 509

et al. (2020) employ meta-learning to optimize 510

a label generator that generates dynamic soft tar- 511

gets for intermediate layers. Their method is pro- 512

posed for self-boosting. Pan et al. (2020) focus on 513

training a meta-teacher possessing multi-domain 514

knowledge by metric-based meta-learning and then 515

teach single-domain students. Meta Pseudo Labels 516

(Pham et al., 2020) leverage a teacher network to 517

generate pseudo labels on unsupervised images to 518

enlarge the training set of the student. They aim 519

to train a pseudo labels generator to while IKD 520

dedicates to compress a large model into a smaller 521

one. Thus the pseudo label generator is trained 522

from scratch and shares same architecture with the 523

student while in our IKD the teacher must be a 524

larger pretrained model which leads to the impossi- 525

bility of implementation of gradient substitution in 526

MAML. 527

6 Conclusion 528

This paper proposes the Interactive Knowledge Dis- 529

tillation (IKD) to empower the teacher to learn to 530

teach with student feedback. Inspired by MAML, 531

IKD involves two optimization steps: (1) a course 532

step for student optimization with the guidance of 533

teacher and (2) an exam step for teacher optimiza- 534

tion with the feedback from student. IKD shows 535

superiority over vanilla KD on a suit of NLP tasks. 536

By iterating the course step and exam step we can 537

jointly optimize the teacher and student. In addi- 538

tion, we have discussed a semi-supervised general- 539

ization of our method, in which the course data is 540

allowed to be unlabeled. 541
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