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Abstract

Knowledge distillation (KD) has gained much
attention due to its effectiveness in compress-
ing large-scale pre-trained models. In typical
KD methods, the small student model is trained
to match the soft targets generated by the big
teacher model. However, the interaction be-
tween student and teacher is one-way. The
teacher is usually fixed once trained, resulting
in static soft targets to be distilled. This one-
way interaction leads to the teacher’s inability
to perceive the characteristics of the student
and its training progress. To address this issue,
we propose Interactive Knowledge Distillation
(IKD), which also allows the teacher to learn
to teach from the feedback of the student. In
particular, IKD trains the teacher model to gen-
erate specific soft target at each training step for
a certain student. Joint optimization for both
teacher and student is achieved by two itera-
tive steps: a course step to optimize student
with the soft target of teacher, and an exam
step to optimize teacher with the feedback of
student. IKD is a general framework that is
orthogonal to most existing knowledge distilla-
tion methods. Experimental results show that
IKD outperforms traditional KD methods on
various NLP tasks.

1 Introduction

Large-scale pre-trained language models (PLMs)
such as GPT (Radford et al., 2019), BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019) have
achieved significant improvement on various NLP
tasks. Despite their power, they are computation-
ally expensive due to their enormous size, which
limits their deployment in real-time scenarios.

As an effective technique to tackle this problem,
Knowledge Distillation (KD) (Bucila et al., 2006;
Hinton et al., 2015) has gained much attention in
the community. In common KD methods for com-
pressing large-scale PLMs, the original large-scale
PLM often serves as the teacher model, which is
first trained on the downstream task then uses its
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Figure 1: Comparison between traditional KD methods
and our proposed IKD. (a) Traditional KD methods use
an one-way interaction between teacher and student
while the teacher model is static during teaching student.
(b) IKD builds a co-interactive channel to achieve joint
training of both teacher and student.

generated soft targets to teach the student model,
which is usually a smaller PLM. Previous works
such as DistilBERT (Sanh et al., 2019), BERT-
PKD (Sun et al., 2019), MobileBERT (Sun et al.,
2020), and TinyBERT (Jiao et al., 2020) have ex-
plored informative features that can be distilled,
including the output logits, word embeddings, hid-
den states, attention maps, etc.

However, in these existing methods the interac-
tion between teacher and student remains one-way.
The teacher model is usually fixed once trained on
the downstream data, resulting in static soft targets
regardless of the characteristics of the student and
its training progress. Though there are works that
insert a scheduled temperature into the Softmax
function to control the smoothness of the soft tar-
gets such as Annealing-KD (Jafari et al., 2021), the
design of the temperature and its schedule does not
utilize the feedback from the student and highly
depends on expert experience.

In this paper, we propose the Interactive Knowl-
edge Distillation (IKD) to implement a bidirec-
tional interaction between teacher and student. IKD
allows the teacher to learn to teach based on the
feedback from the student. In particular, the teacher



model is trained to generate specific soft targets at
each training step with the help of meta-learning,
especially MAML (Finn et al., 2017). Figure 1
illustrates main difference between our proposed
IKD and traditional KD methods.

The central idea of IKD is to make the student
model generalize well (like achieving a lower loss)
on a batch of unseen samples after learned from
the teacher model, while the measurable perfor-
mance on unseen samples is back-propagated to
the teacher model to update its teaching strategy.
More specifically, IKD consists of two update steps:
course step and exam step. In course step, the stu-
dent is trained to match the soft targets generated
by the teacher on a batch of data called course data.
In exam step, the student after one gradient step
is evaluated on another batch of data called exam
data, the cross entropy of the student on the exam
data provides meta-gradients to be back-propagated
to the teacher model such that the teacher model
could get updated to generate better soft targets.
By iteratively conducting the two steps, we can
continually improve the student model via the soft
targets generated by the teacher, and improve the
teacher model via the feedback generated by the
student.

We conduct experiments on various NLP tasks.
Experimental results on GLUE benchmark demon-
strate that IKD consistently outperforms vanilla
knowledge distillation. Further analysis is then
conducted to shed some light on the dynamic soft
targets and the student feedback.

To sum up, our contributions are as follows:

* We propose a co-interactive method for
teacher-student framework, namely Interac-
tive Knowledge Distillation (IKD).

* We take an approximation to convert the it-
erative optimization into a joint optimization,
which is more efficient for training.

* Our proposed IKD is orthogonal to most ex-
isting knowledge distillation works that distill
different feature sets, in which we empirically
evaluated the effectiveness of IKD based on
vanilla knowledge distillation.

2 Method

The intuition behind our framework is straight-
forward: First, the teacher teaches the course to
the student who then updates its knowledge accord-
ing to the course. Second, the student takes exams

and produces scores for the teacher to adjust its
teaching strategy. Such two steps are common in
real-world education.

Based on the intuition above, IKD can be formu-
lated in the context of machine learning as follows.
Denote the teacher model and the student model
as f and g respectively. Assume teacher model f
is parameterized by 6, student model g is parame-
terized by ¢. In the course step, we optimize the
student model g(¢) by vanilla knowledge distilla-
tion. The student model is trained to match the soft
targets generated by the teacher model on a batch
of data drawn from the course data set D . yrse. In
the exam step, we evaluate the student model on a
batch of data drawn from the exam data set Degqm,.
The test score of the exam, which can be instan-
tiated as cross entropy, provides meta gradients
to optimize the teacher model f(6). The overall
illustration of our method is depicted by Figure 2.

2.1 Course Step: Student Optimization by
Vanilla Knowledge Distillation

In our setting, the teacher model f(6) is imple-
mented as a deep encoder such as BERT (Devlin
et al., 2019), and the student model g(¢) is imple-
mented as a lightweight encoder such as a Trans-
former (Vaswani et al., 2017) encoder with fewer
layers.

Given a training sample (z;, y;) drawn from the
course data set Deoyrse = { i,y Y, the teacher
model computes a contextualized embedding h;-r =
f(xs;0)", which is then fed into a Softmax layer
to obtain the probability for each category, i.e. the
soft targets, that is y! = Softmax(W7ThI'), where
W7 is a learnable parameter matrix and WThZT is
the logits. For simplicity, WThZ-T is abbreviated to
zzT . In practice, the temperature is often introduced
as a hyper-parameter to control the smoothness of
the soft targets,

L )T

yl = Softmax(z! /T) = c

where C' denotes the number of classes, ¢ is the
correct class.

Similarly, we can obtain the output of the stu-
dent model y? = Softmax(W*h?), where h? =
g(x4; ¢). In vanilla knowledge distillation, the KL
divergence of the teacher’s prediction and the stu-

"We use the [CLS] token embedding of the last layer as
the sentence representation.
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Figure 2: Illustration of our proposed Interactive Knowledge Distillation (IKD). IKD consists of two iterative steps:
(a) Course step to update student with the soft targets generated by the teacher, (b) Exam step to update teacher with
the feedback (i.e. cross entropy on the exam data) produced by the student. By iterating the course step and the

exam step, both of student and teacher can be optimized.

dent’s prediction should be minimized,

1 N C yS-

'CKD = KL(yT7yS) = _szy;,l:] ].Og ’;’1‘77
i=1 j=1 2%

(2)

where KL means Kullback-Leibler divergence.

In practice, the cross entropy between the stu-
dent’s prediction and the ground truth is also incor-
porated to be minimized, i.e.,

N C
1
Loép=— 22 vlogyl B
i=1 j—1

Thus the overall loss function for the student
model can be written as:

Lo =Mgp + (1= NLZ g, 4)

where A is a hyper-parameter to balance the knowl-
edge distillation loss and the cross entropy loss.
The student model is then updated by taking one
gradient descent step with the loss function above,
ie.
Gry1 = G — av¢t£st1u )

where « is the learning rate of the student model.

2.2 Exam Step: Teacher Optimization by
Student’s Feedback

It is expected that the student with the post-update
parameters will generalize well on unseen samples.
Therefore, the updated student is then evaluated
on another batch of samples drawn from the exam
data set Degam = {,y/}},. The performance
of the student is measured by the cross entropy

loss on the batch of exam data, which is called
meta loss since it is calculated on the post-update
parameter ¢, thus provides meta gradient w.r.t.
the teacher’s parameters.

Emeta = (j:E)(y/7 y;il) (6)
1 ML

= =27 2D vl (d). (D)
i=1 j=1

Our goal is to minimize £y, by optimizing the
teacher model, therefore the gradient of L,,¢¢, 1S
w.r.t. the teacher’s parameters 6, so is a second-
order gradient (gradient of gradient). To explicitly
show this, we can re-write y;SJ (¢¢+1) in the above
equation as:

Y (bei1) = vl (0 — aVe, Lau(60r)),  (8)

in which we know that the gradient can flow into
0, through the knowledge distillation in the course
step. Figure 3 shows the computational graph of
the forward pass and the backward pass.

Although it is computationally available by con-
ducting an additional backward pass under current
deep learning libraries that support automatic dif-
ferentiation, we use the first-order approximation
for its efficiency (Finn et al., 2017; Nichol et al.,
2018).

In the context of meta-learning, the teacher can
be regarded as the meta-learner, while D qyrse and
D¢z am can be analogous to support set and query
set respectively.

Also, the standard cross entropy loss between
the teacher’s prediction and the ground truth can
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Figure 3: Computational graph to show how gradients
are back-propagated into the teacher’s parameters. Cir-
cles represent variable and squares represent operation.
"Opt" stands for the optimizer, which is one gradient
descent step. For simlicity, we omit the cross entropy
loss for the student £2,; and for the teacher LT ; in the
course step.

be incorporated,

N C
1
Cop=—5 DD Wijlogyl; )
i=1 j=1

Thus, the overall loss function for the teacher
model is

Lica = ’Yﬁmeta + (1 - V)EgEa (10)

where 7y is another hyper-parameter to balance the
meta loss and the cross entropy loss.

Thus, the teacher model can also be optimized
by taking gradient descent:

0141 =01 — BVo,Lica, Y

where (3 is the learning rate of the teacher model.

Putting the student optimization in course step
and the teacher optimization in exam step together,
the overall loss function of IKD is defined as

ﬁIKD = ﬁstu + Etea- (12)

By iterating the course step and the exam step, the
student model learns from the soft targets generated
by the teacher while the teacher model learns from
the feedback generated by the student.

2.3 Discussion and Implementation

To take a closer look, in this section we further
analyze the expanded form of the meta-gradient,
which provides insights into the student’s feedback

and sheds light on how to take an approximation to
achieve efficient training.

According to the chain rule, we can unfold the
meta gradient Vg, Lyt as follows?Z,

Vo, Lmeta = Vi1 Lmeta - Vodiri1
= Vr: Loeta - (—aV gV, Lau)
= Ve, Lmeta - VoV, logy; -y
= aV,, Lmeta - Vg, log ytS -VgtytT.

feedback
(13)

Note that Vi, Lietq is the Jacobi matrix of
shape |¢| and V4, logys is of shape |¢| x C.?
Therefore, Vg, ., Lmeta - Vg, log yf is actually a
weighting vector of shape C' to adjust the gradient
of teacher’s prediction w.r.t. its parameters Vg, y? .
It is easy to find that the weighting vector only
depends on the student’s gradient, therefore it is
exactly the student’s feedback.

The behavior relationship between the weighting
vector and the teacher’s prediction is analyzed. It is
worth noticing that the weighting vector should be
detached from the computational graph to forbid
the gradient flow into the student. By this, the
meta loss will only contribute to the update of the
teacher’s parameters.

In practice, the difference between ¢; and ¢4 1
is usually very small, which motivates us to take an
approximation ¢y 1 &~ ¢¢ suchthat Vi, . Lineta =
V 4, Lmeta- By this approximation, Eq. (13) can be
simplified as

v9t£mem ~ Oévqbtﬁmeta : v(j)t log yf : Vetyf-
(14)
Besides, note that Vy, Lyetq, Vg, log yf and
Ve, yl are mutually independent, therefore we can
calculate them independently and achieve joint op-
timizing in an efficient way. In our experiments
we set Deourse = Degzam = Dirain for efficient
optimization. Though, it should be mentioned that
in our framework the course data set can be unla-
beled, i.e. Deourse = {xi}I,. In this case, the
cross entropy loss between the student’s prediction
and the ground truth is removed such that the loss
for the student is exactly the knowledge distillation
loss. Thus, only the supervision signal of D¢y,
is required. We leave IKD in this semi-supervised
setting as future work.
2For the simplicity of derivation, we set N and M to 1,
and omit the constant scalar \.

3For matrix multiplication, Ve, log y2 should be in the
transpose form, which is omitted here for the simplicity.



3 Experiments

Though IKD is orthogonal to most current knowl-
edge distillation methods to compressing large-
scale PLMs such as DistilBERT (Sanh et al., 2019)
and TinyBERT (Jiao et al., 2020), which distill
different feature sets (such as logits, embeddings,
hidden states, attention maps, etc.), it is exhaustive
to test IKD with these different distillation features
and their combinations. Thus, in our experiments
we mainly evaluate the effectiveness of IKD based
on the vanilla knowledge distillation and BERT-
PKD (Sun et al., 2019).

3.1 Datasets and Models

We conduct experiments on the General Lan-
guage Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2019) with the backbone of
BERT (Devlin et al., 2019), and on ChemProt
dataset (Schneider et al., 2020) and SciCite
dataset (Cohan et al., 2019) with backbone of SciB-
ERT (Beltagy et al., 2019).

GLUE Benchmark We use seven text classifi-
cation tasks in the GLUE benchemark: The Cor-
pus of Linguistic Acceptability (CoLA) (Warstadt
et al., 2019), The Stanford Sentiment Treebank
(SST-2) (Socher et al., 2013), Microsoft Research
Paraphrase Corpus (MRPC) (Dolan and Brock-
ett, 2005), Quora Question Pairs (QQP) (Wang
et al., 2019), Multi-Genre Natural Language In-
ference (MNLI) (Williams et al., 2018), Question
Natural Language Inference (QNLI) (Rajpurkar
et al., 2016) and Recognizing Textual Entailment
(RTE) (Wang et al., 2019).

Domain Tasks We use ChemProt (Schneider
et al., 2020) and SciCite (Cohan et al., 2019) to
evaluate the performance of our method on do-
main specific tasks. ChemProt consists of 1,820
PubMed abstracts with chemical-protein interac-
tions annotated by domain experts. SciCite is a
dataset containing 11k annotated citation intents in
biochemical and computer science domains. The
standard metrics are micro F1 for ChemProt and
macro F1 for SciCite. We evaluate our method on
both tasks with the backbone of SciBERT (Beltagy
etal., 2019).

3.2 Experimental Setup

Our implementation is based on PyTorch (Paszke
et al., 2019). The training and evaluation are per-
formed on a single RTX 2080Ti or RTX 3090 GPU.

For downstream tasks in GLUE we first fine-tune
the teacher model for 3 epochs with learning rate
of 2e-5. For domain tasks the teacher is fine-tuned
for 4 epochs. The batch size is 32 for all tasks.
The student model is initialized with the parame-
ters from the first £ layers of BERT base(12 layer),
where k is the number of the student’s layer. In our
experiments we mainly evaluate our method when
k = 4 and k = 6. The total number of parameters
of BERT94, BERT 9, BERT¢ and Berty are 340M,
110M, 67M and 52M respectively. The batch size
is set to 4 for all downstream tasks. We conduct
3 experiments for each dataset and the median is
reported.

3.3 Experimental Results

We report our results on GLUE benchmark. The
results are presented in Table 1. We denote BERT},
as a BERT with only £ layers. BERT,4-FT is to
directly fine-tune the first 4 layers of the pre-trained
BERT. BERT,-KD represents student trained with
vanilla knowledge distillation loss, i.e., Eq. (4). We
also exhibit the reported result of TAKD (Mirzadeh
et al., 2019) and Annealing KD (Jafari et al., 2021)
for a direct comparision.

Results on GLUE Benchmark As shown in Ta-
ble 1, IKD surpasses the vanilla knowledge distil-
lation method on all tasks. For RTE, IKD outper-
forms directly finetuning by 3.2% and knowledge
distillation by 2.9%. For QNLI and MRPC, al-
though the performance of knowledge distillation
compared with directly fine-tuning is even detri-
mental, IKD can consistently improve the students.
We also evaluate our method on the GLUE test
server and we show the results in Table 1. On
the GLUE leaderboard our method consistently im-
proves the performance.

Results on Domain Tasks Experimental results
on the ChemProt and SciCite test set are shown
in Table 2, which demonstrate the effectiveness of
IKD on domain specific task. It’s worth noting that
on the SciCite dataset our approach is even able to
make the student outperform the teacher.

Compatibility with Patient Knowledge Distilla-
tion To evaluate the compatibility of IKD with
more competitive distillation methods, we further
apply IKD on BERT-PKD (Sun et al., 2019) (de-
noted as BERT-PKD-IKD) with teacher model
as BERT-base (12 layers) and student as BERT.
BERT-PKD exploits information from hidden fea-



Method MNLI QQP QNLI SST-2 CoLA MRPC RTE | Macro
(393k) (364k) (105k) (67k) (8.5k) (3.7k) (2.5k) | Score
Dev Set
BERTy4 (Teacher) 87.0 88.7 92.6 93.2 63.4 88.8 70.0 83.4
BERT,-TAKD' 72.4 87 82.6 89.1 34.2 85.2 59.6 72.9
BERT,-Annealing KDf 74.4 86.5 83.1 89.4 36.0 86.2 61.0 73.8
BERT4-FT 78.2 85.9 85.4 88.0 28.6 85.1 63.2 73.5
BERT4-KD 78.5 86.4 85.2 88.8 30.4 84.6 63.5 73.9
BERT4-IKD 79.1 86.5 85.5 89.1 30.9 86.0 66.4 74.7
Test Set
BERT4-KD 78.2 68.8 84.6 90.1 27.7 82.5 63.5 70.8
BERT4-IKD 78.4 68.9 85.3 90.1 30.6 83.2 62.9 71.3

Table 1: Comparisons between IKD and Vanilla KD on the dev and test set of GLUE tasks. The teacher network is
BERT32,4 and the student network is BERT,. FT indicates that the student is directly fine-tuned without any soft
targets. KD means that the student learns using vanilla knowledge distillation. IKD reprensents our method. The
best results for each task are in-bold. Methods with T denote results reported from Jafari et al. (2021).

ChemProt SciCite
Method @2k (7.3K)
SciBERT 5(Teacher) 84.5 86.1
SciBERTs-FT 78.1 85.0
SciBERTs-KD 79.3 85.7
SciBERT-IKD 79.9 86.6

Table 2: Experimental results of SciBERT on the test
set of ChemProt and SciCite.

Method |QNLI SST-2 MRPC RTE
BERTo(Teacher) | 90.4 924 889 68.2
BERTg;-PKD 883 89.1 876 668
BERT4;-PKD-IKD | 88.7 90.3 87.7 67.1

Table 3: Performance based on patient knowledge distil-
lation on GLUE dev set. PKD represents patient knowl-
edege distillation and PKD-IKD means combination of
PKD and IKD.

tures for distillation. We follow PKD-Skip strategy
which is shown to be better than PKD-Last as sug-
gested by Sun et al. (2019). Experimental results
are listed in Table 3, which demonstrate the versa-
tility of IKD with stronger baselines.

4 Analysis

In this section, we take a closer look at IKD by con-
ducting empirical analysis to provide some insights
to understand how it works. In particular, we focus
on the dynamic of generating soft targets and the
feedback from the student.

Dataset Epoch 1 Epoch?2 Epoch 3
MRPC 0.2637  0.1076  0.0343
RTE 0.4461  0.2313  0.0845
ChemProt | 0.5049  0.2686  0.1451

Table 4: The average entropy of output distribution for
each epoch on MRPC, RTE and ChemProt dataset.

4.1 About the Soft Targets

Since IKD allows the teacher to dynamically adjust
its soft targets by using the feedback from the stu-
dent, it would be interesting to see how the output
of the teacher changes as the training goes on. In
Figure 4 we visualize the output soft targets of the
teacher output in different training epochs. We can
find that the soft targets are relatively smooth at the
beginning and become sharper as the training pro-
gresses. This is consistent with the hand-designed
smoothing schedules (Dogan et al., 2020; Jafari
et al., 2021), which introduce a hyper-parameter
to control how quickly the soft targets converge to
the one-hot distribution. In contrast, our method
automatically learns to adjust the smoothness of the
soft targets based on the feedback from the student.
In Table 4 we further use entropy to measure the
smoothness of output targets in different epochs
on full training sets of MRPC, RTE and ChemProt.
The average entropy goes down over the training
process as shown, which confirms our observation
as well.
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Figure 4: Visualization of the generated soft targets of three training epochs on ChemProt dataset produced by the
corresponding teacher. We can find that the soft targets are softer at the early stage and become sharp as the training
goes on. Finally the soft targets are quite similar to the one-hot distribution.

4.2 About the Feedback

As mentioned in 2.3, the gradient of the meta loss
can be viewed as a weighted sum of the gradient of
teacher’s prediction w.r.t. its parameters, i.e. Vyy!
(See Eq. (14)). The weighting vector aV 4 Lpetq -
V4 log y° can be regarded as the feedback of the
student. Assume fb = aVyLpeta - Vg log y°, Eq.
(14) can be written as

C
VoLmeta = fb-Voy" =Vo»_ fbi-yl, (15)

i=1

where fb € RY, yT € R, C is the number of
classes.

In this section, we attempt to analyze the rela-
tionship between the student’s feedback fb and
the teacher’s prediction 47 . In particular, we plot
(fbi,yl) foreachi € {1,---,C} in Figure 5. The
data points are collected from the 7,500 training
steps on CoL A dataset. CoLA is a binary classifi-
cation task so we can plot C' = 2 data points for
each training step such that there are 15,000 data
points in total.

Note that The greater the student’s feedback fb;
for class 7, the greater the penalty of teacher’s pre-
diction on class 7. As shown in Figure 5a, the stu-
dent’s feedback is always non-positive for teacher’s
prediction on target label, which can also be re-
vealed by the expanded form of the feedback:

av¢£metav¢ log yf = —OZ(V¢ IOg y§)27 (16)

where c is the target label. Besides, we can see
that the student’s feedback is usually non-negative
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Figure 5: Visualization results to show the relationship
between student feedback and teacher prediction scores
on CoLA dataset.

for teacher’s prediction on non-target label. Thus,
the teacher’s prediction is always encouraged to
approach the one-hot distribution where only the
target label is 1, which has been verified in analysis.
Also, we find that the range of feedback on target
prediction is approximately three times larger than
the range of feedback on non-target prediction.



In addition, the student’s feedback can be dif-
ferent even when the teacher’s predictions are the
same. To take a deeper look, we demonstrate the
value of feedback of the student at different training
stage in Figure 5b. We can see that the student feed-
back converges to zero as the training goes, which
implies that IKD works mainly at the immediate
training stage.

5 Related Work

Our method draws on the idea of meta-learning and
applies it to knowledge distillation for NLU. Thus,
there are two lines of work that are related: (a)
Knowledge distillation methods for language un-
derstanding, (b) Optimization-based meta-learning.
We will introduce the two lines of work in Trans-
former Based KD and Optimization-Based Meta-
Learning, and the intersect of the both lines in
Teacher-Student Framework with Meta-Learning.

5.1 Knowledge Distillation for NLP

Knowledge distillation (KD) was originally pro-
posed in domains other than NLP (Bucila et al.,
2006; Hinton et al., 2015). With the emergence
of large-scale pre-trained language models (PLMs)
such as GPT (Radford et al., 2019), BERT (Devlin
et al., 2019), and RoBERTa (Liu et al., 2019), KD
has gain much attention in the NLP community due
to its simplicity and efficiency in compressing the
large PLMs. Much effort has been devoted to com-
press BERT via KD, including BERT-PKD (Sun
et al., 2019), DistilBERT (Sanh et al., 2019), Mo-
bileBERT (Sun et al., 2020), and TinyBERT (Jiao
et al., 2020). These methods have achieved great
success by exploring informative features to be dis-
tilled, such as word embeddings, attention maps,
hidden states, and output logits. Different from
these work, our proposed IKD focuses on the inter-
action between teacher and student therefore is or-
thogonal to these work. Gou et al. (2021) provides
a survey of online knowledge distillation where
both the teacher and the student are updated simu-
latenously. Our IKD can be regarded as a special
case of online KD.

5.2 Optimization-Based Meta-Learning

Optimization-based meta-learning intends to learn
a group of initial parameters that can fast con-
verge on a new task with only a few gradient steps,
in which the learner and meta-learner share the
same architecture. As a representative method,

Model-Agnostic Meta-Learning (MAML) (Finn
et al., 2017) uses a nested loop to find an optimal
set of parameters on a variety of learning tasks,
such that they can adapt well after a small number
of training steps. To tackle the high-order deriva-
tive, Finn et al. (2017) also propose First-Order
MAML (FOMAML) to perform the first-order ap-
proximation to reduce the computation. Similar
to MAML, Reptile (Nichol et al., 2018) utilizes
the weights in the inner loop instead of gradient
to update meta parameters and achieves competi-
tive performance on several few-shot classification
benchmarks.

5.3 Teacher-Student Framework with
Meta-Learning

Meta-learning has been proved efficient when com-
bined with the teacher-student framework. Liu
et al. (2020) employ meta-learning to optimize
a label generator that generates dynamic soft tar-
gets for intermediate layers. Their method is pro-
posed for self-boosting. Pan et al. (2020) focus on
training a meta-teacher possessing multi-domain
knowledge by metric-based meta-learning and then
teach single-domain students. Meta Pseudo Labels
(Pham et al., 2020) leverage a teacher network to
generate pseudo labels on unsupervised images to
enlarge the training set of the student. They aim
to train a pseudo labels generator to while IKD
dedicates to compress a large model into a smaller
one. Thus the pseudo label generator is trained
from scratch and shares same architecture with the
student while in our IKD the teacher must be a
larger pretrained model which leads to the impossi-
bility of implementation of gradient substitution in
MAML.

6 Conclusion

This paper proposes the Interactive Knowledge Dis-
tillation (IKD) to empower the teacher to learn to
teach with student feedback. Inspired by MAML,
IKD involves two optimization steps: (1) a course
step for student optimization with the guidance of
teacher and (2) an exam step for teacher optimiza-
tion with the feedback from student. IKD shows
superiority over vanilla KD on a suit of NLP tasks.
By iterating the course step and exam step we can
jointly optimize the teacher and student. In addi-
tion, we have discussed a semi-supervised general-
ization of our method, in which the course data is
allowed to be unlabeled.
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