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Figure 1: The sparse SfM points and less-constrained densification strategies of 3DGS pose challenges in optimizing 3D
Gaussians, particularly for textureless areas. 3DGS generates inaccurate Gaussians (blue circle) that overfit the training
images, leading to a noticeable performance drop in novel view rendering with erroneous geometries.

Abstract
3D Gaussian Splatting (3DGS) has recently rev-
olutionized the field of neural rendering with its
high fidelity and efficiency. However, 3DGS
heavily depends on the initialized point cloud
produced by Structure-from-Motion (SfM) tech-
niques. When tackling large-scale scenes that
unavoidably contain texture-less surfaces, SfM
techniques fail to produce enough points in
these surfaces and cannot provide good ini-
tialization for 3DGS. As a result, 3DGS suf-
fers from difficult optimization and low-quality
renderings. In this paper, inspired by clas-
sic multi-view stereo (MVS) techniques, we
propose GaussianPro, a novel method that ap-
plies a progressive propagation strategy to guide
the densification of the 3D Gaussians. Com-
pared to the simple split and clone strategies
used in 3DGS, our method leverages the pri-
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ors of the existing reconstructed geometries of
the scene and utilizes patch matching to produce
new Gaussians with accurate positions and ori-
entations. Experiments on both large-scale and
small-scale scenes validate the effectiveness of
our method. Our method significantly surpasses
3DGS on the Waymo dataset, exhibiting an im-
provement of 1.15dB in terms of PSNR. Codes
and data are available at https://github.
com/kcheng1021/GaussianPro.

1. Introduction
Novel view synthesis is an important but challenging task
in computer vision and computer graphics. As it can gen-
erate images of novel viewpoints in the captured scene,
it has extensive applications in various domains, includ-
ing virtual reality (Deng et al., 2022b), autonomous driv-
ing (Yang et al., 2023a; Cheng et al., 2023), and 3D con-
tent generation (Poole et al., 2022; Tang et al., 2023). Re-
cently, the neural radiance field (NeRF) technique (Milden-
hall et al., 2020) has significantly boosted this task, achiev-
ing high-fidelity renderings without explicitly modeling 3D
scenes, texture and illumination. However, due to the
heavy manner of volume rendering, NeRFs still suffer from
slow rendering speed, although various efforts have been
made (Müller et al., 2022; Barron et al., 2022; 2023; Chen
et al., 2022; Xu et al., 2022).
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3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has
been developed to achieve real-time neural rendering. It
models the scenes explicitly as 3D Gaussians with learn-
able attributes and performs rasterization of the Gaus-
sians for rendering. The splatting strategy avoids time-
consuming ray sampling and allows parallel computations,
thus yielding high efficiency and fast rendering. However,
3DGS heavily relies on the sparse point clouds produced by
Structure-from-Motion (SfM) techniques to initialize the
Gaussians, e.g., their positions, colors, and shapes. More-
over, the clone and split strategies generate more Gaussians
to achieve full coverage of the scene. However, the densi-
fication strategies lead to two main limitations. 1) 3DGS
is sensitive to Gaussian initialization. The SfM tech-
niques always fail to produce 3D points and leave empty in
textureless regions, and therefore the densification strategy
struggles to generate reliable Gaussians to cover the scene
with a poor initialization. 2) The less-constrained den-
sification leads to difficulties in the optimization of 3D
Gaussians, e.g., noisy geometries, and insufficient Gaus-
sians in texture-less regions, finally degrading the render-
ing quality. As Figure 1 shows, the results of 3DGS con-
tain many noisy Gaussians with wrong positions and orien-
tations and some regions are not covered by enough Gaus-
sians.

In this paper, we propose a novel progressive propagation
strategy to produce more compact and accurate 3D Gaus-
sians and therefore improve the rendering quality, espe-
cially in texture-less surfaces. Our key idea is to leverage
the reconstructed scene geometries as priors and utilize the
classic patch-matching strategy to progressively produce
new Gaussians with accurate positions and orientations.

Specifically, we consider Gaussian densification in both 3D
world space and 2D image space. For each input image, we
render the depth and normal map by accumulating the posi-
tions and orientations of 3D Gaussians via alpha blending.
Based on the observation that the neighboring pixels are
likely to share similar depth and normal values, for a pixel,
we iteratively propagate the depth and normal values of its
neighboring pixels to this pixel to formulate a set of candi-
date values. We apply patch matching to pick up the best
candidate value that satisfies the multi-view photometric
consistency constraint, thus yielding new depth and normal
for each pixel (named as propagated depth/normal). We
select the pixels whose propagated depth is significantly
different from the rendered depth since large differences
imply that the existing 3D Gaussians may not accurately
capture the true geometry. As a result, we explicitly back-
project the selected pixels using the propagated depths into
3D space and initialize them as new Gaussians. Addition-
ally, we leverage the propagated normals to regularize the
orientations of 3D Gaussians, further improving the recon-
structed 3D geometry and rendering quality.

By transferring accurate geometric information from well-
modeled regions to under-modeled regions, our progressive
propagation strategy could produce more compact and ac-
curate 3D Gaussians and achieve better coverage of the
3D scene, as Figure 1 shows. Experiments on public
datasets such as Waymo and MipNeRF360 validate that our
proposed strategy significantly boosts the performance of
3DGS. In summary, the contributions of this paper include:

• We propose a novel progressive propagation strat-
egy that guides the Gaussian densification to produce
more compact and accurate Gaussians, particularly in
low-texture regions.

• We additionally leverage a planar loss that provides a
further constraint in the optimization of Gaussians.

• Our method achieves new state-of-the-art render-
ing performance on the Waymo and MipNeRF360
datasets. Our method also presents robustness to vari-
ous numbers of input images.

2. Related Work
2.1. Multi-view Stereo

Multi-view stereo (MVS) aims to reconstruct a 3D model
from a collection of posed images, which can be further
combined with rendering algorithms to generate images
under novel views. Traditional MVS methods (Campbell
et al., 2008; Furukawa & Ponce, 2009; Bleyer et al., 2011;
Furukawa et al., 2015; Schönberger et al., 2016; Xu &
Tao, 2019) explicitly establish pixel correspondences be-
tween images based on hand-crafted image features and
then optimize the 3D structure to achieve the best photo-
metric consistency among images. Learning-based MVS
methods (Yao et al., 2018; Murez et al., 2020; Long et al.,
2020; Chen et al., 2019; Long et al., 2021; Ma et al., 2022;
Long et al., 2022; Feng et al., 2023) implicitly build multi-
view correspondences with learnable features and regress
depth or 3D volume based on the features in end-to-end
frameworks. In this paper, we draw inspiration from depth
optimization in MVS to improve the geometry of the 3D
Gaussians, thereby achieving better rendering results.

2.2. Neural Radiance Field

NeRF combines deep learning techniques with the 3D vol-
umetric representation, transforming a 3D scene into a
learnable continuous density field. Utilizing ray marching
in volume rendering, NeRF is able to achieve high-quality
novel view synthesis without explicit modeling of the 3D
scene and illumination. To further improve the rendering
quality, some approaches (Barron et al., 2021; Xu et al.,
2022; Barron et al., 2023) directly improve the point sam-
pling strategy in ray marching for more accurate model-
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ing of the volume rendering process. Others (Barron et al.,
2022; Wang et al., 2023) improve rendering by reparame-
terizing the scene to generate a more compact scene rep-
resentation and lead to an easier learning process. Addi-
tionally, regularization terms (Deng et al., 2022a; Yu et al.,
2022) could be introduced to constrain the scene repre-
sentation towards a closer approximation of real geometry.
Despite these advancements, NeRF still incurs high com-
putational costs during rendering. Since NeRF employs
MLPs to represent the scene, the computation and opti-
mization of any point in the scene are dependent on the
entire MLP. Many works propose novel scene represen-
tations to accelerate rendering. They replace MLPs with
sparse voxels (Liu et al., 2020; Fridovich-Keil et al., 2022),
hash tables (Müller et al., 2022), or triplane (Chen et al.,
2022), allowing the computation and optimization of each
point to be localized to the corresponding local region of
the scene. Although these methods significantly improve
rendering speed, real-time rendering is still challenging due
to the inherent ray marching strategy in volume rendering.

2.3. 3D Gaussian Splatting

3DGS employs a splatting-based rasterization (Zwicker
et al., 2002) approach to project anisotropic 3D Gaussians
to 2D. It computes pixel colors by performing depth sort-
ing and α-blending on the projected 2D Gaussians, avoid-
ing the sophisticated sampling strategy of ray marching
and achieving real-time rendering. Some concurrent works
have made improvements to 3DGS. Firstly, 3DGS is sen-
sitive to sampling frequency, i.e., changing the camera’s
focal length or camera distance may lead to rendering ar-
tifacts. These artifacts can be alleviated by introducing
low-pass filtering (Yu et al., 2023) or multi-scale Gaus-
sian representations (Yan et al., 2023). Additionally, some
approaches extend 3DGS, which is primarily designed for
static scenes, to dynamic scenes by modeling the motion
of dynamic objects based on MLPs (Yang et al., 2023b),
basis function (Li et al., 2023; Lin et al., 2023) like poly-
nomial and Fourier Series, or rigid transformations (Zhou
et al., 2023; Yan et al., 2024). Furthermore, 3DGS ex-
cessively grows Gaussians without explicitly constraining
the scene’s geometric structure, resulting in numerous re-
dundant Gaussians and significant memory consumption.
Some methods evaluate the contribution of Gaussians to
rendering by their scales (Lee et al., 2023) or their visi-
bility in views (Fan et al., 2023), forcing the removal of
Gaussians with small contributions. Some others compress
the storage of Gaussian attributes by quantization tech-
nique (Navaneet et al., 2023) or interpolating Gaussian at-
tributes from structured grid features (Morgenstern et al.,
2023; Lu et al., 2023).

Although these methods significantly reduce the storage
cost of Gaussians, they do not explicitly constrain the ge-

ometry of the Gaussians. 3DGS could grow in locations
far from the actual surfaces to fit different training views,
resulting in the geometry redundancy of 3D Gaussians and
rendering quality decrease for new viewpoints. In compar-
ison, we propose a progressive propagation strategy to ex-
plicitly constrain the growth of 3D Gaussians near the sur-
faces, considering the planar structure priors in the scene.
This enables Gaussians to better fit the scene geometry,
achieving high-quality rendering and compact representa-
tion simultaneously.

3. Preliminaries
3DGS (Kerbl et al., 2023) models the 3D scene as a set
of anisotropic 3D Guassians, which are further rendered
to 2D images using the splatting-based rasterization tech-
nique (Zwicker et al., 2002). A 3D Gaussian G is defined
as:

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ), (1)

where µ ∈ R3×1 refers to its mean vector, Σ ∈ R3×3

refers to its covariance matrix. To ensure the positive semi-
definite property of the covariance matrix during the opti-
mization, it is further expressed as Σ = RSSTRT , where
the rotation matrix R ∈ R3×3 is orthogonal, and the scale
matrix S ∈ R3×3 is diagonal.

To render an image from a given viewpoint, the color of
each pixel p is calculated by blending N ordered Gaussians
{Gi | i = 1, · · · , N} overlapping p as

c(p) =
N∑
i=1

ciαi

i−1∏
j=1

(1− αj) , (2)

where αi is obtained by evaluating the 2D Gaussian pro-
jected from Gi at p (Yifan et al., 2019) multiplied with a
learned opacity of Gi, and ci is the learnable color of Gi.
Gaussians that overlap p are sorted in ascending order of
their depths under the current viewpoint. Through differen-
tiable rendering techniques, all attributes of the Gaussians
can be optimized end-to-end via training view reconstruc-
tion.

3DGS also employs a densification strategy to generate
new Gaussians for more accurate geometric representa-
tions. At each training iteration, if the gradient backprop-
agated from the rendering loss to the current Gaussian ex-
ceeds a certain threshold, 3DGS considers that it does not
satisfactorily represent the corresponding 3D region. If
the Gaussian has a large covariance, it will split into two
Gaussians. Conversely, if its covariance is small, it will
be cloned. This strategy encourages 3DGS to increase the
number of Gaussians to cover the captured scene.
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Figure 2: Progressive Propagation of Gaussian. Firstly, we render the depth and normal maps from the 3D Gaussians.
Then we iteratively perform propagation operations on the rendered depths and normals to generate new depth and normal
values (denoted as propagated depth and propagated normal) via patch matching techniques. We filter out the unreliable
propagated depths and normals using geometric consistency, yielding filtered depths and filtered normals. Finally, we
identify the regions where their rendered depths and normals significantly deviate from the filtered ones, indicating that
existing Gaussians may not accurately capture the geometry and therefore need more Gaussians. Pixels in these regions
are projected into the 3D space to initialize new Gaussians using the filtered depth and normal.

4. Method
In this paper, we propose a novel progressive propagation
strategy to generate 3D Gaussians under the guidance of
neighborhood geometry and planar structures, thereby im-
proving rendering quality and compactness. First, instead
of only working in 3D space, we propose to tackle this
problem in both 3D space and 2D image space. We project
3D Gaussians to 2D to generate depth and normal maps,
which are used to guide the growth of Gaussians (Sec. 4.1).
Then we iteratively update the depth and normal of each
pixel based on the propagated values from its neighboring
pixels. Pixels whose new depth is significantly different
from the initial depth are projected back to the 3D space
as 3D points and these points are further initialized as new
Gaussians (Sec. 4.2). Additionally, a planar loss is incor-
porated to further regularize the geometry of the Gaussians,
yielding more accurate geometries (Sec. 4.3).

4.1. Hybrid Geometric Representation

We propose a hybrid geometric representation that com-
bines 3D Gaussians with 2D view-dependent depth and
normal maps, where the 2D representations are utilized to
assist the densification of Gaussians under the guidance of
the existing geometry.

Due to the irregular distribution and absence of connec-
tivity among 3D Gaussians, it is challenging to perceive
the connectivity of geometries, like searching neighboring
Gaussians on a local surface. As a result, it is difficult
to perceive the existing geometry to guide the Gaussian
densification. Inspired by the classical MVS methods, we
propose to tackle this challenge by mapping the 3D Gaus-
sians into structured 2D image space. This mapping allows
us to efficiently determine the neighbors of the Gaussians

and propagate geometric information among them. Specif-
ically, when Gaussians are located on the same local plane
in 3D space, their 2D projections should also be in adjacent
regions and exhibit similar geometric properties, i.e. depth
and normal.

The depth value of Gaussian. For a viewpoint with cam-
era extrinsics [W, t] ∈ R3×4, the center µi of a Gaussian
Gi can be transformed into the camera coordinate system
as

µ′
i =

 xi

yi
zi

 = Wµi + t, (3)

where zi refers to the Gaussian depth under the current
viewpoint.

The normal value of Gaussian. The covariance matrix of
a Gaussian Gi is formulated as Σi = RiSiS

T
i R

T
i . The

covariance matrix Σi of a 3D Gaussian can be considered
as representing an ellipsoid, where the eigenvectors of Ri

correspond to the three axes of the ellipsoid and the scale
factors of Si refer to the axis lengths. According to the
GaussianShader (Jiang et al., 2023), the Gaussian sphere
gradually becomes flattened and approaches a plane dur-
ing the optimization process. Therefore, the direction of
its shortest axis can approximate the normal direction ni of
the Gaussian, which is induced by

ni = Ri[r, :], r = argmin ([s1, s2, s3]) , (4)

where diag(s1, s2, s3) = Si, argmin(·) is the operation to
find the index of the minimum value.

Finally, the 2D depth and normal map under a viewpoint
can be rendered based on α-blending defined in Eq. 2,
where the attribute color ci is replaced by depth zi and nor-
mal ni of each Gaussian.
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Figure 3: Patch matching. To select the best plane can-
didate for pixel p during propagation, we apply homog-
raphy transformation on p based on each plane candidate,
thus yielding the possible corresponding pixel of the neigh-
boring view. The plane candidate that exhibits the highest
color consistency between p and its possible paired pixel is
chosen to be the solution. The chosen plane candidate is
used to update the depth and normal of pixel p.

4.2. Progressive Gaussian Propagation

Our progressive Gaussian propagation strategy aims to
propagate accurate geometry from well-modeled regions to
under-modeled regions by producing new Gaussians. Fig-
ure 2 shows the pipeline. With the rendered depth maps
and normal maps, we employ patch matching (Bleyer et al.,
2011) to propagate the depth and normals from neighbor-
ing pixels to the current pixel, producing new depths and
normals (named as propagated depth/normal). We further
apply geometric filtering and selection to pick up pixels that
need more Gaussians and leverage their propagated depths
and normals to initialize new Gaussians.

Plane Definition. The propagation is achieved based on
the patch matching technique, which requires an individual
3D plane at each pixel. Thus, the depth and normal of each
pixel need to be converted to a 3D local plane first. For
each pixel with its coordinate p, the corresponding 3D lo-
cal plane is parameterized as (d,n), where n is the pixel’s
rendered normal, and d is the distance from the origin of
the camera coordinate to the local plane calculated as:

d = zn⊤K−1p̃, (5)

where p̃ is the homogeneous coordinate of p, z is pixel’s
rendered depth, and K refers to the camera intrinsic matrix.

Candidate Selection. After defining the 3D local plane,
we select neighbors of each pixel for propagation. We
follow the checkerboard pattern defined in ACMH (Xu
& Tao, 2019) to select neighboring pixels. For clar-
ity, we illustrate the propagation of a pixel with its four
nearest pixels. For each pixel, a set of plane candidates

{(dkl
,nkl

) | l ∈ {0, 1, 2, 3, 4}} is obtained through propa-
gation (kl refers to the index of pixel p and its four neigh-
boring pixels).

Patch Matching. After obtaining the plane candidates, the
optimal plane for each pixel is determined through patch
matching. For a pixel p with its coordinate p, a homog-
raphy transformation H is performed based on each plane
candidate (dkl

,nkl
), which warps p to p′ in the neighbor-

ing frame as:
p̃′ ≃ Hp̃, (6)

where p̃′ is the homogeneous coordinate of p′, and H can
be induced as:

H = K

(
Wrel −

treln
⊤
kl

dkl

)
K−1, (7)

where [Wrel, trel] is the relative transformation from the
reference view to the neighboring view. Finally, the color
consistency of p and p′ is evaluated based on NCC (Nor-
malized Cross Correlation) (Yoo & Han, 2009). The local
plane of p will be updated to the plane candidate with the
best color consistency. Figure 3 also provides an intuitive
visualization of this process. The propagation for plane
candidates is iterated u times to transmit effective geomet-
ric information over a large region. Then the pixel’s depth
and normal are updated from the propagated plane, ulti-
mately resulting in the propagated depth and normal maps
in Figure 2.

Geometric Filtering and Selection. Due to the inevitable
errors in the propagated results, we filter out inaccurate
depth and normal through multi-view geometric consis-
tency check (Schönberger et al., 2016) and obtain filtered
depth and normal maps. Finally, we calculate the abso-
lute relative difference between the filtered depth and ren-
dered depth. For regions with an absolute relative differ-
ence greater than the threshold σ, we consider that existing
Gaussians fail to model these regions accurately. There-
fore, we project pixels in these regions back to the 3D space
and initialize them as 3D Gaussians using the same initial-
ization in 3DGS. These Gaussians are then added to the
existing Gaussians for further optimization.

4.3. Plane Constraint Optimization

In the original 3DGS, the optimization only relies on im-
age reconstruction loss without incorporating any geomet-
ric constraints. As a result, the optimized Gaussian shapes
may deviate significantly from the actual surface geometry.
This deviation leads to a decline in the rendering quality
when viewed from a new viewpoint, particularly for large-
scale scenes with limited views. As shown in Figure 4, the
shape of Gaussians in 3DGS differs significantly from the
road surface, resulting in severe rendering artifacts when
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Figure 4: Visual comparisons with 3DGS on novel view
synthesis. The rendered image of 3DGS contains severe
artifacts since the Gaussian spheres are out of order and do
not accurately model the true geometry. On the contrary,
our method faithfully captures the details of the road, and
its Gaussian spheres are more compact and orderly.

viewed from a novel viewpoint. In this section, we propose
a planar constraint that encourages the shape of Gaussians
to closely resemble the real surface.

Specifically, the propagated 2D normal map in Section 4.2
represents the orientation of the planes in the scene. We
explicitly enforce the consistency between rendered nor-
mal and the propagated normal with L1 and angular loss as
Lnormal:

Lnormal =
∑
p∈Q

∥N̂(p)− N̄(p)∥1 +
∥∥∥1− N̂(p)⊤N̄(p)

∥∥∥
1
,

(8)

where N̂ is the rendered normal map, N̄ is the propagated
normal map, and Q refers to the set of valid pixels after the
geometric filtering in Section 4.2.

Additionally, to ensure that the shortest axis of the Gaus-
sian could represent the normal direction, we incorporate
a scale regularization loss Lscale in NeuSG (Chen et al.,
2023). This loss constrains the minimum scale in Gaus-
sian to be close to zero, effectively flattening the Gaussians
towards a planar shape. Finally, the plane constraint is rep-
resented as the weighted sum of two losses:

Lplanar = βLnormal + γLscale. (9)

4.4. Training Strategy

In summary, we incorporate the progressive Gaussian prop-
agation strategy into 3DGS, activating it every m iteration
in the optimization, where we set m = 50. The propagated
normal maps are saved for computing the planar constraint
loss. Our final training loss L consists of the image recon-
struction loss L1 and LD-SSIM in 3DGS with the proposed
planar constraint loss Lplanar, as illustrated in Eq. 10.

L = (1− λ)L1 + λLD-SSIM + Lplanar, (10)

where the weight λ is set to 0.2, the same as 3DGS.

5. Experiment
5.1. Datasets and Implementation Details

Datasets. We conduct our experiments in a large-scale ur-
ban dataset Waymo (Sun et al., 2020), and the common
NeRF benchmark Mip-NeRF360 dataset. (Caesar et al.,
2020). On the Waymo dataset, we randomly select nine
scenes for evaluation. To evaluate the performance of
novel view synthesis, following the common settings, we
select one of every eight images as testing images and
the remaining ones as training data. We apply the three
widely-used metrics for evaluation, i.e., peak signal-to-
noise ratio (PSNR), structural similarity index measure
(SSIM), and the learned perceptual image patch similarity
(LPIPS) (Zhang et al., 2018).

Implementation Details. Our method is built upon the
popular open-source 3DGS code base (Kerbl et al., 2023).
In alignment with the approach described in 3DGS, our
models are trained for 30,000 iterations across all scenes
following 3DGS’s training schedule and hyperparameters.
Besides the original clone and split Gaussian densifica-
tion strategies used in 3DGS, we additionally perform our
proposed progressive propagation strategy every 50 train-
ing iteration where propagation is performed 3 times. The
threshold σ of the absolute relative difference is set to 0.8.
For the planar loss, we set β = 0.001 and γ = 100. All
experiments are conducted on an RTX 3090 GPU. More
implementation details can be found in the appendix.

5.2. Quantative and Qualitative Results

As shown in Table 1, we compare our method with
the state-of-the-art (SOTA) methods, including Instant-
NGP (Müller et al., 2022), Mip-NeRF360 (Barron et al.,
2022), ZipNeRF (Barron et al., 2023), and 3DGS (Kerbl
et al., 2023).

Results on Waymo. On the large-scale urban dataset
Waymo, our method significantly outperforms others in all
evaluation metrics. Due to the presence of textureless re-
gions in street views, initializing point clouds in these re-
gions becomes a challenge for SfM. Consequently, it is dif-
ficult for 3DGS to densify Gaussians that accurately rep-
resent the geometry of the scene in these regions. Other-
wise, our propagation strategy accurately complements the
missing geometry in the scene. Additionally, our planar
constraint allows for better modeling of the scene’s planes.
Therefore, compared to the baseline 3DGS, our method
significantly improves PSNR by 1.15 dB. The visual re-
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Table 1: Quantitative comparisons on Waymo and MipNeRF360. We indicate the best and second best with bold and
underlined respectively. 3DGS (Retrained) refers to the results obtained by 3DGS retrained with better SfM point clouds.

Waymo MipNeRF 360
Method FPS ↑ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Instant-NGP (Müller et al., 2022) 3 30.98 0.886 0.281 25.59 0.699 0.331
Mip-NeRF 360 (Barron et al., 2022) 0.02 30.09 0.909 0.262 27.69 0.792 0.237
Zip-NeRF (Barron et al., 2023) 0.09 34.22 0.939 0.205 28.54 0.828 0.189
3DGS (Kerbl et al., 2023) 103 33.53 0.938 0.226 27.21 0.815 0.214
3DGS (Retrained) 102 - - - 27.88 0.824 0.209
GaussianPro (Ours) 108 34.68 0.949 0.191 27.92 0.825 0.208

148697 0007

Ground TruthGaussianPro (Ours) 3DGSGround Truth GaussianPro (Ours) 3DGS

Figure 5: Rendering results on the Waymo (left) and MipNeRF360 (right) datasets. Compared to 3DGS, we have achieved
a noticeable improvement in both texture-less surfaces and sharp details.

Table 2: Ablation study on the proposed propagation strat-
egy and planar constraint.

Propagation Planar PSNR ↑ SSIM ↑ LPIPS ↓

% % 33.53 0.938 0.226
% ! 34.02 0.942 0.218
! % 34.48 0.946 0.203
! ! 34.68 0.949 0.191

sults presented in Figure 5 show that our method achieves
sharp details and better renderings in both rich texture and
texture-less regions.

Results on MipNeRF360. On the MipNeRF360, we re-
train 3DGS using our generated SfM point clouds since
we observed that the SfM points used in their official
code base can be improved. We report the quantitative re-
sults of the original 3DGS and our retrained 3DGS in Ta-
ble 1. Our method achieves comparable results with 3DGS
with a slight improvement. The MipNeRF360 dataset con-
tains quite small-scale natural and indoor scenes with rich
textures, so the SfM techniques usually provide a high-
quality point cloud for initialization and the simple clone
and split densification strategies don’t show a bottleneck in
the small-scale scenes. For indoor scenes with some weak-
texture surfaces, our method still shows improvement. We
report results for each scene under MipNeRF360 in the ap-
pendix to further support our conclusions. As shown in the

right of Figure 5, compared to 3DGS, our method achieves
more accurate renderings and clear details.

5.3. Ablation Study

Effectiveness of the Propagation Strategy and Planar
Constraint. We validate the effectiveness of the proposed
propagation strategy and planar constraint in the Waymo
dataset. As shown in Table 2, the progressive propaga-
tion strategy (the third row) brings significant improvement
compared with the baseline. This improvement can be at-
tributed to its ability to refine the geometric representation
of the scene, particularly in regions where the initial 3DGS
exhibits significant errors (shown in the first and second
rows of Figure 6). The planar constraint can further en-
hance the rendering quality by accurately modeling the nor-
mals of the planes, as shown in the third row of Figure 6.

Gaussian Number. Considering that more Gaussians can
better model scene details and achieve higher quality ren-
dering, it is worth investigating whether our rendering im-
provements over 3DGS are primarily due to generating a
larger number of Gaussians. As shown in Table 3, we
present the relationship between PSNR and the number of
Gaussians on the Waymo and MipNeRF360 datasets. In
Waymo, we retrain 3DGS by lowering the gradient thresh-
old for Gaussian densification as 3DGS*, resulting in the
generation of a larger number of Gaussians. The render-
ing quality of 3DGS improves with an increased number
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Figure 6: The progressive propagation strategy effectively enhances the geometry of the scene, resulting in improved
rendering quality. The planar constraint further improves the geometry and rendering of planes.

Table 3: Ablation study on Gaussian number. 3DGS*
refers to the results obtained by 3DGS retrained with a
lower gradient threshold for Gaussian densification. 3DGS
(Retrained) refers to the results obtained by 3DGS retrained
with better SfM point clouds.

Datasets Strategy PSNR Gaussians

Waymo
3DGS 33.53 992k

3DGS* 33.89 1629k
GaussianPro 34.68 1147k

MipNeRF360
3DGS 27.21 3362k

3DGS (Retrained) 27.88 3009k
GaussianPro 27.92 2773k

of Gaussians, as more Gaussians offer better fitting capa-
bilities. However, even when the number of Gaussians in
3DGS* is larger than ours, its rendering quality remains
significantly lower than ours. This highlights the impor-
tance of our strategy in densifying Gaussians with accurate
positions and orientations. Furthermore, the original 3DGS
utilizes fewer Gaussians than ours in the Waymo dataset
since it models the street incompletely and contains many
holes. In MipNeRF360, compared to the original 3DGS,
the retrained 3DGS (mentioned in results on MipNeRF360
of Section 5.2) achieves better rendering quality due to
more accurate SfM point clouds, even with fewer Gaus-
sians. Compared to 3DGS, our method provides accurate
geometric guidance for Gaussian densification, effectively
suppressing the generation of noisy Gaussians. As a result,
we achieve better rendering quality with fewer Gaussians.

Geometric Evaluation. We quantitatively demonstrate
that our method improves the accuracy of the scene ge-
ometry modeled by 3D Gaussians, as shown in Table 4.

Table 4: Rendered depth evaluation of 3DGS and Gaus-
sianPro in the Waymo dataset.

Method Abs Rel ↓ MAE(m) ↓ δ1 ↑
3DGS 0.349 6.11 0.570

GaussianPro 0.081 1.97 0.933

We compare the accuracy of the depth rendered by our
method with that of 3DGS in the Waymo dataset. The re-
sults clearly show a significant improvement in common
depth evaluation metrics (Laina et al., 2016).

The Robustness against Sparse Training Images. As the
number of training images decreases, the rendering quality
of neural rendering methods, including 3DGS, tends to de-
cline. In Table 5, we present the results of training 3DGS
and our method using randomly selected subsets compris-
ing 30%, 50%, 70%, 100% of the training images from
a scene in MipNeRF360. Remarkably, our method con-
sistently achieves superior rendering results compared to
3DGS across different percentages of training images.

Efficiency Analysis. We select two typical outdoor and in-
door scenes to compare the efficiency of our method with
3DGS, as shown in Table 6. We achieve a noticeable im-
provement in rendering quality with a slight increase in
training time. In the case of the street scene, 3DGS uses
large incorrect Gaussians to represent the ground, as shown
in the blue circle of Figure 1, resulting in fewer Gaussians
compared to our method. However, for the room scene,
our method results in more compact Gaussians with less
noise (also shown in Figure 7). Additionally, our method
achieves a comparable real-time rendering speed as 3DGS.
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Table 5: Comparison of 3DGS and ours with different training view ratios in the room scene of the MipNeRF360 dataset.

Method 30% 50% 70% 100%
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

3DGS 28.45 0.896 0.216 29.97 0.912 0.203 30.87 0.921 0.194 31.71 0.919 0.192
GaussianPro(Ours) 28.64 0.900 0.210 30.27 0.914 0.199 30.93 0.924 0.189 31.98 0.927 0.192

3DGS GaussianPro (Ours)

Figure 7: Visualization of Gaussians in the Room scene of
MipNeRF360 dataset. Our method contains fewer noisy
Gaussians and achieves a more compact representation.

Table 6: Efficiency analysis. We compare the rendering
performance and efficiency of our GaussianPro with 3DGS
initialized by SfM points and MVS points.

Scene Strategy PSNR Gaussians Training FPS

Street
SfM + 3DGS 35.05 665k 40min 119
MVS + 3DGS 36.13 1705k 250min 75

SfM + GaussianPro 36.08 991k 56min 108

Room
SfM + 3DGS 31.71 1537k 59min 105
MVS + 3DGS 32.05 1832k 270min 90

SfM + GaussianPro 31.98 1461k 70min 113

Comparison to MVS Inputs. As our method achieves
better rendering quality by improving the geometry of 3D
Gaussian, it raises the question of whether a similar effect
can be achieved by directly inputting denser and more ac-
curate MVS point clouds into 3DGS. To investigate this,
we compare the results of optimizing 3DGS with the dense
point cloud generated by the MVS method (Schönberger
et al., 2016). Table 6 shows that directly inputting the
MVS point cloud significantly increases the training time
(approximately 4 times) due to the additional MVS pro-
cess and the large number of initial Gaussians. Moreover,
the number of Gaussians increases significantly, and the
rendering speed noticeably decreases, despite a slight im-
provement in rendering quality. Contrarily, our method
achieves a favorable balance between rendering quality and
efficiency.

Number of Neighboring Pixels for Propagation. During
progressive Gaussian propagation, we follow ACMH (Xu
& Tao, 2019) to select eight neighboring pixels as candi-
dates. We validate the impact of reducing or increasing
the number of selected pixels on rendering performance,
as shown in Table 7. Since the propagation of neighbor-
ing points is computed in parallel, the number of neighbor-
ing points does not affect the time consumption. A sparse
selection of points cannot cover the entire neighboring ar-

Table 7: Ablation study on the number of neighboring pix-
els for propagation.

Number PSNR ↑ SSIM ↑ LPIPS ↓ Training time

1 35.42 0.953 0.226 56min
2 35.55 0.954 0.226 56min
4 35.88 0.959 0.209 56min
6 36.07 0.959 0.210 56min
8 36.08 0.960 0.204 56min
10 36.11 0.960 0.204 56min

eas, thus limiting the improvement in rendering quality. As
the number of neighboring points increases, the rendering
quality improves and finally converges.

6. Conclusion
In this paper, we propose GaussianPro, a novel progres-
sive propagation strategy to guide Gaussian densification
according to the surface structure of the scene. Based on
the iterative propagation process, we additionally introduce
the plane constraint during optimization to encourage the
Gaussians to better model planar surfaces. Our method
demonstrates superior rendering results compared to 3DGS
on both Waymo and MipNeRF360 datasets, while main-
taining compact Gaussian representations. Our method
shows significant improvements in structured scenes and
remains robust to variations in the number of training im-
ages. However, our method does not specially model dy-
namic objects and will present artifacts on these regions
like all the static Gaussian methods. In the future, the re-
cent dynamic Gaussian techniques can be incorporated into
our method as complementary components to handle dy-
namic objects.
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A. More Implementation Details of Gaussian Progressive Propagation
Neighboring view selection. In Gaussian progressive propagation, we need to select neighboring views to evaluate
color or geometric consistency and determine the propagated depth and normal. For video inputs in the Waymo dataset,
we directly choose two consecutive frames before and after the current frame as neighboring views. For an unordered
collection of images in MipNeRF360, we determine neighboring frames based on the number of SfM (Structure from
Motion) points shared between different frames. During propagation, to improve the accuracy of depth and normals, we
generate additional hypotheses for each local plane by randomly perturbing the values of distance and normal.

Sky masks. For outdoor datasets like Waymo, we use Segformer (Xie et al., 2021) to segment the sky region. Since the
sky lacks precise geometric structure, we mask the sky during the propagation process to avoid Gaussian densification and
plane constraint. We also masked out the sky region in the rendered depth map and normal map.

Derivation of homography transformation. The derivation of homography transformation H used in Sec. 4.2 is as
follows. For a pixel with its coordinate p and its depth z, we first project it back to the 3D space as a 3D point x:

x = zK−1p̃, (11)

where K is the camera intrinsic, p̃ is the homogeneous coordinate of p. Based on the relative transformation [Wrel, trel]
between the current view and the neighboring view, we transform point x from the current viewpoint to the neighboring
viewpoint, and then project it back to the 2D space as p′:

p′ ≃ K (Wrel x+ trel ) . (12)

Since point x lies on a local 3D plane parameterized as (d,n) (mentioned in Sec. 4.2), which satisfies:

n⊤x+ d = 0. (13)

Substituting Eq. 13 into Eq. 12 as:

p̃′ ≃ K

(
Wrelx− treln

⊤x

d

)
≃ K

(
Wrel −

treln
⊤

d

)
x

≃ K

(
Wrel −

treln
⊤

d

)
K−1p̃

≃ Hp̃

(14)

Multi-view geometric consistency check. As mentioned in Sec. 4.2, we filter out inaccurate depth and normal through
the multi-view geometric consistency check for the reference view. Specifically, for a pixel p in the reference view with
estimated depth z, the depth zg of the warped pixel pg from reference view to a target view g can be induced by:

zgp̃g = K(WrelK
−1zp̃+ trel), (15)

where p̃ and p̃g is the homogeneous coordinates of p and pg , K is the camera intrinsic, [Wrel, trel] is the relative
transformation from the reference view to the target view g. For each reference view, we choose four target views that are
near the reference view and generate a geometric consistency mask M as:

M(p) =

{
0, if

(∑4
g=0 β (|zg − z| /z)

)
< τ

1, otherwise.
, β(x) =

{
0, if x ≥ α
1, otherwise. , (16)

where the pixel is retained if it appears in at least τ target views, and the absolute relative error between its warped depth
and depth in the target view is within α.
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Table 8: Ablation study on different propagation intervals.

Interval m PSNR ↑ SSIM ↑ LPIPS ↓ Training time

10 36.11 0.960 0.203 78min
30 36.09 0.960 0.204 64min
50 36.08 0.960 0.204 56min
70 35.88 0.957 0.207 51min
90 35.86 0.957 0.208 48min

Table 9: Ablation study on different iterations of propagation for plane candidates.

Iteration u PSNR ↑ SSIM ↑ LPIPS ↓ Training time

1 35.80 0.954 0.213 53min
2 36.01 0.958 0.209 55min
3 36.08 0.960 0.204 56min
5 36.10 0.961 0.204 59min
7 36.11 0.961 0.203 61min

B. More Ablation Studies
Number of iterations for propagation. As stated in implementation details of Section 5.1, we perform our proposed
progressive propagation strategy every m = 50 training iterations where propagation is performed u = 3 times. The
number of propagation iterations is determined by the parameters m and u, which we have experimentally evaluated and
presented in Tables 8 and 9.

Table 8 illustrates that the quality of rendering improves as the interval between Gaussian propagation decreases, eventually
converging when the interval reaches 50. Shorter intervals lead to more frequent propagation, allowing for more thorough
optimization of the scene’s geometry. However, an increase in the total number of propagation iterations also leads to
higher time costs. Table 9 shows that an increase in propagation times u of plane candidates results in improved rendering
quality, which stabilizes after reaching 3 iterations. Increasing the number of iterations allows candidate planes for a pixel
to be propagated from more distant areas, enabling better error correction over larger areas. As the propagation of plane
candidates is only one part of the Gaussian propagation module, the time cost increase associated with it is not as significant
as the increase in Gaussian propagation times discussed in Table 8.

C. More Rendering Results
In this section, we present more results on Waymo (Fig. 8) and MipNeRF360 (Fig. 9) datasets. Compared to 3DGS, our
method achieves more accurate rendering results and improved geometric structures, particularly the large-scale scenes
on Waymo. Additionally, the results on MipNeRF360 reveal that 3DGS already optimizes accurate geometry, especially
depth, for small-scale scenes with rich textures. Therefore, the improvements achieved by our method on the MipNeRF360
dataset are limited.

D. Results of Each Scene in Waymo and MipNeRF360
Table 10-15 presents the evaluation metrics for each scene in Waymo and MipNeRF360. For the MipNeRF360 dataset,
we include the metrics from the original 3DGS paper (3DGS*), as well as the metrics obtained by rerunning 3DGS with
new poses generated using COLMAP.

In the Waymo dataset, we achieve state-of-the-art (SOTA) rendering results for each scene, which significantly outperform
the baseline 3DGS. In the MipNeRF360 dataset, we achieve improvements over 3DGS in indoor scenes(the first four
rows), which contain many structured planes. In natural scenes with rich textures but lacking structured planes, our results
are comparable to 3DGS. In these scenes, SfM techniques usually provide a high-quality point cloud for initialization
and the simple clone and split densification strategies don’t show a bottleneck. Besides, these scenes contain intricate
fine structures that cover a few pixels, such as the grass and leaves, making it challenging to accurately estimate surface
normals. Although ZipNeRF achieves the best rendering quality on the MipNeRF360 dataset, its rendering speed is
significantly slower compared to ours (0.09 FPS for ZipNeRF compared to 108 FPS for our method).

14



GaussianPro: 3D Gaussian Splatting with Progressive Propagation

3D
G

S

Rendered Image Rendered Depth Rendered Normal

G
au

ss
ia

nP
ro

(O
ur

s)
3D

G
S

G
au

ss
ia

nP
ro

(O
ur

s)
3D

G
S

G
au

ss
ia

nP
ro

(O
ur

s)
3D

G
S

G
au

ss
ia

nP
ro

(O
ur

s)

Figure 8: More rendering results on the Waymo dataset.
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GaussianPro: 3D Gaussian Splatting with Progressive Propagation
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Figure 9: More rendering results on the MipNeRF360 dataset.
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GaussianPro: 3D Gaussian Splatting with Progressive Propagation

Table 10: SSIM results on the Waymo dataset.

Sequence SSIM
NGP Mip360 Zip 3DGS Ours

Seg100613 0.823 0.927 0.954 0.947 0.958
Seg100275 0.917 0.952 0.957 0.950 0.960
Seg113792 0.905 0.934 0.947 0.933 0.948
Seg132384 0.935 0.948 0.964 0.957 0.963
Seg144248 0.852 0.762 0.896 0.938 0.939
Seg148697 0.856 0.885 0.924 0.913 0.934
Seg150623 0.928 0.937 0.963 0.960 0.968
Seg164701 0.855 0.909 0.923 0.917 0.927
Seg405841 0.899 0.924 0.927 0.931 0.940
Average 0.886 0.909 0.939 0.938 0.949

Table 11: PSNR results on the Waymo dataset.

Sequence PNSR
NGP Mip360 Zip 3DGS Ours

Seg100613 33.67 31.07 36.55 35.71 36.83
Seg100275 32.38 34.27 36.17 35.05 36.08
Seg113792 32.63 32.67 35.76 33.26 34.87
Seg132384 33.03 32.90 37.10 35.52 36.54
Seg144248 28.92 21.17 32.12 34.54 35.21
Seg148697 27.95 27.20 30.88 29.75 30.96
Seg150623 33.19 31.16 37.59 36.94 38.23
Seg164701 27.35 29.40 29.90 29.38 30.48
Seg405841 29.70 30.93 31.93 31.63 32.91
Average 30.98 30.09 34.22 33.53 34.68

Table 12: LPIPS results on the Waymo dataset.

Sequence LPIPS
NGP Mip360 Zip 3DGS Ours

Seg100613 0.237 0.201 0.178 0.209 0.158
Seg100275 0.262 0.257 0.200 0.233 0.204
Seg113792 0.295 0.289 0.216 0.239 0.233
Seg132384 0.234 0.200 0.186 0.218 0.190
Seg144248 0.364 0.396 0.303 0.239 0.233
Seg148697 0.323 0.230 0.185 0.224 0.152
Seg150623 0.246 0.214 0.191 0.214 0.183
Seg164701 0.292 0.275 0.194 0.212 0.179
Seg405841 0.277 0.292 0.195 0.218 0.186
Average 0.281 0.262 0.205 0.223 0.191
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GaussianPro: 3D Gaussian Splatting with Progressive Propagation

Table 13: SSIM results on the MipNeRF360 dataset.

Sequence SSIM
NGP Mip360 Zip 3DGS* 3DGS Ours

Room 0.871 0.913 0.925 0.914 0.919 0.927
Counter 0.817 0.894 0.902 0.905 0.915 0.916
Kitchen 0.858 0.920 0.928 0.922 0.933 0.935
Bonsai 0.906 0.941 0.949 0.938 0.945 0.952
Bicycle 0.512 0.685 0.769 0.771 0.810 0.810
Flowers 0.486 0.583 0.642 0.605 0.603 0.598
Garden 0.701 0.813 0.860 0.868 0.890 0.890
Stump 0.594 0.744 0.800 0.775 0.769 0.763
Treehill 0.542 0.632 0.681 0.638 0.636 0.631
Average 0.699 0.792 0.828 0.815 0.824 0.825

Table 14: PSNR results on the MipNeRF360 dataset.

Sequence PSNR
NGP Mip360 Zip 3DGS* 3DGS Ours

Room 29.69 31.63 32.65 30.63 31.71 31.98
Counter 26.69 29.55 29.38 28.70 29.06 29.17
Kitchen 29.48 32.23 32.50 30.32 31.57 31.60
Bonsai 30.69 33.46 34.46 31.98 32.69 33.05
Bicycle 22.17 24.37 25.80 25.25 26.64 26.60
Flowers 20.65 21.73 22.40 21.52 21.64 21.54
Garden 25.07 26.98 28.20 27.41 28.77 28.70
Stump 23.47 26.40 27.55 26.55 26.58 26.42
Treehill 22.37 22.87 23.89 22.49 22.30 22.21
Average 25.59 27.69 28.54 27.21 27.88 27.92

Table 15: LPIPS results on the MipNeRF360 dataset.

Sequence LPIPS
NGP Mip360 Zip 3DGS* 3DGS Ours

Room 0.261 0.211 0.196 0.220 0.192 0.192
Counter 0.306 0.204 0.185 0.204 0.185 0.175
Kitchen 0.195 0.127 0.116 0.129 0.113 0.113
Bonsai 0.205 0.176 0.173 0.205 0.169 0.163
Bicycle 0.446 0.301 0.208 0.205 0.194 0.195
Flowers 0.441 0.344 0.273 0.336 0.346 0.342
Garden 0.257 0.170 0.118 0.103 0.107 0.107
Stump 0.421 0.261 0.193 0.210 0.236 0.244
Treehill 0.450 0.339 0.242 0.317 0.337 0.344
Average 0.331 0.237 0.189 0.214 0.209 0.208
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