
Order-Independence Without Fine Tuning

Reid McIlroy-Young∗

Department of Computer Science
Harvard University

Katrina Brown
Department of Computer Science

Harvard University

Conlan Olson
Department of Computer Science

Columbia University

Linjun Zhang
Department of Statistics

Rutgers University

Cynthia Dwork
Department of Computer Science

Harvard University

Abstract

The development of generative language models that can create long and
coherent textual outputs via autoregression has lead to a proliferation of
uses and a corresponding sweep of analyses as researches work to determine
the limitations of this new paradigm. Unlike humans, these ‘Large Language
Models’ (LLMs) are highly sensitive to small changes in their inputs, leading
to unwanted inconsistency in their behavior. One problematic inconsistency
when LLMs are used to answer multiple-choice questions or analyze mul-
tiple inputs is order dependency: the output of an LLM can (and often
does) change significantly when sub-sequences are swapped, despite both
orderings being semantically identical. In this paper we present Set-Based
Prompting, a technique that guarantees the output of an LLM will not
have order dependence on a specified set of sub-sequences. We show that this
method provably eliminates order dependency, and that it can be applied to
any transformer-based LLM to enable text generation that is unaffected by
re-orderings. Delving into the implications of our method, we show that,
despite our inputs being out of distribution, the impact on expected accuracy
is small, where the expectation is over the order of uniformly chosen shuffling
of the candidate responses, and usually significantly less in practice. Thus,
Set-Based Prompting can be used as a ‘dropped-in’ method on fully trained
models. Finally, we discuss how our method’s success suggests that other
strong guarantees can be obtained on LLM performance via modifying the
input representations.
Code is available at github.com/reidmcy/set-based-prompting.

1 Introduction

Recent advances in machine learning have led to a paradigm shift, as new training methods,
which rely on massive scale datasets to create general purpose ‘base models’, outperform
specialized single purpose models (Achiam et al., 2023; Radford et al., 2019). A particularly
notable development is in natural language processing, where self-supervised learning has
led to a cornucopia of transformer based models that can string together multiple next

∗Corresponding author reidmcy@seas.harvard.edu

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/reidmcy/set-based-prompting
mailto:reidmcy@seas.harvard.edu

a) Llama 2, 7B
Default Order

The pitch of a sound is
mostly related to its

“intensity”
“frequency”
“amplitude”

“speed”


Answer: frequency 2�

b) Llama 2, 7B
Reversed Order

The pitch of a sound is
mostly related to its

“speed”
“amplitude”
“frequency”
“intensity”


Answer: amplitude 4

c) Llama 2, 7B
Set-Based Prompting

The pitch of a sound is
mostly related to its

“speed”
“amplitude”
“frequency”
“intensity”


Answer: frequency 2�

Figure 1: Illustration of order dependency in Llama 2, 7B. Using the order provided by
(Measuring Massive Multitask Language Understanding) (MMLU) (Hendrycks et al., 2020)
Llama 2 gets the question correct as seen in a), but if the order is reversed for the questions
Llama 2, 7B predictions the wrong answer. In c) we use Set-Based Prompting to remove
the ordering of the answers and Llama 2, 7B once again gets the question correct.

token predictions, via autoregression, to generate coherent text that approximates a human
response. These generated responses are not human and exhibit non-human behavioral
quirks due to the limitations of the transformer based LLM architecture. Some of these,
like the inability to reason about letters, are due to the choice of tokenization (the process
of converting text into a sequence of numbers that can be used as an input) which breaks
words into multiple character chunks (McCoy et al., 2023), while others like the Lost Middle
Phenomenon are limitations of the training data (N. F. Liu et al., 2024). The solutions to
these limitations are known (An et al., 2024), although often impractical (Sutton, 2019).
There are other limitations of LLMs that appear to be fundamental to the design of LLMs.
One pernicious issue is the order dependency problem. This is the phenomenon where the
output of an LLM can be significantly altered by changing the order of inputs, even when
the re-ordering should have an identical response; see figure 1 for an example. This order
dependency problem is well studied for multiple choice questions (Pezeshkpour et al., 2023;
Zheng et al., 2024), but can happen on any task.
Having systems that make or aid in decision making that are sensitive to factors of the input
that are orthogonal to the goals of the operators presents significant concerns. Consider an
LLM that reads medical papers and summarizes them to a doctor (Van Veen et al., 2024).
If shuffling the papers changes the summary can the doctor trust the model’s responses?
Additionally, order dependency presents algorithmic fairness concerns, such as in a case
where an LLM being used to compare candidates has a slight bias for the first candidate
(Adian Liusie, 2024; Li et al., 2023).
In this paper we present a solution to the order dependency problem. Our method Set-Based
Prompting solves this problem by removing the ordering information from the inputs to
the LLM, for a specified set of sub-sequences. We refer to this as prompting to emphasize
that our method does not modify the underlying model, it only changes the input. These
sub-sequences of multiple tokens are (from the model’s perspective) run in parallel, leading
to the output being agnostic as to the ordering of the sub-sequences2. We show that our
method guarantees the parallel treatment of sub-sequences for arbitrary transformer based
LLMs. We then test it on a variety of models on multiple choice question tasks and show
that while parallel sub-sequences can impact performance, the impact is usually within that
caused by re-ordering the sub-sequences when run without our method. We also discuss how
the success of Set-Based Prompting suggests many future potential contributions.

2We sometimes refer to these as parallel sub-sequences to emphasize that order information has
been removed, so we have a set of sub-sequences instead of a list.

2

2 Related Works

Multiple choice questions (MCQs) serve as an important task format in the evaluation of
large language models (LLMs). Previous work has shown that modern LLMs are vulnerable
to re-ordering of options in MCQs. Pezeshkpour et al., 2023 identify inherent ‘positional bias’
in the MCQ setting, where LLMs prefer to select options in specific positions as answers, and
propose reordering the options to position the most likely candidates in specific locations
within the sub-sequence. This is viable in the case where both the prior positional bias and
the correct answers are known a priori, but not necessarily in more general settings. Zheng
et al., 2024 identifies a slightly different problem of ‘token bias’, wherein LLMs prefer to
select specific option IDs A/B/C/D as answers. They propose estimating prior token bias
via a label-free, inference-time debiasing method, which separates the model’s prior bias for
option IDs from the overall prediction distribution. Adian Liusie, 2024 likewise identifies
positional bias in the setting of pairwise comparisons of natural language generation, and
suggests debiasing using estimates of prior positional bias derived from observing comparison
outcomes for a subset of candidates. These methods all assume the existence of a set of
comparable samples with which to estimate prior ordering biases. Other work looking at how
modifying word choice affects the model’s outputs (Salewski et al., 2024) show that this issue
extends beyond order-dependency, but this matches how humans answer questions (Tjuatja
et al., 2023) so should be less unintuitive for non-experts.
There is also an example of this order-dependence being used to probe the training data of
LLMs. Oren et al., 2023 shows that the ordering of questions in the training data affects the
ordering during inference, allowing for detection of training data contamination.
One implication of this MCQ order-dependence is that it makes the relative comparisons of
the performance of different models on benchmarks such as MMLU less reliable, as different
evaluation runs may employ different MCQ orderings within the test sets (Alzahrani et al.,
2024).

3 Set-Based Prompting

To provably ensure order-independence we introduce Set-Based Prompting, an elegant
2-pronged modification to the model at inference time touching, respectively, the attention
mask and the positional encoding. As these areas are not usually considered to be variable,
this pushes the model slightly out of distribution. Furthermore, we hypothesize that some
output quality degradation may occur since in the order-independent case there is both less
computation and less information, as no tokens in the set of parallel sequences can attend to
tokens in other parallel sequences. However, we hypothesize that base models are robust
to minor changes, and output coherence will not be noticeably impaired. In fact, to see
the impact of our methods requires many queries. We begin with a review of the attention
mechanism’s attention mask and the positional encoding system used in transformer-based
LLMs. Then we will show how we can use a non-triangular mask combined, together with a
modified positional encoding — our two prongs — to make the attention block unable to
determine the order of sub-sequences. This results in completely removing all the ordering
information between sub-sequences, making the model’s outputs perfectly order invariant.

3.1 Background

Attention Mask. The attention mechanism is a means of taking in an arbitrary number of
inputs and attending to them in a weighted manner. This allows for longer sequences to be
input and processed into a single output. When processing text, the attention mechanism is
used on each input token in turn, creating an embedding for each token separately.
In practice, we say the tokens can see all other tokens in the input, but when generating
text the tokens in the input are usually treated as if they are the next to be generated and
future tokens are masked output. This is seen in LLMs including GPT-2 (Radford et al.,
2019) and Llama (Touvron, Lavril, et al., 2023) with their self-attention mechanism, wherein
the outputs for a certain position in a sequence are based only on the known outputs at

3

Order-Dependant Prompting Set-Based Prompting

j = 1 2 3 4 5 6 7 j = 1 2 3 2 3 4 5

i = 1 the 1 0 0 0 0 0 0 i = 1 the 1 0 0 0 0 0 0
i = 2 aptly 1 1 0 0 0 0 0 i = 2 aptly 1 1 0 0 0 0 0
i = 3 quick 1 1 1 0 0 0 0 i = 3 quick 1 1 1 0 0 0 0
i = 4 light 1 1 1 1 0 0 0 i = 2 light 1 0 0 1 0 0 0
i = 5 reddy 1 1 1 1 1 0 0 i = 3 reddy 1 0 0 1 1 0 0
i = 6 brown 1 1 1 1 1 1 0 i = 4 brown 1 0 0 1 1 1 0
i = 7 fox 1 1 1 1 1 1 1 i = 5 fox 1 1 1 1 1 1 1

p(i, 1) p(i, 2) p(i, 3) p(i, 4) p(i, 5) p(i, 6) p(i, 7) p(i, 1) p(i, 2) p(i, 3) p(i, 2) p(i, 3) p(i, 4) p(i, 5)
+ + + + + + + + + + + + + +

X = [the, aptly, quick, light, reddy, brown, fox] Xs = [the, {[aptly, quick], [light, reddy, brown]}, fox]

Xstart s1 s2 Xend

Figure 2: Visualization of the differences between order-dependant prompting (left) and
Set-Based Prompting (right). Our input is the prompt ‘the aptly quick light reddy brown
fox’ and ‘aptly quick’ is in parallel to ‘light reddy brown’. Each row represents a query to an
attention block (we treat each word as a token), with the index of the query given by i. X
and Xs give the set of values over which the query is attending. p(i, j) is the vector-valued
positional encoding which is added to the word’s embedding. The center of the diagram is
the attention mask Mj,i.

previous positions and not on future positions. This is implemented by multiplying the
inputs by a mask vector that is 0 for all future tokens. When these mask vectors are stacked
(for parallel computation), they form a triangular matrix, the attention mask matrix for that
input. Figure 2 shows this attention mask for a sequence of 7 tokens.

Positional Encoding. Different language models use different methods of representing the
position of input tokens within a sequence. The original transformer introduced by Vaswani
et al., 2017 proposed absolute positional embeddings, which involves assigning a specific
value vector at each time step, or position, and then adding element-wise those values to the
token embedding. This is the positional encoding method used in models such as GPT-2.
In contrast, most state of the art LLMs including lama2/3, and PaLM (Anil et al., 2023),
use rotary positional embeddings (RoPE) as introduced by Su, Lu, et al., 2023, which encode
absolute positional information with a rotation matrix and naturally incorporate explicit
relative position dependency in the self-attention formulation.

3.2 Provable Order-Independence via Set-Based Prompting

We now describe Set-Based Prompting , our technique for modifying the positional encoding
to provide parallel (order-free) representation of sequences of text, and prove that it ensures
order-independence. Set-Based Prompting can be applied to both absolute and RoPE
embeddings, on both GPT-2 and Llama2/3 models. In the absolute embedding case, the same
value is added to the token embedding for each token located in the same position in the
parallel representation of the input text. Likewise in RoPE, absolute positional information
is the same for two tokens in the same “location” within parallel sequences, and a token
within a parallel sequence retains relative positional dependency with other tokens within
the same parallel sequence.

3.3 Methodology and Theoretical Guarantees

Consider the Attention block with positional encoding (Ferrando et al., 2024; Kobayashi
et al., 2021; Su, Ahmed, et al., 2024) for single-headed attention3, the attention mechanism
maps multiple vectors into a single vector in a differential way. We start with a fixed query
vector xi which we give as an input column vector, X = [x1, . . . ,xn] ∈ Rd×n is the sequence
of all n inputs that will be mapped to a single vector, and M is the attention mask, an
n × n lower triangular matrix. The attention operator is defined as follows.

3We drop the bias, heads and skip connections for brevity, see appendix for the complete
formulation

4

ATTN(xi,X,M) =
∑

xj∈X

Mi,jαi,j (WV (xj + p(i, j))) (1)

Mi,j :=
{

1 if j ≤ i

0 else αi,j := softmax
xj∈X

(
x>

i WQ (WK (xj + p(i, j)))√
d

)

where WQ (query), WK (key), and WV (value) are d × d matrices, with d being the internal
dimensions of the matrices. p(i, j) is the vector-valued positional encoding for the token at
position j relative to position i; note that if it is absolute (GPT-2) then p is only a function
of j, while if relative (RoPE) it is a function of i − j.
Recall that xi is fixed. Equation (1) can therefore be considered to be a weighted sum over
all columns of X, where the jth column is weighted by αi,j , and where M prevents future
tokens from having any weight.
Since addition is commutative, the order in which the individual xj are provided is lost,
except as provided by p(i, j), which includes the order information both for the scaling (αi,j)
and the unscaled vector (xj + p(i, j)). The attention mask M also functionally encodes
positional information when attention blocks are applied in series since ‘future’ xj are masked
out and do not contribute to the sum.
Thus, to prove that Set-Based Prompting is order-independent, it suffices to show that
the positional encoding (p(i, j)) and attention mask (M) are unaffected by re-ordering
by an arbitrary permutation of the parallel sub-sequences. Let S be the (unordered!)
set of parallel sub-sequences, S = {s1, . . . , s`} with

∑l
k=1 |sk| = n. We start by defining

the indices on each token (subscript) and which sequences the tokens are members of
(superscript), with x∅ indicating a token is a member of no sub-sequences. The tokens before
the parallel sub-sequences are treated identically as in the normal case, and we denote them
by Xstart =

[
x∅

1, . . . ,x∅
r−1
]

where r is the lowest index in the parallel sub-sequences. The
tokens after the parallel sub-sequences can be described similarly Xend =

[
x∅

p+1, . . . ,x∅
m

]
where p is the greatest index in the parallel sub-sequences and m is the final index. Note
that m = |Xstart| + (p − r) + |Xend|, where | · | is the length of a sequence of vectors.

Then, for a parallel sub-sequence sk we say that sk =
[
xk

r , . . . ,xk
q

]
. Note that in our input

representation there is no ordering on sk ∈ S, because we reset the subscripts (positional
indices) at the beginning of each sub-sequence. We have simply indexed the sub-sequences
for convenience.
By writing it this way we can directly input it into the ATTN(xi,Xs,M) function with
Xs = Xstart ◦ s1 ◦ · · · ◦ s` ◦ Xend, where ◦ is concatenation. If we do this we will obtain
order independence since p(i, j) and Mi,j only use the indices of the tokens, so they are
unaffected by ordering of the sub-sequences.
To show how p(i, j) and Mi,j (the unmodified M) are order independent we need to consider
the three possible cases for the input vector xi: 1) xi is before the sub-sequences, 2) xi is in
the sub-sequences, and 3) xi is after the sub-sequences. The first case is straightforward
since x∅

i ∈ Xstart. The output is unaffected by the ordering of S as all sub-sequence tokens
are masked out by Mi,j ; i < r.

The second case is where xk
i ∈ sk with r ≤ i ≤ p. In this case if we naively evaluate

ATTN(xk
i ,Xs,M) we will get a result that is unaffected by the ordering of S, but the

activations will be further from the training distribution than necessary, resulting in lowered
performance as discussed in Section 4.3. Note that for any xk

j ∈ Xs, p(i, j) and M(i, j) are
only affected by the positional index j (instead of k).

Finally, in the third case where x∅
i ∈ Xend, the same argument as the second case applies.

The input vector x∅
i can ‘see’ all previous tokens, but their positional indexing is unchanged

under re-orderings of S. Thus in all three cases we have sub-sequence order independence.

5

3.3.1 Attention Mask

While the above method is sufficient for sub-sequence order independence, if used in practice
the generated representations encountered by the learned weight matrices (WV and (WK)
will be far from the training distribution in both case 2 and case 3 encounter. In case 2
this is due to input vectors attending to all sub-sequences’ inputs, e.g, if there were three
sub-sequences starting at index i = 2 the first token of sub-sequence 1 (x1

2) would have
non-zero weight on 4 tokens, three of which would have the positional encoding of 2. In
training, the model would never see multiple weights with the same positional encoding
particularly multiple positional encodings that match the input token. Note that when used
in an LLM ATTN() is applied sequentially, so even minor errors can be amplified. For case
3, the results are less severe since the positional encoding multiplicity only occurs for a set
of previous tokens, it does not occur for the input token.
We can mitigate some of the issues by modifying the attention mask M(i, j), making it so
that case 2 tokens do not encounter out of distribution inputs. To do this we define a new
attention mask Mk,f

i,j that also takes in the sub-sequences index each along with positional
index of each token (xk

i , xf
j , etc), while still retaining the sub-sequence order independence

we want. With this notation, when k = f 6= ∅ we have that xk
i and xf

j are in the same
parallel sub-sequence.

Mk,f
i,j =


Mi,j if k = f

Mi,j if k = ∅
Mi,j if f = ∅
0 else

=


1 if j ≤ i and k = f

1 if j ≤ i and k = ∅
1 if j ≤ i and f = ∅
0 else

(2)

Equation 2 still maintains order independence since it only differs from Mi,j when i 6= j and
in that case does not depend on the values of i or j.

If we consider ATTN(xk
i ,Xs,Mk,f

i,j) we still retain order independence because
ATTN(xk

i ,Xs,Mk,f
i,j) does not change under re-orderings of the labels, it only considers

equality or absence of labels. See Section 4.3 for results when we don’t do this masking.
This modified attention mask means that only tokens in case 3 see out of training distribution
representations, and that no tokens will ‘see’ multiple other tokens at the same index.
This yields the following theorem.

Theorem 1 Given Mk,f
i,j as in Equation (2), fix any permutation function τ on the

indices 1, . . . , ` of the sub-queries S = {s1, . . . , sk, . . . , s`} for the attention mechanism,
so that applying τ to the blocks of column vectors corresponding to the `-th paral-
lel sub-sequences transforms Xs = Xstart ◦ {[x1

1, ...], . . . , [xk
1 , ...], . . . , [x`

1, ...]} ◦ Xend to
X ′

s = Xstart ◦ {[xτ(1)
1 , ...], . . . , [xτ(k)

1 , ...], . . . , [xτ(`)
1 , ...]} ◦ Xend. Then

ATTN(xk
i ,Xs,Mk,f

i,j) = ATTN(xτ(k)
i ,X ′

s,Mk,f
i,j) (3)

and

ATTN(x∅
i ,Xs,Mk,f

i,j) = ATTN(x∅
i ,X ′

s,Mk,f
i,j). (4)

4 Performance

While Set-Based Prompting is guaranteed to produce order independent results, we still
need to test what other impacts it has on the generated text. To this end, we collected four
different LLM families (GPT-2 (Radford et al., 2019), Llama 2 (Touvron, Martin, et al., 2023),

6

OpenAI Llama 2 Llama 3 Mistral

GPT-2 7B 7B Chat 13B 13B Chat 8B 8B Inst. 7B Inst.

Model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Mo
di
fi
ed
 M
ML
U
Ac
cu
ra
cy

Ordering Effect
Worst of 2
Best of 1
Best of 2
Set-Based Prompting

(a) Modified CSQA results for each model

OpenAI Llama 2 Llama 3 Mistral

GPT-2 7B 7B Chat 13B 13B Chat 8B 8B Inst. 7B Inst.

Model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Mo
di
fi
ed
 M
ML
U
Ac
cu
ra
cy

Ordering Effect
Worst of 2
Best of 1
Best of 2
Set-Based Prompting

(b) Modified MMLU results for each model

Figure 3: Per model accuracy on two different datasets, blue bars (left three) indicate
runs done without our method and green with Set-Based Prompting . The blue bars are
constructed by running the test twice, once with the normal ordering and once with the
reversed ordering. Worst of 2 and Best of 2 count when both orderings lead to an correct
answer or only one ordering answered correctly, respectively. While Best of 1 indicates
that the normal ordering led to correct answers. As Set-Based Prompting is invariant to
reordering so we only show one bar for all orderings.

Llama 3 (AI@Meta, 2024), and Mistral (Jiang et al., 2023)) to conduct our experiments
(see figure 1 for the list of models). Due to our method modifying the internals of the model,
each family requires a custom implementation of the inference code, meaning we can test
all models in a family, but adding new families is time consuming. Our implementation for
inputting parallel sub-sequences is implemented like the special tokens already commonly
used by most LLMs, with three special ‘tokens’ (start-parallel, new-sub-sequence, and
end-parallel) that are removed during inference, allowing for Set-Based Prompting to be
added in existing workflows directly.
For testing we used two standard test sets CommonsenseQA (CSQA) (Talmor et al., 2019)
and (Measuring Massive Multitask Language Understanding) (MMLU) (Hendrycks et al.,
2020); these were chosen because they are multiple choice question sets that allow us to use
the multiple options as the parallel sub-sequences.
As we want the runs with and without Set-Based Prompting to be similar we modified the
prompting for both datasets. Instead of using numbers or letters before each option we
quote the options in double quotes (") and separate them with a space. This allows for the
parallel queries to have the exact same set of tokens as the non-parallel queries. Of note, we
implement the normal 1-shot evaluation for these tests that looks at the probability of each
answer being generated, and we use the greatest value as the selected answer. We do observe
that this slightly reduces the accuracy of the models from prompting with numbers or letters,
so we label the methods ‘modified CSQA’ and ‘modified MMLU’ to differentiate our results.
As we are concerned with the relative performance of our method, not in benchmarking the
models, we believe this gives us results that are close to the existing literature.

4.1 CommonSenseQA

As we are concerned with reducing the variation of models under reordering, we examine
both the accuracy under the default ordering, and the potential accuracy under reordering.
In Figure 3a we examine our model’s accuracy on CSQA, both with and without Set-Based
Prompting . For the order dependent results we run CSQA twice and divide the answers into
4 sets (as in a confusion matrix): questions that both orderings get correct are counted and
added to the Worst of 2 count, while questions that only one gets correct are also added to
the Best of 2 bar, with the ones the normal ordering got correct used for Best of 1. The
counts are then divided by the total number of questions (9741) to give the mean accuracy.
Thus, the range of the blue bars can be considered to be the possible range of accuracies
under two possible orderings per question. Note that if the models understood the text the
difference between orderings would be minuscule; the difference between just two orderings
being large shows that the specific models are fundamentally incapable of solving multiple
choice questions, they merely approximate a good response in expectation.

7

Llama 2 Llama 3

7B 7B Chat 13B 13B Chat 8B
0.15

0.20

0.25

0.30

0.35

0.40

Mo
di
fi
ed
 M
ML
U
Ac
cu
ra
cy

Set-Based Prompting
No
Yes

Figure 4: MMLU results for a subset of mod-
els across all possible permutations (4!) of the
ordering of the options, with the accuracy
under Set-Based Prompting indicated with a
diamond. Dots are ordered by accuracy with
in each model’s results, boxes show the quar-
tiles across the different ordering.

Llama 2 Llama 3

7B 7B Chat 13B 13B Chat 8B 8B Inst.
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Mo
di
fi
ed
 C
SQ
A
Ac
cu
ra
cy

Input Representation
Unmodified
Modified Positional Encoding
Modified Attention Mask
Set-Based Prompting

Figure 5: Accuracy per model on MMLU,
with error bars showing the variation in accu-
racy under two orderings. The conditions are
unmodified model, only the positional encod-
ing p(i, j) modified, only the attention mask
Mk,f

i,j modified, and Set-Based Prompting

When we examine our method we see (1) that all ordering produce the same result, and (2)
that the accuracy is within that of the variation of order dependent queries for all models
except Llama 3, 8B Instruct. This result suggest that Set-Based Prompting is not adding
additional information into the model, instead it is removing a dimension of variation. We
discuss some hypotheses for how our method impacts the response generation in section 5.

4.2 Measuring Massive Multitask Language Understanding

Figure 3b shows the same analysis as in section 4.1 but for MMLU (Hendrycks et al., 2020).
We see similar results to CSQA, but with lower accuracy on the more complex MMLU.
To further explore the impact of reordering on outputs we ran all possible permutations of
MMLU option orderings through a subset of our models. In Figure 4 we see that for all
Llama 2 models Set-Based Prompting is above or within the inter-quartile range of the 24
samples. We do see that in Llama 3 our method is as bad as the worst ordering, but it is
still within the range of orderings.

4.3 Ablations

Partial Implementations. While we have a proof as to why both the the positional
encoding and attention mask need to be modified, the transformer models are large enough
that empirical observations are wanted to confirm the theory. We tested variations of
Set-Based Prompting where only the attention mask or the positional encoding was modified
to mask the positional information. Figure 5 shows the variation between normal ordering
and reverse ordering of question options for the first 20 sets of questions in MMLU (ordered
alphabetically). Interestingly, modifying the attention mask reduces variation much more
than the positional encoding, although the effect varies significantly between models.

Enumerated Options. We ran a subset (first 20) of MMLU with the option numbers
re-added, this lead to an improvement on all orderings. Note that adding numbers to inputs
encoded with Set-Based Prompting implicitly removes the guarantee of order independence
as there is an ordering implied by the numbers. See figure 10 in the appendix for this result.

Chain of Thought. We implemented a simple chain of thought prompt (“A: Let’s think
step by step”) for the first 20 MMLU question sets. This lets us determine if the effects of
Set-Based Prompting are limited to inputs near the end of the input sequence and check if an
alternative prompting method would change the results. This method produced a moderate
uplift in performance for both order dependent and order independent cases, note that this
experiment was run once and not tuned. See figure 11 in the appendix for this result.

8

OpenAI Llama 2 Llama 3

GPT-2 7B 7B Chat 13B 13B Chat 8B 8B Inst.

Model

0.0

0.2

0.4

0.6

0.8

Se
nt
im
en
t
An
al
ys
is
 A
cc
ur
ac
y

Example Ordering
Worst of 2
Best of 1
Best of 2
Set-Based Prompting

(a) Sentiment classification task with in-context
learning. The model was provided with 4 sam-
ples with labels, then asked to classify the fifth.
Samples orderings are changed betwen bars.

0 1 2 3 4 5 6 7 8 9
Position of Document with the Answer

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Documents
in Parallel

0
2
4
5
10

(b) Accuracy on extracting a pieces of information
from 10 documents. 0 parallel batches is the
fully order dependent model, with others being
different splitting locations.

4.4 Other Tests

In Context Learning (Sentiment Analysis). We implemented a sentiment classification
task with in context learning. The model was provided with 4 samples with labels, then
asked to classify a fifth. The dataset is Financial Phrase Bank Malo et al., 2014 so all
statements are finance related and classification is positive or negative. To look at the effects
of ordering on the model performance we always had three samples with the same label and
1 with the other label, with the different label always being first or last. See figure 6a for
the impacts of different orderings on the final classification task accuracy. Our experiment
shows that Set-Based Prompting applied to the examples often improves performance over
even the Best of 2 case.

Long-Context Information Retrieval. We implemented the long-context information
retrieval task described in the paper by Liu et al. N. F. Liu et al., 2024. To do this, we
generated 10 document sequences with the answer hidden in one of them. Then we moved
where the answer was located from the first to the last document and observed the retrieval
accuracy. We used the same templates and dataset as Liu et al. for this. To test the effects
of Set-Based Prompting we ran the documents in parallel, either all 10, 5 groups (2,2,2,2),
four groups (3,3,3,1) or two groups (5,5). When running the sets of documents in parallel
there are two opposing forces affecting the accuracy: (1) parallelism, naturally, reduces
order-dependence, which helps accuracy; (2) at the same time, the intervention moves the
inputs farther out of distribution, reducing accuracy. Figure 6b shows the results of this
experiment. Our experiment suggests that limited intervention is a sort of ‘sweet spot’. The
existence of a ‘sweet spot’ suggests that our method can be used to evaluate the robustness
of the model’s learned manifold, since we now have a subtle measure of model sensitivity to
perturbations.

Extended Context Window. We checked if our method allows for the context window to
be functionally extended since n, the total number of tokens, is less than m, the maximum
positional index. Text generated where n was greater than the context window of the model
maintains coherence when run, see the appendix section 6.12 for an example.

5 Discussion

Understanding why Set-Based Prompting works at all, without needing additional training,
will require further research. We hope that adding Set-Based Prompting during training will
reduce the impact on performance. As shown in Section 4, for all tested models Set-Based
Prompting does not cause the model performance to degrade to an unusable state, although,
as noted in Section 1, order dependency raises significant bias and reliability concerns.
We hypothesize three mechanisms of action for Set-Based Prompting to negatively impact an
LLM’s performance. First, Set-Based Prompting reduces the total amount of computation,
thus reducing the model’s ability to ‘do work’ leading to lower accuracy. Second, Set-Based

9

Prompting reduces the information available for some tokens, specifically those in the parallel
sub-sequence, i.e., when the LLM is processing the second option it can see the first so can
make a more nuanced embedding. Finally, Set-Based Prompting leads to out of distribution
token embeddings. The out of distribution impact is suggested by the difference in impact
on instruction tuned models, compared to their base models. For example, in Figure 3b
we see that for Llama 3, Set-Based Prompting performance is almost identical between the
instruct and base models, while the instruct performs significantly better on best-of-2. This
suggests that Set-Based Prompting is moving the input embeddings such that they are
‘outside of’ the fine-tuning, but the base model is robust enough to still understand them.
These modifications to the model’s output may also be mitigated by including examples
of Set-Based Prompting inputs during training or fine-tuning, but additional work will
be needed to determine this. Notably we also see hints of this when examining the model
outputs under our methods; Set-Based Prompting makes fine-tuned models appear closer to
the non-fine-tuned models, in particular Set-Based Prompting tends to make the fine-tuned
models more verbose. We believe that each of these mechanisms can be tested, allowing
for more details to be revealed about the inner workings of language models, and hopefully
build towards reducing biases and increasing robustness of these systems.

5.1 Further Explorations

In this paper we present and evaluate a small change to the input representation. Our results
suggest that larger changes may not only be possible, but may not require significant training
overhead. We chose not to study fine-tuning as we believe that showing that our method is
‘drop-in’ is a significantly more powerful result than one that requires additional training. A
next step would be to evaluate how to fine-tune models to be more receptive to this method,
possibly even including the training as a part of base-model construction. Additionally, we
chose to study the smallest possible version of this effect, a single parallel sub-sequence per
prompt. Further study is merited to determine if more complex sub-sequence relationships
can be input without significant degradation. In particular, we hypothesize that a version
of this method that treats the input text as a directed graph of tokens (instead of a linear
sequence) would be possible, i.e., allow nested parallel sub-sequences, supporting cycles will
likely require training. This is a representation already used for graphs (Ju et al., 2024; Wang
et al., 2020) and is the natural representation for transformers. This type of representation
would allow for inputs that much more closely represent how humans are provided text, e.g.,
consider a class’s syllabus, it is often a series of unordered sets of articles to read.Developing
techniques that allow for reasoning about human behavior to be translatable to LLMs will
greatly improve their utility to non-experts.

5.2 Towards Metadata in LLM Inputs

The empirical results in section 4.2 show that, while the positional encoding is used by LLMs,
they can nonetheless ‘understand’ inputs where the positional encoding is modified. This
suggests that LLMs are generally robust to minor changes in the token embeddings, with
the positional encoding being the only currently implemented example. This is an entirely
unexplored area of research. If we consider the positional encoding as a learned type of
metadata, then other types of metadata could be added to tokens by simply adding new
vectors during training to the token embeddings, just as we do with positional encodings.
Adding additional metadata to each token would allow for ‘out-of-band’ signals that are
added to input texts. Consider, for example, tagging each token with a vector that encodes
the privilege level of the token, allowing for the implementation of instruction hierarchies
(Wallace et al., 2024) that are encoded per token, instead of contextually by tags. Another,
example of the utility of adding token metadata is in typography. Many digital texts have
bold, underlines, italics, etc.; each of these could have an associated vector during training,
allowing the LLM to ‘see’ the text more clearly. Instruction hierarchies and typography are
just two possible uses of complex LLM inputs, and we believe that many more are possible,
allowing for LLMs that can interact with the world’s details and not just simple linear text.
As the usage of LLMs becomes more systemic, operators will need to be able to encode more
complex representations, and have guarantees on the LLMs’ behavior. We believe that this
work presents a development towards that goal.

10

Acknowledgments

This research is funded in part by the Alfred P. Sloan Foundation, “Pseudo-Randomness and
the Crystal Ball,” (with O. Reingold), G-2020-13941, 2020, and NSF CAREER DMS-2340241.

References
[1] Josh Achiam et al. “Gpt-4 technical report”. In: arXiv preprint arXiv:2303.08774 (2023)

(cit. on p. 1).
[2] Mark J. F. Gales Adian Liusie Potsawee Manakul. LLM Comparative Assessment:

Zero-shot NLG Evaluation through Pairwise Comparisons using Large Language Models.
2024. arXiv: 2307.07889 [cs.CL] (cit. on pp. 2, 3).

[3] AI@Meta. “Llama 3 Model Card”. In: (2024). url: https://github.com/meta-
llama/llama3/blob/main/MODEL_CARD.md (cit. on p. 7).

[4] Norah Alzahrani et al. When Benchmarks are Targets: Revealing the Sensitivity of
Large Language Model Leaderboards. Feb. 1, 2024. arXiv: 2402 . 01781[cs]. url:
http://arxiv.org/abs/2402.01781 (visited on 02/08/2024) (cit. on p. 3).

[5] Shengnan An et al. “Make Your LLM Fully Utilize the Context”. In: arXiv preprint
arXiv:2404.16811 (2024) (cit. on p. 2).

[6] Rohan Anil et al. “Palm 2 technical report”. In: arXiv preprint arXiv:2305.10403 (2023)
(cit. on p. 4).

[7] Javier Ferrando et al. “A Primer on the Inner Workings of Transformer-based Language
Models”. In: arXiv preprint arXiv:2405.00208 (2024) (cit. on pp. 4, 14).

[8] Dan Hendrycks et al. “Measuring Massive Multitask Language Understanding”. In:
International Conference on Learning Representations. 2020 (cit. on pp. 2, 7, 8).

[9] Albert Q Jiang et al. “Mistral 7B”. In: arXiv preprint arXiv:2310.06825 (2023) (cit. on
p. 7).

[10] Wei Ju et al. “A comprehensive survey on deep graph representation learning”. In:
Neural Networks (2024), p. 106207 (cit. on p. 10).

[11] Nikita Kitaev et al. “Reformer: The efficient transformer”. In: arXiv preprint
arXiv:2001.04451 (2020) (cit. on p. 13).

[12] Goro Kobayashi et al. “Incorporating residual and normalization layers into analysis of
masked language models”. In: arXiv preprint arXiv:2109.07152 (2021) (cit. on pp. 4,
13, 14).

[13] Yingji Li et al. “A survey on fairness in large language models”. In: arXiv preprint
arXiv:2308.10149 (2023) (cit. on p. 2).

[14] Nelson F Liu et al. “Lost in the middle: How language models use long contexts”. In:
Transactions of the Association for Computational Linguistics 12 (2024), pp. 157–173
(cit. on pp. 2, 9).

[15] Pekka Malo et al. “Good debt or bad debt: Detecting semantic orientations in economic
texts”. In: Journal of the Association for Information Science and Technology 65.4
(2014), pp. 782–796 (cit. on p. 9).

[16] R Thomas McCoy et al. “Embers of autoregression: Understanding large language mod-
els through the problem they are trained to solve”. In: arXiv preprint arXiv:2309.13638
(2023) (cit. on p. 2).

[17] Tsendsuren Munkhdalai et al. Leave No Context Behind: Efficient Infinite Context
Transformers with Infini-attention. 2024. arXiv: 2404.07143 [cs.CL] (cit. on p. 20).

[18] Yonatan Oren et al. “Proving test set contamination in black box language models”.
In: arXiv preprint arXiv:2310.17623 (2023) (cit. on p. 3).

[19] Niki Parmar et al. “Image transformer”. In: International conference on machine
learning. PMLR. 2018, pp. 4055–4064 (cit. on p. 13).

[20] Pouya Pezeshkpour et al. Large Language Models Sensitivity to The Order of Options in
Multiple-Choice Questions. Aug. 22, 2023. doi: 10.48550/arXiv.2308.11483. arXiv:
2308.11483[cs]. url: http://arxiv.org/abs/2308.11483 (visited on 04/03/2024)
(cit. on pp. 2, 3).

11

https://arxiv.org/abs/2307.07889
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2402.01781 [cs]
http://arxiv.org/abs/2402.01781
https://arxiv.org/abs/2404.07143
https://doi.org/10.48550/arXiv.2308.11483
https://arxiv.org/abs/2308.11483 [cs]
http://arxiv.org/abs/2308.11483

[21] Alec Radford et al. “Language models are unsupervised multitask learners”. In: OpenAI
blog 1.8 (2019), p. 9 (cit. on pp. 1, 3, 6).

[22] Leonard Salewski et al. “In-Context Impersonation Reveals Large Language Models’
Strengths and Biases”. In: Advances in Neural Information Processing Systems 36
(2024) (cit. on p. 3).

[23] Jianlin Su, Murtadha Ahmed, et al. “Roformer: Enhanced transformer with rotary
position embedding”. In: Neurocomputing 568 (2024), p. 127063 (cit. on pp. 4, 14).

[24] Jianlin Su, Yu Lu, et al. RoFormer: Enhanced Transformer with Rotary Position
Embedding. 2023. arXiv: 2104.09864 [cs.CL] (cit. on p. 4).

[25] Richard Sutton. “The bitter lesson”. In: Incomplete Ideas (blog) 13.1 (2019), p. 38
(cit. on p. 2).

[26] Alon Talmor et al. “CommonsenseQA: A Question Answering Challenge Targeting
Commonsense Knowledge”. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). 2019, pp. 4149–4158 (cit. on p. 7).

[27] Lindia Tjuatja et al. “Do llms exhibit human-like response biases? a case study in
survey design”. In: arXiv preprint arXiv:2311.04076 (2023) (cit. on p. 3).

[28] Hugo Touvron, Thibaut Lavril, et al. “Llama: Open and efficient foundation language
models”. In: arXiv preprint arXiv:2302.13971 (2023) (cit. on p. 3).

[29] Hugo Touvron, Louis Martin, et al. “Llama 2: Open foundation and fine-tuned chat
models”. In: arXiv preprint arXiv:2307.09288 (2023) (cit. on p. 6).

[30] Dave Van Veen et al. “Adapted large language models can outperform medical experts
in clinical text summarization”. In: Nature Medicine (2024), pp. 1–9 (cit. on p. 2).

[31] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information
processing systems 30 (2017) (cit. on pp. 4, 13).

[32] Eric Wallace et al. “The Instruction Hierarchy: Training LLMs to Prioritize Privileged
Instructions”. In: arXiv preprint arXiv:2404.13208 (2024) (cit. on p. 10).

[33] Guangtao Wang et al. “Multi-hop attention graph neural network”. In: arXiv preprint
arXiv:2009.14332 (2020) (cit. on p. 10).

[34] Chujie Zheng et al. Large Language Models Are Not Robust Multiple Choice Selectors.
Feb. 21, 2024. doi: 10.48550/arXiv.2309.03882. arXiv: 2309.03882[cs]. url:
http://arxiv.org/abs/2309.03882 (visited on 04/03/2024) (cit. on pp. 2, 3).

12

https://arxiv.org/abs/2104.09864
https://doi.org/10.48550/arXiv.2309.03882
https://arxiv.org/abs/2309.03882 [cs]
http://arxiv.org/abs/2309.03882

6 Appendix

6.1 Code Release

Full code for our experiments is available as a part of the final paper release. The
code is released under the MIT license. The code can be found at this URL:
https://github.com/reidmcy/set-based-prompting.

6.2 Compute Resources

Most of our results were done on a single Nvidia A100 GPU with 80GB of memory, running
one model, thus the lack of 70B model results. Each run for table 3b took about 12 hours
per model, with larger models taking slightly longer.

6.3 Computational Complexity

The computational complexity of our method is slightly lower than that of the normal
attention mechanism. This is due to removal of elements from the attention mask, which
reduces the number of key-value computations. This reduction is thus proportional to the
number of parallel sequences and the length of these sequences. The reduction is thus minor
for most uses, but could be significant for large numbers of parallel sequences or very long
subsequences.

6.4 Full Attention Formulation

The formulation of attention presented in section 3.3 has the relevant components for this
work, but does not represent the attention mechanism as used in most language models,
since the development of multi-headed attention (Vaswani et al., 2017). Again this version is
based on that presented in Kobayashi et al., 2021 with the attention mask made explicit and
the vectors reordered to make the types work.
The attention mechanism with multiple heads, and bias is:

multi-ATTN(xi,X,M) = ATTN1(xi,X,M) ◦ ATTN2(xi,X,M) ◦ . . . (5)

ATTNh(xi,X,M) : =
∑

xj∈X

Mi,jαi,j

(
W h

V bh
V (xj + p(i, j))

)
(6)

Mi,j : =
{

1 if j ≤ i

0 else (7)

αh
i,j : = softmax

xj∈X

(
x>

i W h
Qbh

Q

(
W h

Kbh
K (xj + p(i, j))

)
√

d

)

where the superscript h gives the index of the head, ◦ is the concatenation operator, and bh
Q

(query), bh
K (key), and bh

V (value) are the bias terms for each head. Note also that when
used in a model the attention mechanism is likely to be used with a skip connection

y = multi-ATTN(xi,X,M) + xi (8)

and/or normalization. None of these listed changes affect the proof of presented in section 3.3,
with the possible exception of the normalization which could in theory include positional
information, but in all four model families we evaluated did not.
We also do not consider sparse attention mask patterns (Parmar et al., 2018), some of which
are dependant on the token values (Kitaev et al., 2020).

13

https://https://github.com/reidmcy/set-based-prompting

Table 1: Models used in this analysis divided by family.
Organization Model Name Parameters (B) Fine-tuned Base Model

OpenAI GPT-2 1.5 No ����

Meta Llama-2-7b 7 No ����

Meta Llama-2-7b-chat 7 Yes Llama-2-7b ����

Meta Llama-2-13b 13 No ����

Meta Llama-2-13b-chat 13 Yes Llama-2-13b ����

Meta Meta-Llama-3-8B 8 No ����

Meta Meta-Llama-3-8B-Instruct 8 Yes Meta-Llama-3-8B ����

Mistral Mistral-7B-Instruct-v0.2 7 yes Mistral-7B-v0.2 ����

6.5 Model Details

6.6 Alternative Proof

Below is an alternative proof of the main result using a different method. Note that the
notation slightly differs from that used in the main proof
Consider the Attention block with positional encoding (Ferrando et al., 2024; Kobayashi et al.,
2021; Su, Ahmed, et al., 2024) for multi-headed attention4. We take a sequence of n input
vectors {xi}n

i=1 ⊂ RD, written compactly as an input matrix X = [x1; . . . ;xn] ∈ RD×n,
where each xi is a column of X (also a token). For an input feature xj , we denote the feature
matrix after incorporating the positional encoding matrix as XP,j = [xp(j,1)

1 ; . . . ;xp(j,n)
n].

The self-attention layer with L heads, attention mask matrix M , and parameters θ =
{M , {(Qm,Km,Vm)}L

m=1} (each M , Qm, Km and Vm are D × D matrices) takes X as
input and outputs a D × n matrix. In vector form, the j-th column is

Attnθ(X)j := xj +
L∑

m=1

∑
j′∈[n]

Mj,j′σ
(

〈Qmxj ,Kmx
p(j,j′)
j′ 〉

)
Vmx

p(j,j′)
j′ , j ∈ [n], (9)

where σ is the activation function, usually taken as the soft-max function.
In the standard decoder-only transformers, M is a lower triangle matrix with Mj,j′ = 1 for
all j ≥ j′, and 0 otherwise. Such an M functionally encodes positional information when
attention blocks are done in series since “future” xj are masked out and do not contribute
to the computation. In this case

Attnθ(X)j := xj +
M∑

m=1

j∑
j′=1

σ(〈Qmxj ,Kmx
p(j,j′)
j′ 〉)Vmx

p(j,j′)
j′ , j ∈ [n],

which computes Attnθ(X)j based on the weighted summation of all previous tokens xj′ for
j′ ∈ {1, 2, . . . , j}, with weights given by σ(〈Qmxj ,Kmx

p(j,j′)
j′ 〉).

We now propose to modify the matrix M to make the transformers order independent.
Specifically, let us first assume there are l sub-sequences, with indices sets b0, b1, . . . , bl, bl+1
such that b0 ∪ b1 ∪ . . . ∪ bl+1 = [n]. Suppose we now want the model invariant with respect to
the order of b1, . . . , bl, that is, we want the Attnθ(X) output to be unaffected by re-orderings
of b1, . . . , bl in X.
To achieve this, our proposed Multidimensional Attention Mask sets Mj,j′ = 0 for all
j ∈ b1 ∪ . . . ∪ bl and j′ /∈ bλ(j) and j′ ≤ j, where λ : [n] → {0, 1, . . . , l + 1} is the membership
function such that λ(j) = k if and only if j ∈ bk. This makes sure that each sub-sequence
cannot see other sub-sequences. In addition, we take positional encodings p(j, j′) that depend

4We drop the bias and output for brevity, see appendix for the complete formulation

14

https://huggingface.co/openai-community/gpt2
https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/meta-llama/Llama-2-13b
https://huggingface.co/meta-llama/Llama-2-13b-chat
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

only on the relative order between i and the rank of j within bλ(j). As a result, the positional
encoding for xj only depends on its rank within the subsequence xbj , and does not rely on
other subsequences at all.
Let τ : RD×n → RD×n be an arbitrary permutation function that permutes the column
blocks in X indexed by {b1, b2, ..., bl}. We have the following theorem.

Theorem 2 Suppose we define M as above. For any permutation function τ that permutes
the columns blocks in X indexed by {b1, b2, ..., bl}. Attnθ(X) defined in (9) will be invariant
to this order change:

τ(Attnθ(X)) = Attnθ(τ(X)).
This implies that for any j ∈ bl+1,

Attnθ(X)j = Attnθ(τ(X))j

The proof of Theorem 2 can be found in Section 6.7 below. This theorem shows that by
re-indexing the positional encoding and modifying the attention mask, the output of the
attention block becomes independent of the ordering of the sub-sequences.

6.7 Additional Proof Details

Proof of Proposition 2:
As any permutation can be written as the composition of pairwise permutations, in the
following, we prove the result for pairwise permutations. More specifically, suppose we
consider a τ that permutes the columns indexed by bk and bk̃ in X, and obtain X̃.
Recall that M is defined by letting Mj,j′ = 0 for all j′ /∈ bλ(j) and j′ ≤ j. We then have for
j ∈ [n]

Attnθ(X)j =xj +
L∑

m=1

∑
j′∈[n]

Mj,j′σ(〈Qmxj ,Kmx
p(j,j′)
j′ 〉)Vmx

p(j,j′)
j′

=xj +
L∑

m=1

∑
j′∈{j′≤j:j′∈b0∪bλ(j)}

σ(〈Qmxj ,Kmx
p(j,j′)
j′ 〉)Vmx

p(j,j′)
j′ .

In the following, we discuss three cases separately: j ∈ bk ∪ bk̃, j ∈ b0 ∪ bl+1, and j /∈
b0 ∪ bk ∪ bk̃ ∪ bl+1.

Case 1: j ∈ bk ∪ bk̃. Without loss of generality, we assume k < k̃. Then when j ∈ bk,

Attnθ(X)j =(xj + pj) +
L∑

m=1

∑
j′∈{j′≤j:b0∪bk∪bl+1}

σ(〈Qm(xj + pj),Kmx
p(j,j′)
j′ 〉)Vmx

p(j,j′)
j′ ,

implying

τ(Attnθ(X))j =xτ(j) + pτ(j) +
L∑

m=1

∑
j′∈{j′≤j:b0∪bk̃∪bl+1}

σ(〈Qmxj ,Kmx
p(j,j′)
j′ 〉)Vmx

p(j,j′)
j′ ,

and the right-hand side equals to Attnθ(τ(X))j .
When j ∈ bk̃,

Attnθ(X)j =xj +
L∑

m=1

∑
j′∈{j′≤j:b0∪bk∪bk̃∪bl+1}

σ(〈Qmxj ,Kmx
p(j,j′)
j′ 〉)Vmx

p(j,j′)
j′ ,

implying

τ(Attnθ(X))j =xτ(j) + pτ(j) +
L∑

m=1

∑
j′∈{j′≤j:b0∪bk∪bk̃∪bl+1}

σ(〈Qmxj ,Kmx
p(j,j′)
j′ 〉)Vmx

p(j,j′)
j′ ,

15

and the right-hand side equals to Attnθ(τ(X))j .
Case 2: j ∈ b0 ∪ bl+1.
When j ∈ b0, we have

Attnθ(X)j =xj +
L∑

m=1

∑
j′∈{j′≤j:b0}

σ(〈Qmxj ,Kmx
p(j,j′)
j′ 〉)Vmx

p(j,j′)
j′

=Attnθ(τ(X))j .

When j ∈ bl+1, we have

Attnθ(X)j =xj +
L∑

m=1

∑
j′∈{j′≤j:b0∪bl+1}

σ(〈Qmxj ,Kmx
p(j,j′)
j′ 〉)Vmx

p(j,j′)
j′

=Attnθ(τ(X))j .

Case 3: j /∈ b0 ∪ bk ∪ bk̃ ∪ bl+1. We have

Attnθ(X)j =xj +
L∑

m=1

∑
j′∈{j′≤j:b0∪bk∪bk̃}

σ(〈Qmxj ,Kmx
p(j,j′)
j′ 〉)Vmx

p(j,j′)
j′ ,

implying

τ(Attnθ(X))j =xτ(j) + pτ(j) +
L∑

m=1

∑
j′∈{j′≤j:b0∪bk∪bk̃}

σ(〈Qmxj ,Kmx
p(j,j′)
j′ 〉)Vmx

p(j,j′)
j′ ,

and the right-hand side equals to Attnθ(τ(X))j .

16

OpenAI Llama 2 Llama 3 Mistral

GPT-2 7B 7B Chat 13B 13B Chat 8B 8B Inst. 7B Inst.

Model

0.0

0.1

0.2

0.3

0.4

0.5

Mo
di
fi
ed
 C
SQ
A
Ac
cu
ra
cy

Question Ordering
Default Ordering
Set-Based Prompting
Reversed Ordering

Figure 7: CSQA accuracy for each model with the normal ordering, reversed ordering, and
Set-Based Prompting applied to the options.

OpenAI Llama 2 Llama 3 Mistral

GPT-2 7B 7B Chat 13B 13B Chat 8B 8B Inst. 7B Inst.

Model

0.0

0.1

0.2

0.3

0.4

Mo
di
fi
ed
 M
ML
U
Ac
cu
ra
cy

Question Ordering
Default Ordering
Set-Based Prompting
Reversed Ordering

Figure 8: MMLU accuracy for each model with the normal ordering, reversed ordering, and
Set-Based Prompting applied to the options.

6.8 Additional Plots

Figures 7 and 8 show the same data as 3a and 3b respectively, but with the different orderings
accuracy’s explicitly included. Figure 9 similarly shows the same data as figure 5.

6.9 Impact of Enumeration

Figure 10 shows the effects of adding numbers to the questions during input. Note, this is a
removal of order independence for our method as the numbers implicitly encode positioning.
We see that this improves performance across the board. We believe this is due to the models
being trained with numbers on multiple choice questions.

17

OpenAI Llama 2 Llama 3

7B 7B Chat 13B 13B Chat 8B 8B Inst.

Model

0.0

0.1

0.2

0.3

0.4

Mo
di

fi
ed

 M
ML

U
Ac

cu
ra

cy

Question Ordering
normal
normal_reversed
only_parallel_attention
only_parallel_attention_reversed
only_parallel_position
only_parallel_position_reversed
order_independent

Figure 9: MMLU accuracy for sub set of models with the normal ordering, reversed ordering,
accuracy when only the positional encoding p(i, j) is modified, accuracy when only the
positional encoding p(i, j) is modified reverse ordering, when only the attention mask Mk,f

i,j

is modified, when only the attention mask Mk,f
i,j is modified reverse ordering and Set-Based

Prompting applied to the options.

OpenAI Llama 2 Llama 3

GPT-2 7B 7B Chat 13B 13B Chat 8B 8B Inst.

Model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Mo
di
fi
ed
 M
ML
U
Ac
cu
ra
cy

Ordering Effect
Worst of 2
Best of 1
Best of 2
Set-Based Prompting

Figure 10: Run of the first 20 MMLU questions (our test set for Figure 4) with the numbers
added, formatting identical to figure 3a.

6.10 Chain of Thought Prompting

6.11 Implementation

We conduct all experimental testing on huggingface models. We perform the greedy decoding
with the temperature 0, and apply the zero-shot prompting in all experiments. These hugging-
face models already accept 2D attention masks as input to the forward() call, which accepts
an attention mask and positional encoding as input and outputs a single generated output
token. This 2D attention mask support is detailed in https://huggingface.co/blog/poeda-
tor/4d-masks. We make a few modifications to these model instance objects in order to
enable model instances to accept 2D attention masks as input to the generate() call, which
accepts an attention mask and positional encoding and outputs a sequence of generated
output tokens. The modifications to Llama and Mistral model instances are identical.
A few additional minor modifications are required for GPT-2 model instances. On the
GPT-2, Llama, and Mistral model architectures, we override the model instances’ func-

18

OpenAI Llama 2 Llama 3

GPT-2 7B 7B Chat 13B 13B Chat 8B 8B Inst.

Model

0.0

0.1

0.2

0.3

0.4

0.5
Mo
di
fi
ed
 M
ML
U
Ac
cu
ra
cy

Ordering Effect
Worst of 2
Best of 1
Best of 2
Set-Based Prompting

Figure 11: Run of the first 20 MMLU questions (our test set for Figure 4) with chain of
thought prompting, formatting identical to figure 3a.

tion _update_model_kwargs_for_generation(). The function implementation remains the
same, with the exception that if the function is called with a 2D attention mask, the 2D
attention mask is converted to a 1D attention mask to be passed to subsequent forward
calls. When generate() is called with a 2D attention mask, it passes that 2D mask to the
first forward() call to generate the first token. After each call to forward, the function
_update_model_kwargs_for_generation() defines the attention mask and position ids to be
passed to the next forward() call. On second or later calls to forward, a 1D attention mask
is passed, where attention is paid to all non-padding tokens in the input prompt and all
tokens generated thus far. For the llama/mistral models, on subsequent calls, the subsequent
position id is defined to consist of a vector containing only the next integer following the
largest position id in the previous position id vector.
For example, suppose the input consists of the tokens A,B,C,D, where tokens B and C should
be processed in parallel.
We would define the initial attention mask to be

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1


and the initial position ids to be [1,2,2,3].
These values are passed to the first forward() call. On the next call to forward, we pass
attention mask [1,1,1,1,1] and [[4]]. On the third call to forward, we pass attention mask
[1,1,1,1,1,1] and position ids [[5]], and so on. The second generated token will attend to all
original input tokens and the first generated token, and will utilize previously computed
keys/values such that it views tokens B and C as though they were still processed in parallel.
On the GPT-2 instances, we override two additional functions. First, we override the ‘_attn‘
function of the GPTAttention object in each hidden layer. If a 2D attention mask is passed,
then ‘_attn‘ skips generating a causal mask and uses the passed attention mask instead. This
modification is unnecessary for Llama, which was already modified to pass a 2D attention mask
through all the layers. Second, we override the function ‘prepare_inputs_for_generation‘.
By default, this function regenerates position ids if both position ids and an attention mask
are passed to generate(). Since we want to be able to pass custom position ids, we modify

19

the function to allow both the unmodified position ids and attention mask to be passed to
subsequent forward calls.

6.12 Extending Context Window

One limitation of LLMs is their finite context windows. Existing work tries to circumvent this
issue through techniques that require additional pretraining or and fine-tuning. In particular,
Munkhdalai et al., 2024 proposes a new attention technique dubbed Infini-attention that
scales LLMs to infinitely long inputs with bounded memory. This method, however, requires
continual pre-training and fine-tuning, whereas we present Set-Based Prompting as a drop-in
method of significantly increasing the context window when subsets of the text can be
processed in parallel.
Due to Set-Based Prompting changing the positional encoding, inputs that exceed the trained
context window of the model can be used since only the longest sub-sequence contributes
to the positional encoding of the final input token. Thus, we can input longer sequences
than the model was designed for. We tested this by inputting sequences of 6,000 tokens into
Llama 2 7B, and the model was able to correctly summarize the input, while the same input
put sequentially produces garbled text. See below for an example.
For a 6018 token input of the Wikipedia article for a recent disaster Llama 7B output:

. its its its its its its its its its its its its its its its its its
its its its its its its its its its its its its its its its its its
its its its its its its its its its its its its its its its its

its its its its its its its its its its its its its its its its its
its its its its its its

its
its its its its its its its its its its its

its its its its its its its its
. . . .

When the text was broken up by header and fed in parallel the output was:
On March 26, 2024, the Francis Scott Key Bridge in Baltimore, Maryland

collapsed after being struck by the container ship Dali. Two people
were rescued from the water, and six maintenance workers were
reported missing and presumed dead. The bridge was a continuous
truss structure that was fracture critical, meaning it had no
redundancy against failure of any particular part. The collision
destroyed the southwest main truss pier, causing the central and
south spans to collapse. The ship's emergency generators provided
power to the propulsion system, but not to the electrical systems.
The investigation is being led by the National Transportation Safety
Board, with support from the Federal Bureau of Investigation, the U.

S. Coast Guard, and the Maryland Department of Transportation. The
ship's crew was accounted for, and no serious injuries were reported.
The disaster has raised questions about the safety of larger ships

passing

Further work should determine whether this drop-in extended context window method comes
at the cost of output quality degradation, relative to methods like Infini-attention.

20

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately
reflect the paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction are based on the results we present in
the main body of the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the
authors?
Answer: [Yes]
Justification: We present a proof of our results including a discussion of the required
assumptions for it to hold.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assump-
tions and a complete (and correct) proof?
Answer: [Yes]
Justification: We provide a proof of our main result in the paper.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce
the main experimental results of the paper to the extent that it affects the main
claims and/or conclusions of the paper (regardless of whether the code and data are
provided or not)?
Answer: [Yes]
Justification: Full code and datasets are provided with the paper allowing for
complete reproduction of the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?
Answer: [Yes]
Justification: Full code and datasets are provided with the paper allowing for
complete reproduction of the results.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to
understand the results?
Answer: [Yes]
Justification: The paper tests on a standard benchmark so the test details are well
known and based on the literature.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other
appropriate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Much of our results is a discussion of variability.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed
to reproduce the experiments?

21

Answer: [Yes]
Justification: While our main result is theoretical, we provide details on our testing
compute resources in section 6.2 of the appendix.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with
the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our results do no use new data or human subjects, and we believe our
method will reduce bias in LLMs.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and
negative societal impacts of the work performed?
Answer: [Yes]
Justification: Our work is motivated by observations of biases in LLMs, and we
discuss how our method will impact these.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for
responsible release of data or models that have a high risk for misuse (e.g., pretrained
language models, image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release a model or dataset.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models),
used in the paper, properly credited and are the license and terms of use explicitly
mentioned and properly respected?
Answer: [Yes]
Justification: We cite the datasets used and respect their licenses.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the
documentation provided alongside the assets?
Answer: [Yes]
Justification: Our code is documented and released with the paper.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does
the paper include the full text of instructions given to participants and screenshots,
if applicable, as well as details about compensation (if any)?
Answer: [NA]
Justification: We do not have human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research
with Human Subjects
Question: Does the paper describe potential risks incurred by study participants,
whether such risks were disclosed to the subjects, and whether Institutional Review
Board (IRB) approvals (or an equivalent approval/review based on the requirements
of your country or institution) were obtained?
Answer: [NA]
Justification: We do not have human subjects.

22

https://neurips.cc/public/EthicsGuidelines

	Introduction
	Related Works
	Set-Based Prompting
	Background
	Provable Order-Independence via Set-Based Prompting
	Methodology and Theoretical Guarantees
	Attention Mask

	Performance
	CommonSenseQA
	Measuring Massive Multitask Language Understanding
	Ablations
	Other Tests

	Discussion
	Further Explorations
	Towards Metadata in LLM Inputs

	Appendix
	Code Release
	Compute Resources
	Computational Complexity
	Full Attention Formulation
	Model Details
	Alternative Proof
	Additional Proof Details
	Additional Plots
	Impact of Enumeration
	Chain of Thought Prompting
	Implementation
	Extending Context Window

