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ABSTRACT

This paper introduces Q-tuning, a novel approach for continual prompt tuning1

that enables the lifelong learning of a pretrained language model on a sequence of2

tasks. For each new task, Q-tuning trains a task-specific prompt by adding it to3

the prompt queue consisting of the prompts from older tasks. To better transfer4

the knowledge of older tasks, we design an ensemble mechanism that reweighs5

previous prompts in the queue with a learnable low-rank matrix that reflects their6

relevance to the current task. To facilitate training and inference with manageable7

complexity, once the prompt queue reaches its maximum capacity, we leverage8

a PCA-based eviction rule to reduce the queue’s size, allowing the newly trained9

prompt to be added while preserving the primary knowledge of older tasks. In10

order to mitigate the accumulation of information loss caused by the eviction,11

we additionally propose a globally shared prefix prompt and a memory retention12

regularization based on the information theory. Extensive experiments demonstrate13

that our approach outperforms the state-of-the-art methods substantially on both14

short and long task sequences. Moreover, our approach enables lifelong learning on15

an extremely long task sequence while requiring onlyO(1) complexity for training16

and inference, which could not be achieved by existing technologies.17

1 INTRODUCTION18

In recent years, pretrained language models (LMs) have achieved huge success in natural language19

processing (Brown et al., 2020; Thoppilan et al., 2022; OpenAI, 2023), which popularizes the20

pretraining-finetuning pipeline in applications. However, with the ever-growing parameter scale21

of modern LMs (e.g., GPT-4 that may have 1.76 trillion parameters (Wiki, 2023)), it becomes22

increasingly difficult to finetune the whole model, leading to the extensive attention to parameter-23

efficient finetuning (PEFT) technologies. Prompt tuning (PT) (Liu et al., 2022) has recently emerged24

as a leading PEFT solution. PT trains soft prompts and prepends them to the input of LMs, while25

keeping the LM parameters frozen. Existing works (Lester et al., 2021; Liu et al., 2023) have shown26

that PT can achieve performance on par with finetuning, while requiring less than 0.01% of the total27

trainable parameters. The effectiveness of PT has inspired its use in adapting pretrained LMs to28

different applications. Notably, PT can be used as a key methodology for learning new tasks that29

typically arrive in a sequential fashion, which extends PT to the continual learning (CL) paradigm and30

leads to the so-called continual prompt tuning (CPT). Such CL capability can benefit many real-world31

applications that require lifelong learning.32

However, as a subfield of CL, CPT encounters technical challenges akin to those faced by traditional33

CL methods, including the well-known catastrophic forgetting (CF) and forward knowledge transfer34

(FKT). CF mitigation aims to enable a model to learn and adapt to new information overtime without35

forgetting previous knowledge. Approaches such as regularization based methods (Zenke et al., 2017;36

Schwarz et al., 2018) and memory-replay based methods (Bang et al., 2021; Lin et al., 2022) have37

been proposed to solve the CF problem. Unlike these traditional CL methods, CPT lends itself readily38

to address the CF issue (Zhu et al., 2022; Razdaibiedina et al., 2023) by cheaply saving the prompts39

for each task and reusing them for their corresponding tasks during inference. Nevertheless, how to40

empower FKT in CPT remains under-explored.41

In an attempt to overcome the challenges in CPT, Razdaibiedina et al. (2023) proposed ProgPrompt,42

which progressively adds the newly trained prompt to a prompt list that maintains all previously43
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trained prompts. ProgPrompt achieves FKT by appending previous prompts as inputs during the44

learning of a new task. However, a key limitation of ProgPrompt is the infinitely increasing prompt list.45

Given N tasks, this prompt list grows linearly at a rate of O(N) and leads to an O(N2) complexity46

for transformer (Vaswani et al., 2017) based models. Therefore, the training and inference cost will47

become intractable as N increases and exceeds a finite computation resource limit.48

In this paper, we overcome the aforementioned challenge by proposing a new continual prompt49

tuning technology named Queue-based prompt tuning (Q-tuning). Q-tuning manages a Queue-based50

prompt (Q-prompt), which is stored in a finite-size data buffer. During the learning of a new task,51

Q-tuning trains a new prompt combined with a fixed Q-prompt that stores all previously learned52

prompts. Upon the completion of tuning for a new task, the latest trained prompt will be added to53

the Q-prompt for the tuning of the next task. Once the number of tasks exceeds the queue-size limit,54

we will remove less informative prompts according to a principal component analysis (PCA) based55

dequeue rule. This endows Q-tuning with the ability to perform lifelong prompt tuning on extremely56

long task sequences. Our key contributions and results can be summarized as follows:57

• We propose a continual prompt tuning method called Q-tuning that, to our knowledge, is the first58

technique for achieving lifelong learning on extremely long task sequences through prompt tuning.59

Our Q-tuning maintains a prompt queue coupled with a dynamic low-rank queue ensemble matrix,60

where the ensemble matrix is optimized to capture the importance of the enqueued prompts. This61

queue ensemble strategy induces a new prompt tuning strategy to enhance FKT.62

• Once the number of tasks exceeds the size limit of Q-prompt, we apply a novel dequeue rule based63

on PCA to extract and retain the most informative prompts in Q-prompt for subsequent prompt64

tuning. In addition, to mitigate the impact of information loss due to dequeuing, we devise a global65

shared prefix prompt with a memory retention (MR) technique that can be continuously updated66

by each incoming task to compensate for the information loss in the trimmed prompt queue.67

• We conduct extensive experiments to demonstrate the successful applications of our proposed Q-68

tuning on both short and long sequence benchmark tasks. Q-tuning outperforms all the competing69

CL methods by a large margin. In addition, Q-tuning highlights its ability to facilitate lifelong70

learning. For instance, our experiments on extremely long learning sequences consisting of 7071

disjoint tasks have shown a 30% accuracy improvement over the standard prompt tuning method.72

2 RELATED WORK73

1) Continual Learning: Continual Learning (CL), also known as lifelong learning, is to learn from a74

stream of different tasks arriving sequentially. The goal of CL is to prevent the CF problem (Kemker75

et al., 2018) and achieve knowledge transfer (Ke et al., 2021). Existing CL approaches can be divided76

into three categories: 1) Memory-based methods (Shin et al., 2017; Bang et al., 2021; Lin et al., 2022;77

Ermis et al., 2022) that store previous data and replay them when training on the next task to mitigate78

CF issue; 2) Regularization-based methods (Kirkpatrick et al., 2017; Zenke et al., 2017; Schwarz79

et al., 2018) that apply an additional regularization loss to constrain the update of parameters which80

are less important to learning new tasks; 3) Architecture-based methods that dynamically expand the81

network capacity (Rusu et al., 2016; Yoon et al., 2018) or train task-specific parameters (Yoon et al.,82

2020) on new tasks and fix parameters for old tasks to prevent forgetting. However, these methods,83

which require finetuning all model parameters, are too expensive to put into practice for large-scale84

models with an astronomical number of parameters, such as large language models (LLMs).85

2) Prompt Tuning: Prompt tuning (Lester et al., 2021; Karimi Mahabadi et al., 2021; Li & Liang,86

2021; Gu et al., 2022; Jia et al., 2022; Wang et al., 2023a; 2022; Smith et al., 2023; Yin et al., 2022)87

is a lightweight approach to finetune an LLM model for a target task, which only requires optimizing88

a series of virtual tokens (a.k.a “soft prompt”) instead of updating the entire model. It has been89

shown that, by only training a small subset of parameters, prompt tuning can achieve the same or90

even better performance than training a full model, especially when requiring adaptation to a new91

task with limited data. In prompt tuning, a trainable soft prompt θP is prepended to the input text92

x while keeping other parameters frozen. In this case, the combined model parameters include93

trainable prompt parameters θP and parameters θM of a fixed pretrained modelM. Given the task94

T = (X ,Y) consisting of training pairs (x,y), the objective of prompt tuning can be written as:95

max
θP

∑
(x,y)∈T

log p(y|x; θM, θP). (1)
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3) Continual Prompt Tuning: Prompt tuning has recently been adapted to the continual learning96

domain (Qin & Joty, 2021; Zhu et al., 2022; Liang et al., 2023; Wang et al., 2023b; Razdaibiedina97

et al., 2023; Khan et al., 2023). To enable knowledge transfer, CPT combines the advantages of98

both prompt tuning and CL. ProgPrompt, the current state-of-the-art method of CPT proposed99

by Razdaibiedina et al. (2023), maintains a progressively increasing prompt list that sequentially100

concatenates new soft prompts with previously learned prompts. Given the continually increased101

task set T = {(X 1,Y1), (X 2,Y2), . . . , (X i,Yi)}, where T i = (X i,Yi) denotes the training pairs102

on i-th task, ProgPrompt aims to progressively train an increased prompt list [θ1P , θ
2
P , . . . , θ

i
P ], where103

[·, ·] denotes the concatenation operation. For each task, only the newly appended prompt is trainable,104

while the previously trained prompts are fixed. The objective for the i-th task can be written as:105

max
θi
P

∑
(xi,yi)∈T i

log p(yi|xi; θM, [θ1P , θ
2
P , . . . , θ

i
P ]︸ ︷︷ ︸

increasing prompt list

). (2)

This method can achieve FKT without data replay by keeping previous prompts as input for learning106

a new task. However, this solution has a key limitation that prevents its sustainable adoption in107

practice. Suppose that the total number of continually learned tasks is N . The training and inference108

complexity of maintaining the prompt list scales as O(N2) for transformer based models. When109

N grows asymptotically (i.e., the model is set as a lifelong learner), training the extremely long110

prompt list becomes intractable due to the finite system resources. Moreover, since both the cached111

prompts in the list and the pretrained models remain frozen when learning a new task, the contribution112

of each fixed prompt to learning the new task lacks adaptive adjustment. Inspired by the memory113

management (Davis & Zhong., 2017) system of the human brain, we introduce Q-tuning, which114

solves the aforementioned quadratic complexity problem by dynamically updating the prompt queue115

to maintain the learned knowledge and a queue ensemble strategy to enhance knowledge transfer.116

3 THE Q-TUNING APPROACH117

Task Task Task 

Input Text Embeddings

(Frozen)

Pretrained Model

MLP-Parameterized Prompt :

: Frozen

: Trainable

 Ensemble

: Concatenation

Q-Prompt 

Evict

Append

Forward Knowledge Transfer Continually Increasing Task Sequence

Updating Q-Prompt

If Q-Prompt is Full:

Apply De-Q

Q-Prompt 

Figure 1: The overall framework of the proposed Q-tuning technology. Given a continually growing-up task
sequence, we propose a prompt queue (Q-prompt) and a globally shared prefix prompt θiP∗ to achieve the
forward knowledge transfer, where the superscript of θiP∗ denotes the i-th status. Moreover, we adopt a queue
ensemble method to dynamically adjust the contribution of each fixed prompt [θ1P , θ

2
P , . . . , θ

i−1
P ] in Q-prompt

by using a rank-one matrix Wi. We parameterize the trainable soft prompt by a two-layer residual MLP. If the
length of the Q-prompt exceeds the limit, we apply a De-Q rule to discard less informative prompts in the queue.

3.1 Q-PROMPT AND UPDATE RULE118

Q-prompt: Fig. 1 illustrates the overall framework of the proposed Q-tuning technique. In Q-119

tuning, we add a new trainable prompt to a prompt queueQ that stores all previously trained prompts120

for old tasks. This updatedQ associated with a globally shared prompt will be tuned for the new task,121

while keeping the prior prompts inQ frozen. This progressively appending approach enables forward122

knowledge transfer as the old task’s information is saved in the Q-prompt. We let C = l × Qsize123

denote the maximum capacity of the Q-prompt Q, where l is the length of a single prompt per task124

and Qsize is the maximum number of prompts in the queue. When reaching the capacity limit of Q,125

the prompt queue will be trimmed using an eviction rule to remove less informative prompts and126

append new trainable prompts for future tasks.127
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Q-prompt Ensemble: In Q-tuning, all prompts in the memory (i.e., the prompt queue Q), as well128

as the pretrained LM model, are frozen when learning a new task. Consequently, the LM model will129

be forced to take these fixed prompts in the queue as inputs without incorporating their relevance to130

the current task, leading to sub-optimal performance. To address this problem, we propose a dynamic131

prompt ensemble mechanism. For task i, we use a trainable matrixWi ∈ Rci×d, which is of the same132

dimension as the Q-prompt Qi, to scale Qi byWi ◦ Qi (◦ denotes the Hadamard product). Here, for133

task i, we denote the total prompt length of Qi by ci = l × i. Since directly optimizing a large-scale134

matrix of size ci × d is costly, we propose a low-rank multiplicative method inspired by Aghajanyan135

et al. (2021); Wang et al. (2023a). The weight matrixWi can be expressed asWi = ui ⊗ vT
i , where136

ui ∈ Rci , vi ∈ Rd and⊗ denotes the outer product. Clearly,Wi is a rank-one matrix and the number137

of trainable parameters is reduced to ci + d ≪ ci × d. We jointly optimize the newly appended138

prompt θiP and the low-rank ensemble matrixWi by maximizing the cross-entropy loss as follows:139

max
θi
P ,Wi

∑
(xi,yi)∈T i

log p(yi|xi; θM, Wi ◦ Qi(θ1P , · · · , θiP)︸ ︷︷ ︸
maximum length is l×Qsize

)), (3)

where only the new added prompt θiP and the weight matrixWi for the i-th task are trainable.140

De-Q Rule: Our Q-prompt design allows appending newly trained prompts until reaching the141

maximum length. Once the Q-prompt is full (denoted by QC), a dequeuing (De-Q) rule is executed142

to reduce the length ofQC to C − l so as to add the new prompt for the new task. However, this leads143

to a key question: how to retain the most useful prompt information after trimming the Q-prompt?144

Straightforward De-Q rules include random eviction and first in first out (FIFO). However, these145

simple rules may discard valuable information in the queue, resulting in negative impacts on FKT.146

An alternative solution is to measure the correlation between a new task and the old tasks, similar147

to Zhu et al. (2022), and remove the most task-irrelevant prompts from the queue to learn the new148

task. However, this approach requires extra computing resources to maintain the data buffer of old149

tasks and the quantitative correlation of different tasks is hard to define. To address this problem, we150

introduce a simple yet effective De-Q rule named DQ-PCA based on principal component analysis151

(PCA) (Shlens, 2014). Specifically, we first calculate the centered Q-prompt Q̃C ∈ RC×d with a152

zero mean: Q̃C = QC − mean(QC). Then we perform singular value decomposition (SVD). We153

extract the first C − l principal components to obtain the trimmed Q-prompt Q̃C−l ∈ R(C−l)×d and154

enqueue the new trainable θiP ∈ Rl×d. This process can be written as follows:155

SVD(Q̃C) = UΣV T, Q̃C−l = ΣC−lV
T
C−l, QC

Update←−−− Q̃C−l ⊕ θiP , (4)

where ⊕ denotes the concatenation operation [Q̃C−l, θ
i
P ], U ∈ RC×C is the matrix consisting of the156

left singular vectors, Σ ∈ RC×d is the diagonal matrix formed by the singular values in decreasing157

order and V T is the matrix of right singular vectors. The matrix V T
C−l is formed by the top C − l158

principle row vectors of V T and ΣC−l ∈ R(C−l)×(C−l) denotes the diagonal matrix with the top C−l159

singular values. When the length of the Q-prompt exceeds C, it will trigger the DQ-PCA to shrink the160

Q-prompt’s length to C− l. As a result, Q-tuning achieves anO(1) training and inference complexity161

instead of O(N2) for transformer-based LMs, thereby enabling low-cost lifelong learning1.162

3.2 PREFIX PROMPT FOR GLOBAL KNOWLEDGE SHARING163

Although DQ-PCA is able to minimize the information loss due to the eviction in Q-prompt by keeping164

the most useful information of previous prompts, information loss will be inevitably accumulated as165

the number of tasks grows larger. To avoid such loss, we introduce a globally shared prefix prompt166

θP∗ . This prefix prompt is appended to the head of the Q-prompt and continually trained across167

all the tasks, so that it can aggregate the global information. However, naively training the shared168

prompt θP∗ continuously across the tasks will lead to dominance by the newest task, hence causing169

the forgetting of the old knowledge. To address this limitation, we propose a memory retention (MR)170

1For example, on a single NVIDIA V100 GPU (32GB) with the same training setting as ProgPrompt
(Razdaibiedina et al., 2023), Q-tuning can easily handle an extremely long 70-task sequence, while ProgPrompt
fails due to memory overflow (cf. our experiments).
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regularization by maximizing the overlapping information between the shared prefix prompt and the171

learned knowledge from old tasks. For each task i, we formulate the maximization problem as:172

max
θi
P∗

I(p(yi|xi; θM, θiP∗)︸ ︷︷ ︸
p(ξi)

; p(yi|xi; θM,Wi−1 ◦ [θi−1
P∗ ,Qi−1])︸ ︷︷ ︸

p(ξi−1)

), (5)

where I(·, ·) represents the mutual information between two random variables, θiP∗ denotes the shared173

prompt to be learnt for i-th task, θi−1
P∗ is the shared prompt learnt until task i− 1, and Qi−1 denotes174

the Q-prompt until task i − 1. The second term p(ξi−1) in Eq. (5) represents the old knowledge175

learnt before the i-th task, provided by the shared θi−1
P∗ and the Q-prompt Qi−1. Maximizing Eq. (5)176

can transfer the knowledge modeled by p(ξi−1) to current shared prompt θiP∗ . The benefit of this177

knowledge transfer is that, if the Q-prompt Qi−1 at task i− 1 reaches its maximum length C, θiP∗178

can compensate the information loss caused by trimming Qi−1. As a result, when we continue to179

move from task i to i+ 1, although the information of Qi is no longer complete due to the shrinkage180

of Qi−1, the full information prior to task i+ 1 can be represented by the union of Qi and θiP∗ .181

To solve the mutual information I(p(ξi); p(ξi−1)) in Eq. (5), we adopt the mutual information182

estimator2 (Hjelm et al., 2018; Poole et al., 2019) based on the Jensen-Shannon divergence (JSD),183

which satisfies184

I(p(ξi); p(ξi−1)) := DJSD(J;M) ≥ Ez∼J [−σ(−Fω(z))]− Ez′∼M [σ(Fω(z
′))] , (6)

where the J = p(ξi, ξi−1) and M = p(ξi)p(ξi−1) are the joint and the product of marginals of the185

random variables ξi and ξi−1, respectively, and σ(t) = log(1 + et). Fω is a discriminator function186

(Nowozin et al., 2016) modeled by an auxiliary neural network with parameters ω.187

3.3 OBJECTIVE FUNCTION OF Q-TUNING188

Given the i-th classification task, the training objective of Q-tuning is defined as:189

LQ(θ
i
P∗ , θiP ,Wi) =−

∑
(xi,yi)∈T i

log p(yi|xi; θM, θiP∗ ,Wi ◦ Qi(θ1P , · · · , θiP)), (7)

where T i denotes the data streams of the i-th task. The pretrained model θM and all the enqueued190

prompts prior to i-th task are fixed. The trainable parameters include the shared prefix prompt θiP∗ ,191

the newly appended prompt θiP and the queue ensemble matrixWi.192

For the prefix prompt θiP∗ , we enable its capability for memorizing the knowledge of old tasks with193

the MR regularization defined by Eq. (5). According to Eq. (6), we can maximize the lower bound of194

the mutual information, which can be rewritten as minimizing a loss LMR with respect to θiP∗ :195

LMR(θ
i
P∗) = −Ez∼J [−σ(−Fω(z))] + Ez′∼M [σ(Fω(z

′))] , (8)

where J and M are defined in Eq. (5) and Eq. (6). The MLP-based discriminator Fω(·) consists of196

two 512-unit hidden layers. To optimize Eq. (8) on a given finite training data set, we approximate197

the expectations using minibatch samples as in Belghazi et al. (2018).198

Putting all things together, we obtain the overall loss:199

Ltotal = LQ(θ
i
P∗ , θiP ,Wi) + ηLMR(θ

i
P∗), (9)

where η is called “memory factor” which is used to weigh the contribution of LMR. When the number200

of tasks N ≤ C, we set η = 0, whereas if N > C, we set η > 0. We empirically find the best η as201

reported in Table 12 of Appendix D. Algorithm 1 summarizes the Q-tuning algorithm.202

4 EXPERIMENT SETTINGS203

4.1 DATASETS AND BASELINE METHODS204

Datasets: Following Razdaibiedina et al. (2023), we evaluate the proposed Q-tuning on a short-205

sequence benchmark and a long-sequence benchmark. In the short-sequence CL benchmark, we206

2More details about the deviation of the mutual information estimator can be found in Appendix B.
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adopt five text classification datasets by Zhang et al. (2015), including YP reviews, Amazon reviews,207

DBpedia, Yahoo Answers, and AG News. To validate our method’s efficacy on different model208

backbones, we adopt the T5-large model (an encoder-decoder model) and the BERT-base model (an209

encoder-only model) for evaluation. To demonstrate that the Q-tuning is robust against the order210

of received tasks, for the experiments with T5, we use three different orders (i.e., Orders 1∼33)211

composed of the AG News, Amazon, Yahoo and DBpedia datasets by following the few-shot CL212

setting as in Qin & Joty (2021); Razdaibiedina et al. (2023). For the BERT-based experiments, we213

use four different orders (i.e., Orders 4∼73) including all the above five tasks, and we use the same214

train and test split as IDBR (Huang et al., 2021) including 115,000 training and 7,600 test examples.215

In addition, to evaluate our model on a more realistic CL scenario with a long sequence of tasks,216

following Razdaibiedina et al. (2023), we choose a long-sequence CL benchmark setting with 15217

tasks, which consists of the aforementioned five datasets from the short-sequence CL benchmark,218

four tasks from GLUE benchmark (MNLI, QQP, RTE, SST2) by Wang et al. (2018), five tasks from219

SuperGLUE benchmark by Wang et al. (2019) (WiC, CB, COPA, MultiRC, BoolQ), and IMDB220

movie reviews dataset (Maas et al., 2011). We use three different orders (i.e., Orders 8∼103). Lastly,221

to mimic the lifelong learning scenario, we further add the Banking77 dataset (Casanueva et al.,222

2020), the Emotion dataset (Saravia et al., 2018), the rest datasets (WNLI, COLA and QNLI ) from223

the GLUE benchmark, and WSC from the SuperGLUE benchmark. We construct a benchmark224

with a long sequence of 70 tasks by splitting the datasets with over 4 classes into disjoint subsets4.225

Following Razdaibiedina et al. (2023), for each task, we randomly select 500 samples per class from226

the training set for validation, and use early stopping based on the validation accuracy.227

Baseline Methods for Comparison: In the experiments, we compare our model with 11 baseline228

methods including: (1) Per-task Finetune, (2) Continual Finetune (Wang et al., 2020; Huang et al.,229

2021), (3) Prompt Tuning (Qin & Joty, 2021; Lester et al., 2021), (4) Data Replay (Autume et al.,230

2019), (5) EWC (Kirkpatrick et al., 2017), (6) A-GEM (Chaudhry et al., 2018), (7) LFPT5 (Qin231

& Joty, 2021), (8) MBPA++ (Autume et al., 2019), (9) IDBR (Huang et al., 2021), (10) Per-task232

Prompt (Lester et al., 2021), and (11) ProgPrompt (Razdaibiedina et al., 2023). More detailed233

introductions to these competing methods are provided in Appendix C.3 due to space limitation.234

4.2 IMPLEMENTATION DETAILS235

Q-tuning is a model-backbone-agnostic approach that is applicable to any language models, such as236

the GPT series (OpenAI, 2023), regardless of their sizes. Due to experimental resource constraints,237

following (Razdaibiedina et al., 2023), we use two language models including the encoder-decoder238

T5 model (Raffel et al., 2020) and encoder-only BERT model (Devlin et al., 2018) in our experiments.239

For all the T5 experiments, we adopt the T5-large model with the text-to-text formulation, where240

classification labels are mapped into words (e.g. 0/1 will be mapped as "True"/"False"). For all the241

BERT experiments, we use the BERT-base model as in IDBR and MBPA++ methods (Huang et al.,242

2021; Autume et al., 2019). Following Devlin et al. (2018), we use the representation of the first token243

h[CLS] to predict the class of the input text, where h[CLS] is encoded by a beginning-of-a-sentence244

symbol [CLS]. Following Razdaibiedina et al. (2023), we apply a linear head including a linear245

transformation parameterized by α and a softmax function to obtain the classification probabilities246

over classes k ∈ {1...K}: p(y = k|h) =
exp(αkh[CLS])∑

y∈K exp(αyh[CLS])
. The linear head in addition to the247

prompt embeddings is trained separately for each task. For all the experiments, we set the single248

prompt length to 10, and apply a parameterized prompt with a two-layer residual MLP5.249

5 EXPERIMENTAL RESULTS250

We report Q-tuning performance on T5-large and BERT-base models and compare it to previous251

CL and prompt tuning approaches. We evaluate the methods after training on all tasks and report252

3The details of each order are reported in Table 9 of the Appendix. For each order, as in Razdaibiedina et al.
(2023), we train three versions of models, with 16 (or 20), 200, and 1000 training samples per class respectively,
and report the performance on the test sets correspondingly.

4Please refer to Appendix C.1 and Appendix C.2 for more details.
5The rest of the experimental details are reported in Appendix C.3.
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the averaged test set accuracy across all tasks. The detailed experimental metrics are reported in253

Appendix C.1. All the experiments are conducted on a single 32GB NVIDIA V100 GPU.254

Table 1: Summary of the results with T5 and BERT models on the short-sequence benchmark6.
Average accuracy after training on the last task is reported. All results are averaged over 3 runs. For
T5 experiments, we use few-shot CL settings by following Qin & Joty (2021).

(a) Results with the T5-large model.

Order
Method DR 1 2 3 avg

Per-task Finetune 70.0 70.0 70.0 70.0
Continual Finetune□ 18.9 24.9 41.7 28.5
Data Replay ✓ 35.4 37.1 41.5 38.0
EWC□ 39.0 38.0 44.8 40.6
LFPT5∗□ ✓ 47.6 52.6 57.9 52.7
ProgPrompt∗ 74.1 74.2 75.3 74.5

Ours∗ 75.8 75.8 76.9 76.2

(b) Results with the BERT-base model.

Order
Method DR 4 5 6 7 avg

Per-task Finetune 73.9 73.9 73.9 73.9 73.9
Continual Finetune♢ 14.8 27.8 26.7 4.5 18.4
Data Replay♢ ✓ 67.2 64.7 64.7 44.6 57.8
A-GEM♢ ✓ 70.6 65.9 67.5 63.6 66.9
MBPA++♢ ✓ 70.8 70.9 70.2 70.7 70.6
IDBR† ✓ 75.9 76.2 76.4 76.7 76.3
ProgPrompt∗ 77.8 77.5 77.6 77.4 77.6

Ours∗ 78.5 78.3 78.3 78.4 78.4

Table 2: Average test set performance of Q-tuning and prior approaches on long-sequence experiments
with 15 text classification tasks in different orders. In the experiments7, we use the few-shot CL by
setting 20 samples per class. All the results are averaged over 3 runs.

Method T5-large BERT-base
Order 8 Order 9 Order 10 Average Order 8 Order 9 Order 10 Average

Continual Finetune 9.3 9.5 10.4 9.7 29.9 30.5 33.6 31.3
Prompt Tuning∗ 9.7 24.4 12.2 17.4 - - - -

Data Replay 46.0 50.3 34.6 43.6 34.9 39.3 34.9 36.4
LFPT5∗ 54.7 54.1 54.2 54.3 - - - -

Per-task Prompt∗ 69.9 69.9 69.9 69.8 50.6 50.6 50.6 50.6
IDBR - - - - 39.7 37.9 32.9 36.8

ProgPrompt∗ 75.4 76.6 76.7 76.2 55.3 53.3 51.9 53.5

Ours∗

(Qsize = 5)

Random 76.4 77.3 76.1 76.6 53.6 53.2 51.1 52.6
FIFO 76.5 77.2 76.7 76.8 54.5 53.8 51.8 53.4

DQ-PCA 77.5 78.8 77.8 78.0 55.6 56.0 51.8 54.5

Ours∗

(Qsize = 10)

Random 76.7 77.2 76.5 76.8 54.7 54.2 52.8 53.9
FIFO 77.0 77.1 76.7 76.9 54.6 54.2 52.9 53.9

DQ-PCA 78.3 79.7 78.7 78.9 56.5 56.2 52.6 55.1

Ours∗ (Full Prompts) 79.0 79.1 78.1 78.7 55.3 55.2 54.5 55.0
MTL 70.7 70.7 70.7 70.7 56.9 56.9 56.9 56.9

5.1 RESULTS ON SHORT-SEQUENCE CL BENCHMARKS255

Following ProgPrompt (Razdaibiedina et al., 2023), we evaluate the performance of Q-tuning on256

the standard short-sequence CL benchmarks with few-shot learning settings, where Orders 1∼3 and257

Orders 4∼7 are evaluated with the T5 and BERT models, respectively. Since these sequential tasks258

only consist of four or five disjoint datasets, we set Qsize = 5 for the Q-prompt without utilizing the259

DQ-PCA rule. In Table 1a, we compare Q-tuning with the existing CL, prompt tuning and continual260

prompt tuning approaches using the T5 model. Q-tuning outperforms all the CL approaches by a261

large margin, achieving 76.2% accuracy on average of all the orders. Q-tuning increases the accuracy262

by 1.7% (from 74.5% to 76.2%) compared to ProgPrompt, the SOTA approach of continual prompt263

tuning. Q-tuning also surpasses the “Per-task Fintune” by 6.2% on average, demonstrating the efficacy264

of the proposed queue ensemble and shared prefix prompt approach in enhancing the FKT capability.265

Table 1b reports the results on the BERT-base model that verify an consistent improvement.266

6Methods marked with ∗ use soft prompt tuning, while other methods train the entire model. For ProgPrompt,
the results are reported by running their released code. DR denotes whether the method requires data replay. □,
♢ and † mark the results from Qin & Joty (2021), Autume et al. (2019) and Huang et al. (2021), respectively.

7MTL denotes multi-task learning that fintunes the model using all the datasets from different tasks. Methods
marked with ∗ only train a soft prompt while freezing the pretrained model, other methods train the entire model.
The “Full Prompts” denotes remaining all prompts in queue by setting Qsize = 15.
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5.2 RESULTS ON LONG-SEQUENCE CL BENCHMARKS267

In Table 2, we compare the Q-tuning with the baseline approaches on the long-sequence CL bench-268

mark, including Orders 8∼10 using the T5-large and the BERT-base models. These experiments269

consist of 15 tasks in three different orders. We follow the few-shot CL setting as in Qin & Joty (2021);270

Razdaibiedina et al. (2023) by selecting 20 samples per class. The row of “Ours (Full Prompts)”271

denotes the result of not trimming Q-prompt during Q-tuning, i.e., maintaining the complete 15272

prompts as in ProgPrompt. As shown in Table 2, the full Q-prompt outperforms ProgPrompt by273

2.5% in accuracy on average from 76.2% to 78.7% with the T5 model, which demonstrates again the274

efficacy of the queue ensemble and shared prefix prompt. Moreover, setting the maximum length275

of the Q-prompt to 5 using DQ-PCA only leads to a 0.7% accuracy drop (from 78.7% to 78.0%)276

compared with the full Q-prompt, and we even observe a 0.2% accuracy increase over the full prompt277

when setting the maximum Q-prompt length to 10. This indicates the capability of DQ-PCA to278

protect essential knowledge when trimming the Q-prompt. Furthermore, we compare three dequeuing279

rules to trim the Q-prompt, including random dropping, first in and first out (FIFO), and DQ-PCA.280

DQ-PCA clearly outperforms the other two naive strategies. We observe consistent improvement in281

both the T5-large model and the BERT-base model.282

Table 3: Results on extremely long sequence
experiments (70 randomly permuted tasks). All
results are averaged over 3 runs.

Method T5-large
Order 11 Order 12 Order 13 Average

ProgPrompt8 - - - -

Per-task Prompt 60.4 60.4 60.4 60.4
Shared Prompt 62.4 62.7 63.1 62.7

Q-tuning
(Qsize = 10) 90.9 90.6 90.8 90.8

Lastly, Table 3 reports the results of Q-tuning on Or-283

ders 11∼13 including three random permutations of284

70 disjoint tasks, which mimic the lifelong learning285

scenarios. Training ProgPrompt will fail due to out286

of memory caused by the accumulation of prompts8.287

Compared to the per-task prompt tuning, Q-tuning has288

gained considerable performance benefits (30.4% accu-289

racy improvement on average from 60.4% to 90.8%).290

This can be attributed to 1) the improved FKT by ap-291

plying Q-prompt ensemble, 2) the effective trimming292

of Q-prompt using DQ-PCA to enable the training of long sequence of tasks, and 3) the use of293

shared prefix prompt to avoid the accumulated information loss caused by the Q-prompt trimming.294

We also compare Q-tuning with training using a global shared prompt and a per-task prompt plus295

the MR regularization for each task without maintaining the queue of task-specific prompts. To296

ensure a fair comparison, we set the length of the shared prompt to be identical to Q-tuning, i.e.,297

l×Qsize. Although the accuracy of the shared prompt is better than the per-task prompt tuning (2.3%298

improvement on average from 60.4% to 62.7%), it is outperformed by Q-tuning by 28.1% (62.7% to299

90.8%) on average. This indicates that, although the Q-prompt and the shared prefix prompt serve the300

same purpose of aggregating knowledge for better FKT, it is beneficial to keep both components.301

Table 4: Forward knowledge transfer results of Order 9
using 20 samples/class. All results are averaged over 3 runs.

Forward Transfer
(Target Task)

Q-prompt
(Full)

Q-prompt
(Qsize = 5)

Q-prompt
(Qsize = 10) Prompt Tuning

Task 11 98.1 97.8 (↓ 0.3%) 98.2 (↑ 0.1% ) 97.1 (↓ 1.0%)
Task 12 86.2 83.9 (↓ 2.3%) 86.1 ( ↓ 0.1%) 72.6 (↓ 13.6%)
Task 13 56.6 54.9 (↓ 1.7%) 56.2 (↓ 0.4%) 49.8 (↓ 6.8%)
Task 14 50.4 50.3 (↓ 0.1%) 50.5 (↑ 0.1%) 47.6 (↓ 2.8%)
Task 15 69.4 68.9 (↓ 0.5%) 69.1 (↓ 0.3%) 68.1 (↓ 1.3%)

Average 72.1 71.2 (↓ 0.9% ) 72.0 (↓ 0.1%) 67.0 (↓ 5.1%)

Table 5: Ablation studies on the Q-prompt ensem-
ble and prefix shared prompt of Q-tuning9. All
results are averaged over 3 runs.

Sequence Method Num. samples
Q-prompt Ensemble θP∗ 16 200 1000 Average

Short
✓ ✗ ✗ 74.5 79.8 79.8 78.0
✓ ✓ ✗ 75.2 80.9 80.4 78.8
✓ ✗ ✓ 75.1 80.6 80.9 78.9
✓ ✓ ✓ 76.2 81.2 81.9 79.7

Sequence Method Num. samples
Q-prompt Ensemble θP∗ 20 200 1000 Average

Long
✓ ✗ ✗ 76.7 80.8 80.8 79.4
✓ ✓ ✗ 77.2 81.1 82.1 80.2
✓ ✗ ✓ 77.4 81.1 82.3 80.3
✓ ✓ ✓ 78.9 81.9 83.3 81.45.3 ABLATION STUDY AND ANALYSIS302

In this section, we evaluate our approach’s performances in various aspects, including its capability of303

fulfilling FKT, adapting previous prompts based on their relevance to the new task using the Q-prompt304

ensemble, and maintaining global knowledge sharing using a shared prefix prompt.305

Forward Knowledge Transfer: In Table 4, we evaluate the FKT performance of the trimmed306

Q-prompt. We train three different Q-prompts including the “Full”, “Qsize = 5” and “Qsize = 10”,307

8In our experiments, training ProgPrompt fails after the 15-th task on a single NVIDIA V100 GPU (32GB)
9For long sequence, we set Qsize = 10. More detailed results of each order are reported in Appendix D.

8



Under review as a conference paper at ICLR 2024

where the “Full” denotes keeping the complete Q-prompt without the De-Q operation. All these308

Q-prompts are continuously trained on the first 10 tasks of Order 9. Then we separately evaluate309

the FKT performance of these Q-prompts on five remaining target tasks. As a reference, we also310

train a single prompt (denoted by “Prompt Tuning” whose token length is set the same as the total311

length of the full Q-prompt) on each target task. First of all, full Q-prompt substantially outperforms312

“Prompt Tuning”, demonstrating our approach’s capability in fulfilling FKT whereas “Prompt Tuning”313

does not leverage any information from other tasks. Moreover, compared to the full Q-prompt, the314

trimmed Q-prompt only has a minor performance drop. For example, setting Qsize = 10 only leads315

to 0.1% accuracy decrease (from 72.1% to 72.0%). This proves that trimmed Q-prompt is able to316

maintain FKT at the same level as the full Q-prompt, despite previous prompts being trimmed.317
Q-prompt

sst2imdbbanking77emotion
Q-prompt

qnliboolqmultirccopa

Figure 2: Visualization of ensemble matrix.

Table 6: Ablation studies on the ex-
tremely long sequence experiments. All
results are averaged over 3 runs.

Method T5-large
θP∗ LMR Order 11 Order 12 Order 13 Average

✗ ✗ 86.8 87.3 87.7 87.3
✓ ✗ 89.8 89.4 90.1 89.8
✓ ✓ 90.9 90.6 90.8 90.8

Q-prompt Ensemble: Table 5 demonstrates the efficacy318

of the Q-prompt ensemble. In both the short and long task319

sequences, compared with the complete Q-prompt model320

(the fourth row), dropping the ensemble (the third row)321

leads to 0.8% and 1.1% accuracy drop in the short and322

long task sequences, respectively. In addition, in Fig. 2,323

we visualize the trained weight matrix W to reflect the324

relevance of previously learned prompts to the current task.325

We can observe when learning the “sst2” task, the prompt326

from the “imdb” task contributes the most. This is because327

the two tasks are both for the movie review classification.328

The ensemble matrix uncovers their correlation and as-329

signs more weights to the prompt of the “imdb” task. In330

contrast, for the “qnli” task, the ensemble matrix suggests331

an even contribution of each prompt in the queue. This is332

because all the tasks are related to the Q&A classification.333

Shared Prefix Prompt: We conduct ablation studies to validate the efficacy of the shared prefix334

prompt. As shown in Table 5, in both the short and long task sequences, by comparing the complete335

Q-prompt model (the fourth row) and dropping the shared prefix prompt (the second row), we336

observe an accuracy drop of 0.9% and 1.2% in the short and long task sequences, respectively. The337

impact in the short task sequence is less than that of the long task sequence. This is expected as the338

short task sequence does not utilize DQ-PCA to trim the Q-prompt, hence no information loss from339

previous prompts. This will dilute the effect of the shared prefix prompt. Furthermore, to evaluate340

the contribution of the MR regularization, we conduct the experiments on a long task sequence by341

setting Qsize = 10. As shown in Table 6, dropping the MR regularization from the shared prefix342

prompt (from the third row to the second row) leads to a 1% accuracy drop. We also evaluate the343

performance using different η values for the MR regularization, which is reported in Appendix D.344

6 CONCLUSION345

This paper introduces a new model-agnostic approach named Q-tuning, which can pave the way346

to achieving lifelong continual prompt tuning for present and future LMs with a rapid growth of347

parameters. In comparison with existing CL methods, Q-tuning maintains a low-cost prompt queue348

instead of storing a large number of task-specific parameters or saving old data samples for replay.349

Our extensive experiments demonstrate that Q-tuning outperforms existing continual learning, prompt350

tuning and continual prompt tuning methods on the standard CL benchmarks for text classification.351

In addition, we verify the effectiveness of Q-tuning on both short and long task sequences, including352

up to 70 tasks that mimic the case of lifelong learning.353

Limitations: Although Q-tuning demonstrates a strong FKT capability, it does not enable the354

backward knowledge transfer as both the model and the previous Q-prompts are frozen during the355

learning of a new task. Besides, Q-tuning requires the task identities to be known at test time. To356

address the more challenging CL scenario when the task identities are undisclosed at test time,357

inspired by Wang et al. (2022), for task i, we can assign a trainable query key ki to the corresponding358

Q-prompt Qi and jointly train ki to maximize the similarity between ki and the feature of each359

sample x from task i. During test time, given an input x′ with an unknown identity, we will first360

locate the Q-prompt that has the largest similarity between its key kj and the input x′, and then we361

can use the retrieved Q-prompt Qj to infer x′. We will address this problem in our future work.362
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Appendix543

A Q-TUNING ALGORITHM544

Algorithm 1 Q-tuning Algorithm

Input: Continually increased task set T , Q-prompt Q with a maximum capacity C, fixed pretrained
model θM, ensemble matrixW for Q, shared prefix prompt θP∗ , memory factor η.

Initialize: Q1 = {}, randomly initialized θ1P∗ and θ1P , initializedW1 with an identity matrix.
for continually coming task i = 1, 2, . . . do

if i > C then
Q ← PCA-DQ(Q) // De-Q (Eq.(4))

else
Q ← Q⊕ θiP // En-Q

end if
for each batch sample from T i’s dataset do

θiP ← θiP +∇θi
P
LQ(θ

i
P∗ , θiP ,Wi)

Wi ←Wi +∇WiLQ(θ
i
P∗ , θiP ,Wi)

if i=1 then
θiP∗ ← θiP∗ +∇θi

P∗
LQ(θ

i
P∗ , θiP ,Wi)

else if i > C then
θiP∗ ← θiP∗ +∇θi

P∗
[LQ(θ

i
P∗ , θiP ,Wi) + ηLMR(θ

i
P∗)]

end if
end for

end for

B MUTUAL INFORMATION ESTIMATION545

Proposition 1. Let p(x) and p(y) represent two random variables, their mutual information satisfies546

I(p(x); p(y)) := DJSD(J||M)

≥ Ez∼J [−σ(−Fω(z))]−Ez′∼M [σ(Fω(z
′))]

(10)

where the joint J = p(x, y), M = p(x)p(y) is the product of the marginals, σ(t) = log(1 + et), and547

F belongs to an arbitrary class of functions that can map J→ R and M→ R.548

Proof. According to the variational estimation of f -divergences (Nguyen et al., 2010), we have549

Df (P||Q) =

∫
q(x) sup

t∈domg∗
t
p(x)

q(x)
− g∗(t)dx

≥ sup
V∈F

(∫
p(x)V(x)dx−

∫
q(x)g∗(V(x))dx

)
= sup

V∈F
(Ex∼P[V(x)]− Ex∼Q[g∗(V(x))])

(11)

where the function g∗ is a convex conjugate function (Hiriart-Urruty & Lemaréchal, 2004; Nowozin550

et al., 2016) of a convex, lower-semicontinuous function. The function g∗ is defined as551

g∗(t) = sup
u∈domf

{ut− f(u)} (12)

We parameterize V using a neural network with parameters w and write it as Vω. We assume552

the form of the function Vω = gf (Fω(x)). Given two probability distributions J = p(x, y) and553

M = p(x)p(y), their f -divergence satisfies:554

Df (J||M) = sup
Fω

(Ez∼J[gf (Fω(z))]− Ez′∼M[g∗(gf (Fω(z
′)))]) (13)
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Table 7: Recommended final layer activation functions and their conjugate functions. This table
comes from Nowozin et al. (2016).

Name Output activation gf domg⋆ Conjugate g⋆(t)

Kullback-Leibler (KL) v R exp(t− 1)
Reverse KL −exp(−v) R− -1-log(−t)
Pearson χ2 v R 1

4 t
2 + t

Square Hellinger 1− exp(−v) t < 1 t
1−t

Jensen-Shannon log(2)− log(1 + exp(−v)) t < log(2) −log(2− exp(t))

where gf is an activation function specific to the f -divergence used. Table 7 provides the commonly555

used gf and the convex conjugate function g∗. According to this table, for the JSD based divergence,556

we have gf (x) = log(2)− log(1+ exp(−x)) and g∗(x) = −log(2− exp(x)). By substituting them557

into Eq. (13), we have558

Ez∼J [gf (Fω(z))] = E [log2− log(1 + exp(−Fω(z)))]

= Ez∼J [log2− σ(−Fω(z))]
(14)

559
Ez′∼M [g∗(gf (Fω(z

′)))]

= Ez′∼M

[
−log(2− explog2−log(1+exp(−Fω(z′))))

]
= Ez′∼M

[
−log(2− 2(1 + exp(−Fω(z

′))−1))
]

= Ez′∼M

[
−log(2 exp(−Fω(z

′))

1 + exp(−Fω(z′))
)

]
= Ez′∼M

[
−log 2exp(−Fω(z

′))exp(Fω(z
′))

exp(Fω(z′)) + exp(−Fω(z′))exp(Fω(z′))

]
= Ez′∼M

[
−log( 2

exp(Fω(z′)) + 1
)

]
= Ez′∼M [−(log2− log(exp(Fω(z

′)) + 1))]

= Ez′∼M [−log2 + σ(Fω(z
′))]

(15)

Combining Eq. (14) and Eq. (15), we can rewrite Eq. (13) as a JSD-divergence based form:560

DJSD(J||M) = sup
Fω

(Ez∼J [log2] + Ez∼J [−σ(−Fω(z))]

+ Ez′∼M [log2]− Ez′∼M [σ(Fω(z
′))])

≥Ez∼J [−σ(−Fω(z))]− Ez′∼M [σ(Fω(z
′))]

(16)

561

C FURTHER IMPLEMENTATION DETAILS562

C.1 DATASETS AND METRICS563

We use 21 public datasets, of which 15 datesets are the same as ProgPrompt Razdaibiedina et al.564

(2023) for our experiments. Table 8 reports the details of the 21 datasets, along with their evaluation565

metrics. Overall, we use datasets from CL benchmark (Zhang et al., 2015), GLUE (Wang et al.,566

2018) and SuperGLUE (Wang et al., 2019) benchmarks, and IMDB movie reviews dataset. We567

use the Banking77 dataset (Casanueva et al., 2020) and Emotion dataset (Saravia et al., 2018) for568

the extremely long 70-task experiments. Following the common practice, for tasks that have two569

evaluation metrics, we use the average of the two as the final performance metric.570

To mimic the life-long learning, we add WNLI, COLA and QNLI from the GLUE benchmark, WSC571

from the SuperGLUE benchmark, the Banking77 dataset (Casanueva et al., 2020) and the Emotion572

dataset (Saravia et al., 2018) to form an extremely long sequence including 70 tasks. In the 70-task573
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experiments, we split the DBpedia set into 7 disjoint tasks, the Yahoo set into 5 disjoint tasks, and574

the Banking77 set into 38 disjoint tasks (removing 1 class), and the Emotion dataset into 3 disjoint575

tasks, where each task has two 2 classes. These divided 53 subsets plus the rest 17 datasets form576

the final 70-task dataset. Following Razdaibiedina et al. (2023), for each task, we randomly select577

500 samples per class from the training set for validation, and use early stopping according to the578

validation accuracy on all seen tasks.579

Table 8: The details of 21 datasets used in our experiments. NLI denotes natural language inference,
QA denotes questions and answers task, and EM denotes exact match scoring. The first five tasks are
used to form the standard CL benchmark, all other tasks are used in our long-sequence experiments.

Dataset name Category Task Domain Metric Classes

1. YP CL benchmark sentiment analysis YP reviews accuracy 5
2. Amazon CL benchmark sentiment analysis Amazon reviews accuracy 5
3. DBpedia CL benchmark topic classification Wikipedia accuracy 14
4. Yahoo CL benchmark QA Yahoo Q&A accuracy 10
5. AG News CL benchmark topic classification news accuracy 4
6. MNLI GLUE NLI various accuracy 3
7. QQP GLUE paraphrase detection Quora accuracy & F1 2
8. RTE GLUE NLI news, Wikipedia accuracy 2
9. SST2 GLUE sentiment analysis movie reviews accuracy 2
10. WiC SuperGLUE word sense disambiguation lexical databases accuracy 2
11. CB SuperGLUE NLI various accuracy 2
12. COPA SuperGLUE QA blogs, encyclopedia accuracy 2
13. BoolQ SuperGLUE boolean QA Wikipedia accuracy 2
14. MultiRC SuperGLUE QA various F1 & EM 2
15. IMDB Other sentiment analysis movie reviews accuracy 2
16. WNLI GLUE NLI various accuracy 2
17. COLA GLUE NLI books, journal articles accuracy 2
18. QNLI GLUE QA Wikipedia accuracy 2
19. WSC SuperGLUE NLI various accuracy 2
20. Banking77 Other intent detection banking accuracy 77
21. Emotion Other emotion detection Twitter accuracy 6

C.2 TASK SEQUENCE ORDERS580

We report the task orders used in our experiments across the T5 and BERT models in Table 9 below,581

where Orders 1-10 are the same as ProgPrompt (Razdaibiedina et al., 2023). The Orders 11-13 are582

created by randomly permuting the collected 70 disjoint datasets to mimic the lifelong learning of583

continuously incoming unseen tasks.584

16



Under review as a conference paper at ICLR 2024

Table 9: Thirteen different orders of task sequences used for continual learning experiments. Orders
1-7 correspond to the standard CL benchmarks adopted by prior works (Razdaibiedina et al., 2023)
for short-sequence experiments. Orders 8-10 are long-sequence orders spanning 15 tasks. Orders
11-13 are our customized extremely long sequences, where the tasks are randomly permuted. In
these extremely long cases, existing techniques such as the SOTA, ProgPrompt (Razdaibiedina et al.,
2023), cannot cope with these long tasks, due to the quadratic growing training and inference costs.

Order Model Task Sequence
1 T5 db ) amazon ) yahoo ) ag
2 T5 db ) amazon ) ag ) yahoo
3 T5 yahoo ) amazon ) ag ) db

4 BERT ag ) yp ) amazon ) yahoo ) db
5 BERT yp ) yahoo ) amazon ) db ) ag
6 BERT db ) yahoo ) ag ) amazon ) yp
7 BERT yp ) ag ) db ) amazon ) yahoo

8 T5, BERT mnli ) cb ) wic ) copa ) qqp ) boolq ) rte ) imdb )
yp ) amazon ) sst2 ) dbpedia ) ag ) multirc ) yahoo

9 T5, BERT multirc ) boolq ) wic ) mnli ) cb ) copa ) qqp ) rte )
imdb ) sst2 ) dbpedia ) ag ) yp ) amazon ) yahoo

10 T5, BERT yp ) amazon ) mnli ) cb ) copa ) qqp ) rte ) imdb )
sst2 ) dbpedia ) ag ) yahoo ) multirc ) boolq ) wic

11 T5

wsc ) banking77-19 ) banking77-9 ) banking77-8 ) banking77-25 )
yahoo-1 ) banking77-34 ) banking77-3 ) banking77-23 )

cb ) banking77-7 ) banking77-35 ) banking77-13 ) imdb )
banking77-12 ) banking77-17 ) multirc ) banking77-14 ) emotion-0 )

banking77-22 ) yp ) dbpedia-14-5 ) banking77-30 )
banking77-1 ) banking77-15 ) boolq ) banking77-20 ) banking77-21 )

dbpedia-14-2 ) qnli ) banking77-31 ) banking77-29 ) emotion-2 ) yahoo-3 )
dbpedia-14-1 ) banking77-32 ) banking77-0 ) rte ) ag-news ) dbpedia-14-4 )

banking77-2 ) yahoo-4 ) banking77-11 ) banking77-37 ) banking77-27 )
sst2 ) banking77-33 ) copa ) banking77-5 ) dbpedia-14-0 ) wic )
qqp ) banking77-26 ) yahoo-2 ) banking77-10 ) banking77-36 )

banking77-4 ) emotion-1 ) dbpedia-14-3 ) amazon ) banking77-28 )
banking77-16 ) banking77-24 ) mnli ) cola )

wnli ) banking77-18 ) banking77-6 ) dbpedia-14-6 ) yahoo-0

12 T5

banking77-29 ) yp ) banking77-30 ) banking77-26 )
banking77-20 ) yahoo-2 ) amazon ) dbpedia-14-2 ) banking77-24 ) yahoo-3 )

banking77-22 ) banking77-16 ) yahoo-0 ) dbpedia-14-1 ) emotion-2 ) dbpedia-14-4 )
dbpedia-14-6 ) wic ) banking77-23 ) banking77-14 ) banking77-18 ) yahoo-4 )

banking77-5 ) banking77-0 ) banking77-13 ) cb ) banking77-35 ) rte )
banking77-4 ) dbpedia-14-3 ) banking77-1 ) banking77-9 )

banking77-15 ) banking77-3 ) banking77-6 ) banking77-21 ) mnli ) banking77-2 )
yahoo-1 ) boolq ) banking77-10 ) banking77-25 ) banking77-37 ) banking77-17 )

qqp ) banking77-28 ) wnli ) banking77-8 ) banking77-31 )
dbpedia-14-0 ) banking77-11 ) banking77-27 ) banking77-7 ) multirc )

banking77-33 ) banking77-12 ) imdb ) copa )
banking77-19 ) cola ) banking77-34 ) sst2 ) emotion-0 )

wsc ) qnli ) emotion-1 ) banking77-32 ) dbpedia-14-5 ) ag-news ) banking77-36

13 T5

yahoo-2 ) copa ) banking77-22 ) emotion-0 ) banking77-1 ) emotion-1 )
yahoo-0 ) banking77-32 ) banking77-37 ) dbpedia-14-0 ) banking77-3 ) qnli )

multirc ) banking77-0 ) dbpedia-14-3 ) ag-news ) banking77-10 ) imdb )
banking77-5 ) banking77-15 ) banking77-16 ) wnli )

banking77-36 ) wsc ) banking77-13 ) banking77-19 ) amazon )
banking77-29 ) banking77-33 ) boolq ) banking77-28 )

yahoo-1 ) yp ) banking77-14 ) emotion-2 ) mnli ) banking77-7 )
banking77-21 ) banking77-30 ) banking77-4 ) banking77-9 )

banking77-35 ) dbpedia-14-5 ) banking77-26 )
cola ) qqp ) yahoo-3 ) dbpedia-14-6 ) wic )

banking77-25 ) banking77-31 ) banking77-17 )
banking77-23 ) banking77-8 ) cb ) banking77-6 ) dbpedia-14-2 )

banking77-20 ) dbpedia-14-1 ) yahoo-4 ) banking77-18 )
banking77-2 ) banking77-34 ) banking77-12 ) dbpedia-14-4 ) banking77-27 )

rte ) sst2 ) banking77-24 ) banking77-11
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C.3 IMPLEMENTATION AND EXPERIMENT DETAILS585

More Details of the Methods for Comparison Following Razdaibiedina et al. (2023), we consider586

11 baseline methods for comparison with the proposed Q-tuning:587

• Per-task Finetune separately tunes the whole model for each task. We use this type of method as a588

baseline in the short-sequence benchmark experiments.589

• Continual Finetune (Wang et al., 2020; Huang et al., 2021) continually tunes the whole model on590

a sequence of tasks without adding any regularization or replaying data from the previous tasks.591

• Prompt Tuning (Qin & Joty, 2021; Lester et al., 2021) sequentially trains a shared soft prompt592

across all tasks, while freezing the pretrained model.593

• Data Replay finetunes the whole model for new tasks while replaying samples from previous tasks594

to prevent the CF problem.595

• EWC (Kirkpatrick et al., 2017) finetunes the whole model using a regularization loss which596

penalizes updating parameters that could disturb the previously learned tasks.597

• A-GEM (Chaudhry et al., 2018) retrieves examples from old tasks and restricts the gradients to598

update the model when learning new tasks.599

• LFPT5 (Qin & Joty, 2021) continuously trains a soft prompt that learns the tasks while generating600

samples for experience replay.601

• MBPA++ (Autume et al., 2019) uses an episodic memory to augment BERT by storing all seen602

examples.603

• IDBR (Huang et al., 2021) continuously trains the whole model by using data replay and a604

regularization loss. It adopts sentence representation disentanglement in task-specific and task-605

generic spaces, achieving SOTA on the CL benchmark with BERT.606

• Per-task Prompt (Lester et al., 2021) trains a separate soft prompt for each task while keeping the607

original model frozen. This type of method naturally eliminates the CF problem, because separately608

tuned prompts will not change when new tasks are learned. However, this independent prompt609

tuning setup cannot achieve forward knowledge transfer.610

• ProgPrompt (Razdaibiedina et al., 2023) trains a progressively increased prompt list to achieve611

the forward knowledge transfer and resist the CF problem using prompt tuning without relying on612

data replay. Current SOTA on continual prompt tuning benchmarks with T5 and BERT.613

Implementation Details We use PyTorch and HuggingFace Transformers library for our im-614

plementation. For the standard CL benchmark, we use official datasets provided by Zhang et al.615

(2015), following Autume et al. (2019); Zhang et al. (2015). We use HuggingFace datasets (https:616

//github.com/huggingface/datasets) to download data for GLUE tasks (Wang et al.,617

2018), SuperGLUE tasks (Wang et al., 2019) tasks, IMDB movie reviews dataset (Maas et al., 2011),618

Banking77 dataset (Casanueva et al., 2020), and Emotion dataset (Saravia et al., 2018), which we use619

for long-sequence CL experiments, life-long learning experiments and ablation studies. Following620

previous studies (Autume et al., 2019; Razdaibiedina et al., 2023), for CL experiments, for each621

dataset, we use the available validation set as a test set (since test data is not available), and hold out622

500 samples from the train set to construct the validation set. For our ablation studies, we report the623

maximal validation set performance.624

We use the Adam optimizer and set the batch size to 8 for all the experiments. Following Razdai-625

biedina et al. (2023), we train each prompt between 20 and 300 epochs, depending on the number of626

data points. We use the prompt checkpoints with the best validation set score as our final prompts.627

Prompts are initialized from randomly sampled tokens as in Lester et al. (2021), hyperparameters are628

shown in the Table 10.629

The mutual information maximization can be approximated by maximizing its variational lower bound630

(Barber & Agakov, 2004; Poole et al., 2019) defined by Eq. (6). But this variational approximation631

requires extra costly computation to optimize the discriminator Fw. We empirically find a KL-632

divergence based loss can go for the same goal, which is also verified by Müller et al. (2019); Tian633

et al. (2019). The KL-divergence based MR loss between the new memory and the old memory is634
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defined as follows:635

LMR =
∑
i∈|T |

∑
(xi,yi)∈T i

DKL(p(y
i|xi; θM, θiP∗) ∥ p(yi|xi; θM,Wi−1 ◦ [θi−1

P∗ ,Qi−1])), (17)

where only the shared prefix prompt θiP∗ is trainable. This MR regularization loss does not require636

training an extra discriminator network, achieving the same objective as knowledge distillation637

(Hinton et al., 2015).638

For all the CL experiments, we use early stopping as in Huang et al. (2021), to save model checkpoint639

based on the best validation performance on the current task. We report test set performance after640

training on all tasks as our final metric. For SuperGLUE experiments, we report maximal validation641

set performance over the course of training as in Lester et al. (2021). We measure the validation642

performance after every epoch and use metrics described in Appendix C.1. We use the same643

hyperparameter settings for all prompt-based approaches (Q-tuning, Progressive Prompts, per-task644

prompt) as in Razdaibiedina et al. (2023).645

Table 10: Hyperparameters used for Q-tuning across different CL experiments.

Hyperparameter ↓ Short-sequence benchmark Long-sequence benchmark
Num. samples → 16 200 1000 20 200 1000

T5-large Model
Epochs 300 150 20 300 150 20
Learning rate 0.3 0.3 0.3 0.3 0.3 0.3
Length of shared prompt θP∗ 10 10 10 10 10 10
Length of each prompt in Q 10 10 10 10 10 10
Memory factor η 0.001 0.001 0.001 0.01 0.01 0.01

BERT-base Model
Epochs 300 150 40 300 150 40
Learning rate 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Length of shared prompt θP∗ 10 10 10 5 5 5
Length of each prompt in Q 10 10 10 5 5 5
Memory factor η 0.001 0.001 0.001 0.01 0.01 0.01

Table 11: More details of the ablation study results on each order reported in Table 5. For the
long-sequence experiments, we set the queue size to 10. All results are averaged over 3 runs.

Sequence
Method T5-large Results

Q-prompt Ensemble θP∗ Order1 Order2 Order3 Average
(Num. samples →) 16 200 1000 16 200 1000 16 200 1000 16 200 1000

Short
✓ 74.1 80.0 79.6 74.2 79.5 79.9 75.3 79.8 80.1 74.5 79.8 79.8
✓ ✓ 74.9 80.9 80.4 75.1 80.6 80.1 75.6 81.1 80.8 75.2 80.9 80.4
✓ ✓ 75.0 80.7 81.6 74.6 80.7 80.7 75.7 80.4 80.6 75.1 80.6 80.9
✓ ✓ ✓ 75.8 81.2 82.3 75.8 81.1 82.2 76.9 81.1 81.1 76.2 81.2 81.9

Sequence
Method T5-large Results

Q-prompt Ensemble θP∗ Order8 Order9 Order10 Average
(Num. samples →) 20 200 1000 20 200 1000 20 200 1000 20 200 1000

Long
✓ 76.3 81.6 81.0 76.9 80.6 80.5 76.7 80.1 80.9 76.7 80.8 80.8
✓ ✓ 77.1 81.6 82.1 77.4 81.7 81.9 77.2 80.2 82.4 77.2 81.1 82.1
✓ ✓ 77.4 81.7 82.5 77.9 80.9 82.5 77.1 80.7 82.0 77.4 81.1 82.3
✓ ✓ ✓ 78.3 82.4 83.5 79.7 82.1 83.3 78.7 81.4 83.1 78.9 81.9 83.3

MLP-based prompt We follow Razdaibiedina et al. (2023) by setting a two-layer MLP for646

parameterizing the soft-prompt. The two-layer MLP includes two linear layers with the ReLU647

activation function. The number of hidden nodes in the hidden layer is set to 512 in all Q-tuning648

experiments.649
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D MORE ABLATION STUDY RESULTS650

Table 11 reports more details of the results on each order in Table 5 for the ablation study. Table 12651

presents the effectiveness of setting different memory factors η in the MR loss. As shown, the η is652

suggested to 10−2 for the long sequence tasks. By comparing with the results of “w/o MR”, the653

performance by using MR loss is improved by 1.7% on average.654

Table 12: Ablation study experiments (20 samples/class for long sequence) on the memory factor η
of the MR loss. All results are averaged over 3 runs.

Parameter Long Sequence
Order 8 Order 9 Order 10 Average

η = 1 73.5 75.8 73.2 74.2
η = 10−1 77.1 78.6 77.3 77.7
η = 10−2 78.3 79.7 78.7 78.9
η = 10−3 78.1 79.4 78.0 78.5
η = 10−4 77.8 78.8 77.8 78.1
w/o MR 77.3 77.3 77.1 77.2

E EVALUATION OF FORWARD TRANSFER AND BACKWARD TRANSFER655

We compare the backward transfer and forward transfer performance of Q-tuning with the competi-656

tors using the metrics defined by (Lopez-Paz & Ranzato, 2017) in the long-sequence experiments.657

Figures 3, 4 and 5 show the forward transfer scores of the order 8 task sequence, Figures 6, 7 and 8658

show the forward transfer scores of the order 9 task sequence, and Figures 9, 10 and 11 show the659

forward transfer scores of the order 10 task sequence.660

Figures 12, 13 and 14 show the backward transfer scores of the order 8 task sequence, Figures 15,661

16 and 17 show the backward transfer scores of the order 9 task sequence, and Figures 18, 19 and662

20 show the backward transfer scores of the order 10 task sequence. In these backward transfer663

measurements, the score 0 stands for not forgetting old tasks.664

We also report the evolution of the average accuracy over learning new tasks (Lopez-Paz & Ranzato,665

2017) in Figure 21.666

Figure 3: Forward transfer score of different approaches on the order 8 (20 samples/class).
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Figure 4: Forward transfer score of different approaches on the order 8 (200 samples/class).

Figure 5: Forward transfer score of different approaches on the order 8 (1000 samples/class).
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Figure 6: Forward transfer score of different approaches on the order 9 (20 samples/class).

Figure 7: Forward transfer score of different approaches on the order 9 (200 samples/class).
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Figure 8: Forward transfer score of different approaches on the order 9 (1000 samples/class).

Figure 9: Forward transfer score of different approaches on the order 10 (20 samples/class).

23



Under review as a conference paper at ICLR 2024

Figure 10: Forward transfer score of different approaches on the order 10 (200 samples/class).

Figure 11: Forward transfer score of different approaches on the order 10 (1000 samples/class).
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Figure 12: Backward transfer score of different approaches on the order 8 (20 samples/class).

Figure 13: Backward transfer score of different approaches on the order 8 (200 samples/class).
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Figure 14: Backward transfer score of different approaches on the order 8 (1000 samples/class).

Figure 15: Backward transfer score of different approaches on the order 9 (20 samples/class).
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Figure 16: Backward transfer score of different approaches on the order 9 (200 samples/class).

Figure 17: Backward transfer score of different approaches on the order 9 (1000 samples/class).
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Figure 18: Backward transfer score of different approaches on the order 10 (20 samples/class).

Figure 19: Backward transfer score of different approaches on the order 10 (200 samples/class).
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Figure 20: Backward transfer score of different approaches on the order 10 (1000 samples/class).

Figure 21: Evolution of average accuracy after learning new tasks.
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