
Published as a workshop paper at AI4Mat-Vienna 2024

KUSP: PYTHON SERVER FOR DEPLOYING ML INTERATOMIC POTEN-
TIALS

Amit Gupta
Aerospace Engineering and Mechanics
University of Minnesota
gupta839@umn.edu

Ellad B. Tadmor ∗

Aerospace Engineering and Mechanics
University of Minnesota
tadmor@umn.edu

Stefano Martiniani †

Center for Soft Matter Research, Department of Physics, New York University, New York, 10003, USA
Simons Center for Computational Physical Chemistry, Department of Chemistry, New York University, New York, 10003, USA
Courant Institute of Mathematical Sciences, New York University, New York, 10003, USA
stefano.martiniani@nyu.edu

ABSTRACT

The KIM Utility for Serving Potentials (KUSP) is a Python package designed to facilitate the rapid deploy-
ment of machine learning (ML) interatomic potentials (MLIPs) to arbitrary molecular simulation codes. KUSP
imposes minimal restrictions on ML architecture and libraries, and is thus compatible with popular ML frame-
works such as PyTorch, JAX, and TensorFlow, as well as utilities like PyTorch Geometric and the Deep Graph
Library. By providing a simulator-agnostic interface via the KIM API, KUSP allows researchers to quickly
prototype and deploy their models in molecular simulation codes such as LAMMPS and ASE. Moreover KUSP
enables the validation and benchmarking of models through OpenKIM “tests” (molecular simulation-based ma-
terial property calculations) and “verification checks” (basic physical consistency checks), allowing for direct
comparison with other MLIPS and classical physics-based interatomic potentials within the Open Knowledge-
base of Interatomic Models (OpenKIM). KUSP employs a client-server architecture where the Python server
communicates with the KIM API using sockets after converting model output to a KIM API-compatible for-
mat. These innovations are poised to propel the computational materials research community towards more
efficient, accurate, reproducible and effective MLIP development and deployment.

1 INTRODUCTION

Machine learning research demands rapid and flexible development, but such flexibility often comes at the cost of interoperability
with existing software infrastructure. The deployment of machine learning (ML) interatomic potentials (MLIPs) to existing
molecular simulation codes (“simulators”) is no exception. Considerable effort is spent making MLIPs available on various
simulator packages. For instance, the LAMMPS (Thompson et al., 2022) simulator offers custom “pair_style” potentials for
several MLIPs, including SNAP (Thompson et al., 2015), GAP (Csányi et al., 2007), HDNNP (Singraber et al., 2019), NequIP
(Johansson et al., 2024), and MACE (MACE Development Team, 2024). The integration is not straighforward and some of these
models (e.g., MACE (MACE Development Team, 2024)) only work with custom LAMMPS builds.

To address this challenge, we recently introduced the TorchML model driver (Gupta, 2024) to the OpenKIM repository. This
driver leverages the PyTorch C++ API (libtorch) to deploy MLIPs to widely used simulation codes such as LAMMPS and
ASE via the KIM API (Elliot, Ryan Elliot, Ellad Tadmor, et al.; OpenKIM Development Team, 2024b). Models deployed
through the TorchML driver benefit from highly efficient performance, including parallelism across CPU and GPU architectures,
and seamless deployment to production level codes. However, this approach is limited to PyTorch models, specifically those
compatible with TorchScript, and it requires the models’ inputs and outputs to comply with a specific format.

In order to support initial rapid model development and testing for arbitrary MLIPs without any resrtrictions, we introduce
the KIM Utility for Serving Potentials (KUSP), a Python-only server and KIM API compliant protocol inspired by TorchServe
(PyTorch Foundation, 2024) and the i-Pi universal force engine (Kapil et al., 2019). KUSP takes advantage of Python’s dynamism
and flexibility offering the following standout features: (i) compatibility with multiple ML frameworks; (ii) ability to interface
with the KIM API, enabling users to deploy their models to arbitrary simulation codes, as well as validate and benchmark their

∗Equal contribution.
†Equal contribution.

1



Published as a workshop paper at AI4Mat-Vienna 2024

KUSP Server

K
IM

A
P

I

SimulatorKUSP Client

Configuration

Energy,Forces

TCP data transfer
Dataflow in KIM API Client
KIM API dataflow

Figure 1: KUSP design schematic, showing the KUSP server and KIM API client (KUSP__MO_000000000000_000). The
client interfaces with the simulation code using the KIM API, and the transfers the data to the server using the KUSP protocol
over the sockets interface. The server then deploys the ML model and returns the results to the client, which the client then passes
to the simulation code again using the KIM API.

models using OpenKIM “tests” (molecular simulation-based material property calculations) and “verification checks” (basic
physical consistency checks); and (iii) ease of use.

Server-client architectures have been widely employed for problems where the same data is requested in different formats by
different clients (Microsoft, 2024). KUSP aims to provide such a solution for deploying MLIPs, decoupling entirely the devel-
opment of simulators from that of models. The KUSP server wraps an MLIP model that computes energies and forces from a
known set of inputs (atomic species and positions, and a boolean mask indicating whether an atom is contributing to the energy
or provided as padding), and the client interfaces with the desired simulator via the KIM API, see Fig. 1 for a schematic.

The KUSP package includes a C++ client that leverages the KIM API. This client functions as a thin wrapper around KIM
models: it transfers simulator data to the KUSP server and then returns the processed results back to it (Fig. 1). Consequently,
users only need to implement the server to wrap their MLIP.

In the rest of the paper we discuss the design of the KUSP server and client in detail, and demonstrate KUSP usage across ML
frameworks and simulator packages.

2 DESIGN

KUSP is designed for ease of use while delivering high performance. To achieve these goals, the KUSP server is implemented
as a Python-only object (KUSPServer), leveraging the KIM API on the client side in C++. A simulator employing an MLIP
via KUSP uses the designation KUSP__MO_000000000000_000 in its input script when specifying the interatomic potential
being used. For example, in LAMMPS, the following commands are used (OpenKIM Development Team, 2024a):

1 kim i n i t KUSP__MO_000000000000_000 <unit_system >
2 . . .
3 kim i n t e r a c t i o n s <species_to_atom_types >

where <unit_system> is replaced by the LAMMPS unit system used by the MLIP, and <species_to_atom_types> is
replaced by a list mapping atomic species to LAMMPS atom types.

The client hooks into KIM-compatible simulators (OpenKIM Development Team, 2024d) (e.g., LAMMPS, ASE) and passes the
coordinates, species and contributing atom mask to the KUSP server, which deploys the ML model, Fig. 1. The connection of
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the server to the MLIP is achieved by overloading the KUSPServer class and implementing the prepare_model_inputs,
prepare_model_outputs, and execute_model methods. These methods recast the raw information received from the
KIM API client into a format that the MLIP model understands, and vice versa. Data is transferred between the KIM API client
and the KUSP server using the sockets protocol. The standard socket module in Python (Hunt, 2019) is adopted to keep
dependencies to a minimum.

The KUSP communication protocol is simple, it assumes the byte (b) sequence to be formatted as follows,

1 < i n t _ w i d t h :4b>
2 <n_atoms : ( i n t _ w i d t h ) b>
3 <atomic_numbers : ( n_atoms x i n t _ w i d t h ) b>
4 < p o s i t i o n s : ( n_atoms x 3 x 8)b>
5 <cont r ibu t ing_a toms : ( n_atoms x i n t _ w i d t h ) b>

Here, <var:width> represents the expected variable, var, and its expected width in bytes. The int_width provides the
integer size on the system and is utilized to convert bytes into integers. Next is the number of atoms in the configuration, the
atomic numbers (species), positions, and contributing status of the atoms 1. If no contributing atoms are provided, the server
assumes all atoms are contributing to the energy and forces. The model outputs are provided in a similar format, with mandatory
energy and forces, and optional virial stress.

The KUSP server expects integers to be of system integer size (specified by int_width), and all floating point values (inputs
and outputs) to be in double precision. For single precision MLIPs, the positions must be converted to single precision in the
prepare_model_inputs before being passed to the model, and the outputted energy, forces, and stress must be converted
to double precision in prepare_model_outputs. For more details on the input and output data specifications, see the
supplementary material (Section A1, Table 1 and Table 2).

For enhanced performance, KUSPServer offers the option of using a shared memory buffer to transfer data between the KUSP
client and server. This method allows the client and server to exchange only the memory buffer addresses for positions, forces,
and other data. This reduces the overhead for data transfer and is particularly useful when simulating large systems. When using
this option only the memory buffer name is transferred over sockets followed by a memcpy operation to copy the data from the
non-shared simulator memory to the shared buffers 2. Currently, this option has an additional dependency (Boost C++ library)
and requires a valid environment setup.

While the KUSP server-client design may appear inefficient for running molecular simulations (e.g., molecular dynamics),
it is important to note that for typical production-level MLIPs the bottleneck is model inference, and not the data transfer.
Consequently, while KUSP may not be the method of choice for integrating classical potentials, it offers a good trade-off between
flexibility and performance for MLIPs. In Fig. 2 we show the time taken for model evaluation and data transfer using the NequIP
model (Batzner et al., 2022), as it is implemented in the official nequip package (Group, 2024) and deployed using the KUSP
server. The results clearly demonstrate that the data transport time is ≈ 0.5 % of the total time.

2.1 CONFIGURATION FILE

KUSP requires a configuration file to correctly launch the server and client. KUSP looks for this file in the current working
directory or in the environment variable KUSP_SERVER_CONFIG if provided. The configuration file is a YAML file with
mandatory and optional fields, which is divided into two sections: server and global.

1

2 server :
3 host : 127 .0 .0 .1
4 po r t : 12345
5 o p t i o n a l :
6 mode : IP
7 max_connections : 1 # Maximum number o f connect ions to the server
8 b u f f e r _ s i z e : 1024 # Bu f fe r s ize f o r the server
9

10 g loba l :
11 elements :
12 − Si
13 − O

1Contributing atoms are those included in the energy calculation. Non-contributing atoms are determined by the boundary conditions and
are provided as padding atoms to contributing atoms (OpenKIM Development Team, 2024b).

2An explicit memcpy is needed for shared memory buffers because existing memory allocations in a simulator cannot be re-cast as share-
able, and any shared buffer has to be declared as such before requesting allocation.
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Figure 2: Histograms showing distribution of time taken in socket data transfer (left), compared with time taken by KUSP to
evaluate energy and forces (right) for a 5000 step simulation of 13824 Si atoms. (MLIP evaluations were performed on a single
A100 GPU, configurations were transferred from a CPU-only version of LAMMPS.)

14

15 i n f l uence_d is tance : 6.0

The server section contains information about the server, data transfer protocol, buffer sizes, etc. The required fields are
host and port defining the host URL and the port for the KUSP server. Users should choose these values carefully as not
all ports are open for use, and some might require root access. Optional fields include connection mode, max_connections
and buffer_size. The connection mode can have one of three values: IP, UNIX, or SHM, for TCP/IP socket, UNIX sockets,
and shared memory buffer, respectively. Currently only the IP and SHM modes are supported. UNIX sockets are planned for a
future release. Choosing appropriate values for the maximum connections and buffer size can be crucial for the performance of
the server. In working environment, with large network activity, and with low-latency networks (e.g. infiniband), smaller buffer
size might show better performance, whereas in environments with low network usage, and high-latency (e.g. ethernet), larger
buffer size will help in achieving higher performance.

The global section contains global information about the system, required by the server and/or client. The elements and
influence_distance fields are mandatory, and arbitrary additional fields can be included as needed by the MLIP. The
elements field is a list of chemical elements (species) that the MLIP supports; the KUSP client will enumerate the species
using this list (e.g., in above configuration, silicon (Si) is index 0, and oxygen (O) is index 1). It is important to list all supported
elements, as most MLIPs internally map these elements to a fixed index number. If an incomplete list of elements is provided,
then these indices might not match, resulting in wrong results. For example, if a model supports Si, Ti, and O, the model might
index them as (0, 1, 2) respectively. However, for simulating TiO2 if only Ti and O are included in the element list, KUSP will
index these two elements as (0, 1) respectively, which will result in incorrect values.

The influence_distance field is used to determine the cutoff distance for the model. For graph convolution MLIPs, it
is advisable to use an influence distance calculated as the number of convolution layers multiplied by the cutoff distance of the
model. This ensures that the model has all the information to compute the forces and energies correctly. Users can also provide
additional information required by their model, such as cell size, energy scaling factors, inference mode, and so on.

3 EXAMPLES

In this section, we provide a simple example of deploying an MLIP for Si using KUSP. We chose the default NequIP equivariant
GNN model implementation for the example, and compared its results with OpenKIM TorchML NequIP model, which has been
validated extensively (Gupta et al., 2024).
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Figure 3: LAMMPS molecular simulation of 13,824 Si atoms for 5000 time steps under NVT conditions, using the NequIP MLIP
deployed via the KIM TorchML model driver (Gupta et al., 2024), and KUSP. The KUSP server deploys the TorchScript model
file, as obtained thought nequip-deploy command, without any modification. Both simulations were run using LAMMPS,
and ML model was evaluated on a single A100 GPU.

To highlight the generalizability of KUSP, we also demonstrate running an MD simulation using JAX-MD with a Stillinger–
Weber (SW) interatomic potential for Si, and compare obtained results with the OpenKIM SW model.

3.1 NEQUIP-KUSP SERVER

NequIP (Batzner et al., 2022) creates advanced equivariant MLIPs using spherical tensor products. We chose it for KUSP due to
its popularity and complex design, making it ideal to showcase KUSP’s simplicity. Below, we explain how to use a pre-trained
NequIP potential in KUSP.

3.1.1 INITIALIZATION __INIT__

The NequIP server is created by extending the KUSPServer class and passing the YAML configuration file and the MLIP
model to the __init__ method.

1 c lass NequIPServer ( KUSPServer ) :
2 def _ _ i n i t _ _ ( s e l f , model , c o n f i g u r a t i o n ) :
3 device = " cuda " i f t o rch . cuda . i s _ a v a i l a b l e ( ) e lse " cpu "
4 s e l f . device = device
5 model = model . double ( )
6 model = model . to ( device )
7

8 super ( ) . _ _ i n i t _ _ ( model , se rve r_con f ig )
9

10 s e l f . c u t o f f = s e l f . g l oba l_ i n f o rma t i on [ ’ i n f l uence_d is tance ’ ] / 3
11 s e l f . species = s e l f . g l oba l_ i n f o rma t i on [ ’ elements ’ ]

Here the model is transferred to the GPU first, and then the GPU copied model is provided as in input to the parent class. The
element supported by this model (Si) is defined in the species field. All of the information in the global section of the
KUSP configuration file is accessible through the global_information attribute.
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3.1.2 FORMATTING MODEL INPUTS AND OUTPUTS

When developing a KUSP server for a new MLIP, two methods must be implemented: prepare_model_inputs and
prepare_model_outputs.

The prepare_model_inputs function converts KIM API client output (atomic numbers, atom positions, contributing
atoms) into valid structured data in the MLIP’s expected format. By default the model in KUSP expects inputs as a dictio-
nary that is then fed to the MLIP as unrolled keyword arguments. If the model inputs require additional processing, this can be
done by extending the execute_model method that executes the MLIP and returns the model outputs.

1 def prepare_model_inputs ( s e l f , atomic_numbers , pos i t i ons , con t r ibu t ing_a toms ) :
2 species = [ s e l f . species [ atomic_number ] f o r atomic_number i n atomic_numbers ]
3

4 graph = graph_generator ( species , pos i t i ons , )
5

6 # NequIP inpu t d i c t i o n a r y
7 # requ i red inpu ts : " pos " " edge_index " " e d g e _ c e l l _ s h i f t " " c e l l " " atom_types "
8 i n p u t _ d i c t = {
9 " pos " : to rch . tensor ( pos i t i ons , dtype= to rch . f l oa t64 , requ i res_grad=True , device= s e l f .

device ) ,
10 " c e l l " : t o rch . tensor ( graph . c e l l , dtype= to rch . f l oa t64 , device= s e l f . device ) ,
11 " atom_types " : to rch . tensor ( atomic_numbers , dtype= to rch . long , device= s e l f . device ) ,
12 " edge_index " : to rch . tensor ( graph . edge_index0 , dtype= to rch . long , device= s e l f . device ) ,
13 " e d g e _ c e l l _ s h i f t " : t o rch . zeros ( ( graph . edge_index0 . shape [ 1 ] ,3 ) , dtype= to rch . f l oa t64 ,

device= s e l f . device ) ,
14 " _cont r ibu t ing_atoms " : to rch . tensor ( cont r ibu t ing_atoms , dtype= to rch . f l oa t64 , device=

s e l f . device ) , # f o r l a t e r use
15 }
16 r e t u r n { " i n p u t _ d i c t " : i n p u t _ d i c t }

Here the graph_generator is a function that maps the configurations to the edge graphs that NequIP takes as input. Several
popular libraries, such as ase (Bahn & Jacobsen, 2002), pymatgen (Ong et al., 2013), and kliff (Wen et al., 2022) provide
routines that can be used to that end.

The prepare_model_outputs function converts MLIP output (energy, forces, virial stress) to KIM API compatible format.
In most cases, this simply involves a conversion from the model outputs to numpy arrays. In the provided NequIP example, this
function is also used to compute the gradients for force calculation (backward() function).

1 def prepare_model_outputs ( s e l f , ou tput ) :
2 energy = ( ( output [ ’ atomic_energy ’ ] . squeeze ( ) ) * output [ " _cont r ibu t ing_atoms " ] ) . sum ( )
3 energy . backward ( )
4 # Ex t rac t the grad ien ts
5 fo rces = −output [ " pos " ] . grad
6

7 r e t u r n { " energy " : energy . detach ( ) . cpu ( ) . numpy ( ) ,
8 " fo rces " : fo rces . detach ( ) . cpu ( ) . numpy ( ) }

3.1.3 RUNNING THE NEQUIP-SERVER

The NequIP server uses the deployed TorchScript model as obtained from the nequip (Batzner et al., 2022; Geiger et al., 2022)
python package, using the nequip-deploy command. The NequIP model was trained using the PRX GAP Si dataset (Bartók
et al., 2018), with 3 convolution layers, and spherical tensors of maximum order 1.

1 model = to rch . j i t . load ( " t ra ined_s i_model . p t " )
2

3 # Only eva luate f i r s t c h i l d r e n o f model , f o r atomwise energies
4 model = l i s t ( l i s t ( model . c h i l d r e n ( ) ) [ 0 ] . c h i l d r e n ( ) ) [ 0 ]
5 server = NequIPSever ( model=model , c o n f i g u r a t i o n =" kusp_conf ig . yaml " )
6 server . serve ( )

In the above example, the MLIP is loaded from the deployed trained model file trained_si_model, and the server configu-
ration is loaded from the kusp_config.yaml file.
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3.1.4 RUNNING SIMULATIONS AND COMPUTATIONS

Once the model is deployed via the KUSP server, it can be accessed as a regular KIM portable model (OpenKIM Development
Team, 2024c) using the KIM ID KUSP__MO_000000000000_000, which points to the KUSP client. The KUSP client is
bundled with the KUSP python package and can be installed using the kusp.install_kim_model() method.

Figure 3 shows the simulation results for 13,284 Si atoms integrated for 5000 MD steps (0.1fs timestep) under NVT conditions
using a Nosé-Hoover thermostat. Temperature was fixed at 300K. Two simulations were run using identical MLIPs weights and
LAMMPS random seed, using both KUSP and the OpenKIM TorchML model driver (Gupta et al., 2024) for comparison. The
TorchML-deployed NequIP model (Model id: MO_196181738937_000 in OpenKIM) has been extensively validated, and
hence forms the perfect baseline to identify any issues in KUSP. Our experiments show that both simulations run identically,
barring negligible differences originating from floating point arithmetic. Excerpts from the input script are given below.

1 # I n i t i a l i z e KIM Model
2 kim i n i t KUSP__MO_000000000000_000 metal
3 kim i n t e r a c t i o n s Si
4

5 # Fix thermosta t and run s imu la t i on
6 f i x 1 a l l nv t temp 300.0 300.0 $ (100.0* d t )
7 run 5000

As the KUSP client supports all KIM API compatible simulators, the same model can be executed in ASE, by simply calling the
KIM model pointing to the KUSP client in an ASE calculator.

1 from ase . c a l c u l a t o r s . kim impor t KIM
2

3 # I n i t i a l i z e KIM Model
4 model = KIM( "KUSP__MO_000000000000_000" )
5

6 # Set i t as c a l c u l a t o r
7 con f i g . s e t _ c a l c u l a t o r ( model )
8

9 # Compute energy / fo rces
10 energy = con f i g . ge t_po ten t ia l_energy ( )

3.2 JAX-MD SERVER

As model evaluation is performed completely in a Python environment, KUSP does not depend on any specific ML package or
model architecture, rather it supports all packages and libraries that provide a Python API.

As an example, we demonstrate a KUSP server based deployment of the SW interatomic potential for Si, using the JAX frame-
work based differentiable MD package, JAX-MD (Figure 4). The potential has been minimally modified to provide per-particle
energy (Supplementary Information Section A2).

For validation purposes, the same simulation was also run with the same random seed using the OpenKIM SW potential (Singh,
2021). The simulations were run with 64 Si atoms, for 5000 steps (timestep = 0.1fs), using Nosé-Hoover thermostat (T=300K).
Both simulations (OpenKIM and JAX-MD KUSP) are in excellent agreement. This highlights the flexibility and the utility of
our approach.

3.3 GPU SUPPORT

KUSP is a platform agnostic tool, and can be run on any system with minimal dependencies. KUSP does not enable or hinder
any accelerated hardware support, such as GPUs. KUSP provides the input data as numpy arrays in CPU memory. Users can use
any library that supports GPU acceleration to perform the computation on the GPU. For GPU computations, users will typically
need to transfer the model to the GPU before running the serve() method, and manually transfer the input data to the GPU in
the prepare_model_inputs() or execute_model() methods. The output of the models then needs to be transferred
back to the CPU memory in the prepare_model_outputs() method, and converted to the numpy array before returning
the output.

3.4 OPENKIM TESTS AND VERIFICATION CHECKS

OpenKIM project provides an extensive suite of tests (evaluation of a standard material property) and verification checks (VCs)
(physical correctness of the models). These tests and VCs are crucial for developing ML models, as the vast majority of MLIPs
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Figure 4: MD simulation of a 64 atom Si cell using the JAX-MD SW potential, deployed via KUSP. The results are compared to
an OpenKIM SW potential.

are only benchmarked against energy and forces of the validation dataset. KUSP provides a convenient approach for employing
these tests and VCs. As the KUSP client is fully compatible with the KIM API, any potential deployed through KUSP can be
tested like a standard KIM model.

To demonstrate this, we ran the OpenKIM Ojectivity VC (Tadmor, 2019) using the JAX-MD server for deploying the model. The
Objectivity VC verifies that a potential is invariant with respect to rigid-body translation and rotation. The VC calculations were
ran inside the KIM Developer Platform (KDP) docker image provided by the OpenKIM project (Karls et al., 2020) modified
to include a species segment in the specification file. The VC is run using the KDP command: pipeline-run-pair
Objectivity__VC_813478999433_002 KUSP__MO_000000000000_000 -v. The output of the VC is appended
in the Supplementary Information Section A3.

4 REMAINING CHALLENGES

The main challenge in adopting KUSP arises from the purely local formalism adopted by the KIM API. Most interatomic po-
tentials, including MLIPs and ab-initio methods, follow the principle of “near-sightedness” (Kohn, 1996), whereby an atom’s
properties are influenced only by its neighboring environment. This approximation simplifies the computation of the potential en-
ergy and allows for parallelization through domain decomposition. The KIM API utilizes this near-sightedness for its simulator-
agnostic model implementations, requiring compliant models to accept a cluster of atoms with non-contributing padding atoms
carrying boundary condition information.

This KIM API requirement does not work well with all MLIP implementations. For instance, Spookynet (Unke et al., 2021)
aggregates a global feature vector to compute the energy, requiring additional information about system periodicity and cell
size. Even some local MLIPs require cell vectors and atom positions to compute unwrapped atomic distances internally, thus
requiring the specification of cell size and cell vectors that KUSP does not provide. Workarounds like using larger cell sizes and
contributing atom information is possible, but getting these models to work can be complex.

5 CONCLUSION

KUSP is a Python package designed to facilitate the rapid deployment of MLIPs to arbitrary simulation codes. It imposes
minimal restrictions on ML architectures and libraries, and as we have shown, it is compatible with popular ML frameworks
such as PyTorch, JAX, and TensorFlow, as well as utilities like PyTorch Geometric and the Deep Graph Library. By providing
a simulator-agnostic interface via the KIM API, KUSP allows researchers to quickly prototype and deploy their models to
production level simulation platforms.

In upcoming coming releases we plan to improve the performance of the KUSP server by adding multithreading support for
parallel model evaluation, and expanding to more efficient data transfer protocols like UNIX sockets. Additionally, we plan to

8



Published as a workshop paper at AI4Mat-Vienna 2024

support the publication of self-contained KUSP models (using the Python C++ API) on the OpenKIM repository (Ope, 2024) for
evaluation, benchmarking, and reuse. We will also provide examples for more ML frameworks and simulation codes.

CODE AVAILABILITY

Source code for KUSP is available at https://github.com/openkim/kusp, and the documentation is available at
https://kusp.readthedocs.io/. Users can install KUSP using pip install kusp.
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A SUPPLEMENTARY MATERIAL

A.1 KUSP INPUT AND OUTPUT DATA

Field Description Required
int_width Size of integer on the system ✓
n_atoms Number of atoms ✓

atomic_numbers Atomic numbers of atoms ✓
positions Positions of atoms ✓

contributing_atoms Atoms to compute energy for x

Table 1: KUSP input data fields. These data items are received by the server from the client.

Field Description Required
energy Energy of the system ✓
forces Forces on the atoms ✓
virial Virial tensor x

Table 2: KUSP output data fields. These data items are sent by the server to the client.

A.2 JAX-MD SERVER

JAX function to get per-atom energies and forces from an SW potential,

1 impor t jax_md
2 impor t jax_md . space as space
3 impor t jax_md . energy as energy
4

5 def s t i l l i nger_weber_per_a tom (
6 displacement : Ca l lab le ,
7 sigma : f l o a t = 2.0951 ,
8 A: f l o a t = 7.049556277 ,
9 B: f l o a t = 0.6022245584 ,

10 lam : f l o a t = 21.0 ,
11 gamma: f l o a t = 1 .2 ,
12 eps i l on : f l o a t = 2.16826 ,
13 three_body_st rength : f l o a t = 1 .0 ,
14 c u t o f f : f l o a t = 3.77118) −> Ca l l ab le [ [ Array ] , Array ] :
15 " " "
16 Compute the per −atom energy o f a S t i l l i n g e r −Weber p o t e n t i a l .
17 This i s the same f u n c t i o n as jax_md . energy . s t i l l i n g e r _ w e b e r ,
18 but i t r e tu rns the per −atom energy by not c a l l i n g the
19 jax_md . u t i l s . h igh_precis ion_sum f u n c t i o n .
20 " " "
21 two_body_fn = p a r t i a l ( energy . _sw_rad ia l_ i n te rac t i on , sigma , B, c u t o f f )
22 three_body_fn = p a r t i a l ( energy . _sw_angle_ in terac t ion , gamma, sigma , c u t o f f )
23 three_body_fn = vmap(vmap(vmap( three_body_fn , (0 , None ) ) , (None , 0) ) )
24

25 def compute_fn (R, * * kwargs ) :
26 d = p a r t i a l ( displacement , * * kwargs )
27 dR = space . map_product ( d ) (R, R)
28 dr = space . d is tance (dR)
29 two_body_energy = jnp . sum( two_body_fn ( dr ) , ax is =1) * A / 2.0
30 three_body_energy = jnp . sum( jnp . sum( three_body_fn (dR, dR) , ax is =2) , ax is =1) * lam /

2.0
31 per_atom_energy = eps i l on * ( two_body_energy + three_body_st rength * three_body_energy

)
32 r e t u r n per_atom_energy
33 r e t u r n compute_fn
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A.2.1 JAX-MD KUSP SERVER IMPLEMENTATION

1 def sum_per_atom_energy_and_force ( energy_fn , pos i t i ons , c o n t r i b u t i o n s ) :
2 " " "Sum the per −atom energy and fo rce . " " "
3 per_atom_energy = energy_fn ( p o s i t i o n s )
4 per_atom_energy *= c o n t r i b u t i o n s
5 t o ta l_energy = jnp . sum( per_atom_energy )
6 fo rces = −grad ( lambda R: jnp . sum( energy_fn (R) * c o n t r i b u t i o n s ) ) ( p o s i t i o n s )
7 r e t u r n to ta l_energy , fo rces
8

9

10 c lass JAXMDServer ( KUSPServer ) :
11 def _ _ i n i t _ _ ( s e l f , model , se rve r_con f ig ) :
12 super ( ) . _ _ i n i t _ _ ( model , se rve r_con f ig )
13

14 def prepare_model_inputs ( s e l f , atomic_numbers , pos i t i ons , con t r ibu t ing_a toms ) :
15 pos = jnp . ar ray ( p o s i t i o n s )
16 cont r ibu t ing_a toms = jnp . ar ray ( con t r ibu t ing_a toms )
17 r e t u r n { " pos " : pos , " con t r ibu t ing_a toms " : con t r ibu t ing_a toms }
18

19 def execute_model ( s e l f , pos , con t r ibu t ing_a toms ) :
20 e , f = sum_per_atom_energy_and_force ( s e l f . exec_func , pos , con t r ibu t ing_a toms )
21 r e t u r n { " energy " : e , " fo rces " : f }
22

23 def prepare_model_outputs ( s e l f , e_and_f ) :
24 # p r i n t ( e_and_f )
25 numpy_array = { " energy " : np . ar ray ( e_and_f [ " energy " ] ) ,
26 " fo rces " : np . ar ray ( e_and_f [ " fo rces " ] ) }
27 r e t u r n numpy_array

A.3 OPENKIM OBJECTIVITY VERIFICATION CHECK

Output of the OpenKIM Objectivity VC (Tadmor, 2019) for the SW potential deployed on JAX-MD via KUSP.

1 p ipe l i ne −run − p a i r Objectivity__VC_813478999433_002 KUSP__MO_000000000000_000 −v
2 + Running p a i r ( Objectivity__VC_813478999433_002 , KUSP__MO_000000000000_000 )
3

4 Model Extended KIM ID =
5 === V e r i f i c a t i o n check vc− o b j e c t i v i t y s t a r t (2024−07−25 02:41:06) ===
6 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
7 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
8 ! ! ! ! ! ! ! ! ! !
9 ! ! ! ! ! VERIFICATION CHECK: vc− o b j e c t i v i t y ! ! ! ! !

10 ! ! ! ! ! ! ! ! ! !
11 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
12 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
13

14 Desc r i p t i on : Check whether a model i s i n v a r i a n t w i th respect to r i g i d −body
15 motion ( t r a n s l a t i o n and r o t a t i o n ) as requ i red by o b j e c t i v i t y
16 ( ma te r i a l frame− i n d i f f e r e n c e ) . This i s expected to be t rue f o r any
17 model t h a t does not depend on an ex te rna l f i e l d . The check i s
18 performed f o r a randomly d i s t o r t e d non− p e r i o d i c body−centered cubic
19 (BCC) cube base s t r u c t u r e . Separate c o n f i g u r a t i o n s are tes ted f o r
20 each species supported by the model , as we l l as one con ta in ing a
21 random d i s t r i b u t i o n o f a l l species . The energy and fo rces o f each
22 c o n f i g u r a t i o n i s compared wi th t h a t o f the same c o n f i g u r a t i o n
23 r o ta ted about a random ax is by an i r r a t i o n a l angle and t r a n s l a t e d
24 i n a random d i r e c t i o n by an i r r a t i o n a l d is tance . The v e r i f i c a t i o n
25 check w i l l pass i f the energy o f a l l c o n f i g u r a t i o n s t h a t the model
26 i s able to compute are i n v a r i a n t and the fo rces are mapped back by
27 the inverse r o t a t i o n . Con f igu ra t i ons used f o r t e s t i n g are provided
28 as a u x i l i a r y f i l e s .
29

30 Author : E l l ad Tadmor
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31

32 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

33 Resul ts f o r KIM Model : KUSP__MO_000000000000_000
34 Supported species : Si
35

36 random seed = 13
37 l a t t i c e constant ( o r i g ) = 3.000
38 p e r t u r b a t i o n ampl i tude = 0.300
39 number u n i t c e l l s per s ide = 2
40 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

41

42

43 MONOATOMIC STRUCTURE −− Species = Si ( Con f i gu ra t i on i n f i l e " conf ig −Si . xyz " )
44 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

45 Rota t ion mat r i x = −8.10696825e−02 −9.63724213e−01 2.54289888e−01
46 −7.12053926e−01 −1.22522411e−01 −6.91351911e−01
47 6.97428787e−01 −2.37115793e−01 −6.76290757e−01
48

49 Trans la t i on vec to r = −1.47787265e+00 −1.76500948e+00 −2.13781159e+00
50

51 Energy requirement :
52

53 V(Q* r_1+c , . . . , Q* r_N+c ) = V( r_1 , . . . , r_N ) , where r _ i i s the p o s i t i o n o f atom i , V i s the
p o t e n t i a l energy ,

54 Q i s a r o t a t i o n , and c i s a t r a n s l a t i o n vec to r .
55

56 V(Q* r_1+c , . . . , Q* r_N+c ) = −26.236466351752792
57 V(Q* r_1 , . . . , Q* r_N ) = −26.236466351752792
58 V( r_1 , . . . , r_N ) = −26.236466351752828
59

60 Forces requirement :
61

62 f _ i (Q* r_1+c , . . . , Q* r_N+c ) = Q* f _ i ( r_1 , . . . , r_N ) , where r _ i i s the p o s i t i o n o f atom i , f _ i i s the
fo rce

63 on atom i , Q i s a r o t a t i o n matr ix , and c i s a t r a n s l a t i o n vec to r .
64

65 i f _ i (Q* r_1+c , . . . , Q* r_N+c ) Q* f _ i ( r_1 , . . . ,
r_N )

66 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

67 0 −3.05472553e−01 1.59863626e+00 −6.82521580e−01 | −3.05472553e−01 1.59863626e
+00 −6.82521580e−01

68 1 4.52265728e+00 8.40006941e+00 −5.31210163e+00 | 4.52265728e+00 8.40006941e
+00 −5.31210163e+00

69 2 3.37312585e+00 5.36869515e+00 7.23699808e+00 | 3.37312585e+00 5.36869515e
+00 7.23699808e+00

70 3 −2.29370169e+00 −6.46030167e+00 9.35730755e+00 | −2.29370169e+00 −6.46030167e
+00 9.35730755e+00

71 4 1.56664671e+00 5.14701730e+00 −2.47428793e+00 | 1.56664671e+00 5.14701730e
+00 −2.47428793e+00

72 5 −1.24561557e+01 4.05701445e+00 −1.22131088e+01 | −1.24561557e+01 4.05701445e
+00 −1.22131088e+01

73 6 −2.96961678e+00 2.48668813e+00 1.79109057e+01 | −2.96961678e+00 2.48668813e
+00 1.79109057e+01

74 7 −2.28461642e+00 −3.05050457e+00 3.03460287e+00 | −2.28461642e+00 −3.05050457e
+00 3.03460287e+00

75 8 1.26706235e+00 1.64418120e−01 −2.47374134e+00 | 1.26706235e+00 1.64418120e
−01 −2.47374134e+00

76 9 2.91804451e+00 5.78725426e−01 −2.96895503e+00 | 2.91804451e+00 5.78725426e
−01 −2.96895503e+00

77 10 9.25432325e+00 −5.49482452e+00 −1.26990575e+00 | 9.25432325e+00 −5.49482452e
+00 −1.26990575e+00
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78 11 2.97783788e−03 −3.20681936e+00 3.17145812e−01 | 2.97783788e−03 −3.20681936e
+00 3.17145812e−01

79 12 1.23008899e+00 5.16105563e+00 −3.95721654e+00 | 1.23008899e+00 5.16105563e
+00 −3.95721654e+00

80 13 −2.82617532e+00 −3.89009683e+00 −3.57385364e+00 | −2.82617532e+00 −3.89009683e
+00 −3.57385364e+00

81 14 −3.08122977e−01 −8.99691093e+00 −3.23336012e+00 | −3.08122977e−01 −8.99691093e
+00 −3.23336012e+00

82 15 −6.91065346e−01 −1.86286200e+00 3.02092338e−01 | −6.91065346e−01 −1.86286200e
+00 3.02092338e−01

83 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

84 PASS: Energies and fo rces are the same to w i t h i n a r e l a t i v e e r r o r o f 1e−08
85 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

86

87 ===============================================================================================

88 To pass t h i s v e r i f i c a t i o n check the model must be i n v a r i a n t w i th respect to
89 r i g i d −body motion ( t r a n s l a t i o n and r o t a t i o n ) f o r a l l c o n f i g u r a t i o n s
90 i t was able to compute .
91

92 Grade : P
93

94 Comment : Model energy and fo rces are i n v a r i a n t w i th respect to r i g i d −body motion ( t r a n s l a t i o n
and r o t a t i o n ) f o r a l l c o n f i g u r a t i o n s the model was able to compute .

95

96

97 === V e r i f i c a t i o n check vc− o b j e c t i v i t y end (2024−07−25 02:41:16) ===
98 { " user t ime " :1 .07 , "memmax" :58212 , "memavg" : 0 }
99

100 Pai r produced V e r i f i c a t i o n Resul t VC_813478999433_002−and−MO_000000000000_000−1721875265− vr
i n 11.34522032737732 seconds
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