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ABSTRACT

Universal multimodal embedding models play a crucial role in tasks such as
multimodal search, recommendation, and retrieval-augmented generation. How-
ever, standard contrastive learning frameworks typically optimize embeddings by
pulling positives closer and pushing negatives apart, without explicitly enforcing
the embeddings to preserve the rich semantics of the inputs. This often yields
representations with moderate discriminability but limited semantic information,
which results in suboptimal retrieval performance. In this work, we propose ReCo,
a novel unified embedding framework that leverages Reconstruction-augmented
Contrastive learning to learn discriminative representations enriched with seman-
tic information. By forcing the model to reconstruct the instance semantic content
solely from the encoded embeddings, ReCo produces representations that are both
semantically richer and more discriminative than those learned with contrastive
learning alone, yielding a unified representation space that is well-suited for em-
bedding tasks. Extensive experiments on the MMEB benchmark and multiple
cross-modal retrieval tasks demonstrate that ReCo achieves superior performance
and outperforms existing state-of-the-art models. The code and model weights are
available at https://anonymous.4open.science/r/ReCo-0A96.

1 INTRODUCTION

Multimodal embedding models aim to encode inputs from multiple modalities into unified vec-
tor representations and have been widely applied in tasks such as multimodal search (Jiang et al.,
2024a), recommendation (Zhang et al., 2024b; 2025), fact verification (Wachsmuth et al., 2018),
and retrieval-augmented generation (RAG) (Lewis et al., 2020; Yu et al., 2024; Tanaka et al.,
2025). While advanced pre-trained vision-language models such as CLIP (Radford et al., 2021),
ALIGN (Jia et al., 2021), and SigLIP (Zhai et al., 2023) achieve effective cross-modal alignment
between textual and visual modalities, their inherent dual-encoder architectures—processing each
modality independently—limit their ability to generate unified embeddings for complex, universal
multimodal contexts (Jiang et al., 2024c; Liu et al., 2025b; Wei et al., 2024).

In recent years, the rapid development and remarkable performance of multimodal large language
models (MLLMs) have driven increasing interest in MLLM-based multimodal embedding mod-
els (Zhang et al., 2024d; Liu et al., 2025b; Jiang et al., 2024c). Compared to conventional dual-
encoder architectures, MLLMs naturally support interleaved text and image inputs (e.g., image-text
interleaved documents), enabling the modeling of complex semantic relationships between linguistic
and visual modalities (Gu et al., 2025). Furthermore, by leveraging task-specific instructions, they
exhibit strong adaptability across diverse retrieval tasks, making them both flexible and efficient for
multimodal embedding learning (Lin et al., 2024; Kong et al., 2025). As a representative effort,
(Jiang et al., 2024c) introduces VLM2Vec together with a massive multimodal embedding bench-
mark (MMEB), which comprises 36 datasets across four meta-tasks with task-specific instructions;
VLM2Vec acquires embeddings from the final token representation of the last MLLM layer and
employs contrastive learning to adapt MLLMs to embedding models, achieving better performance
than existing dual-encoder models while generalizing effectively across diverse embedding tasks.

To further explore the potential of adapting MLLMs to embedding models, we conduct a series
of empirical studies and observe that the semantic richness of embeddings is positively correlated
with their discriminability. We reproduce the training process of VLM2Vec (Jiang et al., 2024c)
and analyze the checkpoints at different training steps along with those of our proposed ReCo.
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Figure 1: Positive correlation between semantic richness and discriminability of embeddings: (a)
training steps vs. number (No.) of principal components (PCs) @ 80% variance, (b) training steps
vs. MMEB overall score, and (c) No. of PCs @ 80% variance vs. MMEB overall score. We select
the number of principal components based on the cumulative explained variance, which explains
80% of the total variance. VLM2Vec* denotes the model trained using the human–assistant conver-
sation format.

As shown in Figure 1 (a), we observe that, as training progresses, more principal components are
required to explain the same proportion (80%) of the total variance of the dataset embedding matrix,
which is constructed by concatenating all sample embeddings. This suggests that variance is more
evenly distributed across principal components, implying a higher effective rank of the embedding
matrix (Seipel & Kalivas, 2004). In general, a higher effective rank of an embedding matrix indicates
greater information capacity of the embedding space (Cover, 1999; Roy & Vetterli, 2007), enabling
embeddings to capture richer input semantics (i.e., higher semantic richness), which is desirable
for embedding tasks. Since the score on the MMEB dataset, which reflect the discriminability
of embeddings, also increases over the course of training (Figure 1 (b)), we plot the relationship
between the MMEB overall score and the number of principal components required to explain 80%
of total variance as a scatter plot (Figure 1 (c)), and observe a clear positive correlation. Therefore,
to improve the discriminability of embeddings, we need to further increase the semantic richness of
the encoded embeddings. However, standard contrastive learning optimizes representations solely
by pulling positive pairs together and pushing negative pairs apart, without explicit requirement for
preserving the semantic content of the inputs. Consequently, embeddings learned from contrastive
learning alone often capture limited information, leading to suboptimal retrieval performance.

Building on these observations, we propose ReCo, a novel unified embedding framework that lever-
ages an autoregressive reconstruction task to augment contrastive learning, aiming to learn discrim-
inative representations enriched with semantic information. Specifically, we employ contrastive
learning to adapt MLLMs to embedding models, and impose an autoregressive language modeling
loss to reconstruct the instance semantic content (i.e., class name for classification; answer for visual
question answering; and text captions for image-to-text and text-to-image retrieval) from the em-
beddings. This encourages the embeddings to capture richer semantic information than contrastive
learning alone, resulting in a unified representation space that is simultaneously discriminative and
information-rich. In addition, to facilitate contrastive learning, we introduce a hard negative aug-
mentation training strategy. For each batch, multiple hard negatives are sampled per instance, and
a similarity-based filtering mechanism is applied during training to mitigate false-negative contam-
ination, thereby improving the model’s ability to distinguish between positive and hard negative
samples. We conduct comprehensive evaluations on the MMEB benchmark and multiple cross-
modal retrieval tasks. Experimental results show that ReCo consistently delivers performance im-
provements across all tasks, setting a new state-of-the-art over existing models. In summary, our
contributions are as follows:

1. Our analysis of MLLM-based embedding model training reveals a positive correlation between
the semantic richness and discriminability of embeddings, while standard contrastive learning
neglects semantic preservation and thus yields embeddings with limited information and subop-
timal representations.

2. To enrich the semantic information of encoded embeddings, we propose ReCo, a novel unified
embedding framework that augments contrastive learning with an autoregressive reconstruction
task, allowing MLLMs to produce embeddings that are both discriminative and semantically rich.
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3. We introduce a hard negative augmentation training strategy that enhances contrastive learning
by mining hard negatives and filtering false negatives.

4. We conduct extensive experiments on the MMEB benchmark and multiple cross-modal retrieval
tasks. The results demonstrate that ReCo consistently improves performance across all evalua-
tions and sets a new state-of-the-art in multimodal embedding.

2 RELATED WORK

2.1 MULTIMODAL LARGE LANGUAGE MODELS

MLLMs extend large language models (LLMs) by enabling them to process and integrate cross-
modal information. Pioneering works such as LLaVA (Liu et al., 2023; 2024a;b), InternVL (Chen
et al., 2024c;b;a; Zhu et al., 2025), MiniGPT-4 (Zhu et al., 2023), Qwen-VL (Bai et al., 2023; Wang
et al., 2024; Bai et al., 2025) have demonstrated promising progress in multimodal understanding and
reasoning by employing lightweight intermediate architectures to bridge visual encoders and LLM.
Despite these advances, the autoregressive next-token prediction objective of MLLM inherently
constrains its capacity to produce efficient multimodal representations.

2.2 MULTIMODAL EMBEDDING MODELS

CLIP-series embedding models: CLIP (Radford et al., 2021) has pioneered the foundation of
multimodal embeddings, employing a dual-encoder architecture to process each modality indepen-
dently and aligning image and text representations through contrastive learning. Building upon
this, SigLIP (Zhai et al., 2023) enhances embedding quality and training efficiency by employing
a sigmoid-based InfoNCE loss. EVA-CLIP (Sun et al., 2023) further shows the scalability of this
paradigm by utilizing larger datasets and greater model capacities, thereby achieving more robust
cross-modal representations. MagicLens (Zhang et al., 2024c) leverages naturally occurring image
pairs and generates textual descriptions of their differences, using these as contrastive instructions to
train multimodal embeddings. However, these CLIP-series models process text and image modali-
ties independently, limiting their capacity to generate unified embeddings for complex multimodal
scenarios. In contrast, recent studies have shown that multimodal large language models with early
fusion of image and text features achieve better performance on multimodal embedding tasks.

MLLM-based embedding models: MLLM-based embedding models typically extract the hidden
state of the last token in the final layer as the embeddings and employ contrastive learning to adapt
MLLMs to embedding models, thereby producing highly discriminative multimodal embeddings.
Building upon this general framework, recent studies have explored complementary strategies to
further enhance representation quality. For instance, E5-V (Jiang et al., 2024b) shows that even
unimodal training on text-only data can effectively adapt MLLMs to universal multimodal embed-
ding models, while GME (Zhang et al., 2024d) introduces a synthetic data pipeline to leverage
diverse multimodal signals and further unlock the potential of MLLMs. VLM2Vec (Jiang et al.,
2024c) extends this line of work by establishing the massive multimodal embedding benchmark
(MMEB), together with strong baselines trained via task instructions under a contrastive frame-
work, providing a standard platform for systematic evaluation. Beyond advances in data and bench-
marks, other methods focus on refining the learning objective itself. LLaVE (Lan et al., 2025)
and QQMM-embed (Xue et al., 2025) strengthen InfoNCE training by emphasizing hard neg-
atives—through weighting or gradient amplification—to improve robustness against challenging
samples. UniME (Gu et al., 2025) leverages a powerful LLM-based teacher model to enhance the
embedding capability of the MLLM’s language component, while UNITE (Kong et al., 2025) seeks
to harmonize the embedding space by alleviating modality competition. Complementing these ap-
proaches, B3 (Thirukovalluru et al., 2025) applies an offline clustering strategy to construct batches
where samples serve as hard negatives for each other. Collectively, these efforts highlight the evolv-
ing landscape of adapting MLLMs to powerful embedding models through innovations in data de-
sign, benchmark development, and training objectives.

However, prior methods lack explicit supervision on the semantic richness of embeddings, which
often results in low-information embeddings and consequently suboptimal retrieval performance.
To address this limitation, we propose an autoregressive reconstruction task that reconstructs the
instance semantic content from the embeddings. Together with contrastive learning, this jointly
facilitates the construction of a discriminative and information-rich unified representation space.
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Figure 2: Overall architecture of ReCo. We propose an autoregressive reconstruction task that forces
the model to reconstruct the instance semantic content from embeddings, thereby encouraging the
embeddings to capture rich semantic information about the input. By jointly optimizing this task
with contrastive learning, we enable MLLMs to construct a unified representation space that is both
discriminative and information-rich.

3 RECO

3.1 MULTIMODAL EMBEDDINGS EXTRACTION

A typical MLLM is composed of an LLM, a modality encoder, and a projector to connect them.
This unified architecture enables MLLMs to flexibly process text, images, and their interleaved in-
puts, opening up new possibilities for unified multimodal embeddings. Prior works (Jiang et al.,
2024b;c) have shown that prompt-based methods can effectively represent multimodal embeddings
with MLLMs. Building on this observation, we specifically design system instructions and embed-
ding instructions to encode multimodal inputs, as illustrated in Figure 2.

Following the conventional human–assistant conversation format of MLLMs (Liu et al., 2023),
we configure a system message and feed both image and text data as human inputs. Specifically,
⟨image⟩ represents the image token that encodes visual information, ⟨text⟩ denotes textual data that
needs to be encoded, and ⟨task instruction⟩ indicates task-specific instructions (see Appendix A.3
for details of different tasks). Either ⟨image⟩ or ⟨text⟩ can be omitted, allowing flexible encoding
of unimodal (image or text) or multimodal (interleaved image–text) inputs. The assistant’s response
serves as the output, from which we extract the multimodal embeddings by taking the last layer
hidden states of the ⟨emb⟩ token. Inspired by PromptEoL (Jiang et al., 2023) and E5-V (Jiang et al.,
2024b), we adopt the Explicit One-word Limitation (EoL) strategy to enhance representation ca-
pability. Concretely, we append "\nSummarize your response in one word:" to the
end of the human inputs, prompting the MLLM to generate embeddings of the multimodal inputs.

3.2 RECONSTRUCTION-AUGMENTED CONTRASTIVE LEARNING

Our empirical results demonstrate a positive correlation between the semantic richness and discrim-
inability of embeddings (see Figure 1). Based on this observation, we propose an autoregressive
reconstruction task that provides explicit supervision for preserving the semantic richness of em-
beddings. By jointly optimizing this task with contrastive learning, we enable MLLMs to construct
a discriminative and information-rich unified representation space.

3.2.1 RECONSTRUCTION TARGETS: INSTANCE SEMANTIC CONTENT

To fine-tune the MLLM for multimodal embedding tasks, we leverage the MMEB dataset (Jiang
et al., 2024c), which provides task-specific instructions and spans 36 datasets across four meta-
tasks—classification, visual question answering (VQA), retrieval, and visual grounding (see Ap-
pendix A.1 for details). Since the goal of representation learning is to minimize the distance be-
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tween matched query–candidate pairs while maximizing the distance between mismatched pairs,
we use the same instance semantic content y as the reconstruction target for a user query q and
its corresponding positive candidate c+ to align their embeddings. Specifically, we use the class
name, answer, and text caption as the instance semantic content for classification, VQA, and im-
age–text/text–image retrieval, respectively. For other tasks, no reconstruction supervision is applied.

3.2.2 AUTOREGRESSIVE RECONSTRUCTION TASK

For a given user input, such as a query q or a candidate c (denoted uniformly as x), the MLLM
encodes it into the ⟨emb⟩ token to support downstream retrieval tasks. To enhance the seman-
tic richness of the ⟨emb⟩ token, we design a reconstruction instruction r: "Reconstruct the
response:", which prompts the MLLM to reconstruct the corresponding instance semantic con-
tent. The input sequence to the MLLM is formed by concatenating the system instruction s, user
input x, the ⟨emb⟩ token, the reconstruction instruction r, and the instance semantic content y, yield-
ing a sequence of length l = ls + lx + lr + ly +1, where ls, lx, lr, ly denote the sequence lengths of
the system instruction, user input, reconstruction instruction, and instance semantic content, respec-
tively, and the additional 1 accounts for the ⟨emb⟩ token.

In the training phase, we prevent the reconstruction instruction r and instance semantic content y
from interacting with the user input x, and instead require them to capture distilled multimodal in-
formation encoded in the ⟨emb⟩ token. To achieve this goal, a straightforward way is to modify the
attention mask in each Transformer decoder layer. Based on the standard causal attention mecha-
nism, the binary attention mask M ∈ Rl×l is modified as illustrated in Figure 2. With this modified
attention mask, the y tokens can only attend to the ⟨emb⟩ token when predicting the next token,
ensuring that they capture information relevant to the multimodal input exclusively through ⟨emb⟩.
This encourages the ⟨emb⟩ token to retain rich semantic information about the input, yielding em-
beddings with rich semantic information. Following the standard formulation in (Radford et al.,
2018), we supervise this task with an autoregressive language modeling objective, defined as:

Llm = −
ly∑
t=1

log p
(
yt | ⟨emb⟩, r, y<t

)
(1)

where yt denotes the target token at position t of the instance semantic content, and p(yt |
⟨emb⟩, r, y<t) represents the predicted probability distribution over the vocabulary. In this way,
embeddings are explicitly guided to capture richer semantic information.

3.2.3 CONTRASTIVE LEARNING TASK

We adopt the InfoNCE loss for contrastive learning. Specifically, given a user query q and its
corresponding positive candidate c+, we minimize the following contrastive loss:

Lcon = − 1

B

B∑
i=1

log
exp

(
θ(qi) · θ(c+i )/τ

)∑
c∈Ci

exp (θ(qi) · θ(c)/τ)
(2)

where B is the batch size, θ(·) ∈ Rd denotes the normalized embedding function, and τ is the
temperature hyperparameter. Ideally, the candidate set Ci should include all possible candidates;
however, this is computationally infeasible. Therefore, mining informative negatives is crucial, as
they provide richer supervisory signals for contrastive learning. In this work, we introduce a hard
negative augmentation training strategy in Section 3.3 to facilitate contrastive learning.

3.3 HARD NEGATIVE AUGMENTATION TRAINING

Hard negatives, whose labels differ from the positives but whose embeddings are close in the repre-
sentation space, are expected to provide the most utility in contrastive learning by contributing rich
gradient signals. In contrast, easy negatives yield negligible gradients and thus contribute minimally
to the learning process. To address this issue, we introduce a hard negative augmentation training
strategy to further enhance the model’s ability to discriminate between positives and hard negatives.

3.3.1 HARD NEGATIVE MINING

We begin by fine-tuning the MLLM-based embedding model using the contrastive loss with only
in-batch samples as random negatives; i.e., Ci = (c+1 , . . . , c

+
B) in Eq. (2). For each candidate in the
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batch, all candidates except c+i are regarded as random negatives for query qi. Based on the fine-
tuned model, we further mine k hard negatives Ĉ−

i for each query qi in the training set as follows:

Ĉ−
i = SelectK,k

(
θ(qi) · θ(c)

)
, where c /∈ {c+i } ∪ Ĉh

i (3)

where c+i and Ĉh
i denote the positive sample and the candidates whose cosine similarity with qi ex-

ceeds that of the positive sample, respectively (for classification tasks, Ĉh
i = ∅). Here, θ(qi) denotes

the query embeddings, θ(c) denotes candidate embeddings, and SelectK,k represents the operation
of randomly sampling k candidates from the hard negative queue, i.e., the top-K candidates with
the highest similarity scores to θ(qi).

3.3.2 FALSE NEGATIVE FILTERING

The presence of false negatives in training batches hampers the effective discrimination of hard
negatives in contrastive learning. To mitigate this issue, we introduce a filtering mechanism based
on a similarity threshold between candidates and their corresponding positives. During training, we
consistently retain the mined hard negatives Ĉ−

i for each query qi, while excluding all negatives Ĉf
i

whose similarity with c+i exceeds the threshold α; i.e., Ci = (C+
: ∪ Ĉ−

: ) \ Ĉf
i in Eq. (2), where C+

:

and Ĉ−
: denote the set of all positives and all mined hard negatives within the batch, respectively.

3.3.3 TRAINING OBJECTIVE

The overall training objective is formulated as a combination of the autoregressive reconstruction
loss and the contrastive learning loss:

L = λ · Llm + Lcon (4)

where λ is a weighting coefficient for the autoregressive reconstruction loss, set to 0.2 by default.
At a given training iteration, the applied loss depends on the specific task. For classification, VQA,
and image-text/text-image retrieval tasks, we employ the weighted sum of both losses. In contrast,
for interleaved image-text retrieval and visual grounding tasks, we only apply Lcon.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and metrics. In this study, we follow VLM2Vec and train our model on 20 in-distribution
datasets from the massive multimodal embedding benchmark (MMEB) (Jiang et al., 2024c), which
spans four meta-tasks: classification, VQA, retrieval, and visual grounding. The model is then evalu-
ated on 20 in-distribution and 16 out-of-distribution evaluation sets from MMEB. To further validate
the embedding capability of ReCo, we examine its zero-shot performance on several cross-modal
retrieval tasks, including fine-grained cross-modal retrieval (Urban1K (Zhang et al., 2024a) and
DOCCI (Onoe et al., 2024)) and coarse-grained cross-modal retrieval (Flickr30K (Plummer et al.,
2015)). Unless otherwise specified, all results are reported in terms of Precision@1, which measures
the proportion of queries for which the correct match appears at the top rank among candidates.

Implementation details. We adopt Qwen2-VL (Wang et al., 2024) as the backbone MLLM and
train it using LoRA with rank 8 for 2000 steps, with a peak learning rate of 2×10−5 and a warm-up
ratio of 5%. By default, we use a total batch size of 512 and a maximum sequence length of 4096
tokens. The coefficient λ in Eq. (4) and the temperature τ are set to 0.2 and 0.02, respectively. For
classification tasks, the hard negative queue length is set to K = 20; for VQA, retrieval, and visual
grounding tasks, we set K = 50. During training, we randomly sample k = 3 hard negatives for
each query to facilitate contrastive learning. For classification and visual grounding tasks, the false
negative filtering threshold is set to α = 0.8; for VQA and retrieval tasks, we set α = 0.7.

4.2 MAIN RESULT

4.2.1 MULTI-MODAL RETRIEVAL

In Table 1, we present the quantitative evaluation results of the proposed ReCo on the MMEB bench-
mark (Jiang et al., 2024c), where our method achieves state-of-the-art performance. Specifically,
with Qwen2-VL as the base model, ReCo attains an overall score of 73.9, surpassing the previous
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Table 1: Results on the MMEB benchmark (Jiang et al., 2024c). IND represents the in-distribution
dataset, and OOD represents the out-of-distribution dataset. The reported scores are the average
Precision@1 over the corresponding datasets. The best results are marked in bold, and the second-
best results are underlined.

Model Per Meta-Task Score Average Score

Classification VQA Retrieval Grounding IND OOD Overall

# of Datasets → 10 10 12 4 20 16 36

CLIP-series Models

CLIP (Radford et al., 2021) 42.8 9.1 53.0 51.8 37.1 38.7 37.8
BLIP2 (Li et al., 2023) 27.0 4.2 33.9 47.0 25.3 25.1 25.2
SigLIP (Zhai et al., 2023) 40.3 8.4 31.6 59.5 32.3 38.0 34.8
OpenCLIP (Cherti et al., 2023) 47.8 10.9 52.3 53.3 39.3 40.2 39.7
Magiclens (Zhang et al., 2024c) 38.8 8.3 35.4 26.0 31.0 23.7 27.8
EVA-CLIP (Sun et al., 2023) 56.0 10.4 49.2 58.9 38.1 45.6 43.7

MLLM-based Models

E5-V (LLaVA-1.6-7B) (Jiang et al., 2024b) 39.7 10.8 39.4 60.2 34.2 33.4 33.9
VLM2Vec (LLaVA-1.6-7B) (Jiang et al., 2024c) 61.2 49.9 67.4 86.1 67.5 57.1 62.9
VLM2Vec (Qwen2-VL-7B) (Jiang et al., 2024c) 62.6 57.8 69.9 81.7 72.2 57.8 65.8
MMRet (LLaVA-1.6-7B) (Zhou et al., 2024) 56.0 57.4 69.9 83.6 68.0 59.1 64.1
UniME (LLaVA-1.6-7B) (Gu et al., 2025) 60.6 52.9 67.9 85.1 68.4 57.9 66.6
UniME (LLaVA-OV-7B) (Gu et al., 2025) 66.8 66.6 70.5 90.9 74.6 65.8 70.7
CAFe (LLaVA-OV-7B) (Yu et al., 2025) 65.2 65.6 70.0 91.2 75.8 62.4 69.8
mmE5 (Llama-3.2-Vision-11B) (Chen et al., 2025) 67.6 62.8 70.9 89.7 72.3 66.7 69.8
IDMR (InternVL2.5-26B) (Liu et al., 2025a) 66.3 61.9 71.1 88.6 73.4 63.9 69.2
LLaVE (Llava-OV-7B) (Lan et al., 2025) 65.7 65.4 70.9 91.9 75.0 64.4 70.3
UNITE (Qwen2-VL-7B) (Kong et al., 2025) 68.3 65.1 71.6 84.8 73.6 66.3 70.3
B3 (Qwen2-VL-7B) (Thirukovalluru et al., 2025) 70.0 66.5 74.1 84.6 75.9 67.1 72.0
QQMM-embed (LLaVA-OV-7B) (Xue et al., 2025) 66.8 66.8 70.5 90.4 74.7 65.6 70.7
QQMM-embed (QQMM-7B) (Xue et al., 2025) 69.9 70.0 72.1 86.0 77.2 66.6 72.5
Ours (Qwen2-VL-7B) 71.0 71.5 73.7 87.7 77.6 69.2 73.9

SOTA model QQMM-embed (Xue et al., 2025) by 1.4 points and outperforming B3 (Thirukovalluru
et al., 2025), which also uses Qwen2-VL as its backbone, by 1.9 points. Moreover, ReCo demon-
strates superior performance on the VQA task, outperforming the next best model (QQMM-embed)
by 1.5 points, which we attribute to the proposed autoregressive reconstruction task that helps pre-
serve the powerful instruction-following ability of MLLMs. Notably, our method also achieves
an impressive score of 69.2 on out-of-distribution datasets, exceeding the next best model (B3) by
2.1 points, indicating strong generalization ability. These significant performance improvements
are driven by the proposed autoregressive reconstruction task and the hard negative augmentation
training strategy, which together foster a discriminative unified representation space enriched with
semantic information, thereby enhancing the discriminability of the learned representations.

4.2.2 ZERO-SHOT CROSS-MODAL RETRIEVAL

Here, we analyze the zero-shot cross-modal retrieval capability of our method. First, we con-
duct experiments on fine-grained cross-modal retrieval datasets Urban1K (Zhang et al., 2024a) and
DOCCI (Onoe et al., 2024), featured by detailed textual descriptions. As shown in Table 2, our
method outperforms UNITE (Kong et al., 2025)—a strong unified embedding model—on image-
to-text retrieval in Urban1K, as well as on both text-to-image and image-to-text retrieval tasks in
DOCCI. Our proposed autoregressive reconstruction task requires the model to generate the corre-
sponding instance semantic content from embeddings, thereby compelling the embeddings to encode
both individual elements and their interrelations. This encourages the preservation of MLLM’s in-
herent strengths in compositional understanding. Notably, due to the highly compositional and fine-
grained descriptions in DOCCI (e.g., precise spatial relations and accurate object counts), embed-
dings trained solely with contrastive learning exhibit limitations in compositional understanding, as
it does not explicitly enforce modeling the relationships among individual elements. Consequently,
our method achieves significant performance improvements on DOCCI, surpassing UNITE by 5.3
points on text-to-image retrieval and by 7.1 points on image-to-text retrieval. For coarse-grained
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Table 2: Results of fine-grained image-text re-
trieval on Urban1K (Zhang et al., 2024a) and
DOCCI (Onoe et al., 2024).

Model
Urban1K DOCCI

T→I I→T T→I I→T

CLIP-based Models
Long-CLIP (Zhang et al., 2024a) 86.1 82.7 78.6 66.5
FineLIP (Asokan et al., 2025) 94.1 93.2 86.0 84.5

MLLM-based Models
MATE (Jang et al., 2024) - - 84.6 76.6
E5-V-7B (Jiang et al., 2024b) 88.9 83.2 - -
VLM2Vec-7B (Jiang et al., 2024c) 90.8 84.7 - -
UniME-7B (Gu et al., 2025) 95.2 95.9 - -
UNITE-7B (Kong et al., 2025) 95.5 95.6 87.2 85.8
Ours-7B 95.3 98.4 92.5 92.9

Table 3: Zero-shot coarse-grained image-
text retrieval results on Flickr30K (Plum-
mer et al., 2015).

Model
Flickr30K

T→I I→T

CLIP-based Models
OpenCLIP (Cherti et al., 2023) 75.0 88.7
MagicLens (Zhang et al., 2024c) 79.7 89.6

MLLM-based Models
CAFe-7B (Yu et al., 2025) 75.3 87.5
VLM2Vec-7B (Jiang et al., 2024c) 80.3 94.6
LamRA-7B (Liu et al., 2025b) 82.8 92.7
UniME-7B (Gu et al., 2025) 81.9 93.4
UNITE-7B (Kong et al., 2025) 86.1 94.4
Ours-7B 85.5 95.9

Table 4: Ablation results on MMEB. The model with ID 0 is optimized using the InfoNCE loss.

ID Model Batch size IND OOD Overall

0 Baseline (Qwen2-VL-7B + InfoNCE) 1024 74.2 66.0 70.5

1 0 + Hard negative mining 256 75.9 67.2 72.0

2 1 + Unfreeze projector 256 76.5 67.9 72.7
3 2 + Unfreeze image encoder 256 76.2 66.8 72.0
4 1 + Unfreeze projector 512 77.2 68.4 73.3

5 4 + False negative filtering 512 77.1 69.0 73.5

6 5 + Autoregressive task (without the modified attention mask) 512 77.3 68.8 73.5
7 5 + Autoregressive reconstruction task 512 77.6 69.2 73.9

cross-modal retrieval on the Flickr30K (Plummer et al., 2015), which features short textual cap-
tions, as shown in Table 3, our model achieves strong retrieval performance on both text-to-image
and image-to-text tasks, demonstrating its effectiveness in aligning text and image modalities.

4.3 ABLATION STUDY

Table 4 presents an ablation study analyzing the impact of different design choices on the perfor-
mance of ReCo across IND, OOD, and overall metrics. As the reference setting, the baseline model
(ID 0) fine-tunes the LLM backbone via LoRA using the standard InfoNCE with batch size of 1024.

Hard negative mining is crucial for effective contrastive learning. To ensure a fair comparison,
we reduce the batch size of model (ID 1) to 256 and mine three hard negatives per query, thereby
keeping the number of candidates consistent with the baseline. As shown in Table 4 (0 → 1),
incorporating the hard negative mining strategy yields significant improvements on both IND (+1.7)
and OOD (+1.2), resulting in a notable overall gain (+1.5). This improvement arises because hard
negatives provide richer gradient signals during contrastive learning.

Unfreezing the projector facilitates adapting the MLLM to an embedding model. Unfreezing
the projector (1 → 2) yields an overall gain (+0.7), as adapting an MLLM to an embedding model
requires re-adaptation of the representation space. In contrast, unfreezing the image encoder (2 →
3) degrades OOD performance (–1.1), since instruction tuning on a smaller dataset may weaken
generalization. To maintain a comparable training budget, we increase the batch size to 512 (2 →
4), keeping the total in-batch samples consistent with the baseline, yielding another gain (+0.6).

False negative filtering improves the model’s generalization ability. The presence of false nega-
tives within a batch hinders the effective discrimination of hard negatives during contrastive learning.
As shown in Table 4 (4 → 5), applying the false negative filtering mechanism improves OOD perfor-
mance (+0.6). This improvement arises because filtering out false negatives alleviates contamination
from mislabeled positives, encouraging the model to learn higher-level features with rich semantic
content rather than overfitting to idiosyncrasies of the training set, thereby enhancing generalization.
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Figure 3: Relationship between seman-
tic richness and discriminability of embed-
dings at different training steps (500, 1000,
1500, 2000) on the MSCOCO t2i evaluation
set, where ReCo* denotes models optimized
with contrastive learning alone.

The autoregressive reconstruction task further
enhances representation discriminability. Our
proposed autoregressive reconstruction task im-
proves the quality of learned embeddings (5 → 7),
yielding performance gains on IND (+0.5) and OOD
(+0.2). Notably, applying the autoregressive ob-
jective without the modified attention mask in Fig-
ure 2—i.e., without performing the actual recon-
struction task—fails to deliver any improvement (5
→ 6). This is because a standard autoregressive task
does not explicitly guide embeddings to capture rich
semantic information from the input, whereas the re-
construction task does, thereby producing embed-
dings enriched with semantic information. These
results empirically validate the effectiveness of our
proposed autoregressive reconstruction task.

4.4 PRINCIPAL COMPONENT ANALYSIS

In Figure 3, we analyze the impact of the autoregres-
sive reconstruction task on semantic richness and
discriminability of embeddings. Specifically, we report the relationship between model perfor-
mance and the number of principal components required to explain 80% of the total variance at
different training steps (500, 1000, 1500, 2000) on the MSCOCO t2i dataset. The results show that,
compared to models trained solely with contrastive learning, the autoregressive reconstruction task
enables embeddings to retain more semantic information about the input, resulting in a more evenly
distributed variance across its principal components, thereby exhibiting higher semantic richness
and stronger discriminability.

4.5 VISUALIZATION OF RETRIEVAL RESULTS

Figure 4: Visualization of retrieval results,
where ReCo* denotes models optimized
with contrastive learning alone.

In Figure 4, we present qualitative comparison of re-
trieval results between ReCo and ReCo* (optimized
with contrastive learning alone). On the left, ReCo
successfully retrieves the correct description, “A girl
in a floral dress sitting next to a boy in a blue shirt
eating food,” whereas ReCo* incorrectly swaps the
genders. In the right example, ReCo retrieves the
accurate description, “A cat is laying on sofa and
the dog is laying on the floor in front,” while ReCo*
mistakenly reverses the spatial relationship, describ-
ing the dog as being on the sofa and the cat on the
floor. Additional visualization examples are pro-
vided in Figure 5. These results demonstrate that
our proposed autoregressive reconstruction task pro-
motes embeddings to retain richer semantic details,
such as entity attributes and spatial relations, thereby producing more discriminative embeddings
enriched with semantic information and consequently improving performance on downstream tasks.

5 CONCLUSION

In this work, we propose ReCo, a novel unified embedding framework for learning high-quality
representations that are simultaneously discriminative and information-rich. To ensure that embed-
dings retain rich semantic information from the input, we propose an autoregressive reconstruction
task, which forces the model to reconstruct the instance semantic content from the corresponding
embeddings, thereby shaping a unified representation space. Furthermore, we introduce a hard neg-
ative augmentation training strategy to enhance the model’s ability to distinguish positives from hard
negatives by mining challenging negatives and mitigating false negative contamination. Extensive
experiments demonstrate the superiority of ReCo and the effectiveness of its key components.
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A DATA

A.1 MMEB BENCHMARK

MMEB (Jiang et al., 2024c) is a comprehensive multimodal embedding benchmark that spans di-
verse domains (e.g., common, news, Wikipedia, web, and fashion) and supports various instruc-
tion types, from object recognition to retrieval tasks. As shown in Table 5, MMEB consists of
36 datasets across four meta-tasks: classification, visual question answering, retrieval, and visual
grounding. The benchmark is strategically divided into 20 in-distribution training datasets and 16
out-of-distribution evaluation datasets. All tasks are formulated as ranking problems, where the
model is required to process instruction-guided queries (text, image, or both) to identify the correct
target from a set of candidates. Performance is evaluated using Precision@1, which measures the
percentage of top candidate matching the groundtruth. This comprehensive design makes MMEB an
ideal testbed for developing and assessing universal multimodal embeddings. Specifically, MMEB
is organized into four primary meta-task categories, which are structured as follows:

Table 5: The statistics of MMEB (Jiang et al., 2024c): 36 datasets across 4 meta-task categories,
with 20 in-distribution datasets used for training and 16 out-of-distribution datasets used exclusively
for evaluation. A checkmark in the Reconstruction column denotes joint optimization with autore-
gressive reconstruction and contrastive learning.

Meta-Task Dataset Query→Target Distribution Type Reconstruction #Training #Eval #Candidates

Classification
(10 Tasks)

ImageNet-1K I→T IND ✓ 100K 1000 1000
N24News I + T→T IND ✓ 49K 1000 24

HatefulMemes I→T IND ✓ 8K 1000 2
VOC2007 I→T IND ✓ 8K 1000 20
SUN397 I→T IND ✓ 20K 1000 397

Place365 I→T OOD - 1000 365
ImageNet-A I→T OOD - 1000 1000
ImageNet-R I→T OOD - 1000 200
ObjectNet I→T OOD - 1000 313

Country-211 I→T OOD - 1000 211

VQA
(10 Tasks)

OK-VQA I + T→T IND ✓ 9K 1000 1000
A-OKVQA I + T→T IND ✓ 17K 1000 1000
DocVQA I + T→T IND ✓ 40K 1000 1000

InfographicVQA I + T→T IND ✓ 24K 1000 1000
ChartQA I + T→T IND ✓ 28K 1000 1000
Visual7W I + T→T IND ✓ 70K 1000 1000

ScienceQA I + T→T OOD - 1000 1000
VizWiz I + T→T OOD - 1000 1000
GQA I + T→T OOD - 1000 1000

TextVQA I + T→T OOD - 1000 1000

Retrieval
(12 Tasks)

VisDial T→I IND 123K 1000 1000
CIRR I + T→I IND 26K 1000 1000

VisualNews t2i T→I IND ✓ 100K 1000 1000
VisualNews i2t I→T IND ✓ 100K 1000 1000
MSCOCO t2i T→I IND ✓ 100K 1000 1000
MSCOCO i2t I→T IND ✓ 113K 1000 1000

NIGHTS I→I IND 16K 1000 1000
WebQA T→I + T IND 17K 1000 1000

OVEN I + T→I + T OOD - 1000 1000
FashionIQ I + T→I OOD - 1000 1000

EDIS T→I + T OOD - 1000 1000
Wiki-SS-NQ T →I OOD - 1000 1000

Visual Grounding
(4 Tasks)

MSCOCO I + T→I IND 100K 1000 1000

Visual7W-Pointing I + T→I OOD - 1000 1000
RefCOCO I + T→I OOD - 1000 1000

RefCOCO-Matching I + T→I + T OOD - 1000 1000
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Table 6: The statistics of Urban1K (Zhang et al., 2024a), DOCCI (Onoe et al., 2024), and
Flickr30K (Plummer et al., 2015). # Queries represents the number of test queries, and # Candi-
dates denotes the number of test candidates per query.

Benchmark Query→Target Zero-shot #Queries #Candidates

Urban1K (Zhang et al., 2024a) T→I, I→T ✓ 1,000 1,000
DOCCI (Onoe et al., 2024) T→I, I→T ✓ 5,000 5,000
Flickr30K (Plummer et al., 2015) T→I, I→T ✓ 1,000 5,000

Table 7: Additional task instructions for candidates that are used in ReCo. For candidates from other
datasets, we use the existing instructions from VLM2Vec (Jiang et al., 2024c). These instructions
are expected to facilitate the disentanglement of different tasks during training.

Category Dataset Task Instruction

Retrieval
MSCOCO i2t

Represent the following answer to an image caption task:
VisualNews i2t

Classification

ImageNet-1K

Represent the following answer to an image classification task:

HatefulMemes
SUN397
N24News
VOC2007
Place365
ImageNet-A
ImageNet-R
ObjectNet
Country211

Visual Question Answering

OK-VQA

Represent the following answer to a VQA task:

A-OKVQA
DocVQA
InfographicsVQA
ChartQA
Visual7W
ScienceQA
GQA
TextVQA
VizWiz

1. Classification: The query consists of an instruction, an image, optionally accompanied by related
text, while the target is the class name. The number of candidates equals the number of classes.

2. Visual question answering: The query consists of an instruction, an image, and a piece of text as
the question, while the target is the answer.

3. Retrieval: Both the query and target may involve combinations of text, image, and instruction.
4. Visual grounding: The task is adapted from object detection. The query consists of an instruction

with the full image to locate a specific object, and the target is the cropped region of the object.

A.2 CROSS-MODAL RETRIEVAL DATASETS

In Table 6, we provide a brief description of the cross-modal retrieval datasets, including fine-grained
cross-modal retrieval (Urban1K (Zhang et al., 2024a) and DOCCI (Onoe et al., 2024)) and coarse-
grained cross-modal retrieval (Flickr30K (Plummer et al., 2015)). We evaluate on each dataset using
its standard protocol, with Recall@1 as the primary metric.

Urban1K (Zhang et al., 2024a) is derived from Urban-200 and expanded to 1,000 image–text pairs
of urban scenes. Each image is paired with a GPT-4V–generated caption (averaging 101 words) that
provides detailed descriptions of object types, colors, and spatial relations. The dataset challenges
models with visually similar urban scenes, requiring fine-grained cross-modal understanding.
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DOCCI (Onoe et al., 2024) (Descriptions of Connected and Contrasting Images) contains 15,000 im-
ages paired with human-annotated descriptions averaging 136 words. Curated by a single researcher,
the dataset evaluates spatial relations, counting, text rendering, and world knowledge comprehen-
sion. It features contrast sets in which object arrangements differ subtly. For evaluation, we follow
the official 5K test split.

Flickr30K (Plummer et al., 2015) consists of 31K images collected from Flickr, with each image
paired with five human-annotated captions describing its content. The dataset covers a wide range of
everyday scenes and human activities in natural environments. Following common practice (Karpa-
thy & Fei-Fei, 2015), we use the standard split with 1,000 images for testing.

A.3 TASK INSTRUCTION

The MMEB benchmark (Jiang et al., 2024c) provides task-specific instructions for queries and can-
didates in most datasets. However, for inputs involving text-only candidates, such instructions are
not available. Table 7 summarizes the task instructions used for text-only candidate inputs in our
experiments. Most of these tasks fall under classification and visual question answering.

For the cross-modal retrieval tasks (Urban1K (Zhang et al., 2024a), DOCCI (Onoe et al., 2024),
and Flickr30K (Plummer et al., 2015)), we design unified task instructions based on the query-
to-candidate modality. Specifically, for text-to-image retrieval, the task instructions for the query
and candidate sides are "Find me an everyday image that matches the given
caption:" and "Represent the given image.", respectively, and for image-to-
text retrieval, the corresponding instructions are "Find an image caption describing
the given everyday image." and "Represent the following answer to an
image caption task:".

B MORE EXPERIMENTAL RESULTS

B.1 DETAILED MAIN RESULTS

Table 8 provides the detailed results of ReCo and baseline models with full scores reported across
the 36 tasks in MMEB.

B.2 FURTHER VISUALIZATIONS OF RETRIEVAL RESULTS

Figure 5 shows additional qualitative comparisons of retrieval results between ReCo and ReCo*
(optimized with contrastive learning alone).

C LIMITATION AND FUTURE WORK

ReCo is trained only on embedding datasets involving arbitrary combinations of text and image
modalities, where it demonstrates superior performance across both. However, with the rapid growth
of social media, embedding models for video and audio modalities have become critical for tasks
such as search and recommendation. In future work, we plan to extend ReCo to more general mul-
timodal scenarios and further explore a unified framework integrating embedding and generation.

D DISCUSSION OF ETHICS

To the best of our knowledge, the datasets used in this work do not contain any sensitive information.
However, in future real-world applications, our model may be deployed in scenarios involving po-
tentially sensitive domains, such as healthcare, education, or public safety. Therefore, we emphasize
that before applying this approach in specific environments, practitioners should conduct thorough
compliance reviews and carry out systematic safety validation and robustness testing to ensure its
reliability and security in practice.

E DECLARATION OF LLM USAGE

LLM is used only for writing, editing, or formatting purposes.
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Table 8: The detailed results of the baselines and ReCo on MMEB, which includes 20 in-distribution
(IND) datasets and 16 out-of-distribution (OOD) datasets. The out-of-distribution datasets are high-
lighted with a yellow background in the table. For each model, we report its best variant with
fully available performance metrics, including CLIP (Radford et al., 2021), VLM2Vec (LLaVA-1.6-
7B) (Jiang et al., 2024c), MMRet (LLaVA-1.6-7B) (Zhou et al., 2024), UniME (LLaVA-1.6-7B) (Gu
et al., 2025), mmE5 (Llama-3.2-Vision-11B) (Chen et al., 2025), IDMR (InternVL2.5-26B) (Liu
et al., 2025a), LLaVE (Llava-OV-7B) (Lan et al., 2025), and UNITE (Qwen2-VL-7B) (Kong et al.,
2025). Superior versions might exist but are excluded due to incomplete score reporting.

CLIP VLM2Vec MMRet UniME mmE5 IDMR LLaVE UNITE ReCo

Classification (10 tasks)
ImageNet-1K 55.8 74.5 58.8 71.3 77.8 80.6 77.1 80.2 84.2
N24News 34.7 80.3 71.3 79.5 81.7 81.6 82.1 80.3 83.8
HatefulMemes 51.1 67.9 53.7 64.6 64.2 72.3 74.3 67.1 73.6
VOC2007 50.7 91.5 85.0 90.4 91.0 92.7 90.3 84.9 88.8
SUN397 43.4 75.8 70.0 75.9 77.7 78.8 79.1 78.7 81.2
Place365 28.5 44.0 43.0 45.6 43 38.9 45.1 44.5 47.4
ImageNet-A 25.5 43.6 36.1 45.5 56.3 63.6 51.6 59.2 58.3
ImageNet-R 75.6 79.8 71.6 78.4 86.3 84 90.9 90.5 90.1
ObjectNet 43.4 39.6 55.8 36.4 62.5 50.5 46.2 68.1 74.1
Country-211 19.2 14.7 14.7 18.7 35.4 20.3 20.1 29.5 28.0
All Classification 42.8 61.2 56.0 60.6 67.6 66.3 65.7 68.3 71.0

VQA (10 tasks)
OK-VQA 7.5 69.0 73.3 68.3 67.6 71.0 71.1 67.1 74.1
A-OKVQA 3.8 54.4 56.7 58.7 56.1 59.2 70.8 58.0 61.8
DocVQA 4.0 52.0 78.5 67.6 90.3 75.1 90.3 92.7 95.1
InfographicsVQA 4.6 30.7 39.3 37.0 56.5 44.6 53.5 71.3 76.3
ChartQA 1.4 34.8 41.7 33.4 50.5 64.6 62.2 63.2 66.7
Visual7W 4.0 49.8 49.5 51.7 51.9 54.9 55.8 54.9 67.2
ScienceQA 9.4 42.1 45.2 40.5 55.8 54.7 54.4 51.2 54.5
VizWiz 8.2 43.0 51.7 42.7 52.8 47.1 48.5 53.4 55.4
GQA 41.3 61.2 59.0 63.6 61.7 71.0 68.4 56.8 76.8
TextVQA 7.0 62.0 79.0 65.2 83.3 77.0 79.4 82.3 87.3
All VQA 9.1 49.9 57.4 52.9 62.6 61.9 65.4 65.1 71.5

Retrieval (12 tasks)
VisDial 30.7 80.9 83.0 79.7 74.1 81.5 83.0 80.5 85.3
CIRR 12.6 49.9 61.4 52.2 54.7 57.6 54.5 51.6 60.7
VisualNews t2i 78.9 75.4 74.2 74.8 77.6 78.5 76.6 79.3 81.5
VisualNews i2t 79.6 80.0 78.1 78.8 83.3 80.6 81.2 82.4 84.3
MSCOCO t2i 59.5 75.7 78.6 74.9 76.4 79.1 78.9 78.2 79.5
MSCOCO i2t 57.7 73.1 72.4 73.8 73.2 75.4 74.7 74.3 74.0
NIGHTS 60.4 65.5 68.3 66.2 68.3 68.6 67.0 66.0 68.7
WebQA 67.5 87.6 90.2 89.8 88.0 89.0 90.4 87.0 90.7
FashionIQ 11.4 16.2 54.9 16.5 28.8 21.0 23.3 26.3 20.6
Wiki-SS-NQ 55.0 60.2 24.9 66.6 65.8 66.9 63.9 72.2 72.1
OVEN 41.1 56.5 87.5 55.7 77.5 67.4 68.0 73.1 74.0
EDIS 81.0 87.8 65.6 86.2 83.7 87.6 89.1 88.3 92.6
All Retrieval 53.0 67.4 69.9 67.9 71.0 71.1 70.9 71.6 73.7

Visual Grounding (4 tasks)
MSCOCO 33.8 80.6 76.8 76.5 53.7 81.5 87.0 73.9 74.1
RefCOCO 56.9 88.7 89.8 89.3 92.7 91.7 95.4 89.2 93.5
RefCOCO-matching 61.3 84.0 90.6 90.6 88.8 88.1 92.8 90.1 94.1
Visual7W-pointing 55.1 90.9 77.0 84.1 92.3 93.1 92.5 86.1 89.1
All Visual Grounding 51.8 86.1 83.6 85.1 89.6 88.6 91.9 84.8 87.7

Final Score (36 tasks)
All 37.8 62.9 64.1 66.6 69.8 69.2 70.3 70.3 73.9
All IND 37.1 67.5 68.0 68.4 72.3 73.4 75.0 73.6 77.6
All OOD 38.7 57.1 59.1 57.9 66.7 63.4 64.4 66.3 69.2
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Figure 5: Further visualizations of retrieval results, where ReCo* denotes models optimized with
contrastive learning alone.
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