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Abstract

Coordinated behavior among groups of biolog-
ical units, such as co-expressed genes, is com-
mon in biological systems including the human
microbiome, which is important in a variety of
physiologic and pathological processes. While
many methods infer such groupings, principled
identification of interactions between groups re-
mains under-explored. We present Host-Microbe
Groups Interaction Model (HM-GIM), a genera-
tive Bayesian deep learning approach for uncov-
ering group-level interactions in host-microbiome
data. HM-GIM jointly infers groups of host genes
or microbes, along with latent factors that induce
a sparse, undirected dependency structure among
them. Key innovations include: (1) modeling
undirected and multi-way interactions, (2) avoid-
ing distortions from simplex-based models, and
(3) enabling flexible count-based error models.
We demonstrate on paired human gene expres-
sion and microbiome data from a longitudinal
cohort of patients with tuberculosis (TB) that HM-
GIM outperforms existing methods in finding bi-
ologically meaningful groupings, and provide a
case study identifying host-microbe interactions
involved in innate and adaptive host immunity.

1. Introduction

The human gut microbiome influences diverse host phys-
iology, including metabolism and immune function (Wu
& Wu, 2012; Zhao et al., 2023) as well as pathological
processes in a variety of human diseases. Advances in high-
throughput sequencing allow joint profiling of microbial
composition via metagenomics and host responses via tran-
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scriptomics (Zhou et al., 2015; Wang et al., 2009), offering
opportunities to study host-microbiome interactions at scale.
However, extracting meaningful insights from these data
remains challenging in part due to their high-dimensionality,
i.e., tens of thousands of genes and hundreds of taxa. A
popular approach to address this challenge are topic models,
which have been applied to host or microbiome data individ-
ually to find overlapping groups (topics) of biological units
(genes or taxa) (Lafferty & Blei, 2005). Standard topic mod-
els assume independence of topics and thus cannot capture
interactions between them, and additionally assume data is
multinomially distributed, which does not accurately model
over-dispersion observed with sequencing-based data. Al-
ternatives such as nonnegative matrix factorization (NMF)
or other latent factor models are also widely used to find
groupings in high-dimensional data, and allow for more
flexible error models, but do not directly model dependen-
cies between groups. A recent neural topic model approach
with Bayesian Networks (Gerber et al., 2023) allows for
dependencies between topics, but presents challenges with
interpreting interactions due to restriction to the simplex.

To address these limitations, we introduce HM-GIM, a gen-
erative Bayesian deep learning model that jointly infers
groups of host genes or microbes and undirected interac-
tions among the groups from paired host and microbiome
counts-based sequencing data. We assume multi-way undi-
rected interactions because in practice, inferring edge direc-
tionality may be unreliable with limited data, and multi-way
interactions may more accurately describe certain biological
relationships. HM-GIM assumes that the data arises from by
groups of either genes or microbes, with specimen-specific
usages for each group. Latent factors are used to model
relationships among usages of the groups, e.g., a common
factor capturing the tendency of several groups of microbes
or human genes to positively and/or negatively covary in
a specimen. These latent factors induce sparse, undirected
edges between the nodes (groups), providing a compact and
interpretable representation of the interaction structure. The
observed counts-based data is then generated with a flexible
noise model that allows for over-dispersion.

The remainder of this manuscript is organized as follows.
We first introduce the generative process and inference al-
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gorithm for HM-GIM. Next, we apply HM-GIM to a rich
longitudinal dataset of 98 paired host transcriptomic and
gut metagenomic profiles from 24 participants undergo-
ing antibiotic treatment for multi-drug-resistant tuberculosis
(MDR-TB). Samples were collected at up to five time points:
pre-treatment, and at 2 weeks, 2 months, 6 months, and 2
years post-treatment initiation. We demonstrate HM-GIM’s
superior benchmarking performance on this dataset in find-
ing biologically relevant groupings. Finally, we provide a
case-study, showing that our method uncovers biologically
interpretable host-microbiome interactions on this dataset.

2. Model

2.1. Generative process

Let ys¢mw denote the observed sequencing counts for anal-
ysis unit w (gene or microbe) in modality m (m = 0 for
host, m = 1 for microbes) for participant s at time-point ¢
(t € {T1,T>,...,Tn, }). We assume that the observed count
data is generated by up to K,,, groups —either gene or mi-
crobe groups—selected probabilistically to induce sparsity,
and shaped by the N; time covariates and up to [Ny latent
factors with sparse loadings that capture interactions among
groups. Let By, denote the frequency of occurrence of
gene or microbe w in modality m in group k; these two
matrices (m = 0 or 1) of parameters are non-probabilistic
and learned during inference.

The overall generative process for HM-GIM (Figure 1) is
then specified as:

1. Sample binary indicator variables that select whether
group k in modality m is active: ygur o~
Bernoulli (p,,, ).

2. Sample binary indicator variables that select whether
factor ¢ influences group k& in modality m:

Nmki | Ymk ™~ (1 - ka) : 60 + Ymk * Bernoulli (pn)
Note that only active groups are influenced by factors.

3. Sample binary indicator variables that select whether
group k in modality m has a time-dependent effect at

time-point £: qymi | Yk ~ (1 — Ymk) * 80 + Yk -
Bernoulli (p,).

4. Sample latent factor ¢ for participant s at time-point ¢:
fsti ~ Normal(0, 1).

5. Sample the log of the latent group usage for participant
s at time-point ¢ of group k in modality m: Tspmr ~
Normal(As¢mg, 1). Here,

>\stmk - bmk + § 777nkiwmkifsti + atmk¢tmk

?

is the the mean of the log of latent usage for partici-
pant s at time-point ¢ of group & in modality m. The

other terms, by,i, Wmii € R and ¢4 € R are non-
probabilistic weights that are learned during inference,
specifying offsets, factor loadings and covariate effects

respectively.
6. Sample observed sequencing counts for anal-
ysis unit w (gene or microbe) in modal-

ity m for participant s at time-point t:
Ystmw ~ NegativeBinomial (fistrm, €mw )
where €,,,, is the dispersion parameter while
tstm = Vstm (D 1, OstmiBmiw)? is the mean parame-
ter. Here, Ospni = Ymre®st™* is the usage of group k.

The scaling factor g, = nledifﬂ%accounts for

sequencing depth, where Cy,, = Zw Ystmw 1S the
total observed count per specimen.
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Figure 1. Overview of HM-GIM: our Bayesian generative model
learns latent factors (blue) connecting latent groups (pink = host
genes, green = microbial taxa) through factor loadings, capturing
dependencies within and across modalities. Probabilistic binary
indicators induce sparsity in the number of active groups for each
modality (shown as slashes) and factor loadings on each group-
factor pair (gray dashed lines denote non-selected loadings; solid
blue and red lines denote positive or negative loadings respectively).
Group usage for each subject S. is generated from the the latent
factors and covariates (dotted frames). Observed count-based
data (thick frames) is then generated from Negative Binomial
distributions parameterized by the product of group usage and
frequencies of host genes or microbial taxa in groups.

2.2. Hyperparameters for Prior Distributions and Noise
Model

We selected hyperparameters governing sparsity, variance,
and dispersion based on a combination of domain knowl-
edge and empirical performance. For group activation, we
set the sparsity prior p,,, = 1/K,,, modeling the prior
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expectation of only one activated group. Similarly, factor
loading sparsity was set to be p, = 1/(>_,, Km * Ny).
The prior for temporal effects was set to p, = 0.05, model-
ing the prior expectation of a 5% probability of any given
group having an effect from a time-point. For the Nega-
tive Binomial Noise model, we assumed a fixed dispersion
€mw = 0.03, reflecting a relative standard deviation of
~20% at moderate count levels (~200).

2.3. Inference

The posterior distribution was approximated using stochas-
tic amortized variational inference. A three-layer neural net-
work with SoftPlus activations that takes concatenated log
normalized microbial and host count data as inputs was used
as the encoder. Discrete variables (e.g., group selectors and
factor loading selectors) were approximated using Concrete
(Gumbel-Softmax) relaxations. We exploited conjugacy of
latent factors and marginalized them out to improve infer-
ence efficiency. The inference algorithm was implemented
in PyTorch 2.6 using the Adam optimizer with default pa-
rameters. More details about the inference algorithm is
included in Appendix A.

3. Results
3.1. Data Preprocessing

To ensure data quality, we filtered out low-abundance and
invariant features based on relative abundance and coeffi-
cient of variation thresholds. Features were removed if they
occurred in over 90% of samples with low abundance or had
coefficient of variation (CV) < 0.5. Abundance thresholds
were selected using the elbow points of retention curves. We
also excluded highly abundant, non-informative transcripts
(e.g., ribosomal and RBC genes). After filtering, 1729 host
genes and 109 microbial taxa were retained for analysis.

3.2. Learning Biologically Relevant Groupings

We compared HM-GIM’s ability to learn biologically rele-
vant groupings against five popular methods in the micro-
biome field: tensor decomposition (TD) (Hore et al., 2016),
topic models or latent Dirichlet allocation (LDA) (Blei et al.,
2003), neural topic models with Bayesian network interac-
tions (BN) (Gerber et al., 2023), multi-omics factor analysis
(MOFA) (Argelaguet et al., 2018) , and non-negative matrix
factorization (NMF) (Lee & Seung, 1999).

The number of topics or groups is a critical parameter in
this analysis. We followed standard best practices for select-
ing this hyperparameter when not determined intrinsically
by the method. Specifically, we used default or built-in
selection strategies for TD, BN, and MOFA. For LDA, we
applied 5-fold cross-validation to choose the topic number

that minimized perplexity (Gan & Qi, 2021). For NMF, we
selected the optimal rank based on the stability point before
the largest drop in the cophenetic correlation coefficient
(Brunet et al., 2004).

The biological relevance of host or microbial groups was as-
sessed via functional enrichment analyses (hypergeometric
test) using Gene Ontology (GO) annotations (release version
2024.1) (Consortium, 2021) for human genes, and KEGG
pathways (Kanehisa et al., 2021) for microbial genes. GO
annotations were accessed through the Human MSigDB Col-
lections. Microbial genomes were annotated using Prokka
(Seemann, 2014) and the presence of KEGG pathways was
determined using MinPath (Ye & Doak, 2009). To focus
on biologically meaningful categories, GO terms or KEGG
pathways with fewer than 5 or more than 50 genes or taxa
were filtered out. Multiple hypothesis testing corrections
were performed using the Benjamini-Hochberg procedure
to control the false discovery rate (FDR), and an adjusted
p-value cutoff of 0.05 was considered significant for both
GO and KEGG enrichment results.

To quantify performance variability and assess the robust-
ness of each method, we ran all algorithms using 10 inde-
pendent random seeds. Summary statistics and confidence
intervals reported in the results are based on the distribu-
tion across these 10 runs (Figure 2). HM-GIM consistently
outperformed the other methods on both tasks, including
the more challenging task for microbes (due to relatively
poor annotation of microbial genes), highlighting the supe-
rior ability of our method to uncover biologically relevant
groupings compared to the state-of-the-art.
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Figure 2. Ability of methods to learn biologically relevant group-
ings. The quality of groupings was assessed via functional en-
richment analyses using (a) GO terms for human genes, and (b)
KEGG pathways for microbes. Ten random seeds were run for
each method. Statistical significance of pairwise differences was
assessed using Mann—Whitney U tests. Stars denote statistical
significance levels after Benjamini-Hochberg procedure: p < 0.05
(*), p < 0.01 (**), and p < 0.001 (***). TD = tensor decomposi-
tion, LDA = topic models/latent Dirichlet allocation, BN = neural
topic models with Bayesian network interactions, MOFA = multi-
omics factor analysis, NMF = non-negative matrix factorization.
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3.3. Case Study

HM-GIM found 19 microbial groups (21% significantly en-
riched for > 1 KEGG pathway) and 28 host groups (39%
significantly enriched for > 1 GO category). Seven latent
factors were identified, providing 68 factor-group interac-
tions. Groups or interactions were reported here if the Bayes
Factor was > 100 (indicating decisive evidence (Kass &
Raftery, 1995)) for the relevant binary selector. As a case
study to focus on interesting host-microbe interactions, we
analyzed the top 10% of enriched host pathways (ranked by
enrichment p-value), which corresponded to 3 host topics
linked to 4 microbial groups (Figure 3). Our case study iden-
tified interesting and plausible host-microbiome interactions
involving both adaptive and innate immunity.
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Figure 3. Case study example of host gene (pink) and microbial
taxa (green) groups linked through factors (light blue). Dark blue
and red lines denote positive or negative factor loadings respec-
tively. Tables list microbes with lift>3. Some example host genes
for H14 are shown; full host gene lists are omitted due to space
constraints. Freq. = Frequency in group.

Starting with adaptive immunity, H14, a host group, was
highly enriched for GO categories related to B-cell mediated
responses with key genes including immunoglobulin (Ig)
light and heavy chains. Interestingly, H14 also included
MHC class II genes regions, which are involved in T-cell
mediated antigen presentation that facilitate class-switching
(Ng et al., 2022), and the JCHAIN gene that is essential
for sIgA polymeric antibody secretion at mucosal surfaces,
which plays a central role in maintaining appropriate in-
teractions with the microbiome in homeostasis (Benckert
et al., 2011; Okai et al., 2016). We note that although our
study used blood transcriptomics, systemic IgA profiles are
known to closely mirror mucosal sIgA likely due to B-cell
and T-cell trafficking (Iversen et al., 2017). H14 was linked
to four microbe topics, M7, M15, M16, M19 via Factor-1,
with the signs of factor loadings indicating negative covaria-
tion between the host group and the microbe groups. Three

of the microbe groups (M15, M16, and M19) were dom-
inated by functionally/phylogenetically distinct microbes
that included mostly pathobionts. For example, M19 was
predominantly composed of Enterobacteriaceae members,
which are known to overgrow in settings of inflammation
or other insults to gut homeostasis. M7, on the other hand,
was composed predominantly of Bacteroides species, which
generally function as commensals, although some species
such as B. fragilis can be opportunistic pathogens. Interest-
ingly, Phascolarctobacterium faecium (Anthamatten et al.,
2024), has been shown to cross-feed on succinate produced
by Bacteroides, providing a plausible explanation for its
membership in this group. Taken together, the interaction
structure HM-GIM uncovered is highly plausible biologi-
cally: increased levels of secreted Ig lead to lower levels of
distinct groups of microbes. Some identified interactions
are already known, such as strong IgA responses to En-
terobacteriaceae (Conrey et al., 2023) and Enterococcus
overgrowth and intestinal crypt invasion (Berbers et al.,
2025) in IgA deficiency (Berbers et al., 2025). However,
the interactions with microbes in M16 and M7 and Ig are
not well characterized and present discovery opportunities.

Regarding innate immunity, HM-GIM identified two host
groups (H10 and H11), highly enriched for type I interferon-
stimulated genes (e.g., IFI44L, OAS1, MX1). These host
groups were linked to microbial groups M7 and M19 via
Factor-2 and Factor-3, with the factor loadings indicating
positive covariation between M19 and the host groups and
negative covariation between M7 and the host groups. Type
I interferons are known to be stimulated by lipopolysac-
charide (LPS) via TLR-4 signaling (Stefan et al., 2020).
LPS is produced by gram-negative bacteria, including the
Enterobacteriaceae, which dominate M 19, providing a bi-
ologically plausible relationship for this interaction. The
interaction in the opposite direction between the Bacteroides
dominated group, M7, and interferon genes has not previ-
ously been described and suggests an interesting hypothesis
that known T-cell mediated anti-inflammatory properties of
the Bacteroides may also mitigate interferon responses.

4. Discussion

Our model, HM-GIM, finds biologically relevant group-
ings of host genes and microbes from high-throughput host-
microbiome data and outperforms competing methods in
terms of interpretability. Moreover, in our case study, we
demonstrated that HM-GIM can uncover complex but in-
terpretable and biologically interesting relationships among
groups. To further enhance the utility and robustness of HM-
GIM, we will pursue several key directions in future work.
First, we aim to improve the quality of inferred groups by
increasing both identifiability and interpretability. Possible
strategies include stronger sparsity priors or those discour-
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aging topic overlap; constraints inspired by anchor-word
methods from identifiable topic modeling frameworks; and
leveraging embeddings from large language models trained
on biological data or literature. Second, we plan to refine
our noise model to include more complicated dispersion
relationships and modality-specific noise. Finally, we plan
to evaluate our model on additional datasets and perform
biological validation of key findings.

Impact Statement

Our factor-based group interaction modeling framework
uncovers biologically relevant groupings and host-microbe
interaction patterns, revealing potential interactions between
the host and microbiome at the molecular level. More
broadly, our approach offers a robust tool for analyzing
multi-omic data in a scalable and interpretable manner.

References

Anthamatten, L., von Bieberstein, P. R., Menzi, C., Ziind,
J. N, Lacroix, C., de Wouters, T., and Leventhal, G. E.
Stratification of human gut microbiomes by succinotype
is associated with inflammatory bowel disease status. Mi-
crobiome, 12(1), September 2024. ISSN 2049-2618. doi:

10.1186/s40168-024-01897-8. URL http://dx.doi.

org/10.1186/s40168-024-01897-8.

Argelaguet, R., Velten, B., Arnol, D., Dietrich, S., Zenz,
T., Marioni, J. C., Buettner, F., Huber, W., and Stegle,
O. Multi-omics factor analysis—a framework for un-
supervised integration of multi-omics data sets. Molec-
ular Systems Biology, 14(6), June 2018. ISSN 1744-
4292. doi: 10.15252/msb.20178124. URL http:
//dx.doi.org/10.15252/msb.20178124.

Benckert, J., Schmolka, N., Kreschel, C., Zoller, M. J.,
Sturm, A., Wiedenmann, B., and Wardemann, H. The
majority of intestinal iga+ and igg+ plasmablasts in the
human gut are antigen-specific. Journal of Clinical Inves-
tigation, 121(5):1946-1955, May 2011. ISSN 0021-9738.
doi: 10.1172/jci44447. URL http://dx.doi.org/
10.1172/3CI44447.

Berbers, R.-M., Paganelli, F. L., van Montfrans, J. M., Eller-
broek, P. M., Viveen, M. C., Rogers, M. R. C., Salomons,
M., Schuurmans, J., van Stigt Thans, M., Vanmaris, R.
M. M., Brosens, L. A. A., van der Wal, M. M., Dalm, V. A.
S. H., van Hagen, P. M., van de Ven, A. A.J. M., Uh, H.-
W., van Wijk, F.,, Willems, R. J. L., and Leavis, H. L. Gut
microbial dysbiosis, iga, and enterococcus in common
variable immunodeficiency with immune dysregulation.
Microbiome, 13(1), January 2025. ISSN 2049-2618. doi:
10.1186/s40168-024-01982-y. URL http://dx.doi.
org/10.1186/s40168-024-01982-y.

Blei, D. M., Ng, A. Y., and Jordan, M. 1. Latent Dirichlet
allocation. Journal of Machine Learning Research, 3:
993-1022, 2003. URL https://www. jmlr.org/
papers/volume3/bleil3a.

Brunet, J.-P., Tamayo, P., Golub, T. R., and Mesirov, J. P.
Metagenes and molecular pattern discovery using matrix
factorization. Proceedings of the National Academy of
Sciences, 101(12):4164—4169, March 2004. ISSN 1091-
6490. doi: 10.1073/pnas.0308531101. URL http://
dx.doi.org/10.1073/pnas.0308531101.

Conrey, P. E., Denu, L., O’Boyle, K. C., Rozich, I., Green,
J., Maslanka, J., Lubin, J.-B., Duranova, T., Haltzman,
B. L., Gianchetti, L., Oldridge, D. A., De Luna, N., Vella,
L. A,, Allman, D., Spergel, J. M., Tanes, C., Bittinger, K.,
Henrickson, S. E., and Silverman, M. A. Iga deficiency
destabilizes homeostasis toward intestinal microbes and
increases systemic immune dysregulation. Science Im-
munology, 8(83), May 2023. ISSN 2470-9468. doi:
10.1126/sciimmunol.ade2335. URL http://dx.doi.
0rg/10.1126/sciimmunol.ade2335.

Consortium, G. O. The gene ontology resource:
enriching a gold mine.  Nucleic Acids Research,
49(D1):D325-D334, 2021. doi:  10.1093/nar/
gkaalll3. URL https://academic.oup.com/
nar/article/49/D1/D325/6027811.

Gan, J. and Qi, Y. Selection of the optimal number of
topics for 1da topic model—taking patent policy analysis
as an example. Entropy, 23(10):1301, October 2021.
ISSN 1099-4300. doi: 10.3390/¢23101301. URL http:
//dx.doi.org/10.3390/e23101301.

Gerber, G. K., Bhattarai, S. K., Du, M., Glickman, M. S.,
and Bucci, V. Discovery of host-microbiome interactions
using multi-modal, sparse, time-aware, bayesian network-
structured neural topic models. In Proceedings of the
Workshop on Computational Biology at ICML 2023, 2023.
URL https://icml-compbio.github.io/
2023 /papers/WCBICML2023_paper57.pdf.

Hore, V., Vifiuela, A., Buil, A., Knight, J., McCarthy, M. L,
Small, K., and Marchini, J. Tensor decomposition for
multiple-tissue gene expression experiments. Nature Ge-
netics, 48(9):1094-1100, August 2016. ISSN 1546-1718.
doi: 10.1038/ng.3624. URL http://dx.doi.org/
10.1038/ng.3624.

Iversen, R., Snir, O., Stensland, M., Kroll, J. E., Steinsbg,
, Korponay-Szabd, 1. R., Lundin, K. E., de Souza,
G. A, and Sollid, L. M. Strong clonal relatedness be-
tween serum and gut iga despite different plasma cell
origins. Cell Reports, 20(10):2357-2367, September
2017. ISSN 2211-1247. doi: 10.1016/j.celrep.2017.


http://dx.doi.org/10.1186/s40168-024-01897-8
http://dx.doi.org/10.1186/s40168-024-01897-8
http://dx.doi.org/10.15252/msb.20178124
http://dx.doi.org/10.15252/msb.20178124
http://dx.doi.org/10.1172/JCI44447
http://dx.doi.org/10.1172/JCI44447
http://dx.doi.org/10.1186/s40168-024-01982-y
http://dx.doi.org/10.1186/s40168-024-01982-y
https://www.jmlr.org/papers/volume3/blei03a
https://www.jmlr.org/papers/volume3/blei03a
http://dx.doi.org/10.1073/pnas.0308531101
http://dx.doi.org/10.1073/pnas.0308531101
http://dx.doi.org/10.1126/sciimmunol.ade2335
http://dx.doi.org/10.1126/sciimmunol.ade2335
https://academic.oup.com/nar/article/49/D1/D325/6027811
https://academic.oup.com/nar/article/49/D1/D325/6027811
http://dx.doi.org/10.3390/e23101301
http://dx.doi.org/10.3390/e23101301
https://icml-compbio.github.io/2023/papers/WCBICML2023_paper57.pdf
https://icml-compbio.github.io/2023/papers/WCBICML2023_paper57.pdf
http://dx.doi.org/10.1038/ng.3624
http://dx.doi.org/10.1038/ng.3624

Submission and Formatting Instructions for ICML 2025 GenBio Workshop

08.036. URL http://dx.doi.org/10.1016/7.

celrep.2017.08.036.

Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M.,
and Tanabe, M. Kegg: integrating viruses and cellular
organisms. Nucleic Acids Research, 49(D1):D545-D551,

2021. doi: 10.1093/nar/gkaa970. URL https://doi.

org/10.1093/nar/gkaad970.

Kass, R. E. and Raftery, A. E. Bayes factors. Journal of the
American Statistical Association, 90(430):773-795, June

1995. ISSN 1537-274X. doi: 10.1080/01621459.1995.

10476572. URL http://dx.doi.org/10.1080/
01621459.1995.10476572.

Lafferty, J. and Blei, D.

els. In Advances in Neural Information Pro-
cessing Systems, volume 18. MIT Press, 2005.
URL https://proceedings.neurips.

cc/paper_files/paper/2005/hash/

9e82757e%alcl2cb710ad680dbllf6fl-Abstract.

html.

Lee, D. D. and Seung, H. S. Learning the parts of objects
by non-negative matrix factorization. Nature, 401(6755):
788-791, 1999. doi: 10.1038/44565.

Ng, K. W,, Hobbs, A., Wichmann, C., Victora, G. D., and
Donaldson, G. P. B cell responses to the gut microbiota,
pp- 95-131. Elsevier, 2022. ISBN 9780323989459. doi:

10.1016/bs.ai.2022.08.003. URL http://dx.doi.

org/10.1016/bs.ai.2022.08.003.

Okai, S., Usui, F., Yokota, S., Hori-i, Y., Hasegawa, M.,
Nakamura, T., Kurosawa, M., Okada, S., Yamamoto,
K., Nishiyama, E., Mori, H., Yamada, T., Kurokawa,
K., Matsumoto, S., Nanno, M., Naito, T., Watanabe,
Y., Kato, T., Miyauchi, E., Ohno, H., and Shinkura, R.
High-affinity monoclonal iga regulates gut microbiota
and prevents colitis in mice. Nature Microbiology, 1(9),
July 2016. ISSN 2058-5276. doi: 10.1038/nmicrobiol.
2016.103. URL http://dx.doi.org/10.1038/
nmicrobiol.2016.103.

Seemann, T. Prokka: rapid prokaryotic genome annotation.
Bioinformatics, 30(14):2068-2069, 2014. doi: 10.1093/
bioinformatics/btul53. URL https://doi.org/10.
1093/bioinformatics/btul53.

Stefan, K. L., Kim, M. V., Iwasaki, A., and Kasper, D. L.
Commensal microbiota modulation of natural resistance
to virus infection. Cell, 183(5):1312-1324.e10, Novem-
ber 2020. ISSN 0092-8674. doi: 10.1016/j.cell.2020.
10.047. URL http://dx.doi.org/10.1016/7.
cell.2020.10.047.

Correlated topic mod-

Wang, Z., Gerstein, M., and Snyder, M. Rna-seq: a revolu-

tionary tool for transcriptomics. Nature Reviews Genet-
ics, 10(1):57-63, January 2009. ISSN 1471-0064. doi:
10.1038/nrg2484. URL http://dx.doi.org/10.
1038/nrg2484.

Wu, H.-J. and Wu, E. The role of gut microbiota in im-

mune homeostasis and autoimmunity. Gut Microbes,
3(1):4-14, January 2012. ISSN 1949-0984. doi: 10.
4161/gmic.19320. URL http://dx.doi.org/10.
4161/gmic.19320.

Ye, Y. and Doak, T. G. A parsimony approach to bio-

logical pathway reconstruction/inference for genomes
and metagenomes.  PLoS Computational Biology,
5(8):¢1000465, 2009. doi:  10.1371/journal.pcbi.
1000465. URL https://doi.org/10.1371/
journal.pcbi.1000465.

Zhao, M., Chu, J., Feng, S., Guo, C., Xue, B., He, K.,

and Li, L. Immunological mechanisms of inflammatory
diseases caused by gut microbiota dysbiosis: A review.
Biomedicine amp; Pharmacotherapy, 164:114985, Au-
gust 2023. ISSN 0753-3322. doi: 10.1016/j.biopha.2023.
114985. URL http://dx.doi.org/10.1016/7.
biopha.2023.114985.

Zhou, J., He, Z., Yang, Y., Deng, Y., Tringe, S. G.,

and Alvarez-Cohen, L. High-throughput metagenomic
technologies for complex microbial community anal-
ysis: Open and closed formats. mbBio, 6(1), Febru-
ary 2015. ISSN 2150-7511. doi: 10.1128/mbio.
02288-14. URL http://dx.doi.org/10.1128/
mBio.02288-14.


http://dx.doi.org/10.1016/j.celrep.2017.08.036
http://dx.doi.org/10.1016/j.celrep.2017.08.036
https://doi.org/10.1093/nar/gkaa970
https://doi.org/10.1093/nar/gkaa970
http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.1080/01621459.1995.10476572
https://proceedings.neurips.cc/paper_files/paper/2005/hash/9e82757e9a1c12cb710ad680db11f6f1-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2005/hash/9e82757e9a1c12cb710ad680db11f6f1-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2005/hash/9e82757e9a1c12cb710ad680db11f6f1-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2005/hash/9e82757e9a1c12cb710ad680db11f6f1-Abstract.html
http://dx.doi.org/10.1016/bs.ai.2022.08.003
http://dx.doi.org/10.1016/bs.ai.2022.08.003
http://dx.doi.org/10.1038/nmicrobiol.2016.103
http://dx.doi.org/10.1038/nmicrobiol.2016.103
https://doi.org/10.1093/bioinformatics/btu153
https://doi.org/10.1093/bioinformatics/btu153
http://dx.doi.org/10.1016/j.cell.2020.10.047
http://dx.doi.org/10.1016/j.cell.2020.10.047
http://dx.doi.org/10.1038/nrg2484
http://dx.doi.org/10.1038/nrg2484
http://dx.doi.org/10.4161/gmic.19320
http://dx.doi.org/10.4161/gmic.19320
https://doi.org/10.1371/journal.pcbi.1000465
https://doi.org/10.1371/journal.pcbi.1000465
http://dx.doi.org/10.1016/j.biopha.2023.114985
http://dx.doi.org/10.1016/j.biopha.2023.114985
http://dx.doi.org/10.1128/mBio.02288-14
http://dx.doi.org/10.1128/mBio.02288-14

Submission and Formatting Instructions for ICML 2025 GenBio Workshop

A. Inference details

We employed stochastic amortized variational inference to
approximate the posterior over latent variables in our model,
which includes both continuous and discrete variables.

A.1. Amortized Variational Network For Continuous
Latent Variables

We use an amortized inference network to param-
eterize the variational posterior ¢(xst; &,yst) =
N (%55 NN (¥st3 €), NNoz2(yse; §)) for the log of
the latent group usage variable for subject s at time-point £.
Here, & are parameters for the inference network.

The inference network is a three-layer fully connected neu-
ral network with SoftPlus activations and hidden layer di-
mensions of 100, with the input being the the concatenated
log-transformed microbial and host gene expression counts
¥st, and the outputs of dimension 2K where K is the total
number of groups. In the case of NN, the outputs are
real numbers; for N N2, the outputs are positive real num-
bers (enforced with an additional SoftPlus activation in the
output layer).

Posterior samples of x; are drawn using the reparameteri-
zation trick as:
e ~ Normal(0,I)

Xst = NNIL(yst; 5) + € NNaz(yst; 5)

A.2. Concrete Distributions for Discrete Variables

We approximate binary latent variables for group activa-
tion (), factor loading mask (7,,,x;), and time-specificity
(a¢mi) using the Binary Concrete distribution:

” (L +logu — log(1 — u)

T

) ,  u ~ Uniform(0,1)

Here, L are logit parameters and 7 is the temperature. We
anneal 7 from 1.0 to 0.05 over training.

A.3. Marginalization of factors

To improve inference efficiency, we analytically marginal-
ize over the latent factor vector fs;. when computing the
posterior distribution.

Recall that the latent log group usages ¥y.. € RVt are

modeled as linear combinations of factor weights:

€stmk ~ Normal(0, 1)

Tstmk = bmk + E nmkiwmkifsti + Otk Gemk + €stmk

i
This can be rewritten in a vector form as:

= (b 4 Gp.p..) + W far. + €

where W € RN*N7 and fy. ~ Normal(0, In,). Under
this formulation, Z;.. is a linear transformation of Gaussian
variables. Hence, we can marginalize out the latent factor
vector f;t. analytically. The marginal distribution of Z;..
becomes:

Zs.. ~ Normal(b.. + @y..¢p.., WWT + 1)

A.4. Overall ELBO

The overall evidence lower bound (ELBO) optimized during
training consists of a data likelihood term and multiple KL
terms:

L= Eillogp(Y | z,7v,m, )]
—KL( (2)lp(zlv,m, @)

) Q)
—KL{¢()lp(v)) — KL(g(a)[[p(ex))

Terms involving the Concrete distribution are estimated
using the reparameterization trick and assuming Bernoulli
distributions when computing the KL divergence. All expec-
tations are estimated by taking one sample, and the ELBO
is maximized using the Adam optimizer with other non-
probabilistic model parameters, w, ¢ and b, as well as the
inference network parameters &.



