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Abstract

We developed a technology that, based on
a dataset annotated for cognitive distortions,
builds an interpretable model capable of detect-
ing cognitive distortions in natural language
texts. The learning and detection technologies
are based on structural pattern (N-gram) match-
ing with the “priority on order” principle. We
investigated and released two types of detection
models: plain binary classification and a model
based on a multi-class representation. We opti-
mized the hyper-parameters of the models and
achieved an accuracy of 0.92 and an F1 score of
0.95 in a cross-validation experiment. Addition-
ally, we achieved over 1000 times higher perfor-
mance and lower computational cost compared
to LLM-based alternatives.

1 Introduction

In cognitive-behavioral therapy (CBT), cognitive
distortions are identified as key indicators for moni-
toring a person’s psychological state. These are
systematic errors in thinking that occur uncon-
sciously and automatically, leading to inaccuracies
in judgment and irrational behavior, thereby influ-
encing decision-making and information interpreta-
tion. The term was first introduced by Aaron Beck,
the creator of CBT (Beck, 1963).

Cognitive distortions can arise from subjective
beliefs, stereotypes, social influences, and emo-
tional factors. They showed psychological is-
sues such as depressive disorder (Bathina et al.,
2021), anxiety disorder (Al-Mosaiwi and John-
stone, 2018), and post-traumatic stress disorder
(PTSD) (Ouhmad et al., 2023). Moreover, they
were found to be closely linked to historical events
not only at the individual level but also at the soci-
etal and national levels. As demonstrated in Bollen
etal. (2021), there has been a significant increase in
the occurrence of cognitive distortions in literature
since the year 2000.

With the development of technology and the rise
of social networks and messaging apps, people
now receive large amounts of textual information
far more frequently than before. As mentioned ear-
lier, cognitive distortions can arise due to social
influence and stereotypes perpetuated in society.
For example, if a person reads news every day that
states, “everything is bad,” “nothing will change,”
or “everyone around is foolish,” they will inevitably
start adopting these linguistic patterns in their think-
ing and speech over time. Therefore, it becomes
essential to develop the ability to detect cognitive
distortions in natural language text.

To date, the solutions found are not interpretable,
require significant time or computational resources,
and generally achieve a maximum accuracy of
0.6-0.9. Therefore, our goal was to develop a
more efficient model without compromising ac-
curacy. We developed a technology that, based on
a dataset, built an interpretable model for detect-
ing cognitive distortions in natural language texts,
represented by lists of N-grams , corresponding
to specific distortions. This model demonstrated
performance higher than most of neural network-
based solutions and comparable to the best of them,
achieving an accuracy of 0.92 and an F'1 score of
0.95. The model learning approach is based on
analyzing the frequency of N-grams in texts, as-
sociated with target distortion. We used different
metrics derived from the N-gram frequency counts,
such as TF — I DF', mutual information and ones
from the work by (Kolonin, 2022), as described in
section 4. Additionally, we explored optimal values
for the associated N-gram length and the threshold
for filtering out irrelevant words and phrases.

The technology we developed for creating an
interpretable model to detect cognitive distortions
in text can become a universal and easily adapt-
able tool, applicable in various fields. For example,
if we collect a dataset of posts from Twitter and
Reddit on the topic of cryptocurrencies and use



our technology to create a model for detecting cog-
nitive distortions in these texts, we could predict
market movements with some accuracy, similar to
the work of Raheman et al. (2022). Our technology
could also be applied in psychology (Calvo et al.,
2017) to support beginner psychologists in tracking
cognitive distortions in clients. It is known that psy-
chologists, depending on their CBT school, classify
between 6 (Beck, 1976) and 50 (Boyes, 2013) cog-
nitive distortions in their practice. Thanks to the
flexibility of our technology, an interpretable model
can be created for any classification system in use.
If training is conducted on a dataset containing
posts from people prone to anxiety and depression
disorders, the resulting model could be used to
track these negative states in individuals online and
potentially warn about more severe depression and
anxiety conditions.

2 Related Work

Currently, several studies addressed the problem
of detection of cognitive distortions from natural
language text. These works can be conditionally
divided into those that solve only the binary classi-
fication task, and those that solve both binary and
multi-class classification tasks. The most common
approaches include logistic regression and neural
network-based models, such as modifications of
BERT.

In the study Simms et al. (2017), a logistic regres-
sion model was used with LIWC features selected
using RELIEF. The resulting accuracy for binary
classification was 0.73. Similarly, in Shickel et al.
(2019), logistic regression was applied, but with
TF-IDF-based features. This model achieved an
accuracy of 0.9 and an F1 score of 0.88 for the
binary classification task.

In (Shreevastava and Foltz, 2021), the authors
applied a support vector machine (SVM) classifier
using contextual embeddings extracted with a pre-
trained S-BERT model. This approach achieved
an F1 score of 0.79 for binary classification and
0.3 for multi-class classification. For the same
task, the study (Singh et al., 2024) applied a Large
Language Model (LLM), specifically LLAMA-7b,
which achieved an accuracy of 0.84 and an F1 score
of 0.80. Additionally, the studies (Tauscher et al.,
2023) and (Wang et al., 2023) presented BERT-
based models that reached F1 scores of 0.62 and
0.77, respectively. Finally, the RoBERTa-based
model described in (Babacan et al., 2023) achieved

the highest results to date for the binary classifi-
cation task, with an accuracy of 0.973 and an F1
score of 0.951. This work was further extended to
solve the multi-class classification task in (Babacan
et al., 2025), where the model achieved accuracy
= 0.95 and average F1 score = 0.95 on synthetic
data. However, our model achieved comparable
performance (accuracy = 0.92 and F1 score = 0.95),
while also being interpretable and computationally
efficient.

It is worth noting that most of the related studies
did not provide access to the datasets they used,
making it impossible to reproduce their results and
directly compare them with ours. At the time of the
study only two works mentioned above — (Shreev-
astava and Foltz, 2021) and (Babacan et al., 2023)
— provided publicly available datasets. Therefore,
in our further analysis, we focused on these two
datasets.

3 Data

For the purpose of the study we selected two orig-
inal datasets with labeled cognitive distortions in
patient texts in English language found in the ear-
lier works.

The ”Binary” dataset (Babacan, 2023) created
synthetically according to earlier study (Babacan
et al., 2023) contains 3527 texts classified as either
having some of the cognitive distortions (labeled as
”Distortion’”) or not (labeled as ”No Distortion™).
The dataset is imbalanced, 74% of texts have distor-
tions expressed and only 26% have no distortions.

The "Multi-class” dataset (Shreevastava, 2021)
contains 2530 annotated sample texts of the pa-
tient’s input annotated manually (Shreevastava and
Foltz, 2021). Among the samples, 933 one are
annotated as "No Distortion”, remaining ones are
annotated for having one or more distortions ("’Per-
sonalization”: 202, ”Labeling”: 203, "Emotional
Reasoning”: 169, “Fortune-telling”: 210, "Mag-
nification”: 245, "Mind Reading”: 295, ”All-or-
nothing thinking”: 126, ”Overgeneralization™: 277,
”Mental filter”: 151, ”Should statements”: 135).

In our current study we address binary classifi-
cation only, so both original datasets were consoli-
dated into a single dataset, which we refer to as the
combined dataset, consisting of 6057 texts. Among
them, 4191 texts (69%) were labeled as containing
some distortion — either an unspecific ”Distortion”
label or one or two specific distortions, as identi-
fied above. The remaining 1866 texts (31%) were



labeled as ’No Distortion™.

The combined dataset was used in two ways.
First, it was used for “overfitting” experiment when
the same model was used for both learning and
testing — in order to make sure that our goal is
reachable at all, sort out which selection metrics
for the N-grams are practical and see what could
be the "upper line” for accuracy and F'1 measures.
Second, it was split into three separate sections for
error study and “cross-validation” experiment.

For the error study and “cross-validation” pur-
poses, the combined dataset was divided into three
parts based on triples: every first element of each
triple was placed in the first split, the second in the
second split, and the third in the third split. More-
over, for error assessment of accuracy and F'1, each
model was evaluated against every split indepen-
dently. For cross-validation purposes, every model
was trained and tested against different test and
train corpora in three rounds. The first round in-
volved training on the first and second splits and
testing on the third, the second round — training
on the first and third and testing on the second, and
the third round — respectively. For every round,
individual measures of accuracy and F'1 were col-
lected for error analysis. That means, each of the
three rounds was based on 4038 texts in training
set and 2019 texts in test set.

4 Methodology

Our goal was to develop an interpretable model
capable of detecting cognitive distortions in text
with high reliability and optimal performance. To
achieve this, we decided to use an interpretable
text classification algorithm based on structural pat-
tern (N-gram) matching, applying the ”priority on
order” principle (Kolonin, 2022; Raheman et al.,
2022). This principle means that N-grams of higher
order (larger V) take precedence over N-grams of
lower order (smaller V) that they contain. For ex-
ample, if the tetragram [”’not”, ”a”, ”bad”, “’thing”]
is identified, then the bigrams [’bad”, ”thing”’] and
the unigram [’bad”] are disregarded.

The model we obtained using our technology
consists of a set of dictionaries containing N-grams
for respective distortions. The content of these
dictionaries was obtained during the learning stage,
while the accuracy and F'1 scores were evaluated
during the detection stage.

4.1 Learning

At this stage, we conducted tokenization and
formed N-grams, which were then stored in the cor-
responding dictionaries. The selection of N-grams
for the dictionaries was based on the following
hyper-parameters:

Punctuation on/off — this parameter indicates
the presence or absence of punctuation and special
characters in the N-grams.

N-gram max length (V,,,,) — the maximum
length of the considered N-grams. For performance
reasons, this hyper-parameter takes values from 1
to 4 inclusive.

N-gram inclusion threshold (%) (IT) — the
threshold for including key N-grams in the model’s
dictionaries. It ranges from 0% to 90%.

N-gram selection metric (SA) — the metric
computed to rank N-grams for inclusion in a model
based on I7T applied to the metric value. The fol-
lowing metrics were involved, along with abbrevia-
tions used to refer to them in Figure 1.

G4 — Total count of N-gram g in the entire
corpus.

D4 — Count of texts with distortion d per cor-
pus.

(G4 — Count of N-grams associated with distor-
tion d.

Gy — Total unique count of N-gram g in the
corpus (each N-gram counted once per text).

D, — Count of distortions by N-gram g (from
DG ).

G D 44 — Count of N-gram g associations with
distortion d or N-gram frequency (F').

GD;jd — Unique count of N-gram ¢ associa-
tions with distortion d per-text or unique frequency
(UF).

DG 34 — Count of distortion d associations with
N-gram g, DG4y = GD;d.

GDga — T F-1DF normalized by
d

total N-gram distortion associations.

G_ng = Gé)gd — Count of associations of N-
grams g with digtortion d, normalized by its count
across the entire corpus, or “frequency normalized”
(F'N).

cpt, = Gl

gd Gg
tions of N-grams g with distortion d, normalized
by its unique count across the entire corpus, or
“unique frequency normalized” (U F'N).

TF-IDF =

— Count of unique associa-



Accuracy: N-gram selection metric vs. detection threshold
Detection by average distortion, N-gram L-max = 4, inclusion threshold = 20%
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Figure 1: A heatmap illustrating the accuracy values for the selection metrics (SM) we considered, depending
on the binary classification detection threshold (D7) ranging from 0.1 to 0.9. We examine the cross-validation
experiment (multi-class view) with the detection function (D F’) set to average, under fixed values of N-gram max
length (Ny,4.) = 4 and N-gram inclusion threshold (/1) = 20%.

GDg,

Dy- D,
nominated by count of texts with given distortion in
the corpus and distortions associated with N-gram
(UFN/D/D).

GDgyq - GD,y — Product of “frequency normal-
ized” and “unique frequency normalized” (F'N *
UFN).

GDyq-GDy,

D,
normalized by count of distortions by N-gram
(FN «UFN/D,).

GDg,
>aGD gd
(FCR), according to Kolonin (2022).
GDg,
> ¢ GDgy
(CFR), according to Kolonin (2022).
(GDy,)?

(2aGDga) (32, GDyy)
(M R), according to Kolonin (2022).

(GDgy)*

Dy - Gy
tion (NLM ).

As described in section 3, we combined two
datasets (binary and multi-class) into a single com-
bined dataset, for which we conducted both an
overfitting experiment and a cross-validation ex-
periment. For each of the experiments, we solved
the binary task (distortion/no distortion) in two
ways. The first way, labeled as “binary view”, cor-
responds to training a binary model. This means
that at the learning stage, the model learns to rec-

— ”Unique frequency normalized” de-

— Previous metric additionally

— Feature Category Relevance

— Category Feature Relevance

— Mutual Relevance

— Non-logarithmic Mutual Informa-

ognize whether there is a distortion in the text or
not. The second way, labeled as “multi-class view”,
corresponds to training a multi-class model. At the
learning stage, the model learns to recognize 11
distortions (10 specific ones and one general “dis-
tortion”) and “No Distortion”, while binary classi-
fication is performed at the detection stage.

4.2 Detection

At this stage, we perform the detection of cognitive
distortions based on the built model, which consists
of dictionaries of associated N-grams, dictionary
per distortion. Detection is performed considering
the following hyper-parameters, applied to scores
C computed according to Algorithm 1.

Logarithmic/non-logarithmic scaling (L.S) —
used or not used for scaling the numerical results
of C before applying the threshold further.

Distortion detection threshold (D7) — sets the
threshold for binary classification based on C' value.
This parameter is necessary because our model can
determine the ”intensity” of cognitive distortions
C with a continuous value from 0 to 1. Therefore,
to obtain a binary result, we set a threshold below
which values are considered 0, and above which
values are considered 1.

Detection function (DF") — used in the case of
multi-class view and allows converting the results
into a binary form in two ways: average — based on
the average value across all cognitive distortions,
any — based on at least one cognitive distortion.

The recognition function, which outputs the in-
tensity of cognitive distortion in the text, is based



on the frequency of N-grams found in the text and
the dictionaries of the trained model. Algorithm 1
shows how the frequency of N-grams is taken into
account and the priority on order” principle.

Algorithm 1 Priority on order in detection algo-

rithm

Require: Input text 7', cognitive distortions dictio-
naries Dy, ..., Dy with N-grams up to Npax

Ensure: Normalized metric scores C1, . .., C},

1: Tokenize T into sequence S = [s1, ..., s;]; let
17 denote the token position in .S, and w the
current N-gram starting at position ¢

2: Create mask M = [1,...,1] of length [

3: Initialize counts C; = 0 for each metric j =
1,...,k
4: for n = Nyax to 1 do
5: fori =0to!l —ndo
6: if Y77 M[i +t] = n then
7: W <— (Sia---,5i+n71)
8: found <+ false
9: for j = 1to kdo
10: if w € D; then
11: Cj — Cj +n
12: found < true
13: end if
14: end for
15: if found then
16: Mli:i4+n]<«+0
17: end if
18: end if
19: end for
20: end for

21: for j =1to k do
22: if log-scaling (LS) enabled then

23: Cj + 3 logi(1+100- Cj/1)
24: else

25: éj — Cj/l

26: end if

27: end for

4.3 Experimental Setup

As described earlier, we conducted four experi-
ments: overfitting experiments (binary view and
multi-class view) and cross-validation experiments
(binary view and multi-class view). For each ex-
periment, the learning stage generated the model
dictionaries, and the detection stage performed cog-
nitive distortion detection and calculated accuracy
and F'1 score. We performed a full grid search
over all possible hyperparameter combinations to

determine optimal values for each experiment.

Based on the learning studies discussed above
for two types of experiments (“overfitting” and
cross-validation™) and two types of models (”bi-
nary view” and “multi-class view”), we selected
the respective best-performing models for each ex-
periment, relying on accuracy and F'1 measures.

For the two cross-validation experiments (bi-
nary view and multi-class view), we created two
’joint” models based on the best-performing mod-
els. These “’joint” models included only the N-
grams that were selected above the DT threshold
across all three splits, separately for binary view
and multi-class view.

4.3.1

Based on the learning studies discussed above
for two kinds of experiments (“overfitting” and
’cross-validation™) and two kinds of models (’bi-
nary view” and “multi-class view”) we selected
respective best winning models for each of the ex-
periments, relying on accuracy and F'1 measures.

These models were compared with different de-
tection hyper-parameters against suite of baseline
and alternative models. The baseline models were
used to provide reference “bottom line” accuracy
and F'1 measures for the imbalanced dataset used
for testing, including Const(True) providing al-
ways positive assessments, Const(False) — al-
ways negative ones, Randon — random true of
false assessments. We also explored our own base-
line model created relying on N-grams presented
by Bollen et al. (2021) and later used by Arinicheva
and Kolonin (2025).

In addition to that, we compared our models
against large language models (LLM), namely
LLAMA 3.2 (3B) (Grattafiori et al., 2024), QWEN
2 (7B) (Yang et al., 2024), QWEN 2.5 (7B), and
QWEN 2.5 (14B) (Qwen et al., 2025) deployed lo-
cally. Detection of a cognitive distortion presence
in a text using LLM was performed by query "Be
concise. Does this text have cognitive distortions in
it "text”?” and analysis if the response starts with
case-insensitive “yes”.

The benchmarking was done in two rounds.
First, the full data set was used to find semi-optimal
detection hyper-parameters (LS, DF', and DT') for
our own models — baseline and learned. Second,
the models with the best hyper-parameters selected
during the first round were explored on the three
separate splits of the entire dataset discussed in
section 3 against all ”bottom line” baseline models

Model Benchmarking



and alternative LLLM ones.

5 Results and Discussion

5.1 Learning Results

Based on all experiments for model learning —
both “overfitting” and “cross-validation” applied to
the ’binary view” and “multi-class view” models,
the following results can be stated.

Including or excluding punctuation had no signif-
icant impact on accuracy and F'1 measures. How-
ever, visual analysis of N-grams revealed that those
containing punctuation lacked interpretability or
meaningful contribution. Therefore, for model
benchmarking and practical deployment, we only
considered punctuation-less models and recom-
mend them for future use due to their higher clarity
and interpretability.

Exploration of selection metric has revealed cat-
egory of metrics practical for N-gram selection,
suchas FN,UFN, FN+«UFN, FN+«UFN/D,
and F'CR, providing the best accuracy and F'l
with nearly the same absolute values at the same
detection threshold values, as shown in Figure 1.
The F'N metric was selected for the final model
because it achieved the highest accuracy and F'1
while remaining the least computationally expen-
sive (one division of two sums per N-gram).

The study of N-gram length (/NV,,4;) Was con-
ducted for values up to and including 4. In most
overfitting and cross-validation experiments, op-
timal accuracy and F'1 occurred at Ny, = 3,
with only marginal gains at N,,,, = 4 (see Fig-
ure 2). The sole exception was the “binary view”
cross-validation experiment, which also peaked at
N, maxr — 3.

Analysis of the inclusion threshold (/'1") during
the learning phase revealed the expected inverse re-
lationship with the detection threshold (D7) used
in the detection stage. The higher the I'T’, the fewer
indicative N-grams were included in the models,
which required a lower DT during detection, as
shown in Figure 3 for the DT range of 0.2-0.6.
For the “overfitting” experiments, optimal /7" lay
between 80% and 90% for the binary view and 50%
for the multi-class view. For cross-validation™ ex-
periment, optimal /7" ranged from 50% to 70% for
the binary view and from 20% to 30% for the multi-
class view. That is, “multi-class view” generally
required a lower inclusion threshold.

For all experiments, the model configurations of
hyper-parameters in Table 1 were considered the

best for further use.

5.2 Models Benchmarking

Evaluation of all models selected above with all
sets of detection hyper-parameters led to the fol-
lowing observations.

Use of logarithmic scaling LS is indicated as
LS = log if turned on and LS = no log if turned
off. As expected, it had no major impact on the best
accuracy and F'1 measures reached, it just affects
the required optimal level of detection threshold
(DT). At the same time, we found that "’binary
view” models are less sensitive to D'T" when LS =
log, whereas “multi-class view” models — with
LS = nolog.

The use of different detection functions (D F’)
applied to "multi-class view” models showed, in
most cases, similar best values of accuracy and F'1.
An exception was observed with the “conservative”
(’joint”’) model, where the best results were ob-
tained using the RF' = avg (“average”) function.

Table 2 present the best selected models, includ-
ing baseline, our models, and LLM-s with the best
combinations of hyper-parameters selected based
on the above considerations with mean percentage
error (MPE) of measurement determined on basis
of three cross-validation splits. Our models are
coded with prefix ”Ours” with 4-letter abbrevia-
tions described below, with recognition threshold
RT in parentheses.

First letter — B or N — indicates whether the
model was a baseline built using the N-gram dictio-
naries from (Bollen et al., 2021) and the algorith-
mic framework of (Raheman et al., 2022) (B), or a
new model learned during this study (N).

Second letter — B or M — indicates the “binary
view” (B) or “multi-class view”” (M).

Third letter — L or N — indicates logarithmic
scaling, either LS = log (L) or LS = no log (N).

Fourth letter — N or V — indicates the detection
function, either RF' = any (N), or RF' = avg (V)
which can apply to “multi-class view” models only.

The most representative results in Table 2 make
it possible to consider few classes of models with
respective accuracy and F'1 levels.

The bottom line baseline used the Const(True)
model (always “positive””) which provides target
measures of accuracy at 0.692 and F'1 at 0.818
due to imbalance of the data set, so this can be
considered as minimally acceptable level for the
model.



Accuracy: N-gram L-max vs. detection threshold

Detection by average distortion, N-gram selection metric = FN, inclusion threshold = 20%
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Figure 2: A heatmap illustrating the accuracy values for the N-gram max length (/V,,,4,) We considered, depending
on the binary classification detection threshold (D7) ranging from 0.1 to 0.9. We examine the cross-validation
experiment (multi-class view) with the detection function (DF') set to average, under fixed values of selection
metrics (SM) = FN and N-gram inclusion threshold (I7T) = 20%.

Accuracy: N-gram inclusion threshold vs. detection threshold
Detection by average distortion, N-gram selection metric = FN, N-gram L-max = 4
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Figure 3: A heatmap illustrating the accuracy values for the N-gram inclusion threshold (I7") we considered,
depending on the binary classification detection threshold (DT') ranging from 0.1 to 0.9.We examine the cross-
validation experiment (multi-class view) with the detection function (DF') set to average, under fixed values of
selection metrics (SM) = FN and N-gram max length (Np,q2) = 4.

Both LLM models that we explored (LLAMA
and QWEN) showed target measures about 1 — 4%
higher than the bottom baseline, comparable with
the average MPE level 1.5%.

Our baseline model OursBM LV (0.4) pro-
vided target measures 3 — 6% higher than LLM,
with difference exceeding the average MPE.

Our models learned from the “overfitting” ex-
periment ("binary” OursN BLN (0.6) and "muli-
class” OursNM NN (0.6)) provided upper limit
with accuracy and F'1 at 1.0 but we are cautious
recommending them for practical use because of
their “over-fitted” nature, still providing the models
for reference.

Ours “joint” (“binary” OursNBNN*(0.1)
and “multi-class” OursNMNN*(0.5)) models
obtained based on cross-validation” models
(OursNBLN**(0.7) and OursNMNV**(0.2))
deliver consistently high accuracy at 0.91 — 0.96
and F'1 at 0.93 — 0.97 which makes it possible
for us to recommend the “’joint” models for practi-
cal purposes, still having the models reviewed and

edited, if needed, by a human expert.

Comparing the run-time performance across the
models, we also found that average time required
to process single text by LLM models was taking
from 1 to 7 seconds given our computing resources
in possession, as shown in Table 3. At the same
time, any of other models, including ours, was
taking less than 1 millisecond.

6 Conclusion

We explored the interpretable text classification
algorithm based on structural pattern (N-gram)
matching with the “priority on order” principle,
applied to the task of detection of cognitive dis-
tortions in natural language texts. This approach
achieved a practically reasonable level of accuracy,
exceeding the level reached by interpretable mod-
els and comparable to that of neural network-based
solutions. Moreover, the interpretable nature of the
algorithm makes it possible to report or highlight
specific text fragments or figures of speech in the



Model View SM  Npae IT,%
Overfitting Binary FN 3 90
Overfitting Multi-class  F'N 4 50
Cross-validation  Binary FN 2 60
Cross-validation Multi-class F'IV 4 20

Table 1: For each experiment (model-view), the best learning hyper-parameter values are provided, at which the

maximum accuracy and F1 score were achieved.

Model Accuracy MPE(Accuracy),% F1  MPE(F1),%
Const(True) 0.69 1.9 0.82 0.5
Const(False) 0.31 4.3 0.00 0.0
Random 0.49 5.1 0.57 0.8
OursBMLV(0.4) 0.80 1.9 0.85 0.6
OursNBLN(0.6) 0.90 0.2 0.99 0.1
OursNMNN(0.6) 1.00 0.1 1.00 0.0
OursNBNN#*(0.1) 0.96 1.9 0.97 0.5
OursNMNN#*(0.5) 0.92 1.5 0.94 0.5
OursNBLN*%*(0.7) 0.92 1.2 0.94 0.3
OursNMNV*#(0.2) 0.94 1.3 0.95 0.4
Ilama3.2:3b 0.71 1.2 0.83 0.3
gqwen2:7b 0.74 2.4 0.81 0.6
qwen2.5:7b 0.73 1.6 0.82 0.4
qwen2.5:14b 0.73 1.6 0.82 04

Table 2: For each of our models with a specific set of hyper-parameters and for each LLM model applied to our task,
we present the best accuracy and F1 score values, as well as the corresponding mean percentage errors (MPE).

Model seconds/text
Const(True) 0.0001
Const(False) 0.0001
Random 0.0001
OursBM (baseline, multi-class) 0.0006
OursNB (new, binary) 0.0002
OursNM (new, multi-class) 0.0005
LLM:llama3.2:3B 1.08
LLM:qwen2:7B 2.03
LLM:qwen2.5:7B 1.51
LLM:qwen2:14B 7.10

Table 3: Runtime performance for different models.

text being explored for validation by an expert.
We developed and tested a new learning algo-
rithm capable of creating dictionaries of structured
text patterns (N-grams). These dictionaries were
used in the algorithm based on the “priority on or-
der” principle, which we also formalized in this
study. This made it possible to build two types of
models capable of solving the binary classification
problem in two ways — plain “’binary” classifica-
tion and “multi-class view” one. The latter solves

“multi-class” problem first and then makes “’binary”
decision on the basis of the former.

We created and tested two interpretable mod-
els to detect the presence of cognitive distortions
in natural language text in English, as described
above. Both models achieved accuracy and F'1
values exceeding 0.91, outperforming other inter-
pretable models and comparable to neural network-
based counterparts. The latter “multi-class” model
can be also used for recognition of specific distor-
tions individually, but evaluation of its performance
“per se” is planned for future work.

We found that our solution, besides being inter-
pretable, explainable and transparent, also delivers
more than 1000 time greater run-time performance
and lower computational cost than locally deployed
LLM-based alternatives.

Future work will focus on extending our ap-
proach to other languages, primarily Chinese and
Russian, and on training models capable of detect-
ing emotional, social, and thematic nuances in text,
with the goal of building complete interpretable
tools for psychological diagnosis, treatment and
monitoring.



7 Limitations

The primary goal of our work was to explore the
possibility to develop technology for learning in-
terpretable models for text classification, detection
of cognitive distortions in the natural language text
in particular. That means, even if we admit high
accuracy of our models, we still leave the possi-
bility of incorrect decisions based on them due to
insufficiency or limitations in the English training
corpora that we used in order to learn these mod-
els. We also admit that the accuracy obtained with
given dataset may be lower with the other datasets.
That means, to validate and improve the reliability
and performance of our solution, further work may
get required, including evaluation of our models
and technology on larger corpora and datasets in
languages other than English.

7.1 Data Limitations

The datasets referenced in section 3 are both lim-
ited by size and cover only the English language,
and the first "binary” dataset is generated syntheti-
cally by Babacan et al. (2025). These datasets do
not contain any information regarding demograph-
ics, gender or age. This may limit the practical
applicability of the models inferred in this paper,
so more reliable models and models for other lan-
guages can be built based on our technology based
on additional and richer datasets, including datasets
in different languages.

In order to ensure reliability of our work, we
performed cross-validation using three different
test/train splits based on the same corpus and com-
pared the outcomes. We also created ’conservative”
model which was based on unification of all three
partial data sets based on respective splits.

To ensure the robustness of our study, we eval-
uated all baseline and “conservative” models on
three independent test splits, and our models
learned independently on the three training splits
were evaluated against the corresponding test splits,
so we collected the accuracy values and F'1 mea-
sures for the three corresponding runs for each
model. These three runs were used to calculate the
average values and the mean percent error (MPE)
values shown in Table 2, so error bars can be drawn
on the corresponding plots.

Both original datasets were unbalanced or bi-
ased in a sense that there were more texts labeled
as having distortions in them compared to texts that
were labeled as having no distortions. Furthermore,

different distortion types were represented by vary-
ing numbers of texts in the dataset, as presented
in section section 3. This would affect our target
evaluations of accuracy and F'1 due to fundamental
nature of these metrics. To address this problem,
we decided not to to balance them removing some
texts or generating some extra synthetic texts. In-
stead, we preserved original datasets and performed
model learning and model detection relying on
them “as is”. However, we computed “bottom line’
evaluations for accuracy and F'1 using functions
such as Const(True) (always “positive”, assum-
ing presence of distortion), Const(False) (always
’negative”, assuming absence of distortion), and
Random (randomly “positive” or ’negative”) and
used them for comparison with results provided by
real prediction models being evaluated. That is, the
competing model have not just exceed the other
model in terms of higher accuracy and F'1, but
it mist have these evaluations substantially higher
than provided by the “’bottom line” evaluations, as
shown in Table 2.

Given the combined dataset imbalance of 69%
’positive” vs. 31% “negative” labels (see section 3),
the ”bottom line” evaluations according to Table 2
are 0.692 for accuracy and 0.818 for F'1 with an
error percentage of around 2% for most of the other
models. We therefore expected that only those
models whose accuracy and F'1 values exceeded
the ’bottom line” measures by more than 2% could
be considered practically usable.

At the beginning of this study, the only English
datasets we identified were the two we found. We
acknowledge that this may limit our work and plan
to evaluate our solution on additional corpora in
the future, including those in languages other than
English. Since the focus of our study is the cogni-
tive behavioral therapy, no other subject domains
were involved in the study.

]

7.2 Methodology Limitations

Even though the technology that we develop
can provide non-binary classification for multiple
classes at once for any subject domain, we inten-
tionally reduced the scope and objective of this
study to practical application for detection of the
fact that some cognitive distortions are present in
given text. That is, only the binary classification
problem is attacked in this study. The first reason
of that is substantial imbalance of representation
of different cognitive distortions discussed in sec-
tion 3 and subsection 7.1. The second reason is



desire to solve one problem first and move to the
next problem after that, so the next study that we
plan will be dedicated to evaluation of true multi-
classification capabilities of our solution.

We used cross-validation on three splits of the
combined dataset, as described in section 3, in or-
der to prevent overfitting and estimate levels of
error for both learning and detection stages. The
average values and errors for accuracy and F'l are
computed based on different rounds of learning and
detection on different dataset split arrangements.
The error values are comparable to differences be-
tween the “bottom line” of Const(T'rue) ("always
positive”) and all LLM models, while the accuracy
and F'1 provided by the best configurations of our
models appear substantially higher.

There may be more possible feature selection
metrics beyond what we described in our study.
Some of them were explored in the preliminary
phase of our work and were not included in the
article due to their low performance and intent to
make the presentation compact and clean. Some
others may have escaped our attention and may be
included in future work.

While the possibility of either logarithmic or
non-logarithmic scaling is a property of the de-
tection algorithm presented in subsection 4.2, the
search for hyper-parameters was done using only
the logarithmic setting. This was done under the
assumption and our experience that scaling mostly
affects the detection threshold and not specific to
the model being learned itself. However, based on
the best models found in the course of the ~over-
fitting” and “cross-validation” experiments for "bi-
nary view” and “multi-class view”” models, we per-
formed extra search for hyper-parameters, includ-
ing the scaling. This search has shown that us-
ing non-logarithmic scaling with lower detection
threshold can provide accuracy about 1% higher
than it was possible with logarithmic scaling and
higher detection threshold.

We did not explore N-gram lengths above 4 be-
cause the results showed only minor improvement
when increasing them from 3 to 4, and because an
earlier study (Kolonin, 2022) found that N greater
than 3 was not practical.

We used accuracy and F'1 measures to evaluate
model performance in our study, however accu-
racy was selected as a primary measure because
of being more “contrast” for the search of the best
hyper-parameters purpose. That means, given the
combined dataset imbalance, the ’bottom line” of
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accuracy was 0.69 and of F'1 was 0.82 (Table 2),
so the former appeared 1.5 times more contrastive
than the latter. However, the Pearson correlation
value of 0.93 between both target measures appears
high enough to justify our decision, which is con-
firmed by the nearly linear relationship between
accuracy and F'1 as shown in Figure 4.

0.8

0.6

0.4

0.2

0.0

0.3 0.4 0.5 0.6 0.7

Accuracy

0.8 0.9 1.0

Figure 4: Relationship between accuracy and F'1.

Given the limits applied on available computing
and infrastructure resources, we limited power and
scale of LLM models used for comparison with our
solution, as discussed in the following section.

7.3 Infrastructure Limitations

The most powerful device that we had in posses-
sion was MSI Raider GE77HX 12UGS notebook
with 12th Gen Intel(R) Core(TM) i17-12800HX
2.00 GHz, 32.0 GB RAM, 23.9 GB GPU NVIDIA
GeForce RTX 3070 Ti Laptop GPU. It allowed us
to run all performed experiments, including those
involving LLM. Although the GPU had enough
memory to run models with 3 and 7 billion parame-
ters in GPU memory, the model with 14 billion pa-
rameters did not fit in GPU memory, so RAM was
used, which slowed down the evaluation process
several times, as shown in Figure 5 and Table 3.

Given that the goal of our work was to provide a
solution that would work on sensitive data obtained
by psychologists and psychotherapists, we were
evaluating possibilities to run this solution locally
on premises owned by professional specialists. So,
even if theoretically we might obtain higher accu-
racy based on modern LLLM models hosted in the
cloud, we consciously limited the computer power
down to what can be afforded by conventional prac-
titioner.

In the end our study revealed that using our tech-
nology makes it possible to achieve substantially
higher accuracy with computing costs more than
1000 times lower compared to LLM. For instance,



Seconds/text (runtime performance)
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Const(True)
Const(False)
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OursBM -
OursNB -
OursNM -
LLM:qwen2:7B
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Figure 5: Runtime performance for different models,
average seconds/text, based on Table 3.

as shown in Figure 5, average detection (inference)
time when using LLM with 3-7 billion parame-
ters took 1-2 seconds per single text, using LLM
with 14 billion parameters needed 7 seconds, while
using our model this time was lower than 1 mil-
lisecond. That means that our model is much less
sensitive to infrastructure limitations than evalu-
ated LLM models, still providing better accuracy
and being interpretable and explainable.

7.4 Third-party Code Limitations

The related work by Babacan et al. (2023, 2025)
refers to high F'1 score comparable to ours, how-
ever the referred publications do not provide repro-
ducible code artifacts, so we were not able to test
them on our dataset to compare with our results.

8 Ethical Considerations

8.1 Social Good Awareness

Following the Association of Computing Ma-
chinery (ACM) Code of Ethics and Pro-
fessional Conduct (https://www.acm.org/
code—of-ethics), our work is targeted toward
contributing to society and to human well-being.
In particular, we address the problem of explain-
able, interpretable, transparent and trusted Al, ap-
plied to the domain of psychological help and treat-
ment is the area of cognitive behavioral therapy.
This is achieved by means of delivering a technol-
ogy for learning interpretable models for the de-
tection of cognitive distortions in natural language
texts. Such models, learned programmatically at
first, can be further inspected and adjusted by hu-
man experts to ensure that no misclassification can
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take place. This also addresses the ACM Code of
Ethics objective for improving the overall trans-
parency of the scientific process.

As the ACM Code of Ethics encourages being
fair and taking action not to discriminate any cate-
gory of people, we are achieving this fairness and
inclusiveness from two perspectives, as follows.

First, we anticipate that our approach taken for
the English language, relying on English testing
and training corpora, can be adopted to build re-
spective models for languages other than English,
including low-resource languages, to enable devel-
opment of CBT applications for different linguistic
cultures.

Second, we show the computational efficiency of
our approach which makes it possible to build CBT
applications for massive use at low cost in any geo-
graphical region including those without access to
expensive high-bandwidth network infrastructure
and high-performance computing equipment.

The positive impact of our work can be broad-
ened if the solution we suggested could be adopted
in other applications involving classification of nat-
ural language texts for wide range of business do-
mains.

Specifically, it can potentially be used to im-
prove the social well-being and increase the online
security by applying our models to detect manipu-
lative communications in online media since one
of the referenced studies reported causal connec-
tions between distorted (presumably manipulative)
communications in social and online media and
the behavior of financial markets (Kolonin et al.,
2023).

Another possible application improving the well-
being of society at scale may involve the study of
the cognitive state of entire population or online
community by means of monitoring available on-
line communications to detect significant bursts
of increase in the cognitive distortions detected in
response to economic and political developments,
like it was studied by Bollen et al. (2021), but per-
formed in real time.

8.2 Potential Risks

The risks of employing any technology of cognitive
distortions detection are similar to risks of senti-
ment analysis, explored in depth earlier (Karoo and
Chitte, 2023; Denecke and Gabarron, 2024). The
major risks can be primarily enumerated as risk of
impact of mistake, risk of misuse or improper use,
and risk of privacy violation as discussed below.


https://www.acm.org/code-of-ethics
https://www.acm.org/code-of-ethics
https://www.acm.org/code-of-ethics

8.2.1 Impact of Mistake

If we were developing non-interpretable model
used for detection of cognitive distortions, the ma-
jor risk would be its misuse so the false positive
detections would effect in incorrect diagnostics of
the cognitive distortions. However, since our model
is based on interpretable and human-readable pat-
terns, any user of the model can inspect it and have
its decisions explained, so the risk can be taken
under control. Moreover, a professional user can
even adjust the model manually having the risk
eliminated.

If the solution we provide is used to learn new
models on insufficient or biased training data sets,
or relying on the models that we present in this
study blindly, without proper inspection, tuning
and adjustment, false positive cognitive distortion
diagnosis on behalf of psychologist or psychothera-
pist could result in inappropriate treatment. At the
same time, while conventional non-interpretable
solutions make this problem impossible to address,
we make it possible to review, adjust and fine-tune
the interpretable models manually by expert.

8.2.2 Misuse

Any solution for psychological treatment or, specif-
ically, for psychological diagnostics like ours may
be misused. It can be misused by professional users
like psychologists and psychotherapists not using it
carefully with proper validation and control. Also,
it can be misused by non-professional users trusting
the results of the diagnostics too much or drawing
non-professional and misleading conclusions from
the results of such diagnostics.

While we anticipate that our solution can in-
crease the performance and reliability of psycho-
logical diagnostics and even make self-diagnostics
possible, the care should be taken by professional
users, validating the diagnosis. Moreover, the non-
professional users having access to our solution
and decided to use it for self-diagnostics should
refer to professionals to confirm the diagnosis and
make sure about the need for any treatment.

Given that our solution makes it possible to
learn models for cognitive distortions detection on
any corpus, it can also be misused if the model is
trained on insufficient or invalid training corpora
and then used without any form of control, leading
to incorrect diagnostics. However, the benefit of
our solution, compared to others in this domain, is
that the interpretable nature of the model makes
it possible to inspect the quality of the model by
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professionals before using it for practical diagnos-
tic purposes, which eliminates the risk with proper
care.

8.2.3 Privacy Violation

The use of our technology by psychologists or psy-
chotherapists based on informed consent obtained
from the client appears to be a fair use case. Also,
its use by governmental and business entities to
monitor the public sources of online and social
media in order to detect distorting trends appears
legitimate. However, using it in respect to propri-
etary textual data obtained violating human privacy,
adds extra value to the collected data for violators
which can increase the harm to the data privacy
subjects. However, this seems to be no different
with any other sort of processing of the human pri-
vate data collected in an inappropriate way and it
has to be prevented by conventional security and
legal means.

8.3 Scientific Artifacts

8.3.1 Datasets

The ”binary” dataset, created synthetically, is pub-
licly available (Babacan, 2023). The license is not
specified in the dataset files or online metadata,
however we contacted the authors (Babacan et al.,
2025) and they confirmed that it is released under
the MIT license, so our use of it can be considered
fair.

”Multi-class” dataset contains the 2530 anno-
tated samples of the patient’s input annotated man-
ually (Shreevastava and Foltz, 2021) and available
online (Shreevastava, 2021). The license is not
indicated in the dataset files or online metadata,
however the data set is available online for four
years and it was referenced in multiple latest pub-
lications (Shreevastava and Foltz, 2021; Shreevas-
tava, 2021; Babacan et al., 2023; Babacan, 2023;
Babacan et al., 2025) so we treat possibility of its
use as fair.

Both datasets are published on the machine learn-
ing sites and have metadata and supplementary in-
formation indicating their purpose intended for ma-
chine learning purposes, so our use of them may
be considered as intended.

The manual study of referenced datasets revealed
that neither identification of individual people is
possible nor offensive content is found, so no eth-
ical issues may be anticipated. Since the original
datasets were anonymized in the earlier studies
that provided them (Shreevastava and Foltz, 2021;



Shreevastava, 2021), no extra anonymization effort
was considered as necessary for us.

Even though we temporarily create unified
datasets for training and testing on the basis of
the two datasets referenced above in run-time, we
do not build or release an artifact out of it, so no
extra licensing on top of the existing regulations
is required for those who decide to reproduce our
work using the same datasets.

8.3.2 Models

The model files for cognitive distortions detection,
along with the code we developed during the study
and its release, are licensed under the MIT License,
with no limitations on intended use, except for un-
lawful activities.

The model files used as our baseline models are
manually created based on data published in public
work by Bollen et al. (2021) in a format aligned
with the design referenced in work by Raheman
et al. (2022), which references the model data un-
der MIT license. Moreover, the same model files
were used in subsequent study by (Arinicheva and
Kolonin, 2025) earlier.

The model files do not contain any offensive
content or information that can be used for iden-
tification of individual people, because they are
derived from the training datasets that have no such
content or information either.

8.4 Human Annotators and Participants

No human annotators, crowd-workers or any other
human participants, except the authors, were in-
volved in our research, because all test and train
data that we were using were available as described
in section 3.

8.5 Use of AI assistants

No use of any Al assistants (like ChatGPT or Copi-
lot) was involved in our research, involving coding
and manuscript writing.
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A Computational Experiment

A.1 Results of Model Benchmarking

In subsection 5.2, we describe the evaluation of
all models using all detection hyper-parameters.
Figure 6 and Figure 7 present a visualization of this
evaluation.

In fact, in Figure 6 and Figure 7 it is seen that the
same models are providing the best top accuracy
and F'1 measures with different detection thresh-
olds. For instance, the model ”Ours new (multi-
class)” at the bottom of the referenced figures with
detection by “any” distortion provides the highest
accuracy of 0.92 and the highest F'1 of 0.94 at dif-
ferent detection thresholds — 0.9 for logarithmic
("log”) and 0.5-0.6 for non-logarithmic ("no log”).

Figure 8 and Figure 9 present the accuracy and
F'1 measures for the best selected models, includ-
ing the baseline models, our models, and LLM-
based models, with the optimal combinations of
hyper-parameters selected based on Table 1 and
considerations from subsection 5.2. Error bars in
these plots are visualized around the mean values
calculated together with the mean percent error
(MPE) shown in Table 2 based on three indepen-
dent runs on the corresponding splits.

A.2 Computational Environment and Cost

The total computational budget for the entire study
was approximately two months for each of the
two computer notebooks: 1) MSI Raider GE77HX
12UGS notebook with 12th Gen Intel(R) Core(TM)
17-12800HX 2.00 GHz, 32.0 GB RAM, 23.9 GB
GPU NVIDIA GeForce RTX 3070 Ti Laptop GPU;
2) MacBook Pro with 2.9 GHz 6-Core Intel Core
19, Radeon Pro 560X 4GB Intel UHD Graphics
630 1536 MB, 32 GB 2400 MHz DDR4. The final
run time, using the former device, for each of the
eight Python Jupyter notebooks of the learning ex-
periment, including the full hyperparameter search
space, was between 12 and 73 hours, depending on
the type of experiment, with an average of about
48 hours. The run time for LLM evaluation Jupyter
notebook, using the same device, was 20 hours.
The run time for the final detection experiment and
model comparison across all interpretable models
on the same device was 16 minutes.

A.3 Model Parameters and Size

The baseline model created based on earlier
work (Bollen et al., 2021; Raheman et al.,
2022; Arinicheva and Kolonin, 2025) consisted
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of 14 thousand N-grams with N in range 1-4,
representing 12 cognitive distortions (”catastro-
phizing”, “emotional-reasoning”, ”dichotomous-
reasoning”, “fortune-telling”, “overgeneralizing”,
“disqualifying-positive”, “’labeling”, “’personaliz-
ing”, “magnification”, “mental-filtering”, “min-
dreading”, “should-statement”), emotional and
("’positive”, “negative”), and rude speech.

The models created in the course of our study
contain N-grams with NV in range 1-4, representing
10 cognitive distortions (”All-or-nothing_thinking”,
“Emotional _Reasoning”, “Fortune-telling”,
“Labeling”, “Magnification”, “Mental filter”,
”Mind_Reading”, “Overgeneralization”, “Per-
sonalization”, Should_statements™), according
to Shreevastava and Foltz (2021); Shreevastava
(2021) and unclassified distortions according to
Babacan et al. (2023); Babacan (2023); Babacan
et al. (2025). The total number of N-grams in each

model is shown in Table 4.

Model N-grams
Overfitting, "binary view” 74
Cross-split, “binary view” 22
Cross-joint, “binary view” 15
Overfitting, "multi-class view” 341
Cross-split, "multi-class view” 323
Cross-joint, “multi-class view” 88

Table 4: Numbers of N-grams per model in thousands.
Cross-split model numbers are given as average indi-
vidual split across three different models obtained on
respective splits. Cross-joint model means the ”joint”
model created as intersection of all N-grams per indi-
vidual splits.)

A.4 Data Files

The following data files were used in the course of
this study or were generated based on its result.

1. ./data/corpora/English/distortions/halilbabacan
— ”Binary” dataset, according to Babacan
(2023); Babacan et al. (2023, 2025)

2. ./data/models/distortions/ours — baseline in-
terpretable model created based on earlier
work (Bollen et al., 2021; Raheman et al.,
2022; Arinicheva and Kolonin, 2025)

3. ./data/models/distortions/overfitting_combined
— interpretable models created in the course
of our study during the “overfitting” experi-
ments
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Figure 6: A heatmap illustrating the accuracy values for all our experiments with models obtained using all possible
combinations of detection hyper-parameters.
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Figure 7: A heatmap illustrating the F1 score values for all our experiments with models obtained using all possible
combinations of detection hyper-parameters.

4. ./data/models/distortions/split_combined —

interpretable models created in

our study during the “cross-validation” exper-

iments

A5 Code
The following code is supplied in the

repository and can be used to reproduce the re-

sults of our study and to extend the

the course of  our results.

of proceedings needed to use the code to reproduce

1. requirements.txt — list of dependencies to be

installed under Python 3.11.11 environment,

such as using venv and pip

Anonymized 2. a_api.py, learn.py, plot.py, text.py, util.py —

experiments. books

Python 3.11.11 was used for all experiments with

external dependencies identified in the require-
ments.txt file with their respective versions. The
following list details the code residing in the ./pa-

pers/distortions_binary_2025/ folder, in the order moved (initial study)

16

program modules used by the following note-

3. Jupyter notebooks for learning experiments

(a) overfitting_combined*.ipynb — overfit-
ting experiment with no punctuation re-
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Figure 8: Bar plots with error bars illustrating the Figure 9: Bar plots with error bars illustrating the best
best accuracy values for our models with different sets F'1 score values for our models with different sets
of hyper-parameters compared to LLM-based models,  of hyper-parameters compared to LLM-based models,
based on Table 2, with red ”bottom line”’ drawn at the based on Table 2, with red ”bottom line”” drawn at the
level Const(True) model. level Const(True) model.

(b) overfitting_combined*cleaned.ipynb —
overfitting experiment with punctuation
removed (cleaner and final results)

(c) split_combined*.ipynb — split cross-
validation experiment with no punctua-
tion removed (initial study)

(d) split_combined*cleaned.ipynb — split
cross-validation experiment with punctu-
ation removed (cleaner and final results)

4. comparing _llms.ipynb — Jupyter notebook
for detection experiment using LLMs,
saving the intermediate results to file
llm_evaluation_results using pickle format
and module

5. comparing_models.ipynb — Jupyter notebook
for detection experiment comparing ours mod-
els against baseline and LLMs

B Related Work Overview

Table 5 below contains a detailed summary of the
related work discussed in section 2.
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Study Dataset Model Accuracy | F1 Description

Detecting Cognitive Not present | Logistic 0.73 — Binary

Distortions Through Regression classification;

Machine Learning (LIWC + interpretable

Text Analytics (Simms RELIEF model

etal., 2017) features)

Automatic Detection Not present | Logistic 0.90 0.88 Binary and

and Classification of Regression (binary), | multi-class

Cognitive Distortions (TF-IDF 0.68-0.45 | classification;

in Mental Health Text features) (multi- interpretable,

(Shickel et al., 2019) class) high-performance
model

Identifying Cognitive | Not present | Word2Vec — — Multi-class

Distortion by (CBOW) + classification;

Convolutional Neural CNN non-interpretable

Network Based Text model

Classification (Zhao

etal., 2017)

Automated cognitive Not present | FastText — 0.71 Binary and

distortion detection (binary), (binary), | multi-class

and classification of SVM + 0.23 classification

Reddit posts using TF-IDF (multi-

machine learning (multi-class) class)

(Sochynskyi, 2021)

Automated Detection | Not present | Bidirectional | — 0.62 Binary and

of Cognitive encoder rep- multi-class

Distortions in Text resentations classification

Exchanges Between from

Clinicians and People transformers

With Serious Mental (BERT)

Illness (Tauscher et al.,

2023)

Detecting Cognitive Shreevastava | SVM + — 0.79 Binary and

Distortions from (2021) S-BERT (binary), | multi-class

Patient-Therapist embeddings 0.3 classification

Interactions (multi-

(Shreevastava and class)

Foltz, 2021)

Cognitive distortion Not present | Bidirectional | — 0.78 Multi-class

based explainable encoder rep- classification

depression detection resentations

and analysis from

technologies for the transformers

adolescent internet (BERT)

users on social media
(Wang et al., 2023)
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DeCoDE: Detection of | Not present | Multimodal, | 0.76 0.74 Binary
Cognitive Distortion multi-task classification
and Emotion cause deep
extraction in clinical learning
conversations (Singh model (text,
et al., 2023) audio, visual
features)
Creating a Clinical Babacan RoBERTa 0.97 0.95 Binary
Psychology Dataset (2023) classification
with Synthetic Data:
Automatic Detection
of Cognitive
Distortions Classified
with NLP (Babacan
et al., 2023)
Diagnosis of Cognitive | Shreevastava | Aigents — 0.78 Binary and
Distortions in Public, | (2021) and (binary), | multi-class
Group, and Personal Babacan 0.25 classification;
Text Communications | (2023) (multi- interpretable,
(Arinicheva and class) high-performance
Kolonin, 2025) model
Deciphering Cognitive | Not present | LLM 0.84 0.80 Binary
Distortions in (LLAMA- classification
Patient-Doctor Mental 7b)
Health Conversations:
A Multimodal
LLM-Based Detection
and Reasoning
Framework (Singh
et al., 2024)
Creating a Clinical (Babacan, RoBERTa 0.95 0.95 Binary and
Psychology Dataset 2024) (multi- (multi- multi-class
with Synthetic Data: class) class) classification
Automatic Detection
of Cognitive
Distortions Classified
with NLP (Babacan
et al., 2025)
Ours (Shreevastava,| Ours 0.92 0.95 Binary
2021) and classification;
(Babacan, interpretable,
2023) high-performance

model

Table 5: Overview of related work.
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