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ABSTRACT

We present the Electronic Tensor Reconstruction Algorithm (ELECTRA) - an
equivariant model for predicting electronic charge densities using "floating” orbitals.
Floating orbitals are a long-standing idea in the quantum chemistry community
that promises more compact and accurate representations by placing orbitals freely
in space, as opposed to centering all orbitals at the position of atoms. Finding ideal
placements of these orbitals requires extensive domain knowledge though, which
thus far has prevented widespread adoption. We solve this in a data-driven manner
by training a Cartesian tensor network to predict orbital positions along with orbital
coefficients. This is made possible through a symmetry-breaking mechanism that is
used to learn position displacements with lower symmetry than the input molecule
while preserving the rotation equivariance of the charge density itself. Inspired by
recent successes of Gaussian Splatting in representing densities in space, we are
using Gaussians as our orbitals and predict their weights and covariance matrices.
Our method achieves a state-of-the-art balance between computational efficiency
and predictive accuracy on established benchmarks.

1 INTRODUCTION

High-accuracy simulations for the design of materials and molecules at the atomic scale are most often
done with density functional theory (DFT) based simulations (Kohn & Sham, |1965)), as DFT provides
a good balance between cost and accuracy for quantum mechanical simulations of matter (Marzari
et al., 2021). However, the O(n?) scaling of DFT still limits the system sizes and time scales that can
be simulated. Linear scaling ML surrogates such as neural network potentials trained with a large
number of DFT simulations can alleviate this problem by learning a direct mapping between atomic
structure and corresponding energy, forces, and other properties with accuracy similar to those from
DFT simulations (Friederich et al.,[2021). This approach, although first envisioned three decades
ago (Blank et al.,|1995), has become successful and popular in recent years based on multiple seminal
developments (Behler, 2021; Deringer et al., 2021; Unke et al., 2021).

An alternative data-efficient ML-accelerated physics simulation approach can be taken where the
underlying variable of the DFT simulations, the electron density, is predicted directly from atomic
structures, without self-consistent field (SCF) iterations (Bogojeski et al., 2020). Following the
Hohenberg-Kohn theorem (Hohenberg & Kohn| |1964)), all ground-state properties can be calculated
once this ground-state electron density is known (Grisafi et al., 2022)). In recent years, researchers
have addressed this task in multiple ways, differentiated by the representation of density data, the
molecular representation, and the ML architecture itself (Grisafi et al.} 2018}, |Chandrasekaran et al.|
2019; Jgrgensen & Bhowmikl 2022; Rackers et al.,[2023)). The target electron density is commonly
predicted on real space grids (Chandrasekaran et al., [2019; [Li et al.,|2024) or as an expansion of
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atom-centered basis functions (Grisafi et al.,[2018; Bogojeski et al., [2020; |Cuevas-Zuviria & Pacios,
20215 Rackers et al.,|[2023)) which usually take the form

él,m(”') - Rl(r)}/lm (97 ¢) 5 l= 07 EEE) L (1)

R;(r) represents the radial dependence relative to a center, while Y;,,, (6, ¢) captures the angular
dependencies. Larger quantum numbers [ correspond to higher-frequency components. The accuracy
of the represented density is dependent on the “quality” of the basis set or the grid density. Two
key attributes define the quality of a basis set: The number of basis functions per angular quantum
number / and the maximum angular momentum quantum number L included in the expansion.

Different systems and properties necessitate varying levels of basis set complexity. There is no
universal basis set that provides both, high accuracy and optimal computational efficiency for all types
of systems. Instead, the selection of an appropriate basis set depends on the specific requirements of
the system under investigation and requires deep domain expertise.

For example, accurate descriptions of systems involving highly polarizable molecules or those with
diffuse electron distributions far away from atom centers may require augmented basis sets like aug-
cc-pVTZ (Kendall et al.,[1992)), which include functions with high angular momentum and diffuse
components that have long-tailed radial functions designed for modeling long-range dependencies.
On the other hand, for smaller systems or those dominated by core-electron interactions, these basis
sets lead to unnecessarily large compute costs. In particular, basis functions with higher angular
quantum numbers L incur significant costs.

A more compact representation of densities can be achieved by putting extra basis functions at
locations of presumed interest, particularly in areas far away from atoms, with rapidly varying
densities. These basis functions are called “floating” orbitals, and their utility is well-established in
electronic structure theory (Tao & Panl 1992} Tao, |1993} |Tasi & Csaszar, [2007). They date back to
the floating spherical Gaussian orbital (FSGO) model (Frost, |1968)). When chosen wisely, floating
orbitals can lead to significant improvements in calculation speed and accuracy (Lorincz & Nagy,
2024) by reducing the need for diffuse and high angular momentum basis functions.

Well-placed floating orbitals can represent densities more efficiently, using fewer basis
functions and lower maximal angular quantum numbers L. ELECTRA is the first model to
predict floating orbital positions without human input.

However, the optimal locations of floating orbitals are often hard to determine (Zheng et al.| 2021},
and picking good locations therefore requires deep electronic structure domain expertise (Lorincz &
Nagyl [2024). Our core contribution is a data-driven solution to this problem. We are training a model
that, given a molecular graph, accurately reconstructs ground truth charge densities by predicting
the 3D position of floating orbitals as well as the coefficients and parameters that define them. Since
charge densities are rotation invariant, we use a rotation equivariant neural network as the backbone
of our model. However, a naive implementation of equivariant neural networks is destined to fail,
since good placements of floating orbitals can have lower symmetry than the input molecular graph,
as we will discuss in later sections. We address this problem by developing a symmetry-breaking
mechanism that retains rotational equivariance. We call the resulting model the Electronic Tensor
Reconstruction Algorithm (ELECTRA). We test ELECTRA on the widely used QM9 charge density
dataset and achieve results that are competitive with state-of-the-art while being consistently faster.

2 RELATED WORK

2.1 CHARGE DENSITY PREDICTION

Prior work on machine learning prediction of charge density generally falls into two main approaches,
inspired by earlier non-ML methods. Orbital-based methods are rooted in linear combinations of
atom-centered orbitals (LCAQ), which take the form

N Ny L
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where the first sum runs over all atoms, and the other two sum index into all basis functions per
atom. P usually takes a form as in|l} In the ML community, methods based on this construction
typically predict coefficients c; ; ., extracted from ground truth DFT calculations (Fabrizio et al.,
2019; Qiao et al., 2022} Rackers et al.| [2023} |(Cheng & Peng| 2024; |del Rio et al.| 2023} |Febrer
et al., [2024) as well as refined radial functions R;(r) (Fu et al.l 2024). This is computationally
efficient at inference, and orbital-decomposed density representations can offer enhanced accuracy in
describing both total and orbital energies by utilizing flexible, orbital-specific potentials that align
closely with many-body spectral properties (Ferretti et al., 2014). However, the fixed choice of
basis set often limits representation power unless a large expensive basis set is used, particularly for
complex inter-atomic electronic features. By placing additional orbitals on bond midpoints, (Fu et al.|
2024) achieved higher expressivity, albeit at the cost of higher compute costs, and the additional
requirement of determining bonds. The latter point sounds trivial, but bonds are not always well
defined which can make this difficult. The second method is inspired by viewing the charge density
as a numerical grid (Cerjan, 2013) which must be probed at each point to construct the density.
By inserting a graph node that can receive messages from the atomic graph representation (Gong
et al.| 2019; Jgrgensen & Bhowmik, |2022; [Koker et al.,|2024; [Pope & Jacobs), 2024 |Li et al.,2024)
in each grid point, these models directly predict scalar charge values at grid points, offering high
expressiveness and accuracy. Even for small molecules, charge density data contains hundreds of
thousands of points, and thus probe-based models are generally more computationally intensive than
orbital-based models.

2.2 EQUIVARIANCE AND CARTESIAN TENSORS

Many objects in physics transform predictably under symmetry transformations. This property is
called equivariance. Formally, a function f : X — Y is equivariant with respect to a group G which
elements g € G acton X and Y, if

f(gz) = gf(z) 3)

For example, we are often interested in the case where G is the group of translations, rotations, and
reflections, see (Thomas et al., [2018}; |Geiger & Smidt, [2022; Simeon & De Fabritiis} 2024)) for more
details. Constructing a machine learning model with the equivariance property (equation [3)) provides
a strong inductive bias that usually leads to increased data efficiency (Brehmer et al., 2024)). The
electron density is rotation invariant, the special case of equivariance for scalar-valued functions:

p(Rr) = p(r) ©)

Cartesian tensors provide a systematic way to handle rotation equivariance. An [th-rank Cartesian
tensor T is an /th-rank tensor that transforms under rotation as

R
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where R is an orthogonal matrix in Cartesian coordinates. Equivariant graph networks can be built to
leverage operations on Cartesian tensors such as linear combinations, tensor contractions, and partial
derivatives (Simeon & De Fabritiis| 2024} Wang et al.,|2024)) that ensure that the network’s outputs
are equivariant.

2.3 HOTPP TENSOR MESSAGE-PASSING NEURAL NETWORK

One example of equivariant networks that operate on Cartesian tensors is the High-order Tensor
Passing Potential (HotPP) (Wang et al.l|2024). HotPP’s node features and messages are arbitrary
order Cartesian tensors and the operations are constrained such that the outputs remain Cartesian
Tensors. This allows predictions on higher order physical quantities like dipole moments (rank 1
tensors, i.e., vectors) and polarizability tensors (rank 2 tensors, i.e., 3x3 matrices), and similarly
allows for more complex atomic environments to be distinguished. In HotPP, an atomistic system is
represented as a graph G = (V, E'), where V is the set of atoms (nodes) and F is the set of edges
(defined up to a cutoff radius) in a molecule. Each atom A is characterized by a feature vector v 4,
and each edge (e, 4, € E) between atoms A; and Aj is associated with an edge vector v4, 4, and
a scalar distance d,.a,.
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3 METHODS

3.1 THE ELECTRA MODEL

For ELECTRA we make a simplified ansatz compared to the LCAO ansatz. Inspired by the recent
success of Gaussian splatting (Kerbl et al.,|2023)), we represent the charge density as a 3D Gaussian
mixture model:

Na
pe) =Y waN(rlpwa; Sa;) ©)

AEM j=0

where A € M represents the atoms in the molecule, and N4 is the number of Gaussians for each
atom, which can depend on the atom type. The weights w4 ; are signed, which improves expressivity.
This can, e.g., be used to construct shell-like structures by inserting a negative density at the center of
a larger sphere. In the following sections, we elaborate on how all Gaussians are constructed in a
per-atom way, using the model output specific to each atom. Gaussians are equivalent to traditional
Cartesian orbital functions with angular quantum number [ = 2, an extra nonlinearity, and simplified
radial dependency; see appendix [A|for why. This is the reason we are saying that ELECTRA uses
I = 2 orbitals. We will see that, if made “floating”, these simplified orbitals are enough to achieve
strong performance, in contrast to atom-centered basis functions, which require a high maximum
angular quantum number L for good performance. In principle, we could also use more conventional
basis functions and make them “floating”. To enforce rotational invariance (equation [ of the
predicted electron density (equation @), we need the weights w 4 ; to be rotation invariant, while the
means p 4 ; and covariance matrices 3 4 ; need to be rotation equivariant. In particular, the Gaussian
means and covariance matrices need to transform like a Cartesian tensors, see appendix [B] for details.

Equivariant backbone neural network. To enforce the constraints on w4 j, pt4,; and X 4 5, we
use a modified version of the HotPP (Wang et al., [2024)) equivariant message-passing network to
represent atomistic systems in ELECTRA. We initialize the scalar features as well as the first three
rank-1 features in each atom using a tailored embedding function. Both initialization methods are
important to the final model and are detailed in the paragraphs below. The graph is updated through a
series of HotPP’s update layers. We then use the resulting features to predict the parameterization
W4, i, pa,; and X 4 ; for the Gaussians in equation @ using a readout head layer. Other important
changes to the default HotPP implementation are detailed in the paragraphs below, and ELECTRA
otherwise follows mostly the reference implementation.

Atomic embeddings and variable basis set size. In quantum chemistry, different atoms require
differently sized basis sets, since the complexity of the electronic structure generally depends on the
atomic number (Weigend & Ahlrichs| 2005) and the number of valence electrons. Inspired by this,
ELECTRA predicts a variable number of Gaussians depending on the number of valence electrons.
This is achieved by assigning each output channel of each atom in HotPP to one Gaussian. Denoting
M. as the number of Gaussians per valence electron, we can use the first n. - M, channels of each
atom to represent the Gaussians, where n. is the number of valence electrons for that atom. For
this to work, a channel width of N, = 8 - M, is sufficient in HotPP. Each atom A then uses only
its first M, - n. 4 channels. For example, oxygen (n. = 6 from the 2s and 2p shells) utilizes 6
output channels, while hydrogen (n. = 1 from the Is shell) uses only M, output channels. In typical
graph neural network interatomic potentials, atom-wise representations are initially encoded through
categorical atom-type embeddings (Reiser et al.,[2022). In contrast, to encode a maximum amount
of information about the electronic and nuclear properties of each atom into the scalar features,
ELECTRA uses a different embedding function, which we call Aufbau Embedding. Each atom’s
electronic and nuclear properties are encoded as fous = [P, N,V, E1, ..., E,, F1, ..., F,], where P,
N and V are the numbers of protons, neutrons and valence electrons while F; and F; denote orbital
occupancies and free-electron counts, respectively. Thus, the encoding fa ¢ reflects the Aufbau (Bohr,
1913)) and Pauli exclusion principles (Pauli,|1925). A multi-layer perceptron (MLP) maps fa ¢ to the
embedding space, faur = MLPE,L(fay f), which is used as the initial scalar features.

Symmetry-breaking Since ELECTRA’s orbitals are not as expressive as standard spherical
harmonics-based orbitals, the model needs to have maximum freedom in placing the orbitals in
space to achieve comparable expressivity. However, the symmetries of equivariant networks prohibit
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(b)

Figure 1: (a) Model output without symmetry-breaking: Equivariant neural networks constrain their
output to have the same symmetry as the input. If the input molecule is highly symmetric, this leads
to highly constrained Gaussian positions. (b) To solve this issue, ELECTRA initializes each atom’s
I = 1 vector features with the eigenvectors of the moment of inertia tensor as calculated in that
specific atom, which breaks the input symmetry but retains rotational equivariance. (¢) Model output
after first linear layer with symmetry-breaking: The model can learn its own set of symmetry-breaking
vectors, allowing output to not be constrained by the symmetry of the input molecule.

their outputs from having a lower symmetry than their inputs (Smidt et al., 2021} |Xie & Smidt,
2024). This would prohibit any individual Gaussian from escaping, e.g., the symmetry plane of a
planar 2D molecule (Figure[Ia), thereby severely limiting the possible richness of the final density.
Since many ground-state geometries are highly symmetric, this poses a big issue for equivariant
networks. Previous work has investigated both indirect and direct ways of breaking symmetries.
Indirect methods typically relax the equivariance constraints (van der Ouderaa et al., [2022} [Kaba
& Ravanbakhshl 2023 [Huang et al.l 2024), which is undesirable for electron densities since these
are exactly equivariant (Rackers et al.| [2023)). Other methods break symmetries by constructing
symmetry-breaking inputs (Liu et al.,2019; [Locatello et al., 2020; Xie & Smidt, 2024) or by learning
order-breaking parameters during training (Smidt et al., 2021).

To construct an expressive method for placing floating orbitals, the model must allow for
output vectors that belong to a lower symmetry group than the input structures. Thus, a
symmetry-breaking mechanism is needed.

Our approach to symmetry-breaking with ELECTRA broadly falls into the category of symmetry-
breaking inputs. For our construction, we are first calculating a local moment of inertia (MOI) tensor
for each atom:

N
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Where & = 1..N runs over all atoms inside a local atomic neighborhood defined up to a cutoff radius

ORSORNO

from the current atom, and the vectors ry = ( Ty, Ty ) are calculated relative to the current

atom. The three eigenvectors of equation [7]are also rotation equivariant, and thus, we can use them to
initialize the first three [ = 1 vector features of ELECTRA’s GNN, from largest to smallest eigenvalue
(Fig. [Ic), while maintaining rotational equivariance. They are linearly independent and define a local
coordinate system on which the model can learn its own set of symmetry-breaking objects using a
linear embedding layer, the output of which is depicted in Fig[lc| However, the eigenvectors of a
matrix are only defined up to a sign flip. One can resolve this issue for example by averaging all
possible sign combinations, similar to |Duval et al.|(2023). However, in our case, this averages out
all meaningful anisotropies. Instead, we opt for canonicalizing the eigenvectors. Canonicalization
of eigenvectors is a research topic that is studied independently (Ma et al.| 2024). In this work, we
use a sign convention that maximizes the dot product of each eigenvector with the position vector of
the center of mass (COM) of the molecule. Mathematically for an eigenvector v, we switch the sign
according to:

Vcanon = {’U’ ¥fv room 2 0, (®)

—v, ifv-rcom <0.

There are transformations where this canonicalization will lead to a sign flip, and the model has
to learn to compensate for them. However, we find, empirically, that this does not hinder strong
performance.
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Figure 2: (a) The symmetry-breaking objects the C,H, molecule is initialized with. (b) The output of
a HotPP model with symmetry-breaking but without debiasing layers: The message passing induces
a directional bias that concentrates vectors along certain directions, (¢) The output of our model with
debiasing layers: The output vectors don’t show any visible bias.

Debiasing layers. Even though our symmetry-breaking mechanism allows ELECTRA theoretically
to break any symmetry, we observe that the message-passing mechanism of HotPP induces a direc-
tional bias of the [ = 1 features, particularly in highly symmetric molecules. For example, in Fig.
we plot the output vectors from a randomly initialized HotPP model with the C,H, molecule and
symmetry-breaking objects as input. We see, that the vectors tend to be perpendicular to the bond axis
of the molecule, which is problematic if we were to use these vectors as Gaussian positions because
the ground truth density has a lot of density around the bond axis. Empirically the model was not
able to overcome this bias and place the Gaussians efficiently in space, which led to low performance.
To address this issue, we are designing a layer that learns to dynamically remove directional biases
in the vector features. Our debiasing layer, which we place after every message passing layer, first
calculates the covariance matrix of all the [ = 1 node features associated with each atom:

D
1
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where v4 ; are the [ = 1 features for atom A, and D is the channel dimension. We denote uy A as
the eigenvector of C 4 with the largest eigenvalue A;. If there is a directional bias in the features
of an atom, u; points in the direction of the largest variation. The stronger the directional bias, the
larger the magnitude of u;. We calculate the projection of each | = 1 feature onto this principal axis
ui:

Vl,j = (va, - -ua)ua (10)

Note that the sign ambiguity of u; 4 is not important in this case, as u; 4 appears twice in the

projection. By subtracting V,‘L j from v4 ; we can reduce the directional bias. To let the model

decide how much to subtract, we predict a weight w 4 ; using a small neural network, conditioned on
rotationally invariant features:

inpy ;= [Vh, ¥ oh, Fagtag Vags [vagll IV

(11)
wa,; = MLPp (inp, ;)

where \‘Iﬂ‘ ; are the normalized parallel components for each atom’s jth vector feature v 4 ;, V; are
the normalized vector features, f 4 ; are the normalized direction vectors to the center of mass, while

|vall and Hvll4 || are the lengths of the vector features and the components parallel to the principal
axis for atom A, respectively. The output w 4 ; € [0, 1] is a number that determines how much of the
principal direction to remove in each vector, such that the debiased vector is updated as:
ol
VA = WA Va;
VA ] L (12)
[[va—wa; ¥yl

We normalize the vectors in equation 2] such that the I = 1 features mainly handle directionality
rather than scale, which is instead handled in the readout layer by [ = 0 predictions. Feeding
geometry-rich information to MLPp and learning w 4 ; thus provides a way to determine and remove
bias in the [ = 1 features.
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3.2 DENSITY CONSTRUCTION

After several message-passing layers, we have a set of features for each atom that we feed into three
readout heads. Each readout head produces a set of | = 0 (s), ! = 1 (v) and | = 2 (M) features,
(s1,V1, Ml)AJ, (s2,va, MQ)A,j and (ss, vs, Mg)AJ, where A indexes the atoms in the molecule,
and j the channel. Depending on the atom type, the channel index is j € [0, ..., No(A) x M,], where
N, is the number of valence electrons of that atom, and M, is the number of Gaussians per valence
electrons. We will use these predictions for the parameterization of the Gaussians in our ansatz
(equation [6) as described in the following sections. Intuitively, each of the three heads is specialized
on a different distance scale away from the atoms.

Scalar factors. As a first step, we use the scalar features together with the Aufbau embedding to
construct an input for three different MLPs: sinp A= fAuf,S14,5,524,5,53 AJ} . The MLPs then

predict the Gaussian mixture weights w4 ; € R together with two other sets of scalars, sp, , ;€ R3
andsm 4 ; € R3 to use in the mean and covariance predictions.

Gaussian positions. ELECTRA places Gaussians (i.e., predicts the mean positions 4 ;) equiv-
ariantly by using the [ = 1 outputs vi 4 j, V24 ;, V34, ; and the position scaling factors sy, of the
framework as displacement vectors to the atomic positions:

— 2
pa; =Ta+exp(Sp 4 ;)Via; +85, 4 Vaa;+8psy ;Vaa, 13)

Therefore, each Gaussian is associated with a position equal to the position r 4 of the atom A it
originates from, plus three displacement vectors multiplied by scaling factors. We transform the
scaling factors in different ways (exponential, square, and identity) to provide different scales of
position displacement, thereby aiming to capture different levels of detail of the output density with
each readout head.

Density prediction using Gaussian mixture models. To construct the Gaussian’s covariance
matrices X 4 ; we calculate a weighted sum of the I = 2 outputs M, Mz, M3. To ensure symmetry
and positive semi-definiteness of the covariance matrix, we symmetrize the matrices by constructing
the Gram matrices of M, i.e. using the transformation M — MM . For notational simplicity, we
omit the A, j subscript for all matrices and scalars in the equations below:

5G1:,58G2,5G; = softmax ([sm1 »Smy Sm3])]

M;M; " M,oM, " MsM; " (14)

Y =sg sG Slel .
" My|r * IMzlF * Msllr

The Gram matrices are normalized by the Frobenius norm of the original output matrices to preserve
the scale for the symmetrized matrices.

Model evaluation. Due to the large number of grid points, evaluation of all the orbitals on them
is the biggest bottleneck of density prediciton models (not the neural network). To make the
orbital evaluation efficient, we employ a cutoff radius: Given a grid point r, we evaluate our
model (equation[6), by considering all Gaussians with mean inside the cutoff radius, since we know
that Gaussians far away will contribute exponentially less to the density. This yields significant
performance gains. Using a cutoff radius of 3.0 Angstrom, we have to evaluate only about 15%, and
for 2.5 Angstrom only about 9.0% of our Gaussians on average on our dataset (see next section).
Compare that to the LCAO framework, which has to evaluate all basis functions on atoms within a
cutoff radius, even if the basis functions don’t contribute to the density at the given point.

Normalization. Prior work has shown that density prediction models whose output does not
integrate to the number of electrons can lead to errors in downstream property predictions (Briling
et al.,2021). Thus, as a final step, the densities predicted by ELECTRA are normalized to the number
of valence electrons in the system:

Telec
Ppred(r) = p(r) x W = /]R |Ppred("°)|dv = TNelec (15)
R3 3
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Table 1: Performance of various models with
numbers adapted from [Fu et al.|(2024). *Num-
bers from original publications. Note that In-
fGCN and GPWNO use a different split than the
standard 10,000 molecule test split. TTimings are

Table 2: Performance of various models tested in
this work. For the model that is most comparable
to ELECTRA, SCDP, we report the fastest model
(L=3) as well as the slowest (+BO L=6), and the
model with comparable accuracy (SCDP L=6).

performed on an A100-80GB (Fu et al., 2024) BO stands for bond orbitals.

Model NMAE [%] ] t[s]{ This work NMAE [%] ] t[s]{
i-DeepDFT* 0.357 - SCDP (L=3) 0.432 0.395
e-DeepDFT* 0.284 - ELECTRA (2.5 A) 0.371 0.357
glff)c\;/CI\II\IOSTO g;gg SCDP (L=6) 0.350 0.471
ChargE3Net 0.196 15.181 ELECTRA (3.0 A) 0.345 0.441
InfGCN 0.869 0.833" SCDP + BO (L=6) 0.178 1.022

where dV represents the differential volume element on the grid. Since nejec is simply the number of
valence electrons, this number is already provided as an input to standard DFT codes or can easily be
obtained via summation over the valence electrons of each atom in the system.

Objective function We train ELECTRA on a loss function £ based on the normalized mean

absolute error: f
z |prcf(r) - pper(r)|dV
L =NMAE reds Pref) = k2
(Pprea: pret) Foo et (P)]AV

It is not necessary to compute the denominator in equation |16|during training since the reference
grid must integrate to the number of valence electrons, i.e., |3 [pret(7)|dV = neiec, and thus the
denominator integral can be replaced with n;.. during training.

(16)

4 EXPERIMENTS

Dataset and implementation. We train ELECTRA on reference densities from the QM9 density
files which were generated in VASP (Kresse & Hafner;, |1993)) using the PBE (Perdew et al.l [1996)
functional and the Projector-Augmented Wave (PAW) (Blochl, |1994) method (Jgrgensen & Bhowmik,
2022). We use the full split consisting of 123,835 training molecules, 50 validation molecules, and
10,000 testing molecules. We train ELECTRA for two weeks using ten NVIDIA RTX 3090-24GB
GPUs. During validation and testing, we use a single 3090 GPU and process each molecule’s grid
points sequentially in chunks, similar to other implementations (Fu et al., 2024). A full list of
our hyperparameters is given in Table[3] As an example of how ELECTRA distributes individual
Gaussians around a molecule, we provide Figure [3] which also shows the resulting density prediction
and the ground truth density for CgH .

Results. In Tables[T]and 2] we report the mean accuracy and inference time of two ELECTRA
models, differing only by the inference cutoff radius. We compare ELECTRA to previous and
concurrent charge density prediction models, using results from the original papers as well as results
from the model testing carried out in [Fu et al.|(2024). The SCDP models are the current state-of-the-
art, and thus to ensure a fair comparison we tested them on our own hardware. Finally, in Table 4]
in the appendix we report ablated versions of ELECTRA; one without floating orbitals (w/o FO),
where all Gaussians are atom centered, and one with floating orbitals but without symmetry-breaking
(w/o SB). The ablated models demonstrate that both mechanisms are indispensable to achieving
good results. ELECTRA’s performance on accuracy is similar to the state-of-the-art performance of
SCDP; the 2.5 A version of ELECTRA is both faster and more accurate than SCDP(L = 3), and
similarly for the 3.0 A version of ELECTRA vs SCDP(L = 6). On inferior hardware (3090-24GB
vs A100-80GB), ELECTRA is faster than both ChargE3Net and InfGCN. For ChargE3Net (Koker
et al.| 2024), this difference is more than an order of magnitude (inference time of 0.441 seconds vs.
15 seconds per molecule), although ELECTRA is not as accurate (NMAE[%] of 0.345 vs. 0.198).
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For InfGCN (Cheng & Peng| [2024)), the inference time for ELECTRA is roughly half (0.441 seconds
versus 0.83 seconds per molecule), while the accuracy is also significantly higher (NMAE[%] of
0.345 vs. 0.833). ELECTRA is comparable to the DeepDFT models and SCDP models without

(a) (b) (© (d)

Figure 3: (a) Predicted density for CgH /¢ using the best ELECTRA model (NMAE [%] = 0.21%).
(b) Ground truth density for CgH;¢. (¢) Gaussian placements for CgH 4 - red Gaussians have w4 ; > 0
in equation@ while blue Gaussians have w4 ; < 0. (d) Isosurfaces for errors for CgH 4 - predicted
density is larger than the ground truth in yellow areas and smaller in blue areas.

bond-centered orbitals in terms of accuracy, while having lower inference times. Thus, ELECTRA
achieves state-of-the-art in a time-vs-accuracy tradeoff. While the SCDP + BO model leads to better
accuracy than ELECTRA, this model is significantly slower. The likely reasons for this are, that
ELECTRA uses a lower maximum angular momentum number (L = 2 vs L = 6) and can be more
aggressive with the orbital inference cutoff (3 A vs 5 A).

ELECTRA uses floating orbitals to achieve density prediction accuracies that rival state-of-
the-art while being faster on inference due to efficient orbital inference cutoffs and lower-order
tensor representations.

5 DISCUSSION

Future directions. |Fu et al.|(2024) show that adding bond-centered orbitals increases expressivity.
However, for this method to work, bonds must be identified in real-time during training and inference.
This may fail for complex systems with non-classical bonding and delocalized interactions, such
as partially formed or broken bonds, variable bonding radii, weak interactions like m-backbonding,
and coordination variability. A particular issue for crystal lattices would arise for, e.g., color centers,
where vacancies are occupied by unpaired atomic electrons (Seitz,1946). Since the vacancy itself
does not contain a bond or atom, centered orbitals would likely fail. Similarly, in electrides, the
electrons effectively function as anions, requiring non-centered positions (Dye, [2003). In all the
above cases, using freely placable orbitals originating from atoms is still viable. Our model would
theoretically be able to learn the non-local behavior of the density through equation [13|or variations
thereof. Additionally, floating orbitals scale with the number of atoms rather than the number of
bonds, making them computationally more efficient for large and complex systems where bond
identification is challenging or ambiguous. This is only amplified by the drastic reduction in the
number of orbitals that must be evaluated in each grid point, which we have demonstrated in this
work. Naturally, it may be possible to construct floating orbitals using spherical coordinates, which
was also suggested in |Fu et al.|(2024)). We thus believe that ELECTRA is complementary to their
work, and we believe that it would allow the benefits of floating orbitals to be combined with the
flexibility of the spherical harmonics-based SCDP models. A model with both atom-centered and
floating orbitals would likely represent the most efficient use of computational resources, since even
in ELECTRA, many of the orbitals are placed around atomic centers, as shown in Fig. [3] Beyond
charge density prediction, there are other applications within geometric point cloud data that might
benefit from the general idea of modeling complex geometric point cloud or grid data as a sum or
mixture of simple distributions originating from a graph representation, e.g. acrodynamical flows or
protein surfaces (Helwig et al.,|2024; |Zhao et al., 2024)).

Scaling and chemical universality. ELECTRA uses Cartesian coordinates since the [ = 1 vector
outputs of Cartesian tensor networks can be straightforwardly interpreted as displacement vectors,
while the Gram matrices constructed from the [ = 2 output can be used as covariance matrices. Since
any continuous probability density function can be approximated arbitrarily well as a weighted sum
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of Gaussian components (Plataniotis & Hatzinakos| [2017)), our approach is guaranteed to be sufficient
in the limit of an infinite number of components. However, practical implementations must use finite
mixtures, which necessitates trade-offs between model complexity and accuracy. For ELECTRA,
the main tunable parameter is the number of Gaussians M, dedicated to each valence electron. The
results in Tables 1| and [2| provide reasonable evidence that such a trade-off can be achieved while
keeping inference time favorable.

Grid inference, subsampling, and loss function. ELECTRA was trained on the standard QM9
benchmarking dataset with a batch size of 1, doing inference on the full grid at every step. In
future work, we aim to explore grid subsampling methods to improve training speeds and scalability.
Furthermore, the loss could be designed to enhance downstream property prediction accuracy - an
established bottleneck in ML-driven charge density prediction (Briling et al.|[2021). This could, for
example, be achieved through multi-task learning on properties such as energy.
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A GAUSSIANS AS CARTESIAN BASIS FUNCTIONS

The most often found form of basis functions in quantum chemistry is

Qo 1m(r) = Ra,l(|7'|)ylm (0, 9) )

where [ is the angular quantum number. To build our densities we contract the basis functions with a
set of coefficients C} ,,, such that the contribution of all basis functions centered at the same spot can
be written in Einstein notation as Cy 1 Pa,i,m

However, we can also equivalently use cartesian basis functions. With r = (z, y, z) we define:
(ba,nz,ny,nz (l’, Y, Z) = N(a7 Ny, ny7 nz)Ra(‘ernmyn’yznz (18)

where N(a,ng,n,,n.) is a normalization factor. The angular quantum number in the case of
cartesian basis functions is defined as [ = n, +n, +mn.. We can collect all the terms above belonging
to the same [ in one tensor:

®,(z,y,2) =N(,l)-Ro(Jr])r@r®.0r (19)
—_———

[ times

In particular, for [ = 2 we get
®;_o(x,y,2) = N(o,2) - Ro(|r)rr T (20)

When we contract this with a coefficient matrix C; ;, to calculate the contributions of the basis
functions to our density, we get

Cij(@1=2)ij = Ra(lr)r" (N(a,])-C)r 21
—_————
=—2%-1
If we set the radial term R, (|r|) = 1, wrap the remaining term in an exponential function and choose

C such that ¥ is positive definite, we get, up to a normalization constant, a Gaussian:

exp (—;TT2_1T> x N(r]0,X%) (22)

B EQUIVARIANCE OF GAUSSIANS LEADS TO INVARIANT DENSITY

The electron density is rotation invariant. In the main text, we claimed that our ansatz (equation [6)

Na
p(r)=> > waN(ripa;,Ta;) (23)

AEM j=0

is rotation invariant, if the weights w4 ; are rotation invariant, and the position p4 ; and and
covariance matrices X 4 ; transform as [ = 1 and [ = 2 cartesian tensors. It is clear, that the entire
ansatz is invariant if each Gaussian is individually invariant. So we need to show, that

N(r|p, =) = N(Rr|Rp, RER) (24)

for a rotation matrix R. For simplicity, we omit the normalization constant of the Gaussian, since it
is rotation invariant. Then we can write

N(Rr|Ru, RER") = exp (—;(R(r — ) (RER")'R(r — u)) (25)
= exp (;(r ~u)'RTRE'R"R(r - M)) (26)
1
— o (500w ) @1
=N(r|p,X) (28)

where we have used that R~ = RT. This shows our claim.
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C HYPERPARAMETER TABLE

Summarized in Table [3|below are standard hyperparameters used for all experiments.

Table 3: Hyperparameters for the main ELECTRA model.

Hyperparameter Value
Gaussian inference cutoff 3.0A
Graph radius cutoff 8.0A
HotPP # body layers 3
Gaussians per electron (M.) 50
Graph network channel width 450
GNN L4 - Body layers 3
GNN L, - Head layers and inference 2
Body order (Np42) 3
Precision Float32
Optimizer Adam (Default parameters) (Kingmal 2014)
Weight decay 0
Initial learning rate LR;,¢ia1 1x107°
Learning rate scheduler Linear (LR = LR;nitia1 x 7EPOM)
Learning rate gamma (vy) 0.6
Testing batch size 1
Testing no. of grid points per forward pass 100,000

D ABLATION STUDIES

We ablate an ELECTRA model with 3.0 A inference cutoff radius in two ways. In the first instance
by excluding the floating orbitals completely (w/o FO in the table), placing all Gaussians in the atom
centers, and in the second one by excluding the symmetry-breaking mechanism (w/o SB) while still
allowing displacement vectors.

Table 4: Ablation studies of ELECTRA.

Model NMAE [%] | ting [s] ]
ELECTRA (3.0 &) 0.345 0.441
ELECTRA w/o FO 5.951 0.477
ELECTRA w/o SB 6.836 0.455
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