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Balanced and Accurate Pseudo-Labels for Semi-Supervised

Image Classification

JIAN ZHAO, XIANHUI LIU, and WEIDONG ZHAO, Tongji University

Image classification by semi-supervised learning has recently become a hot spot, and the Co-Training frame-

work is an important method of semi-supervised image classification. In the traditional Co-Training struc-

ture, the sub-networks will generate pseudo-labels for each other, and these pseudo-labels will further be

used as a supervisory signal for model training. However, the pseudo-labels will hurt classification perfor-

mance because of their low accuracy and unbalanced distribution. In this article, we are trying to solve the

preceding two problems by designing the Balanced Module (BM) and Gaussian Mixture Module (GMM), and

propose BAPS (the Balanced and Accurate Pseudo-labels for Semi-supervised image classification). In BM, the

two sub-networks jointly predict the unlabeled images, then select the pseudo-labels with a high-confidence

threshold to perform the balancing operation to obtain the initial samples with balanced distribution of each

category. In GMM, referring to the common practice of the Learning from Noise Labels task, we use GMM

to fit the loss distribution of images with pseudo-labels output by BM, then clean samples and noise samples

are divided based on the observation that the loss of correctly labeled images is generally smaller than that of

wrongly labeled ones. Through BM and GMM, pseudo-labels with balanced distribution and high accuracy

are obtained for the subsequent model training process. Our model has achieved better classification accuracy

than most state-of-the-art semi-supervised image classification algorithms on the CIFAR-10/100 and SVHN

datasets, and further ablation experiments demonstrate the effectiveness of our BAPS. The source code of

BAPS will be available at https://github.com/zhaojianaaa.
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1 INTRODUCTION

With the increasing enthusiasm of deep learning research, various deep learning models [1–5] have
been proposed successively. Deep learning has achieved excellent performance in many fields,
especially in computer vision, such as image classification [15–18], object detection [6, 7], and
semantic segmentation [8, 9].

However, the training process of deep learning requires a large number of labeled samples. In
real-world applications, it is extremely expensive to obtain a large number of labeled samples,
whereas unlabeled ones are easy to get. Therefore, the difficulty lies in how to use unlabeled sam-
ples. Semi-supervised learning algorithms trained on a small number of labeled samples and a
large number of unlabeled samples are more suitable for real-world application scenarios. In re-
cent years, it has become a popular research direction in the field of deep learning.

There are four approaches for image classification based on deep semi-supervised learning:
Co-Training [15–18], Consistency Regularization [19–22], Mixup [23–25], and semi-supervised

Generative Adversarial Network (SGAN) [26–28]. The Co-Training method usually uses more
than one network for collaborative training. First, the small number of labeled images will be used
to construct a labeled training dataset for each sub-network in the Co-Training framework. Dur-
ing the training process, one sub-network will predict all remaining unlabeled images and select
images with high-confidence pseudo-labels as the other sub-network’s new training data. Sub-
networks will use these images with pseudo-labels to conduct supervised learning.

This Co-Training framework has two serious problems. First, some pseudo-labels generated by
the sub-networks are wrong, and the incorrectly labeled images cannot be revised in the subse-
quent training process, which will make the model overfit the noise samples, resulting in poor
generalization performance [10, 29–32]. Second, this operation of generating pseudo-labels can-
not guarantee the balance of the distribution of various categories in the training dataset, which
will affect the training of the model [11–14].

To overcome the preceding two problems, we designed the Balanced Module (BM) and Gauss-

ian Mixture Model (GMM) on the basis of the traditional Co-Training framework that includes
two sub-networks, which are used to handle the imbalanced dataset and low accuracy of the
pseudo-labels, respectively. In BM, first, the two sub-networks jointly predict all unlabeled im-
ages and select the ones with high-confidence pseudo-labels as the initial chosen dataset. Then,
by analyzing the category distribution of the initial chosen dataset, we chose the same number
of images of each category to form a balanced dataset. However, this balanced dataset contains
some incorrectly labeled images, and the proportion of that will be much higher in the later train-
ing stage. To better select the correctly labeled images from the pseudo-labeled samples, we learn
from the task of Learning from Noise Labels (LNL) and introduce GMM. The LNL method tells
us that the loss of incorrectly labeled samples is greater than that of truly labeled ones. So we use
GMM to fit the loss distribution of the sample output by BM and select the parts with less loss as
the clean dataset for model training.

In our BAPS (Balanced and Accurate Pseudo-labels for Semi-supervised image classification)
model, the two sub-networks are the modified version of FixMatch [22]. FixMatch is a deep semi-
supervised learning method based on Mixup, which uses cross-entropy loss for supervised training
on labeled samples. For unlabeled images, the prediction of the weakly augmented image are used
as the supervisory signal for the corresponding strongly augmented ones for supervised train-
ing. Obviously, if the pseudo-labels of the weakly augmented images are false, the model will be
trained with noise labels, which will seriously interfere with their learning ability. It seems that
this interference could be alleviated to a certain extent by increasing the confidence threshold,
but in this way, the samples retained for training will be reduced. In fact, the prediction accuracy
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of unlabeled images during the training process of FixMatch is about 96%, whereas the two sub-
networks in BAPS both reach 99%. Additionally, the distribution of the training dataset obtained
by directly applying a confidence threshold on the weakly augmented images is also imbalanced.
BM and GMM introduced in this article can obtain a balanced and accurate training dataset. Fur-
ther, considering the large number of samples divided into noise dataset by GMM, we additionally
introduced a Kullback-Leibler (KL) loss. Compared with FixMatch, the usage of unlabeled data
by KL loss is more reasonable, as KL loss will not bring negative supervisory information due to
the wrong predictions but just emphasizes the distribution consistency between the weakly and
strongly augmented images.

The contributions of this article are as follows:

• BAPS overcomes the imbalance problem of the training dataset in the traditional Co-
Training model. By designing BM, the distribution of each category in the training dataset
becomes more balanced, and the training process is more efficient.

• Under the Co-Training framework, drawing lessons from the Co-Teaching framework in
the LNL task, GMM is introduced to make the two sub-networks divide clean samples for
each other and accurately select the correctly labeled images from all unlabeled datasets
with pseudo-labels. In this way, the negative impact of wrongly labeled samples on model
training is weakened.

• Extensive quantitative evaluations on CIFAR-10/100 and SVHN real scene image classifica-
tion datasets demonstrate that our proposed BAPS performs favorably against most state-
of-the-art deep semi-supervised image classification methods.

The rest of this article is organized as follows. Section 2 describes the related work. The details
of our proposed BAPS are presented in Section 3. Experimental results and discussions are given
in Section 4. Section 5 presents the conclusion.

2 RELATED WORK

2.1 Deep Semi-Supervised Image Classification

The semi-supervised image classification methods could be roughly divided into four categories:
Co-Training, Consistency Regularization, Mixup, and SGAN.

2.1.1 Co-Training. The Co-Training framework consists of at least two sub-networks, and all
sub-networks are trained collaboratively. Blum and Mitchell [15] proposed the first Co-Training
model. During the training process, one sub-network predicts unlabeled samples and selects the
high-confidence pseudo-labels into the training dataset of the other sub-network. In short, sub-
networks will provide pseudo-labels for each other. Qiao et al. [16] applied deep learning structures
to Co-Training for the first time and carried out image classification tasks. Unlike traditional Co-
Training, it does not construct a different training dataset for each sub-network; instead, consider-
ing the view difference constraints, the adversarial example is generated for each image through
the Generative Adversarial Network (GAN), and the images with the corresponding adversarial
ones are jointly trained to maintain the difference of each sub-network. Chen et al. [17] proposed
tri-net, which is a Co-Training framework that consists of three sub-networks. The labeled samples
are repeatedly sampled to obtain three different labeled training datasets, which are used to train
three different classifiers for image classification. In the collaborative training process, the new
training dataset of each classifier is provided by the other two classifiers. Mo et al. [18] improved
the accuracy of pseudo-labels in tri-net. By setting a weight for each pseudo-label and further
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obtaining the confidence threshold of them based on the information entropy, the high-accuracy
pseudo-labels are selected as the training dataset.

2.1.2 Consistency Regularization. The Co-Training framework uses unlabeled data by pre-
dicting their pseudo-labels for supervised training, whereas Consistency Regularization uses KL
divergence or mean square error to minimize the predictions of the same image after different
enhancements for unsupervised training. Laine and Aila [19] proposed π -model, which uses
cross-entropy loss for labeled images, whereas for unlabeled ones, π -model encourages consistent
network outputs between two augmentations of the same image. Since π -model requires two
forward propagations to update the model parameters, which slow down the model training
process, Tarvainen and Valpola [20] proposed the Teacher Student network on the basis of
π -model. Input images were predicted by the Student and Teacher network, respectively, and
the consistency loss of the two outputs were used to train the Student network, whereas the
model parameters of the Teacher network were updated by the exponential moving average of
model parameters from the Student network. Xie et al. [21] proposed UDA, which still calculates
cross-entropy loss for labeled images and Consistency Regularization loss for unlabeled images,
but compared with the previous simple crop or flip image augmentation methods, UDA designed
a more complex approach—RandAugment, which improved the accuracy of image classification.
FixMatch proposed by Sohn et al. [22] directly takes the high-confidence predictions of weakly
augmented images as a supervisory signal for the corresponding strongly augmented ones to
conduct supervised training. FixMatch is very simple and efficient, but if the confidence threshold
is not set properly, the model training could be affected.

2.1.3 Mixup. The method based on Consistency Regularization conducts network training by
emphasizing the consistency of the same images through different augmentations. The images
before and after enhancement are basically the same one, whereas Mixup generates new images by
linearly combining the images from the training dataset. Mixup was originally proposed by Zhang
et al. [23] and is used for supervised learning algorithms. By adopting Mixup, more new training
images are generated, which brings diversity to the training set, and the model becomes more
robust. Berthelot et al. [24] introduced Mixup to the field of semi-supervised learning and proposed
MixMatch, in which the high-quality pseudo-labels of unlabeled images are obtained by averaging
the predictions multiple times. Then, the labeled images and unlabeled images with pseudo-labels
are mixed up to generate new images and corresponding labels. Finally, the model is trained by
the cross-entropy loss with the labeled images and mean square error with the pseudo-labeled
images. Berthelot et al. [25] further proposed ReMixMatch. Considering that it is not reasonable
to directly average multiple predictions by different augmentations in MixMatch, ReMixMatch
uses the predictions of the weakly augmented images as pseudo-labels of the strongly augmented
ones.

2.1.4 Semi-Supervised GAN. GAN is a deep generative model proposed by Goodfellow et al.
[26] in 2014. Through the mutual game learning of the generator and the discriminator, we can
get accurate outputs. Salimans et al. [27] introduced GAN to semi-supervised learning and pro-
posed SSL-GAN (semi-supervised learning GAN). For the k classification problem, the discrimi-
nator is set to be a k + 1 classifier, and class k + 1 is the fake image generated by the generator.
There are three kinds of inputs in the discriminator: labeled images, unlabeled images, and images
produced by the generator. For labeled images, cross-entropy loss is used, and for unlabeled im-
ages, the discriminator needs to classify them as one of the first k classes, for samples generated
by the generator, needs to classify as class k + 1. Odena [28] simplified SSL-GAN as SGAN. The
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inputs of the discriminator in SGAN only contain labeled samples and samples generated by the
generator, and the number of samples in the two parts is roughly the same in each batch during
training.

2.2 Learning from Noise Labels

The methods of LNL could be roughly divided into three categories. The first approach aims to
make the training process more stable to noise samples by modifying the loss function. The sec-
ond approach directly divides the entire dataset into clean and noise parts, which are used for
supervised and unsupervised training, respectively. The third one improves the model’s robust-
ness to noisy labels by constructing different network structures.

2.2.1 Methods Based on Improved Loss Functions. In the training process based on the error
backpropagation algorithm, the model tends to fit samples with greater loss, and the loss of in-
correctly labeled images is obviously greater than that of correctly labeled ones, so traditional
cross-entropy loss encourages the model to learn wrong information from noise labels. Based on
this idea, Reed et al. [10] revised the cross-entropy loss by linearly superimposing the predictions
and training labels, which increases the loss of the clean samples and reduces that of the noise
ones, and alleviated the bad effect of noise samples. Park et al. [29] apply the label smoothing op-
eration by injecting uniform noise to the training labels, which increases the model’s robustness
to noise samples.

2.2.2 Division-Based Methods. The division-based method hopes to find the correctly labeled
samples from all pseudo-labeled ones directly. Nguyen et al. [30] observed that predictions of noise
labels are more volatile, so they designed the SELF (Self-Ensemble Label Filtering) model, which
selects the images with consistent multiple predictions as clean samples for model training. Park
et al. [29] proposed confidence-based, metric-based, and hybrid-based methods to extract clean
samples. The confidence-based method treats images with high-confidence pseudo-labels as clean
samples; the metric-based method first maps all samples to the feature space in an unsupervised
manner, then determines whether a sample is clean or not by judging the pseudo-labels of the
nearest k samples; and the hybrid-based method comprehensively considers the preceding two
methods to divide clean and noise samples.

Arazo et al. [31] carried out an innovative work. Through previous works, it has been known
that the loss of noise samples is greater than that of clean ones. Thus, they used a beta mixture
model to fit the losses of all samples, finding that noise and clean images are separated in two areas
with different mean values, and the clean and noise samples are divided.

2.2.3 Methods Based on Elaborate Model Structures. Methods based on elaborate model struc-
tures aim to design such structures to select clean samples for model training. Jiang et al. [33] pro-
posed MentorNet, including a Mentor sub-network and a Student sub-network. The Mentor was
pretrained for selecting clean instances to guide the updates of the Student. Since the training of a
single network will produce biases, the error of noise labels will accumulate. Malach and Shalev-
Shwartz [34] proposed the Decoupling model, which uses two sub-networks to select clean sam-
ples at the same time. To maintain the difference between the two sub-networks, only the images
with inconsistent network predictions are used for training. Decoupling has two sub-networks,
but they carry our forward propagation in one direction, which leads to the accumulation of er-
rors. Han et al. [35] further proposed the Co-Teaching framework with two sub-networks. For
each batch during training, first, two sub-networks communicate with each other what data in
this batch should be used for training. Then, each sub-network backpropagates the data selected
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Fig. 1. Illustration of the proposed method. ⊕ refers to adding the outputs of net1 and net2; ψ is unlabeled

data, whereas χ is labeled data; ψ c1 and ψ c2 refer to the clean examples from ψ divided by net1 and net2,

respectively; and ψ n refers to the noise examples from ψ divided by net1 and net2. First, the Labeling and

Balancing operations in BM are performed on unlabeled data to obtain balanced pseudo-labels (Section 3.1).

Then, in GMM, the losses of balanced dataset output by BM are fitted, and further considering the precheck

information stored in BM, the dataset are divided into clean and noise parts (Section 3.2). Finally, the bal-

anced and accurate training datasets are obtained for model training (Section 3.3).

by its peer network and updates itself. The cross-selecting mode in Co-Teaching makes the two
sub-networks mutually exclusive, filters out noise labels, and alleviates the confirmation biases of
deep networks.

3 THE PROPOSED METHOD

Traditional Co-Training and Co-Teaching both have two sub-networks, but Co-Training is used for
semi-supervised learning, whereas Co-Teaching is used in LNL. The sub-networks in Co-Training
will make pseudo-labels for each other, whereas the sub-networks in Co-Teaching divide the sam-
ples into clean and noise parts for other sub-networks. We design BAPS based on the structure
of Co-Training and borrow ideas from Co-Teaching. Unlike traditional Co-Training, which only
predicts the remaining unlabeled images in every K epochs of training, all unlabeled data will be
labeled in BAPS every K epochs, and by drawing lessons from Co-Teaching, the high-confidence
pseudo-labels are cross selected as clean ones from all unlabeled data for sub-network training.

The overall framework of BAPS is shown in Figure 1. To overcome the problem of an imbalanced
training dataset and incorrect pseudo-labels, we designed BM and GMM. Let D= χ∪ψ represent all

images in the dataset, and χ = {(xi ,yi ) : yi ∈ {0, 1}L }
Nχ

i=1 are labeled samples, xi and yi represent the
ith image and its one-hot label, L refers to the number of categories in D, and Nχ is the number of

samples in D.ψ = {φi }
Nψ

i=1 refers to unlabeled data, and Nψ is the number of unlabeled images. First,
use BM to predict and balance all unlabeled images to obtain a dataset with balanced pseudo-labels
(Section 3.1). Then use GMM to divide the dataset output by BM into clean and noise collections
(Section 3.2). Last, the outputs of GMM are used for network training (Section 3.3). During the
training process, BM is executed every K epochs, whereas GMM will be carried out every epoch.

3.1 BM for Balanced Pseudo-Labels

The imbalance mentioned in this article is different from the one in traditional data mining [36].
The imbalance of the training dataset in this article is caused by the paranoia of the neural network
itself, whereas the latter lies in the imbalanced characteristic of the dataset itself [37]. The reason
pseudo-labels are not balanced is that the neural network will gradually become paranoid during
the training process. Specifically, the network tends to classify those easy-to-classify images more
quickly and correctly [30], such as the airplane, frog, and horse in CIFAR-10, but it is hard to
classify the cat and dog, automobile, and car correctly. Thus, the number of labels for easy-to-
classify images in pseudo-labels is greater than that for hard-to-classify images, which causes the
imbalance distribution of the pseudo-labels. This imbalance is particularly serious at the early
training stage and will greatly affect model training efficiency.
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Through BM, balanced samples could be selected for model training. In every K epochs, all
unlabeled dataψ will be forward propagated through the two sub-networks, and the two outputs
are added together before converting into output probabilities through the softmax function. For
image ϕ i, the output probability qi is defined as

qi = so f t max �
�

2∑

k=1

Pnetk (ϕ (φi ) ;θk )�
�
, (1)

where θk (k ∈ {1, 2}) represents the model parameters (weights and biases) of the sub-networks in
BAPS; Pnetk (φi ;θk ) is the output of ϕ i through sub-network k; and ϕ (·) andψ (·) refer to weak and
strong augmentation, respectively.

Generally, the Co-Training model adopts the voting method [17] to determine the guessed labels
by the consistent predictions of the two sub-networks, whereas Equation (1) adds the two outputs
and makes a final decision. As from the perspective of ensemble learning, by adding the output
of multiple weak classifiers, we could get a better classification accuracy than any one of the
classifiers. The output of softmax represents the possibility that sample ϕ i is identified as a certain
class in L. We set a confidence threshold τ of the clean samples, and if the maximum value of qi

(i.e., qi.max) is greater than τ , then it can be inferred that the pseudo-label of ϕ i is very likely to
be q̂i . Based on this, we set the precheck information qprei of ϕ i to be 1 if qi.max is greater than
τ and otherwise 0. This qpre will be used for the subsequent double verification in GMM. The
pseudo-label of all samples satisfying the following condition could be computed by the following
equation:

q̂i = arg max(qi ) if qpr ei = 1. (2)

The calculation process of BM is shown in Algorithm 1. We call the operation in Equations (1)
and (2) Labeling, as described in lines 2 and 3, and lines 4 and 5 are the Balancing operation. After
the Labeling operation, we can get the pseudo-labels of all unlabeled images, but there are many
imbalanced noise labels.

To select a balanced number of samples, we first classify and count the pseudo-labels under the
condition that qprei == 1, and the least number of samples Nmin among L classes is obtained. Then,
sort the maximum output probabilities q.max of each category from high to low, and select the
first rNmin samples as high-confidence samples to retain their pseudo-labels. The parameter r here
determines the proportion of high-confidence images selected, and the setting of r is quite mean-
ingful. To maintain the balance, we chose images based on the minimum value Nmin. Considering
that there are incorrect pseudo-labels in the Nmin labels, we do not choose all Nmin samples but
only rNmin of them, whose output probability are the top rNmin largest one. r is set according to
the training epochs, defined as follows:

r =
⎧⎪⎨⎪⎩
epoch 0.4

Epoch−20 +
0.6Epoch−20

Epoch−20 epoch <= Epoch

1 epoch > Epoch
(3)

where epoch is the current number of iterations, and Epoch is a hyperparameter, which is less than
the maximum number of iterations MaxEpoch of the model training process. From Equation (3),
when epoch is less than Epoch, r gradually increases from 0.6 to 1 when epoch equals Epoch.

In this way, among all Nψ samples, there are LrNmin ones with high-confidence pseudo-labels,
and the number of samples in each category is rNmin. For the remaining Nψ -LrNmin samples, a
random label l, l ∈ (1, . . . , L) will be assigned. Thus, we could get a balanced pseudo-labeled dataset
after BM. The calculation process of BM is shown in Algorithm 1. Classify and count the pseudo-
labels under the condition that qprei == 1, and the least number of samples Nmin among L classes
is obtained.
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ALGORITHM 1: Computing process of BM

1: Input: θ1 and θ2, unlabeled dataψ = {φi }
Nψ

i=1 , clean probability threshold τ , sample selection ratio r .

2: Calculate the output probability q of all unlabeled dataψ according to Equation (1), and determine whether

qi . max is greater than τ to get the precheck information qpr ei . If qi .max > τ , then qpr ei = 1, and otherwise

qpr ei = 0.

3: According to Equation (2), calculate pseudo-label q̂ of all samples under the condition qpr ei == 1.

4: Classify and count the pseudo-labels q̂ to get the least number of samples Nmin among L classes.

5: Sort the maximum output probability q.max of each category from high to low, and select the first rNmin

samples as high-confidence samples to retain their pseudo-labels, then label the remaining samples inψ as a

random label l , l ∈ (1, . . . ,L) to generate balanced pseudo-labels q̂b .

6: Return q̂b and qpr e .

3.2 GMM for Accurate Pseudo-Labels

The training of randomly labeled images takes a longer time than that with correctly labeled ones
[35, 38, 39], which means the losses of randomly labeled images will be greater than that of clean
labels. Arazo et al. [31] and Li et al. [32] both use a mixed model to fit the losses of samples con-
taining noise labels, and divide clean and noise samples by the fitting results. We also adopt a
similar method to achieve this goal. Cross entropy could measure the fit of the network to unla-

beled dataψ = {(φi : q̂bi ) : q̂bi ∈ {0, 1}L }
Nψ

i=1, with the balanced pseudo-labels obtained in BM. The
cross entropy of image ϕ i is calculated as

�CEi (θ ) = −q̂bi log (so f t max (Pnet (ϕ (φi );θ ))) (4)

The cross entropy of sample ϕ i is simplified as �CEi , and for all of the images in ψ , we have

�CE = {�CEi }
Nψ

i=1 . Then, we perform the normalization operation on �CE as follows:

�CE =
�CE − �CE .min

�CE .max− �CE .min
(5)

where �CE .min and �CE .max respectively are the minimum and maximum values of the cross-
entropy loss in the Nψ images. Since there are two types of clean and noise samples, we use a
Gaussian mixture module consisting of two Gaussian functions to fit their losses and set the prob-
ability that the sample ϕ i is clean to ω i. As the losses of clean samples are small, we have

ωi = p (д/�CEi ) (6)

where g is the Gaussian function whose output probability is the smaller one. Since there are only
two Gaussian functions, we set a threshold of 0.5 forω i. Taking bothω i and qpre into consideration,
we classify ϕ i as clean, and the pseudo-label q̂bi of it to q̂bci , and otherwise as a noise sample.

It should be noted that in the LNL task of Li et al. [32], the authors not only consider the cross-
entropy loss but also the entropy of the images due to the asymmetric noises (imbalanced char-
acteristic of incorrectly labeled images). In this article, we have elaborately designed BM, so the
influence of asymmetric noises has been overcome greatly, and we only use cross-entropy loss
to the fitting process. The following experiments test the influence of BM on the fitting effect of
GMM. In Figure 2(a), GMM fits the losses by net1 with all images whose pseudo-labels are obtained
in the Labeling operation in BM, whereas in Figure 2(b), the pseudo-labels are the outputs of BM.
Comparing Figure 2(a) and (b), it can be seen that it is difficult for GMM to fit the cross-entropy
loss of samples without the operation of Balancing due to the asymmetric errors in pseudo-labels,
but for the balanced output of BM, there are two distinct peaks to distinguish the clean and noise
samples.
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Fig. 2. After training for 10 epochs, the fitting effect of GMM on all pseudo-labeled images: without the

Balancing operation in BM (a) and with BM (b).

3.3 Training with Balanced and Accurate Samples

BM and GMM are the two core modules of the Deep Co-Training model proposed in this article.
Through BM and GMM, a clean dataset with balanced and accurate pseudo-labeled images are
obtained, and we further designed the loss for model training. For labeled samples χ , we directly
compute the cross-entropy loss as follows:

�χ (θ ) = − 1

Nχ

Nχ∑

i=1

yi log(so f t max(Pnet (ϕ (xi );θ ))) (7)

For clean samplesψc = {(φci : q̂bci ) : q̂bci ∈ {0, 1}L }Nc

i=1 divided by GMM, Nc represents the num-
ber of clean samples. We did not use q̂bc directly, but first used sub-networks 1 and 2 to predict
them again. If the guessed labels are consistent with q̂bc , then they will be used as a supervisory
signal for cross-entropy loss calculation. This idea is the same as that of Nguyen et al. [30], which
means the predicted volatility of clean samples is more stable than noise ones. Thus, for ψc , the
loss is defined as follows:

�ψc
(θ ) = − 1

Nc

Nc∑

i=1

|(q̂bi == q̂bci )q̂bci log(so f t max(Pnet1 (ψ (xi );θ ))) (8)

where I(·) is an indicator function. If the condition is true, the returning value is 1, and other-
wise 0. During the training process of sub-network 1, the forward propagation output of net1
Pnet1 (ϕ (xi );θ ) needs to carry out error backpropagation for model parameter updating of sub-
network 1, but there is no need for Pnet2 (ϕ (xi );θ ). Equation (8) is used for the training of sub-
network 1, and it is the same situation for the training of sub-network 2.

For noise samples ψn = {φni }Nn

i=1, since most of the Nn samples are difficult to obtain correct
pseudo-labels with high-confidence, they will bring in wrong supervisory information if used in
the same way as Equation (8). Thus, we introduce KL divergence [21] to minimize the predictions
between ϕ (φni ) andψ (φni ), and as sub-networks 1 and 2 can be combined to get better prediction
results, we get the following loss:

�ψn
(θ ) = DK L

�
�

1

2

2∑

k=1

Pnetk (ϕ (φni );θk ) | |Pnet1 (ψ (φni );θ1)�
�

(9)
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where DKL(·) refers to KL divergence. During the training process of sub-network 1, the forward
propagation outputs of net2 Pnet2 (ϕ (xi );θ ) do not need to carry out error backpropagation. Equa-
tion (9) is used for the training of sub-network 1, and it is the same situation for the training of
sub-network 2.

Finally, the total loss � is

� = �χ + λu1�ψc
+ λu2�ψn

(10)

where λu1 and λu2 are the weights to control the strength of �ψc
and �ψn

. As the noise samples
divided by GMM accounted for a large proportion in the initial training stage, we directly calculate
the KL loss in our subsequent experiments on the whole dataset corresponding to Equation (9).

Due to the poor division effect of sub-networks at the initial stage of training, a training sched-
uler similar to that of Li et al. [32] is adopted to pretrain the two sub-networks for t epochs. Equa-
tions (7) through (9) are still used in the pretraining stage, but we do not provide pseudo-labels
for Equation (8), and we adopt the way used in FixMatch for this t epochs. In addition, drawing
lessons from ensemble learning, we add the predictions of the two sub-networks for the testing
process, and the recognition result is the category corresponding to the maximum value of the
output.

Algorithm 2 delineates the full algorithm of BAPS.

ALGORITHM 2: Balanced and accurate pseudo-labels for semi-supervised image classification

Input: θ1 and θ2, training dataset D = χ ∪ψ , clean probability threshold τ , number of pretrained epochs t ,
maximum epochs MaxEpoch, BM execution frequency K, sample selection ratio r, unsupervised loss weight

λu1, λu2

1: θ1, θ2 = Pretrain(D, θ1, θ2).
2: while epoch < MaxEpoch do

3: if epoch < t then

4: θ1, θ2 = Pretrain(D, θ1, θ2).
5: else

6: if epoch % K == 0 then

7: q̂b , qpr e = BM(ψ , θ1, θ2, τ , r).

8: end if

9: ω2 = GMM(ψ , θ1, q̂b , qpr e ).
10: ω1 = GMM(ψ , θ2, q̂b , qpr e ).
11: for k = 1, 2 do

12: ψck = {(φci , q̂bci ) |ωki > 0.5,∀(φci , q̂bci ,ωki ) ∈ (ψ , q̂b ,ωk )}Nck

i=1 .

13: ψnk = {φni |ωki ≤ 0.5,∀(φni ,ωki ) ∈ (ψ ,ωk )}Nnk

i=1 .

14: Calculate cross-entropy loss of χ and ψck according to Equations (7) and (8), and KL loss of ψnk

according to Equation (9).

15: � = �χ + λu1�ψc
+ λu2�ψn

.

16: θk = SGD (�,θk ).
17: end for

18: end if

19: end while

4 EXPERIMENTS

This section first introduces the dataset and model parameter settings used in BAPS, then gives the
experimental results of the proposed algorithm and other state-of-the-art semi-supervised meth-
ods on CIFAR-10/100 and SVHN, and finally, the ablation studies of the important components and
hyperparameters are carried out.
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4.1 Dataset and Experiment Setups

Datasets. We extensively validate our method on three benchmark datasets, namely CIFAR-
10/100 [40] and SVHN [41]. Both CIFAR-10 and CIFAR-100 contain 50K training images and 10K
test images of size 32 × 32. CIFAR-10 contains 10 classes of images, and we randomly select 400
images from each class in the training images to construct a training dataset containing 4K labeled
images and 46K unlabeled ones. CIFAR-100 contains 100 classes of images, and we randomly select
100 images from each class in the training images to form a training dataset containing 10K labeled
images and 40K unlabeled images. SVHN contains 10 categories of images; the number of training
and testing images is 73,257 and 26,032, respectively; and we randomly select 100 images from
each category in the training dataset as the labeled ones.

Parameters. For CIFAR-10 and SVHN, we chose Wide-ResNet-28-2 [42, 43] with 1.47M param-
eters as the deep structure of sub-networks. As CIFAR-100 contains more classes and requires a
larger network capacity, we use Wide-ResNet-28-8 including 23.4M parameters. We implement
the proposed algorithm using the PyTorch framework. All experiments are conducted on a server
consisting of two 2080Ti GPUs with 11 GB of memory each.

We train our Deep Co-Training model using SGD with a Nesterov momentum of 0.9 and a weight
decay with a fixed value of 5 × 10−4. Similar to Xie et al. [21], we set a batch size of 64 to labeled
images, and 64μ to unlabeled ones, and set μ to 7. The network is trained for MaxEpoch epochs with
1,024 steps each, and the pretrained epoch t is 20 for CIFAR-10 and SVHN and 30 for CIFAR-100.
We set the initial learning rate as 0.03 and use the same learning rate schedule as FixMatch. For all
experiments, we use the same hyperparameters of K = 10, τ = 0.9, Epoch = 500, MaxEpoch = 600,
λu1 = 1, and λu2 = 1.

For every epoch, we use an exponential moving average over the two sub-networks weights
with a decay of 0.999, and the forward propagation process in BM and GMM are calculated using
the EMA model; the test results are also obtained by the EMA model. The weak augmentation in
this article is a flip operation that randomly flips the input images horizontally with a probability
of 50%. For strong augmentation policy, we chose RandAugment [44], which has been used in
state-of-the-art semi-supervised algorithms. RandAugment includes a series of transformations,
including color inversion, translation, and contrast adjustment, among others. During the training
process, RandAugment randomly chooses two transforms from the collections for each mini-batch.

4.2 Comparison of Experimental Results

We use classification accuracy as a measure of various algorithms. The state-of-the-art semi-
supervised algorithms are selected for comparison, including Co-Training-based algorithms DCT
[16], tri-net [17], and PLW-ML [18]; Consistency Regularization based algorithms, including π -
Model [19], Mean Teacher [20], UDA [21], FixMatch [22], and ACL [49]; algorithms based on
Mixup, such as MixMatch [24], ReMixMatch [25], SelfMatch [45], and RML-CNN [48]; and meth-
ods based on adversarial training, such as VAT [46] and CCS-GAN [47]. The classification accu-
racy is shown in Table 1. In both 4K-label experiments on CIFAR-10 and 10K-label experiments
on CIFAR-100, the proposed BAPS outperforms all state-of-the-art semi-supervised image classi-
fication methods. But in the 1K-label experiment on the imbalanced dataset SVHN, the accuracy
of BAPS is slightly worse than that of FixMatch, UDA, SelfMatch, and ReMixMatch.

4.3 Ablation Study for BAPS

BAPS is a Deep Co-Training model that consists of two sub-networks. To illustrate the function of
each component, we removed BM, GMM, and KL loss, respectively, and conducted comparative
experiments on the CIFAR-10 dataset. In addition, the parameter τ is quite important for the
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Table 1. Comparison of Classification Accuracy on Different Datasets (%)

Method SVHN CIFAR-10 CIFAR-100
π -Model (2017)
Mean Teacher (2017)
DCT(2 views) (2018)

92.46 ± 0.36
96.58 ± 0.11
96.39 ± 0.15

85.99 ± 0.38
90.81 ± 0.19
90.97 ± 0.18

62.12 ± 0.11
64.17 ± 0.24
61.23 ± 0.28

Tri-net (2018)
MixMatch (2019)
VAT (2019)

96.29 ± 0.14
96.5 ± 0.28
94.58 ± 0.22

91.55 ± 0.22
93.58 ± 0.10
88.64 ± 0.34

–
71.69 ± 0.33

–
UDA (2020) 97.54 ± 0.24 95.12 ± 0.18 75.5 ± 0.25
FixMatch(RA) (2020) 97.72 ± 0.11 95.74 ± 0.05 77.4 ± 0.12
ReMixMatch (2020)
RML-CNN (2020)
SelfMatch (2021)
PLW-ML (2021)
CCS-GAN (2021)
ACL (2021)

97.36 ± 0.08
–

97.49 ± 0.07
95.45 ± 0.15
95.64 ± 0.09
94.83 ± 0.21

95.28 ± 0.13
91.46 ± 0.20
95.94 ± 0.08
93.12 ± 0.23
85.99 ± 0.15
89.78 ± 0.72

76.97 ± 0.56
–
–
–

67.85 ± 0.44
–

BAPS 97.27 ± 0.19 96.35 ± 0.05 79.45 ± 0.08

selection of pseudo-labels, and we have also discussed this parameter. We also conduct compar-
ative experiments with BAPS models with 3, 4, and 5 subnetworks.

On BM. In BAPS, BM could overcome the confirmation bias of deep neural networks to a certain
extent and obtain the balanced pseudo-labels. In this experiment, to verify the function of BM on
the whole BAPS model, we removed the Balancing operation in BM; specifically, the samples with
high-confidence pseudo-labels are selected according to sample selection ratio r, then passed to
GMM. The control group experiment keeps the BAPS unchanged and uses the default parameter
settings (K = 10, τ = 0.9, Epoch = 500, MaxEpoch = 800, λu1 = 1, and λu2 = 1).

Figure 3(a) shows the change of classification accuracy of the test set during the training process
with and without BM. It can be seen that the original model could get a better classification
accuracy than the test model without BM. We further show the distributions of the samples
with correct pseudo-labels (the result of comparisons with the true labels of the samples, this
ground truth is only used to obtain the visualization results in the following figures, not for model
training) that provide correct supervisory information in the training datasetψ c1 when the epoch
is 100, 300, and 500, respectively. From Figure 3(b), we can see that the sample distribution in
the original model with BM is almost balanced throughout the training process; however, for the
test model without BM, the samples that provide a correct supervisory signal are not balanced,
although this imbalance will gradually be relieved as the training progresses, but it will still affect
the training process and reduce training efficiency.

On GMM. GMM could be used to fit the losses of samples with pseudo-labels that are correctly
and incorrectly labeled, so as to achieve the purpose of dividing clean and noise samples. BAPS
is designed to cross-divide samples, and to maintain this Co-Teaching mechanism when GMM
is removed, we make sub-networks cross-divide samples for each other directly, then use the
Balancing operation in BM to obtain balanced samples for model training. The control group
experiment keeps the model unchanged, and the parameters use the default parameter settings
(K = 10, τ = 0.9, Epoch = 500, MaxEpoch = 600, λu1 = 1, and λu2 = 1).

Figure 4(a) shows the change of classification accuracy of the test set during the training pro-
cess before and after removing GMM, and we can easily draw conclusions that the classification
accuracy of the model without GMM is worse than that of BAPS. We also show the proportion
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Fig. 3. (a) Comparison of the classification accuracy of the model in the test set with or without BM. (b) The

distributions of the samples that provide correct supervised information in training dataset ψ c1 when the

epoch is 100, 300, and 500, respectively.

Fig. 4. (a) Comparison of the classification accuracy of the model in the test set with or without GMM. (b)

The proportion of samples that provide correct supervisory information in training datasetψ c1.

of samples with correct pseudo-labels that provide an accurate supervisory signal in ψ c1. From
Figure 4(b), the proportion of samples that provide correct supervisory information inψ c1 exceeds
99% for BAPS and only 96% for the test model without GMM. In addition, as training progresses,
that ratio in BAPS slightly reduces due to the gradually increases of sample selection ratio r, and
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Fig. 5. Comparison of the classification accuracy

of the model in the test set with or without KL

loss.

Fig. 6. Comparison of the classification accuracy

of the model in the test set when τ is chosen from

{0.25, 0.50, 0.75, 0.85, 0.90, 0.95, 0.97, 0.99}.

when epoch reaches 500, the value of r will be 1.0, which means the number of samples in ψ c1 is
getting closer and closer to Nψ , and more and more samples are difficult to classify as clean ones
with high confidence. Even if the division results become worse in the later training stage, the
proportion of clean samples in BAPS is much higher than that in the test model without GMM.

On KL loss. As the cross-entropy loss �ψc
with the clean samples may bring in interferences,

we introduced �ψn
. Set λu2 = 0 for the test group and λu2 = 1 for the control group, and use the

default parameters for the rest of the parameters (K = 10, τ = 0.9, Epoch = 500, MaxEpoch = 600,
and λu1 = 1). It can be seen from Figure 5 that the classification accuracy of the BAPS model with
KL loss on the test set is higher than that of the test model without KL loss, indicating that KL
loss promotes the training of the BAPS model.

On the confidence threshold τ . The value of τ is crucial for choosing pseudo-labels. We set the val-
ues of τ to 0.25, 0.5, 0.75, 0.85, 0.90, 0.95, 0.97, and 0.99, respectively, for comparison experiments,
and the remaining parameters adopt the default parameter settings (K = 10, Epoch = 500, MaxE-

poch = 600, λu1 = 1, and λu2 = 1). It can be seen from Figure 6 that as the value of τ increases from
0.25 to 0.99, the accuracy of the test set shows a trend of first increasing and then decreasing, and
when τ is set to 0.9, the BAPS model can obtain the best result on the test set. Thus, we set τ to 0.9.

On the ensemble learning mechanism. There are two sub-networks in our BAPS for co-training.
Considering the idea of ensemble learning, by adding the output of multiple weak classifiers, we
could get better classification accuracy than any one of its sub-classifiers. We conduct compar-
ative experiments on CIFAR10, and the number of sub-networks in BAPS is set to 2, 3, 4, and 5,
respectively. In BM, the unlabeled samples are pseudo labeled by averaging the outputs of all sub-
networks by formula (1), and the division of the training samples of a sub-network in GMM is ob-
tained by all other sub-networks. The other parameter settings are K= 10, Epoch= 500, MaxEpoch=

100, λu1 = 1, and λu2 = 1.
The change of BAPS accuracy with different numbers of sub-networks is shown in Figure 7(a),

and Figure 7(b) through (e) show the changes of the BAPS accuracy with its sub-networks when
the number of sub-networks is 2, 3, 4, and 5, respectively. It can be seen from Figure 7(a) that the
more the numbers of sub-networks, the higher the accuracy of BAPS, but when the epoch is <70,
the accuracy of BAPS with two sub-networks is a little higher than that with three sub-networks,
which may be caused by the instability in the early training stage of the model. When the epoch
is >70, the accuracy of the model with three sub-networks exceeds that of the model with two
sub-networks. From the comparison of Figure 7(b) to Figure 7(e), the accuracy of BAPS is higher
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Fig. 7. (a) Comparison of the classification accuracy of BAPS in the test set when the number of sub-networks

is 2, 3, 4, and 5, respectively. (b) Comparison of the classification accuracy of BAPS with its two sub-networks

in the test set. (c) Comparison of the classification accuracy of BAPS with its three sub-networks in the test

set. (d) Comparison of the classification accuracy of BAPS with its four sub-networks in the test set. (e)

Comparison of the classification accuracy of BAPS with its five sub-networks in the test set.
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than any one of its sub-networks, and this trend becomes larger as the number of sub-networks
increases. In addition, the accuracy between the sub-networks is basically the same.

5 CONCLUSION

Co-Training is an important framework for semi-supervised image classification. The sub-
networks in this structure will first label the unlabeled images and then select the images with
high-confidence pseudo-labels to put them into each other’s training set. But this traditional cross-
labeling operation will bring in imbalanced noise labels. This article proposed BAPS with BM and
GMM components. In BM, two sub-networks are first used to jointly predict unlabeled samples
and then samples with high confidence are selected for the Balancing operation to obtain balanced
samples of each category. Referring to the common practice of the LNL task, we use GMM to fit
the loss distribution of the samples output by BM, then clean samples and noise samples are di-
vided based on the fact that the loss of correctly labeled samples is generally smaller than that
of wrongly labeled ones. At the same time, referring to the training mechanism of Co-Teaching,
we design the two sub-networks in GMM to divide samples for each other during every iteration
to avoid accumulation of errors. Through a large number of comparative experiments, the Deep
Co-Training model of this article has achieved very good classification accuracy on CIFAR-10/100
and SVHN datasets, and further ablation experiments demonstrate the effectiveness of BAPS.

However, our BAPS focuses on alleviating the imbalance problem from the deep model itself and
cannot get the best classification performance in class-imbalanced dataset such as SVHN, which
is a shortcoming of our BAPS. Next, we will focus on improving the performance of our model on
long-tail datasets.
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