
Published as a conference paper at ICLR 2023

HUMAN MOTIONFORMER: TRANSFERRING HUMAN
MOTIONS WITH VISION TRANSFORMERS

Hongyu Liu1∗ Xintong Han2∗ Chengbin Jin2 Lihui Qian2 Huawei Wei3 Zhe Lin2

Faqiang Wang2 Haoye Dong5 Yibing Song4† Jia Xu2 Qifeng Chen1†
1Hong Kong University of Science and Technology 2Huya Inc
3Tencent 4AI3 Institute, Fudan University 5 Carnegie Mellon University
hliudq@cse.ust.hk yibingsong.cv@gmail.com

ABSTRACT

Human motion transfer aims to transfer motions from a target dynamic person
to a source static one for motion synthesis. An accurate matching between the
source person and the target motion in both large and subtle motion changes is
vital for improving the transferred motion quality. In this paper, we propose Hu-
man MotionFormer, a hierarchical ViT framework that leverages global and local
perceptions to capture large and subtle motion matching, respectively. It con-
sists of two ViT encoders to extract input features (i.e., a target motion image
and a source human image) and a ViT decoder with several cascaded blocks for
feature matching and motion transfer. In each block, we set the target motion
feature as Query and the source person as Key and Value, calculating the cross-
attention maps to conduct a global feature matching. Further, we introduce a
convolutional layer to improve the local perception after the global cross-attention
computations. This matching process is implemented in both warping and gen-
eration branches to guide the motion transfer. During training, we propose a
mutual learning loss to enable the co-supervision between warping and genera-
tion branches for better motion representations. Experiments show that our Hu-
man MotionFormer sets the new state-of-the-art performance both qualitatively
and quantitatively. Project page: https://github.com/KumapowerLIU/
Human-MotionFormer

1 INTRODUCTION

Human Motion Transfer, which transfers the motion from a target person’s video to a source person,
has grown rapidly in recent years due to its substantial entertaining applications for novel content
generation Wang et al. (2019); Chan et al. (2019). For example, a dancing target automatically
animates multiple static source people for efficient short video editing. Professional actions can be
transferred to celebrities to produce educational, charitable, or advertising videos for a wide range of
broadcasting. Bringing static people alive suits short video creation and receives growing attention
on social media platforms.

During motion transfer, we expect the source person to redo the same action as the target person.
To achieve this purpose, we need to establish an accurate matching between the target pose and the
source person (i.e., each body part skeleton in a pose image matches its corresponding body part in
a source image), and use this matching to drive the source person with target pose (i.e., if the hand
skeleton in the target pose is raised, the hand in the source person should also be raised). According
to the degree of difference between the target pose and the source person pose, this matching can be
divided into two types: global and local. When the degree is large, there is a large motion change
between the target pose and the source person, and the target pose shall match a distant region in
the source image (e.g., the arm skeleton of the target pose is distant from the source man arm region
in Fig. 1(b)). When the degree is small, there are only subtle motion changes, and the target pose
shall match its local region in the source image (e.g., the arm skeleton of the target pose is close to
the source woman arm region in Fig. 1(b)). As the human body moves non-rigidly, large and subtle
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Figure 1: Human motion transfer results. Target pose images are in the first row, and two source
person images are in the first column. Our MotionFormer effectively synthesizes motion transferred
results whether the poses in the above two images differ significantly or not.

motion changes usually appear simultaneously. The local and global matching shall be conducted
simultaneously to ensure high-quality human motion transfer.

Existing studies Ren et al. (2020; 2021); Tao et al. (2022); Zhao & Zhang (2022) leverage 2D human
body keypoints Cao et al. (2017); Xiu et al. (2018) as the initial pose representations and introduce
image-to-image translation Isola et al. (2017) or predictable warping fields (e.g., optical flow, affine
transformations) for geometric matching. Since the 2D human body keypoints are sparse and the
geometric matching is captured by CNNs, it is hard to capture global matching as the CNN receptive
field is limited. As a result, artifacts occur and details are missing in the transferred results when
facing large motion changes between the target pose and source person. The alternative 3D meth-
ods Neverova et al. (2018); Gafni et al. (2021); Huang et al. (2021a) introduce DensePose Alp Güler
et al. (2018) or parametric body mesh Loper et al. (2015) as human representations to perform pixel-
wise matching. They can globally match target pose and source images by aligning two humans into
one 3D model. However, the off-the-shelf Densepose and 3D models suffer from background inter-
ference and partial occlusion, limiting the image alignment quality for dense pixel-wise matching.

Is there a proper way to simultaneously utilize robust 2D human body keypoints and build global
and local matching? Fortunately, recent methods Dosovitskiy et al. (2020); Liu et al. (2021c; 2022);
Dong et al. (2022) demonstrate that the Vision Transformers (ViTs) can capture global dependencies
in visual recognition. Inspired by this design, we combine the advantages of CNNs and Transform-
ers and propose a Vision-Transformers-based framework named MotionFormer to model the visual
correspondence between the source person image and the target pose image. As shown in Figure
2, our MotionFormer consists of two encoders and one decoder. The encoders extract feature pyra-
mids from the source person image and the target pose image, respectively. These feature pyramids
are sent to the decoder for accurate matching and motion transfer. In the decoder, there are several
decoder blocks and one fusion block. Each block consists of two parallel branches (i.e., the warping
and generation branches). In the warping branch, we predict a flow field to warp features from the
source person image, which preserves the information of the source image to achieve high-fidelity
motion transfer. Meanwhile, the generation branch produces novel content that cannot be directly
borrowed from the source appearance to improve photorealism further. Afterward, we use a fusion
block to convert the feature output of these two branches into the final transferred image.

The feature matching result dominates the flow field and generation content. Specifically, we imple-
ment feature matching from two input images via convolutions and cross-attentions in each branch.
The tokens from the source image features are mapped into Key and Value, and the tokens from the
target pose image features are mapped into Query. We compute the cross-attention map based on the
Key and Query. This map reflects the global correlations between two input images. Then, we send
the output of cross-attention process into a convolution to capture locally matched results. Thanks to
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the accurate global and local feature matching, our MotionFormer can improve the performance of
both the warping and generation processes. Moreover, we propose a mutual learning loss to enable
these two branches to supervise each other during training, which helps them to benefit from each
other and facilitates the final fusion for high-quality motion transfer. In the test phase, our method
generates a motion transfer video on the fly given a single source image without training a person-
specific model or fine-tuning. Some results generated by our method can be found in Fig. 1, and we
show more video results in the supplementary files.

2 RELATED WORKS

Human Motion Transfer. Most human motion transfer works are built upon an image-to-image
Isola et al. (2017); Wang et al. (2018b) or video-to-video Wang et al. (2018a; 2019) translation
framework. With this framework, some methods Chan et al. (2019); Esser et al. (2018); Dong
et al. (2018); Han et al. (2019); Ma et al. (2017); Ren et al. (2021; 2020) set the off-the-shelf 2D
body keypoints Cao et al. (2017); Xiu et al. (2018) as a condition to animate the source person im-
age. And some methods Siarohin et al. (2019a;b; 2021) use the unsupervised 2D body keypoints
to extract motion representations. Therefore, these methods generalize well to a wider range of
objects(i.e., animals). The 2D body keypoints can represent the body motion correctly, but this
representation is sparse and the CNN models used by these methods have limited receptive fields,
which leads to inaccurate global visual correspondence between this motion representation and the
source image. To overcome this limitation, recent approachesNeverova et al. (2018); Grigorev et al.
(2019); Huang et al. (2021a); Shysheya et al. (2019); Liu et al. (2019b); Ma et al. (2018) project
the source person and the target person into a unified 3D space (i.e., DensePose Alp Güler et al.
(2018) and SMPL Loper et al. (2015)) to capture pixel-level correspondences, which help render
the appearance from source to target in global perspective. And they use the inpainting methodsLiu
et al. (2019a; 2020; 2021a;b) to restore the background image. However, compared to 2D keypoint
representations, DensePose and SMPL models are less accurate and may produce large misalign-
ments in complex scenes. In this paper, we design the first Vision-Transformer-based generation
framework for human motion transfer. With merely 2D keypoints guiding the target motion, we
capture large motion deformations with globally attended appearance and motion features and yield
state-of-the-art performance. Unlike many previous methods that trained on a single video Chan
et al. (2019); Shysheya et al. (2019) or need fine-tuning Huang et al. (2021a); Liu et al. (2019b);
Zakharov et al. (2019) to achieve higher perceptual quality, our method works in a one-shot fashion
that directly generalizes to unseen identities.

Vision Transformer. Transformer Vaswani et al. (2017) has become increasingly popular in solv-
ing the computer vision problems, such as object detection Carion et al. (2020); Liu et al. (2021c);
Touvron et al. (2021), segmentation Wang et al. (2021a); Zheng et al. (2021); Cao et al. (2021b), in-
painting Peng et al. (2021); Wan et al. (2021), image generation Cao et al. (2021a); Lee et al. (2021);
Jiang et al. (2021); Esser et al. (2021), restoration Chen et al. (2021b); Wang et al. (2021b); Liang
et al. (2021); Zhu et al. (2022), image classification Wang et al. (2021a); Huang et al. (2021b); Ge
et al. (2021); Liu et al. (2021c); Wu et al. (2021); Dong et al. (2022); Liang et al. (2022); Chen et al.
(2022; 2021a), and 3D human texture estimation Xu & Loy (2021). Due to the powerful global in-
formation modeling ability, these Transformer-based methods achieve significant performance gain
compared with CNNs that focus on local information. In this paper, we successfully manage to take
advantages of Vision Transformers for motion transfer with a warping and generation two branch
architecture. The two branches employ cross-attention and convolution to enrich generation qual-
ity from both global and local viewpoints. Besides, we propose a novel mutual learning loss to
regularize two branches to learn from each other, which effectively increases photorealism.

3 PROPOSED METHOD

Fig. 2 shows an overview of MotionFormer. It consists of two Transformer encoders and one Trans-
former decoder. The two Transformer encoders first extract the features of source image Is and
target pose image Pt, respectively. Then the Transformer decoder builds the relationship between
Is and Pt with two-branch decoder blocks hierarchically. Finally, a fusion block predicts the recon-
structed person image Iout. The network is trained end-to-end with the proposed mutual learning
loss. We utilize the Cross-Shaped Window Self-Attention (CSWin Attention) Dong et al. (2022)
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Figure 2: Overview of our MotionFormer framework. We use two Transformer encoders to extract
features of the source image Is and the target pose image Pt. These two features are hierarchically
combined in one Transformer decoder where there are multiple decoder blocks. Finally, a fusion
block synthesizes the output image by blending the warped and generated images.

as our Attention mechanism in the encoder and decoder. The CSWin Attention calculates atten-
tion in the horizontal and vertical stripes in parallel to ensure the performance and efficiency. In
our method, we assume a fixed background and simultaneously estimate a foreground mask Mout

to merge an inpainted background with Iout in the testing phase. We introduce the Transformer
encoder and decoder in Sec. 3.1 and Sec. 3.2 respectively. The mutual learning loss is in Sec. 3.3.

3.1 TRANSFORMER ENCODER

The structure of the two Transformer encoders is the same. Each encoder consists of three stages
with different spatial size. Each stage has multiple encoder blocks and we adopt the CSwin Trans-
former Block Dong et al. (2022) as our encoder block. Our Transformer encoder captures hierar-
chical representations of the source image Is and the target pose image Pt. Si and Ti (i = 1, 2, 3)
denote the output of the i-th stage for Is and Pt, respectively, as shown in Fig. 2. We follow Dong
et al. (2022); Wu et al. (2021) to utilize a convolutional layer between different stages for token
reduction and channel increasing. We show more details of the encoder in the appendix.

3.2 TRANSFORMER DECODER

There are three stages in our Transformer decoder. The number of the decoder block in each stage
is 2, 4, and 12, respectively. We concatenate the output of each stage and the corresponding target
pose feature by skip-connections. The concatenated results are sent to the second and third stages.
Similar to the encoder, we set the convolutional layer between different stages to increase token
numbers and decrease channel dimensions.

3.2.1 DECODER BLOCK.

As shown in Fig 3, the decoder block has warping and generation branches. In each branch, there
is a cross-attention process and a convolutional layer to capture the global and local correspondence
respectively. Let X l

de denote the output of l-th decoder block (l > 1) or the output of precedent stage
(l = 1). For the first decoder stage, we set the T3 as input so the X1

de = T3. The decoder block first
extracts X̂ l

de from X l−1
de with a Multi-Head Self-Attention process. Then we feed X̂ l

de to the warping
branch and generation branch as Query (Q), and we use the feature of source encoder Si as Key (K)
and Value (V ) to calculate the cross-attention map similar to Vaswani et al. (2017) with Multi-Head
Cross-Attention process. The cross-attention map helps us build the global correspondence between
the target pose and the source image. Finally, we send the output of the Multi-Head Cross-Attention
to a convolutional layer to extract the local correspondence. The warping branch predicts a flow field
to deform the source feature conditioned on the target pose, which helps the generation of regions
that are visible in the source image. While for the invisible parts, the generation branch synthesizes
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Figure 3: Overview of our decoder and fusion blocks. There are warping and generation branches in
these two blocks. In decoder block, We build the global and local correspondence between source
image and target pose with Multi-Head Cross-Attention and CNN respectively. The fusion block
predict an mask to combine the output of two branches in pixel level.

novel content with the contextual information mined from the source feature. We combine the
advantages of these two branches in each decoder block to improve the generation quality.

Warping branch. The warping branch aims to generate a flow field to warp the source feature Si.
Specifically, the Multi-Head Cross-Attention outputs the feature with the produced Q, K, V , and
we feed the output to a convolution to inference the flow field. Inspired by recent approaches that
gradually refine the estimation of optical flow Hui et al. (2018); Han et al. (2019), we estimate a
residual flow to refine the estimation of the previous stage. Next, we warp the feature map Si ac-
cording to the flow field using bilinear interpolation. Formally, the whole process can be formulated
as follows:

Q = WQ(X̂l
de),K = WK(Si), V = WV (Si),

f l = Conv(Multi-Head Cross-Attention(Q,K, V ))),

f l = Up(fi−1) + f l, if l = 1 and i > 1,

Ol
w = Warp(Si, f

l),

(1)

where WQ,WK ,WV are the learnable projection heads in the self-attention module, the Ol
w de-

notes the output of the warping branch in l-th block, the Up is a ×2 nearest-neighbor upsampling,
and Warp denotes warping feature map Si according to flow f l using grid sampling Jaderberg et al.
(2015). For the i-th decoder stage, the flow predicted by the last decoder block is treated as fi and
then refined by the subsequent blocks.

Generation branch. The architecture of the generation branch is similar to the warping branch.
The attention outputs the feature with the produced Q, K, V , and then we feed the output to a
convolution to infer the final prediction Ol

g:

Q = WQ(X̂l
de),K = WK(Si), V = WV (Si),

Ol
g = Conv(Multi-Head Cross-Attention(Q,K, V ))).

(2)

where WQ,WK ,WV are the learnable projection heads in the self-attention module. The gen-
eration branch can generate novel content based on the global information of source feature Si.
Therefore, it is complementary to the warping branch when the flow field is inaccurate or there is no
explicit reference in the source feature. Finally, we concatenate the output of warping and genera-
tion branch and reduce the dimension with a convolutional layer followed by an MLP and a residual
connection:
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X̄l
de = Conv( Concat (Ol

w, O
l
g)),

Xl
de = MLP(LN(X̂l

de)) + X̄l
de,

(3)

where the X̄ l
de is the combination of warping and generation branches in the l-th decoder block.

3.2.2 FUSION BLOCK.

The fusion block takes the decoder output to predict the final result. The fusion block has a warping
branch and generation branch at the pixel level. The warping branch refines the last decoder flow
field f3 and estimates a final flow ff . And the generation branch synthesizes the RGB value If . At
the same time, a fusion mask Mf is predicted to merge the output of these two branches:

ff = Conv(Ode) + Up(f3),
Mf = Sigmoid(Conv(Ode)),

If = Tanh(Conv(Ode)),

Iout = Mf ⊙ Warp(Is, ff ) + (1−Mf )⊙ If ,

(4)

where the Ode is the output of decoder, ⊙ is the element-wise multiplication, and Iout is the final
prediction.

3.3 MUTUAL LEARNING LOSS

The generation and warping branches have their own advantages as mentioned above. Intuitively,
we concatenate the output of these two branches followed by a convolution layer and an MLP as
shown in Fig. 2, but we empirically find the convolution layer and MLP cannot combine these
advantages well (see Sec. 5). To address this limitation and ensure the results have both advantages
of these two branches, we propose a novel mutual learning loss to enforce these two branches to
learn the advantages of each other. Specifically, the mutual learning loss enables these two branches
to supervise each other within each decoder block, let Ok

w, Ok
g ∈ R(H×W )×C denote the reshaped

outputs of the last warping and generation branch at the k-th decoder stage (see Eqs. (1) and (2) for
their definition). If we calculate the similarity between the feature vector Ok

w,i ∈ RC at the spatial
location i of Ok

w and all feature vectors Ok
g,j ∈ RC (j = 1, 2, . . . ,HW ) in Ok

g , we argue that the
most similar vector to Ok

w,i should be Ok
g,i, which is at the same position in Ok

g . In another word, we
would like to enforce i = argmaxj Cos(Ok

w,i, O
k
g,j), where Cos(·, ·) is the cosine similarity. This

is achieved by the following mutual learning loss:

Lmut =
∑
k

HW∑
i=1

||SoftArgMax
j

(Cos(Ok
w,i, O

k
g,j))− i||1, (5)

where the SoftArgMax is a differentiable version of argmax that returns the spatial location of the
maximum value. The mutual learning loss constrain the two branches to have high correlations at
the same location, enhancing the complementariness of warping and generation.

In addition to the perceptual diversity loss, we follow the Ren et al. (2020) and Huang et al. (2021a)
utilize the reconstruction loss Johnson et al. (2016), feature matching loss Wang et al. (2018c), hinge
adversarial loss Lim & Ye (2017), style loss Gatys et al. (2015), total variation loss Johnson et al.
(2016) and mask loss Huang et al. (2021a) to optimize our network. Details are in appendix.

4 EXPERIMENTS

Datasets. We use the solo dance YouTube videos collected by Huang et al. (2021a) and iPer Liu et al.
(2019b) datasets. These videos contain nearly static backgrounds and subjects that vary in gender,
body shape, hairstyle, and clothes. All the frames are center cropped and resized to 256× 256. We
train a separate model on each dataset to fairly compare with other methods.

Implementation details. We use OpenPose Cao et al. (2017) to detect 25 body joints for each frame.
These joints are then connected to create a target pose stick image Pt, which has 26 channels and
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(a) Source Image (b) Target Pose (c) LWG (d) GTM (e) MRAA (f) Ours (g) Ground Truth

Figure 4: Visual comparison of state-of-the-art approaches and our method on YouTube videos
dataset. Our proposed framework generates images with the highest visual quality.

each channel indicating one stick of the body. We use Mgt to separate foreground person image Igt
from the original frame. Our model is optimized using Adam optimizer with β1 = 0.0, β2 = 0.99,
and initial learning rate of 10−4. We utilize the TTUR strategy Heusel et al. (2017) to train our
model. During the inference phase, we select one image from one video as the source image. The
target background is generated by inpainting the source image background with LAMA Suvorov
et al. (2021). When the target person has different body shapes (e.g., heights, limb lengths) or the
target person and source person are at different distances from the camera, we use the strategy in
Chan et al. (2019) to normalize the pose of the target human.

Baselines. We compare MotionFormer with the state-of-the-art human motion transfer approaches:
LWG Liu et al. (2019b), GTM Huang et al. (2021a), MRAA Siarohin et al. (2021) and DIST Ren
et al. (2020). For LWG, we test it on iPer dataset with the released pre-trained model, and we train
LWG on YouTube videos with its source code. At test time, we fine-tune LWG on the source image
as official implementation (fine-tuning is called “personalize” in the source code). For GTM, we
utilize the pre-trained model on the YouTube videos dataset provided by the authors and retrain the
model on iPer with the source code. As GTM supports testing with multiple source images, we
use 20 frames in the source video and fine-tune the pre-trained network as described in the original
paper Huang et al. (2021a). For MRAA, we use the source code provided by the authors to train
the model. For DIST Ren et al. (2020), we compare with it using the pre-trained model on iPer
dataset. For synthesizing a 1,000 frame video, the average per frame time costs of MRAA, LWG,
GTM, DIST, and our method are 0.021s, 1.242s, 1.773s, 0.088s, and 0.94s, respectively. Meanwhile,
MotionFormer does not require an online fine-tuning, while LWG and GTM do.

4.1 QUALITATIVE COMPARISONS

Qualitatively comparisons are given in Fig. 4 and Fig. 5. Although LWG Liu et al. (2019b) can main-
tain the overall shape of the human body, it fails to reconstruct complicated human parts (e.g., long
hair and shoes in Fig. 4) of the source person and synthesis image with a large body motion (e.g.,
squat in the red box of Fig. 4), which leads to visual artifacts and missing details. This is because
LWG relies on the 3D mesh predicted by HMR Kanazawa et al. (2018), which is unable to model de-
tailed shape information. In contrast, GTM Huang et al. (2021a) reconstructs better the body shape
as it uses multiple inputs to optimize personalized geometry and texture. However, the geometry
cannot handle the correspondence between the source image and the target pose. The synthesized
texture also presents severe artifacts, especially for invisible regions in the source images. As an un-
supervised method, MRAA Siarohin et al. (2021) implicitly models the relationship between source
and target images. Without any prior information about the human body, MRAA generates unreal-
istic human images. DIST Huang et al. (2021a) does not model correct visual correspondence (e.g.,
the coat buttons are missing in the last example) and suffers from overfitting (e.g., the coat color be-
comes dark blue in the third example). Compared to existing methods, MotionFormer renders more
realistic and natural images by effectively modeling long-range correspondence and local details.
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(a) Source Image (b) Target Pose (c) LWG (d) GTM (f) Ours (g) Ground Truth (e) DIST 

Figure 5: Visual comparison of state-of-the-art approaches and our method on iPer dataset. Our
proposed framework generates images with the highest visual quality.

Method PSNR↑ SSIM↑ LPIPS↓ FID↓ User study↓
LWG Liu et al. (2019b) 18.94 0.686 0.175 85.06 97.61%
GTM Huang et al. (2021a) 21.50 0.819 0.137 77.69 76.19%
MRAA Siarohin et al. (2021) 18.95 0.674 0.234 160.97 100%
Ours 23.50 0.885 0.073 65.03 -

Table 1: Quantitative comparisons of state-of-the-art methods on YouTube videos dataset. User
study denotes the preference rate of our method against the competing methods. Chance is 50%.

4.2 QUANTITATIVE COMPARISONS

We use SSIM Wang et al. (2004), PSNR, FID Heusel et al. (2017), and LPIPS Zhang et al. (2018)
as numerical evaluation metrics. The quantitative results are reported in Table 1 and Table 2. We
observe that our method outperforms existing methods by large margins across all metrics. Addi-
tionally, we perform a human subjective evaluation. We generate the motion transfer videos of these
different methods by randomly selecting 3-second video clips in the test set. On each trial, a vol-
unteer is given compared results on the same video clip and is then asked to select the one with the
highest generation quality. We tally the votes and show the statistics in the last column of Table 1
and Table 2. We can find that our method is favored in most of the trials.

5 ABLATION STUDY

Attention Mechanism. To evaluate the effects of the cross-attention module, we delete the cross-
attention in both the warping and generation branch. Instead, we concatenate the source feature Si

and Query directly in the Transformer decoder, followed by a convolution layer constructing their
local relationship (this experiment is named Ours w/o Attention). As shown in Fig. 6(c), without
modeling the long-range relationship between the source and target, Ours w/o Attention achieves
worse results (e.g., distorted skirt, limbs, and shoes). The numerical comparison shown in Table 3
is consistent with the visual observation.

Generation and warping branches. We show the contributions of the generation branch and warp-
ing branch in the decoder block by removing them individually (i.e., Ours w/o warping, Ours w/o
generation). As shown in Fig. 6(d), without the warping branch, the generated clothing contains
unnatural green and black regions in the man’s T-shirt and woman’s skirt, respectively. This phe-
nomenon reflects that a single generation branch is prone to over-fitting. On the other hand, the
warping branch can avoid over-fitting as shown in Fig. 6(e). However, the results still lack realism
as the warping branch cannot generate novel appearances which are invisible in the source image
(e.g., the shoes of the man and the hair of the woman are incomplete). Our full model combines
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Method PSNR↑ SSIM↑ LPIPS↓ FID↓ User study↓
LWG Liu et al. (2019b) 23.93 0.843 0.089 40.41 58.90%
GTM Huang et al. (2021a) 23.94 0.840 0.120 60.26 75.00%
DIST Ren et al. (2020) 24.19 0.852 0.071 30.34 62.50%
Ours 24.72 0.856 0.069 27.25 -

Table 2: Quantitative comparisons of state-of-the-art methods on iPer videos dataset. User study
denotes the preference rate of our method against the competing methods. Chance is 50%.

(a) Source Image (b) Target Pose (c) w/o Attention (d) w/o warping (f) w/o mutual (g) Ours(e) w/o generation

Figure 6: Visual ablation study on YouTube videos dataset. (a) The source image. (b) The target
pose. (c) Our method without Attention. (d) Our method without the warping branch. (e) Our
method without the generation branch. (f) Our method without the mutual learning loss. (g) Our
full method. Our full model can generate realistic appearance and correct body pose.

the advantages of these two branches and produces better results in Fig. 6(g). We also report the
numerical results in Table 3, in which our full method achieves the best performance.

Mutual learning loss. We analyze the importance of mutual learning loss (Eq. (5)) by removing
it during training (Ours w/o mutual). Fig. 6(f) shows the prediction combining the advantages of
both warping and generation branches without using the mutual learning loss, which still produces
noticeable visual artifacts. The proposed mutual learning loss aligns the output features from these
two branches and improves the performance. The numerical evaluation in Table 3 also indicates
that mutual learning loss improves the generated image quality. The other loss terms have been
demonstrated effective in Balakrishnan et al. (2018); Wang et al. (2018b); Liu et al. (2019b) with
sufficient studies, so we do not include them in the ablation studies.

Method PSNR↑ SSIM↑ LPIPS↓ FID↓
Ours w/o attention 20.95 0.842 0.194 81.10
Ours w/o warping 22.81 0.873 0.083 73.11
Ours w/o generation 22.39 0.872 0.100 70.21
Ours w/o mutual 22.73 0.876 0.078 68.70
Ours 23.50 0.885 0.073 65.03

Table 3: Ablation analysis of our proposed method on YouTube dataset. Our Full method achieves
results that are superior to all other variants.

6 CONCLUDING REMARKS

In this paper, we introduce MotionFormer, a Transformers-based framework for realistic human
motion transfer. MotionFormer captures the global and local relationship between the source ap-
pearance and target pose with carefully designed Transformer-based decoder blocks, synthesizing
promising results. At the core of each block lies a warping branch to deform the source feature
and a generation branch to synthesize novel content. By minimizing a mutual learning loss, these
two branches supervise each other to learn better representations and improve generation quality.
Experiments on a dancing video dataset verify the effectiveness of MotionFormer.

9



Published as a conference paper at ICLR 2023

ETHIC DISCUSSIONS

This work introduces a motion transfer method that can transfer motions from one subject to another.
It may raise the potential ethical concern that malicious actions can be transferred to anyone (e.g.,
celebrities). To prevent action retargeting on celebrities, we may insert a watermark to the human
motion videos. The watermark contains the original motion source, which may differentiate the
celebrity movement. Meanwhile, we can construct a celebrity set. We first conduct face recognition
on the source person; if that person falls into this set, we will not perform human motion transfer.

REPRODUCIBILITY STATEMENT

The MotionFormer is trained for 10 epochs, and the learning rate decays linearly after the 5-th
epoch. We provide the pseudo-code of the training process in Algorithm 1. We denote the Trans-
former encoder of the source images as Ens, the Transformer encoder of the target pose as Ent, the
Transformer decoder as De, and the discriminator as D. We set the batchsize as 4 and stepmax is
obtained by dividing the image numbers of dataset by batchsize. Meanwhile, we show the details of
the model architecture and loss function in the appendix, this information is useful for the reproduce
process.

Algorithm 1 Training Process
Require: A set of source images Is, target pose images Pt, and person mask images Mgt.

for Epoch = 1, 2, 3, ..., 10 do
for Step = 1, 2, 3, ..., stepmax do

Sample a batch of source images Is, target pose Pt, and person mask Mgt.
Get S1, S2, S3 = Ens(Is), T1, T2, T3 = Ent(Pt);
Get Iout,Mout, ff = De([S1, S2, S3], [T1, T2, T3]);
Calculate the adversarial loss in Equation (6) in the appendix;
Update D;
Calculate the loss in Equation (9) in the appendix;
Update De, Ens, Ent;

end for
if Epoch ≥ 5 then

Update learning rate;
end if

end for

10
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