
Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

Ayman Chaouki 1 Jesse Read 1 Albert Bifet 2 3

Abstract
Decision Tree (DT) Learning is a fundamental
problem in Interpretable Machine Learning, yet it
poses a formidable optimisation challenge. Prac-
tical algorithms have recently emerged, primarily
leveraging Dynamic Programming and Branch &
Bound. However, most of these approaches rely
on a Depth-First-Search strategy, which is ineffi-
cient when searching for DTs at high depths and
requires the definition of a maximum depth hyper-
parameter. Best-First-Search was also employed
by other methods to circumvent these issues. The
downside of this strategy is its higher memory
consumption, as such, it has to be designed in a
fully efficient manner that takes full advantage of
the problem’s structure. We formulate the prob-
lem within an AND/OR graph search framework
and we solve it with a novel AO*-type algorithm
called BRANCHES. We prove both optimality and
complexity guarantees for BRANCHES and we
show that it is more efficient than the state of
the art theoretically and on a variety of experi-
ments. Furthermore, BRANCHES supports non-
binary features unlike the other methods, we show
that this property can further induce larger gains
in computational efficiency.

1. Introduction
Black-box models are ill-suited for contexts where decisions
carry substantial ramifications. In healthcare for example,
misdiagnoses can delay crucial treatments and lead to severe
outcomes. Likewise, in the criminal justice system, black-
box models can obscure biases and result in discriminatory
rulings. Such risks highlight the necessity of adopting inter-
pretable models in sensitive domains.

Decision Trees (DTs) are highly interpretable due to their

1LIX, Ecole Polytechnique, IP Paris 2AI Institute, University
of Waikato 3LTCI, Télécom Paris, IP Paris. Correspondence to:
Ayman Chaouki <chaoukiayman2@gmail.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

simple decision rules (splits). However, this interpretability
weakens as the number of splits increases, which makes the
joint optimisation of accuracy and sparsity (minimising the
number of splits) a fundamental problem in Interpretable
Machine Learning. We refer to this problem as the sparsity
problem. This optimisation task is particularly difficult due
to its NP-completeness (Hyafil & Rivest, 1976). Conse-
quently, greedy approaches, such as C4.5 (Quinlan, 2014)
and CART (Breiman et al., 1984), have been historically
favoured. While these methods are fast and scalable, their
greedy nature often yields suboptimal and overly complex
DTs.

This issue spurred a large research effort into investigating
alternatives, mainly focusing on Mathematical Program-
ming (Bennett, 1992; 1994; Bennett & Blue, 1996; Bessiere
et al., 2009; Norouzi et al., 2015; Bertsimas & Dunn, 2017;
Narodytska et al., 2018; Verwer & Zhang, 2019; Hu et al.,
2020; Blanquero et al., 2021; Günlük et al., 2021). However,
the number of variables in these Mathematical Programs
depends strongly on the dataset size and thus induces poor
scalability. Moreover, these methods often fix the DT struc-
ture and only optimise the internal splits and leaf predictions,
overlooking the sparsity portion of the problem.

Recently, Dynamic Programming (DP) (Bellman & Dreyfus,
2015) and Branch & Bound (B&B) (Lawler & Wood, 1966)
led to breakthroughs in runtimes, with most approaches
employing a Depth-First-Search (DFS) strategy (Nijssen &
Fromont, 2007; 2010; Aglin et al., 2020; Demirović et al.,
2022; van der Linden et al., 2023). While DFS is appeal-
ing from a storage economy perspective, its uninformed
nature makes it inefficient for large problems (Pearl, 1984,
p.36). On the other hand, informed strategies were also used
through Best-First-Search (BFS) (Hu et al., 2019; Lin et al.,
2020), albeit in a sub-efficient manner that does not take full
advantage of the problem’s AND/OR structure.

Montanari et al. (1975) showed that DP problems can be
formulated within an AND/OR graph search framework, in
which they can be solved efficiently with powerful heuristic
search algorithms (Pearl, 1984). We follow this approach
because the sparsity problem can be framed within DP,
then upon defining an adequate heuristic, which we call
the Purification Bound, we solve the AND/OR graph search
problem with the celebrated AO* approach (Nilsson, 2014;

1

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

Martelli & Montanari, 1978). The induced algorithm, called
BRANCHES, is guaranteed to return an optimal solution
when it terminates. In addition, BRANCHES also satisfies
complexity guarantees in the form of an upper bound on
the number of evaluated branches before termination. To
the best of our knowledge, such analysis was only previ-
ously conducted in (Hu et al., 2019, Theorem E.2). We
show numerically that BRANCHES’ complexity bound is
significantly smaller than the bound in (Hu et al., 2019,
Theorem E.2). Empirically, BRANCHES always finds an op-
timal solution in substantially fewer iterations than the state
of the art, and despite its current Python implementation,
it also displays better runtimes than its C++ competitors.
Furthermore, upon reaching timeout, some methods can still
propose a solution, albeit with no quality guarantees. This
property is called the anytime behaviour and it is satisfied
by BRANCHES. On this front, our experiments show that
BRANCHES proposes better solutions than the state of the
art.

2. Related Work
In this section, we mainly survey the proposed Depth First
Search (DFS) and Best First Search (BFS) algorithms.

DFS: Nijssen & Fromont (2007; 2010) formulate a search
space, called the lattice of itemsets, from which DTs can be
mined. This powerful idea induced the DL8 algorithm and
is at the basis of many subsequent works. DL8 explores the
lattice in a DFS fashion seeking an optimal DT that satisfies
a certain set of constraints. Moreover, DL8 exhibits enough
flexibility to solve the sparsity problem, as evident by the lex-
icographical objective ArgminT {error (T) , size (T)} con-
sidered in (Nijssen & Fromont, 2010, Section 2.3). However,
the immense size of the lattice, which grows exponentially
with the number of features, renders DL8 impractical on
many real-world applications. A decade later, Aglin et al.
(2020) improved DL8 with a B&B component that prunes
the lattice based on the current best found solution. The
induced DL8.5 algorithm is faster than DL8 on a broader
range of applications. However, it only considers constraints
on the maximum depth and minimum number of data per
leaf, prohibiting it from solving the sparsity problem. In
a subsequent work, Demirović et al. (2022) improved the
computational complexity of DL8.5 through the use of a
specialised technique for handling DTs of depth 2, which
resulted in the MurTree algorithm. Recently, MURTREE
was generalised by van der Linden et al. (2023) to handling
a wider range of objectives within the STREED framework.

BFS: Hu et al. (2019) introduce OSDT, which considers
the objective ArgminT {error (T) + λleaves (T)} where
0 < λ < 1 is a soft penalty on the number of leaves. A sim-
ilar objective has been considered in prior works, e.g. (Bert-

simas & Dunn, 2017). Unlike the DFS methods, OSDT
employs analytical bounds and a priority queue to prioritise
regions with better bounds, resulting in a more aggressive
pruning of the search space. On the other hand, OSDT oper-
ates on the space of DTs instead of the lattice of itemsets,
which greatly slows it down. To alleviate this issue, Lin et al.
(2020) developed GOSDT, a BFS algorithm operating on
the lattice of itemsets. GOSDT can be considered the state
of the art for the sparsity problem, its DP is as efficient as
the DFS methods while its B&B prunes the lattice more ef-
ficiently. Furthermore, GOSDT generalises OSDT to other
objectives including weighted accuracy, balanced accuracy,
F-score, AUC and partial area under the ROC convex hull.

DFS vs BFS: (Pearl, 1984, Chapter 2) provides an excel-
lent discussion on the differences between DFS and BFS,
with a brief summary in (Pearl, 1984, Section 2.5). The
main advantage of DFS is its storage economy. However,
it necessitates a maximum depth parameter to avoid long
searches in one region of the search space. Moreover, the
uninformed nature of DFS makes it inefficient for large
problems. On the other hand, the informed nature of BFS
allows it to find solutions more quickly than DFS without
the need for a maximum depth parameter. Nevertheless,
this judicious paradigm comes at the cost of high memory
consumption, hence the necessity to devise BFS algorithms
that find an optimal solution as quickly as possible.

To achieve this, we frame the DP problem of sparsity as
an AND/OR graph search (Martelli & Montanari, 1978).
(Nilsson, 2014, Section 3.1) and (Pearl, 1984, Section 1.2.4)
provide detailed overviews on AND/OR graphs. In this con-
text, we can apply the popular and efficient AO* algorithm,
which was introduced in (Martelli & Montanari, 1978) and
(Nilsson, 2014, Section 3.2). We note that Martelli & Monta-
nari (1978) employed AO* (with the early name HS) to seek-
ing optimal DTs, but in a cost-sensitivity context (Lomax &
Vadera, 2013) that is distinct from the sparsity problem. An-
other difference is that the authors sought DTs that perfectly
classify a dataset while we seek DTs on the pareto front
jointly maximising accuracy and minimising the number of
splits. Verhaeghe et al. (2020) also employ an AND/OR
formulation, but within a Constraint-Programming (CP)
paradigm. The induced CP algorithm does not solve the
sparsity problem but rather a similar problem to DL8.5
where the maximum DT depth is constrained. In an empiri-
cal comparison, Aglin et al. (2020) thoroughly showed that
DL8.5 outperforms CP.

3. Problem Formulation
We consider classification problems with categorical fea-
tures X =

(
X(1), . . . , X(q)

)
and class Y ∈ {1, . . . ,K}:

∀i ∈ {1, . . . q} : X(i) ∈ {1, . . . , Ci}, Ci ≥ 2

2

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

Figure 1. Consider a feature space with five binary features X(1), X(2), X(3), X(4), X(5) ∈ {0, 1}. The figure provides an example of a
sub-DT T = {l1, l3, l4} rooted in l that stems from splitting branch l with respect to feature X(5) and splitting branch l2 with respect
to feature X(2), the red perimeter emphasises the fact that T is rooted in l. Here S (T) = 2, l = I{X(3) = 1} ∧ I{X(1) = 0}, l1 =
l ∧ I{X(5) = 0}, l2 = l ∧ I{X(5) = 1}, l3 = l2 ∧ I{X(2) = 0}, l4 = l2 ∧ I{X(2) = 1}.

where q ≥ 2 and K ≥ 2. We are provided with a dataset
D = {(Xm, Ym)}nm=1 of n ≥ 1 examples. In the following
sections, we define the notions of branches and sub-DTs
that are key to our formulation.

3.1. Branches

A branch l is a conjunction of clauses on the features of the
following form (where I is the indicator function):

l =

S(l)∧
v=1

I
{
X(iv) = jv

}
such that ∀1 ≤ v ≤ S (l) : 1 ≤ iv ≤ q, 1 ≤ jv ≤ Civ and:

∀v, v′ ∈ {1, . . .S (l)} : v ̸= v′ =⇒ iv ̸= iv′ (1)

This condition ensures that no feature is used in more than
one clause within l. We refer to these clauses as rules or
splits. S (l) is the number of splits in l.

For any datum X =
(
X(1), . . . , X(q)

)
, the valuation of l

for X is denoted l (X) ∈ {0, 1} and defined as follows:

l (X) = 1 ⇐⇒
S(l)∧
v=1

I
{
X(iv) = jv

}
= 1

When l (X) = 1, we say that X is in l or that l contains X .
The branch containing all possible data is called the root and
is denoted Ω. Since the valuation of l for any datum remains
invariant when reordering the splits, we represent l uniquely
by ordering its splits from the smallest feature index to the
highest, i.e. we impose 1 ≤ i1 < . . . < iS(l) ≤ q. This
unique representation is at the core of our memoisation.

In the following, we define the notion of splitting a branch.
Let i ∈ {1, . . . , q} \ {i1, . . . , iS(l)} be an unused feature
in the splits of l. We define the children of l that stem
from splitting l with respect to i as the set Ch (l, i) =
{l1, . . . , lCi

} where:

∀j ∈ {1, . . . , Ci} : lj = l ∧ I
{
X(i) = j

}
(2)

The dataset D = {(Xm, Ym)}nm=1 provides an empirical
distribution of the data. The probability that a datum is in l
is as follows:

P [l (X) = 1] =
n (l)

n

where n (l) =
∑n

m=1 l (Xm) is the number of data in l and
n is the total number of data. Likewise, we want to define
the probability that a datum is in l and correctly classified.
For this purpose, we define the predicted class in l as:

k∗ (l) = Argmax1≤k≤K{nk (l)}

where nk (l) =
∑n

m=1 l (Xm) I{Ym = k} is the number
of data in l that are of class k. In other words, k∗ (l) is the
majority class in l. Then the probability that a datum is in l
and correctly classified is:

H (l) = P [l (X) = 1, k∗ (l) = Y] =
nk∗(l) (l)

n
(3)

3.2. Sub-DTs

Let l be a branch, a sub-DT rooted in l is a collection of
branches T =

{
l1, . . . , l|T |

}
that stems from successive

splits starting from from l, we denote S (T) the number of
these splits. Intuitively, S (T) can be see as the number
of internal nodes in T , and l1, . . . , l|T | as the leaves of T .

3

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

Figure 1 provides an example of a sub-DT. T partitions l in
the following sense:{

l =
∨|T |

u=1 lu

∀u, u′ ∈ {1, . . . , |T |} : u ̸= u′ =⇒ lu ∧ lu′ = 0

For any datum X in l, T predicts the majority class of the
branch lu ∈ T containing X:

T (X) =

|T |∑
u=1

lu (X) k∗ (lu) ∈ {1, . . . ,K} (4)

Now we can define the probability that a datum is in l and
correctly classified by T :

H (T) = P [l (X) = 1, T (X) = Y]

=

|T |∑
u=1

P [lu (X) = 1, k∗ (lu) = Y] =

|T |∑
u=1

H (lu)

The additivity property is due to {l1, . . . , l|T |} forming a
partition of l, then the result stems from the definitions (4)
and (3).

We define a DT as a sub-DT that is rooted in the root Ω. Let
T be a DT, since Ω (X) = 1 for any datum X then:

H (T) = P [Ω (X) = 1, T (X) = Y] = P [T (X) = Y]

which is the accuracy of T . To solve the sparsity problem,
we seek the DT T ∗ maximising the following objective:

Hλ (T) = −λS (T) +H (T) (5)

where 0 < λ < 1 is a penalty parameter penalising DTs
with a large number of splits. This objective is employed
by CART during the pruning phase, it was also considered
by Bertsimas & Dunn (2017) and recently by Chaouki et al.
(2024). Hu et al. (2019) and Lin et al. (2020) use a slightly
different version, where the total number of leaves is pe-
nalised instead. In a setting with binary features, the number
of leaves of a DT is always equal to the number of splits
plus 1 and the two objectives are equivalent in this case.

3.3. AND/OR Graph Representation

To formulate our AND/OR graph, we define the following
state space model (S, T ,A, F, r) where S is the set of states,
T ⊂ S the set of terminal (or goal) states, A the set of
actions with A (l) the set of permissible actions at a non-
terminal state l ∈ S \ T , F : S ×A 7→ P (S) the transition
function (withP (S) the power set of S) and r : S×A 7→ R
the reward function.

States S: Our state space is the set of all branches along
with the set of all terminal states T , which we define below.
The root Ω is always our initial state.

Terminal states: For every branch l we assign a unique
terminal state l ∈ T , which signals that we should not
consider any further splits (end of search).

Actions A and transitions F : Consider a non-terminal
state (a branch) l =

∧S(l)
v=1 I{X(iv) = jv} ∈ S \ T , there

are two types of actions in A (l):

• The terminal action a, which transitions l into its cor-
responding terminal state l ∈ T . Thus F (l, a) = {l}.

• Split actions, which is the set of all unused features
{1, . . . , q}\{i1, . . . , iS(l)} by l. Let i be a split action,
taking i transitions l to the set of children Ch (l, i),
defined in (2). Therefore F (l, i) = Ch (l, i).

Thus A (l) = {a} ∪ {1, . . . , q} \ {i1, . . . , iS(l)}. When
S (l) = q, then A (l) = {a} and we can only transition to l.

Reward function r: Let l ∈ S \ T be a non-terminal state
and a ∈ A (l), we define the reward r (l, a) as follows:

• If a is a split action, then r (l, a) = −λ regardless of l.
λ is the penalty parameter defined in Equation (5).

• If a = a, then r (l, a) = H (l) as per Equation (3).

We represent our state space model as an AND/OR graph
following the hypergraph convention in (Nilsson, 2014, Sec-
tion 3.1). The nodes of the hypergraph represent states and
its connectors represent actions. A connector is a generali-
sation of the notion of edge, it connects a parent node to a
set of successor nodes. In our formulation, a node (state) l
has |A (l) | outgoing connectors, each corresponding to an
action. The connector of action a ∈ A (l) links node l to the
set of successor nodes F (l, a) and has a weight r (l, a). See
Figure 2 for an example. In the following, we introduce the
notion of policy and we transform the problem into seeking
an optimal policy.

A policy π maps each non-terminal state l ∈ S \ T to an
action π (l) ∈ A (l). We define the trajectory of π from l as
the sequence

(
Tπ
l,t

)
t≥0

where Tπ
l,0 = {l} and for all t ≥ 0:

Tπ
l,t+1 =

⋃
lu∈Tπ

l,t\T

F (lu, π (lu))
⋃

lu∈Tπ
l,t∩T

{lu}, t ≥ 0

The term
⋃

lu∈Tπ
l,t∩T {lu} is the set of terminal states in

Tπ
l,t while the term

⋃
lu∈Tπ

l,t\T
F (lu, π (lu)) is the set of

induced states from taking the actions dictated by policy
π in each non-terminal state in Tπ

l,t. As such, the trajec-

tory
(
Tπ
l,t

)
t≥0

stems from following π from l by applying

it, each time, at the non-terminal states and retaining the
terminal states.

4

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

Connector for split action

Connector for split action

Connector for split action

Connector for terminal action

Figure 2. AND/OR graph for a classification problem with three binary features X(1), X(2), X(3). To make the notation lighter, we
represent any branch l =

∧S(l)
v=1 I

{
X(iv) = jv

}
with i1 : j1, . . . , iS(l) : jS(l), for example 1 : 0, 2 : 1 represents the branch

I{X(1) = 0} ∧ I{X(2) = 1}. We colour in red the actions taken by the policy: π (Ω) = 1, π (1 : 0) = π (1 : 1) = 2, π (1 : 0, 2 : 0) =
π (1 : 0, 2 : 1) = π (1 : 1, 2 : 0) = π (1 : 1, 2 : 1) = a, which also depicts the DT Tπ of π. Note that, although the curved connector
associated with the terminal action a connects to the same node, it transitions to a terminal state from which no action can be taken. We
represent it like this to avoid overloading the figure with additional nodes corresponding to the terminal states.

Proposition 3.1. Let π be a policy and l ∈ S \ T , then
there exists a minimum τπl ≥ 1 such that for any t ≥ τπl ,
Tπ
l,t =

{
l1, . . . , l|Tτπ

l
|
}

is composed of terminal states only.

Proposition 3.1 shows that for any branch l ∈ S \ T , any
policy π arrives at a final set of states

{
l1, . . . , l|Tτπ

l
|
}

, in

which case we define Tπ
l =

{
l1, . . . , l|Tτπ

l
|
}

as the sub-DT
of π rooted in l. Tπ

l is indeed a sub-DT rooted in l by the
definition in Section 3.2 because it stems from successive
splits from l. For the root Ω, we simplify the notation
Tπ
Ω ≡ Tπ and call Tπ the DT of π. Figure 2 provides an

example of the DT of a policy. This definition allows us to
evaluate policies as follows: we define the value of a policy
π from a non-terminal state l ∈ S \ T with:

Vπ (l) =

τπ
l −1∑
t=0

∑
lu∈Tπ

l,t\T

r (lu, π (lu)) (6)

Vπ (l) is the cumulative reward incurred by following policy
π from l until we end up in the sub-DT Tπ

l . In the example
of Figure 2, Vπ (Ω) is the sum over all the weights of the
red connectors. Policies are evaluated and compared with
respect to their value from Ω, an optimal policy being π∗ ∈
ArgmaxπVπ (Ω). In the following, we justify why seeking
π∗ is equivalent to seeking T ∗ = ArgmaxTHλ (T).

Proposition 3.2. Let π be a policy and l ∈ S \ T a non-
terminal state, then Vπ (l) satisfies the following:

Vπ (l) = Hλ (T
π
l) = −λS (Tπ

l) +H (Tπ
l)

Moreover, the optimal DT T ∗ is the DT of an optimal policy
π∗, in other words T ∗ = Tπ∗

.

Proposition 3.2 implies that we can seek π∗ and then deduce
T ∗ by following π∗ from Ω. In the terminology of (Nilsson,
2014, Section 3.1), T ∗ is an optimal solution graph. Our
task can be transcribed as seeking a policy that induces an
optimal solution graph. This can be achieved with AO*.

4. The Algorithm: BRANCHES

To describe BRANCHES, we first derive the Bellman opti-
mality equation satisfied by the problem in Proposition 4.1.
To do this conveniently, we introduce the state-action values.
For any policy π, branch l ∈ S \ T and action a ∈ A (l),
the state-action value Qπ (l, a) is the cumulative reward of
taking action a first and then following π:

Qπ (l, a) = r (l, a) +
∑

lu∈F (l,a)\T

Vπ (lu) (7)

We abbreviate the notation for all quantities that are related
to π∗ with T ∗

l,t ≡ Tπ∗

l,t , τ
∗
l ≡ τπ

∗

l ,V∗ ≡ Vπ∗
,Q∗ ≡ Qπ∗

.

Proposition 4.1 (Bellman Optimality Equations). Let π∗ be
an optimal policy, i.e. π∗ ∈ ArgmaxπVπ (Ω) and consider
the set of non-terminal states in its trajectory from Ω:

S∗ =

τ∗
Ω−1⋃
t=0

T ∗
Ω,t \ T

Now consider a policy π and suppose that for all l ∈ S∗:

Vπ (l) = max
a∈A(l)

Qπ (l, a) (8)

Then π is optimal and we also have:

π (l) = Argmaxa∈A(l)Qπ (l, a) (9)

5

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

Note that Proposition 4.1 establishes that any optimal policy
π∗ ∈ ArgmaxπVπ (Ω) only has to satisfy the Bellman
optimality equations (8) and (9) for a subset of few relevant
states S∗ regardless of the remaining states of S . As such, it
suffices to seek π∗ as a partial policy defined on these states,
without the need to define it elsewhere. This implies that an
efficient search strategy should focus the search effort on
the relevant part of the state space to find T ∗ quickly, this is
exactly the purpose of AO* and its advantage over Dynamic
Programming (Hansen & Zilberstein, 2001, p.2, 11, 12).

To adopt an AO* approach, we need to define adequate
heuristic estimates in the form of upper bounds V (l) and
Q (l, a) on V∗ (l) and Q∗ (l, a) respectively.

4.1. Heuristic estimates V (l) and Q (l, a)

Let l ∈ S \ T be a non-terminal state. For the terminal
action a, according to definition (7), we have direct access
to Q∗ (l, a) = r (l, a) = H (l) and thus we can define
Q (l, a) straightforwardly using Equation (3) as follows:

Q (l, a) = Q∗ (l, a) = r (l, a) = H (l) =
nk∗(l) (l)

n
(10)

Now consider a split action a ∈ A (l) \ {a} and let us
defineQ (l, a) and V (l). The definition (7) and the Bellman
equation (8) suggest the following recursive definition:

Q (l, a) = −λ+
∑

lu∈F (l,a)

V (lu) (11)

V (l) = max
a∈A(l)

Q (l, a) (12)

We note that Q (l, a) in Equation (11) can only be calcu-
lated if the heuristic estimates V (lu) are available. Thus
to complete this recursive definition, we need to initialise
V (lu) adequately.

Proposition 4.2 (Purification Bound). Let l ∈ S \ T , we
define the Purification Bound as follows:

If A (l) \ {a} ≠ ∅:

V (l) = max{H (l) ,−λ+ P [l (X) = 1]}

= max
{nk∗(l) (l)

n
,−λ+

n (l)

n

}
(13)

Otherwise:

V (l) = V∗ (l) = H (l) =
nk∗(l) (l)

n
(14)

The bounds V (l) are initialised with (13) or (14), then they
are recursively backpropagated to the ancestors of l in the
AND/OR graph through (11) and (12). The resulting heuris-
tic estimatesQ (l, a) and V (l) are upper bounds on the true
optimal values Q∗ (l, a) and V∗ (l) respectively.

Equation (14) is straightforward. Indeed, A (l) \ {a} = ∅
means that no split action can be taken at l because we have
already exhausted them all, which happens when S (l) = q,
i.e. when l employs all the features in its splits. In this case,
Equation (8) implies that V∗ (l) = Q∗ (l, a) = H (l). On
the other hand, whenA (l)\{a} ≠ ∅, the following provides
the intuitive reasoning behind the Purification Bound. We
want to initialise an upper bound V (l) ≥ V∗ (l). Proposi-
tion 3.2 states that V∗ (l) = Hλ (T

∗
l) which is the objective

of the best possible sub-DT rooted in l. Initially, the only
information we have about l isH (l), which is the objective
of the sub-DT {l}. Furthermore, we know that any other
sub-DT T rooted in l employs at least one split and has
an accuracy H (T) at most equal P [l (X) = 1] as shown
below

H (T) = P [l (X) = 1, T (X) = Y] ≤ P [l (X) = 1]

where equality only happens if all the branches in T are pure,
i.e. each branch contains only one class. As a consequence,
all sub-DTs T rooted in l, including T ∗

l , satisfy:

Hλ (T) ≤ max
{
H (l) ,−λ+ P [l (X) = 1]

}
Remark: We emphasize that we do not initialise V (l) for
all tip nodes (nodes with no successors, also called leaves)
of the AND/OR graph and then run the recursive updates
(11) and (12) up the AND/OR graph. This would be a purely
DP approach and it would indeed find T ∗. However, such
an approach defies the purpose of focused search as it would
require very expensive computational resources. We need a
search strategy to carefully choose the branches to evaluate
in order to find T ∗ as quickly as possible. The next section
is dedicated to describing this search strategy.

Summary: For a non-terminal state l ∈ S \ T , Q (l, a) is
known in advance and calculated with (10). For any split
action a ∈ A (l) \ {a}, Q (l, a) is calculated with (11).
V (l) are first initialised with (13) (for branches l that are
specifically chosen by the search strategy) and later updated
with (12).

4.2. The Search strategy

We initialise a memo and a search graph G that consist
solely of the root Ω. Throughout the algorithm’s execution,
we label a node l (in G) as SOLVED when we know its
optimal action π∗ (l) = Argmaxa∈A(l)Q∗ (l, a), in which
case V∗ (l) = V (l) andQ∗ (l, π∗ (l)) = Q (l, π∗ (l)). Until
Ω is SOLVED perform the following steps at each iteration:

Selection: Starting from the root l = Ω, until l is a leaf of
G, descend G by following the selection policy:

π̃ (l) = Argmaxa∈A(l)Q (l, a) (15)

Store the connector (action) π̃ (l) in a list path. If all the
states in F (l, π̃ (l)) are SOLVED, choose one of them arbi-

6

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

trarily, stop the Selection step and move to the Backpropa-
gation step. Otherwise, choose an UNSOLVED state from
F (l, π̃ (l)) and make it the current state l, Appendix B pro-
vides the details of how we conduct this choice. Repeat the
process until reaching a leaf l of G.

Expansion: The purpose of this step is to grow G with
the successor nodes of l and update V (l) and Q (l, a) for
all actions a ∈ A (l). For the terminal action, calculate
Q (l, a) = H (l) as per (10). Generate all the successor
nodes of l and add them to G as follows: for all split ac-
tions a ∈ A (l) \ {a} and all successors lu ∈ F (l, a), if
lu ∈ memo add a link between l and lu as part of the con-
nector a, otherwise create a node lu in G and add it as a
successor of l stemming from the connector a, store lu in
memo, and initialise V (lu) with the Purification Bound in
Proposition 4.2. If V (lu) =

nk∗(lu)(lu)

n then label lu as
SOLVED because we would know that a is optimal at lu as
shown below:

Q∗ (lu, a) = Q (lu, a) = V (lu) = max
a∈A(lu)

Q (lu, a)

≥ max
a∈A(lu)

Q∗ (lu, a)

For all split actions a ∈ A (l) \ {a} calculate Q (l, a) with
(11), then deduce V (l) with (12). Update the selection
policy at l with Equation (15). If all the successors in
F (l, π̃ (l)) are SOLVED then label l as SOLVED.

Backpropagation: Update the heuristic estimates upwards
in G through the list path of selected connectors, which we
stored back in the Selection step. For j = length(path)−
1, . . . , 0: π̃ (l) = path [j], update Q (l, π̃ (l)) ,V (l) and
π̃ (l) with (11), (12) and (15) respectively. If π̃ (l) = a or
all the successors in F (l, π̃ (l)) are SOLVED then label l as
SOLVED.

We provide implementation details and a pseudocode in
Appendix D and Algorithm 1. Theorem 4.3 proves the
optimality of BRANCHES.
Theorem 4.3 (Optimality). Upon termination, the selection
policy π̃ becomes optimal. In other words:

V π̃ (Ω) = V∗ (Ω) = max
π
Vπ (Ω)

To accurately assess the search efficiency of BRANCHES, we
analyse in Theorem 4.4 the number of branch evaluations,
i.e. calculations ofH (l), it performs before terminating.
Theorem 4.4 (Complexity). Let Γ (q, C, λ) denote the total
number of branch evaluations performed by BRANCHES for
a classification problem with a number of features q ≥ 2, a
penalty parameter 0 < λ < 1, and a number of categories
per feature C ≥ 2. Then, Γ (q, C, λ) satisfies:

Γ (q, C, λ) ≤
κ∑

h=0

(q − h)Ch+1

(
q

h

)

Table 1. Comparing orders of magnitude of the complexity bounds
of BRANCHES and OSDT for binary features and for different
values of λ and q.

q = 10 q = 15 q = 20
λ BRANCHES OSDT BRANCHES OSDT BRANCHES OSDT

0.1 104 1013 105 1016 106 1018

0.05 105 10271 107 10473 109 10576

0.01 105 10392 108 INF 1010 INF

where κ = min
{⌊

1
Kλ

⌋
− 1, q

}
.

To our knowledge, only (Hu et al., 2019, Theorem E.2) per-
forms a similar analysis for OSDT. Due to the difficulty of
comparing the two bounds analytically, we rather compare
them numerically. Table 1 shows that our complexity bound
is significantly smaller than the bound in (Hu et al., 2019,
Theorem E.2) for different settings.

5. Experiments
We employ 11 datasets from the UCI repository. For each
dataset we use different types of encodings: suffix -o indi-
cates ordinal encoding, suffix -f indicates binary (one-hot)
encoding where the first category of each feature is dropped
and no suffix designates a binary encoding retaining all
categories. An additional binary encoding dropping the
last category is considered in monk1-l, the reason being to
showcase that different dropping options can lead to widely
differing solutions. Moreover, our motivation behind drop-
ping a category in the first place pertains to reducing the
number of resulting binary features, this in turn can greatly
simplify the task of finding an optimal sparse DT and help
the algorithms be more scalable as we observe in Table 2.
The downside however is that dropping a category can also
yield more complex DT solutions than keeping all the cate-
gories during one-hot encoding. We note that the algorithms
we compare with exclusively consider binary features, thus
necessitating a preliminary binary encoding. This seemingly
benign detail can significantly harm performance by intro-
ducing a large amount of unnecessary splits as we explain
in Appendix E. BRANCHES can sidestep this issue because
it supports non-binary DTs on ordinal encodings of the data,
these types of DT structures are commonly known under
the name multi-way splits.

We set a time limit of 5 minutes for all algorithms and we
run all the experiments on a personal Machine (Processor:
2,6 GHz 6-Core Intel Core i7; Memory: 16 GB). More-
over, since it is necessary to fix a maximum depth for DFS
methods, we set it to 20 for MurTree and STreeD while the
BFS methods GOSDT and BRANCHES run with infinite
maximum depth. The aim being to analyse performance at a
large maximum depth in these experiments. The results are
summarised in Table 2. For a detailed comparison across

7

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

Table 2. Comparing BRANCHES with the state of the art for a large maximum depth 20. BRANCHES is the only method that is applicable
to ordinal encoding, hence why we put for the remaining methods. Furthermore, we ran into memory issues with MurTree that kill the
kernel, in these cases also we put . For STreeD, when it reaches timeout, it does not propose a solution due to its lack of anytime
behaviour, we indicate those cases with as well. The APIs of STreeD and MurTree do not provide the number of iterations.

Dataset MurTree STreeD GOSDT BRANCHES

ob
je

ct
iv

e

ac
cu

ra
cy

sp
lit

s

tim
e

(s
)

ob
je

ct
iv

e

ac
cu

ra
cy

sp
lit

s

tim
e

(s
)

ob
je

ct
iv

e

ac
cu

ra
cy

sp
lit

s

tim
e

(s
)

ite
ra

tio
ns

ob
je

ct
iv

e

ac
cu

ra
cy

sp
lit

s

tim
e

(s
)

ite
ra

tio
ns

monk1 0.940 1 6 0.04 0.940 1 6 3.28 0.940 1 6 3.05 83928 0.940 1 6 0.05 146
monk1-l 0.930 1 7 0.03 0.930 1 7 2.80 0.930 1 7 0.87 29770 0.930 1 7 0.02 117
monk1-f 0.983 1 17 0.05 0.983 1 17 6.18 0.983 1 17 4.09 92782 0.983 1 17 0.39 2125
monk1-o 0.900 1 10 0.02 64

monk2 0.967 1 33 0.55 TO 0.968 1 32 91.9 392759 0.968 1 32 14.2 60611
monk2-f 0.922 1 78 1.07 TO 0.933 1 67 9.78 149912 0.933 1 67 2.94 28968
monk2-o 0.955 1 45 0.18 1213

monk3 0.978 1 25 0.04 0.985 1 15 7.87 0.985 1 15 25.2 185974 0.985 1 15 4.05 14807
monk3-f 0.975 1 25 0.04 0.983 1 17 4.82 0.983 1 17 2.09 59151 0.983 1 17 0.36 3026
monk3-o 0.987 1 13 0.03 156

tic-tac-toe TO 0.757 0.792 7 TO 2279999 0.838 0.928 18 TO 390000
tic-tac-toe-f 0.850 0.945 19 16.4 0.850 0.945 19 207 0.850 0.945 19 57.8 1670379 0.850 0.945 19 16.3 74627
tic-tac-toe-o 0.773 0.858 17 0.68 3339

car-eval 0.852 0.927 15 154 TO 0.852 0.927 15 TO 5893659 0.852 0.927 15 204 456452
car-eval-f 0.799 0.869 14 58 TO 0.799 0.869 14 21.1 927221 0.799 0.869 14 26.6 108640
car-eval-o 0.812 0.882 14 0.09 579

nursery TO 0.810 0.860 5 TO 299999 0.812 0.872 6 TO 110000
nursery-f 0.772 0.842 7 151 TO 0.765 0.835 7 TO 629999 0.772 0.842 7 24.9 48063
nursery-o 0.822 0.892 7 0.24 195

mushroom 0.955 0.985 3 11.1 0.955 0.985 3 10.8 0.925 0.945 2 TO 79999 0.955 0.985 3 TO 21000
mushroom-f 0.945 0.985 4 143 0.945 0.985 4 126 0.925 0.945 2 TO 99999 0.945 0.985 4 TO 24000
mushroom-o 0.975 0.985 1 0.15 6

kr-vs-kp TO 0.815 0.845 3 TO 159999 0.900 0.940 4 TO 46000
zoo 0.989 1 11 0.04 0.992 1 8 184 0.992 1 8 87.3 401799 0.992 1 8 44.6 39199

zoo-f 0.989 1 11 0.3 0.992 1 8 23.4 0.992 1 8 33.5 300387 0.992 1 8 2.09 4659
zoo-o 0.993 1 7 0.87 1456

lymph TO 0.790 0.810 2 TO 659999 0.828 0.898 7 TO 100000
lymph-f TO 0.784 0.804 2 TO 1079999 0.811 0.891 8 TO 170000
lymph-o 0.852 0.952 10 12.3 16154
balance TO 0.712 0.737 5 TO 1119999 0.776 0.806 8 TO 640000

balance-f TO 0.673 0.723 10 162 2292545 0.673 0.723 10 190 676149
balance-o 0.713 0.763 10 0.004 178

a wide range of maximum depths, refer to Appendix H.4.
Table 4 summarises the characteristics of the datasets we
consider.

For MurTree, the implementation we used from https://
github.com/MurTree/pymurtree.git displays a
suboptimal behaviour (in terms of Hλ) unlike STreeD,
GOSDT and BRANCHES. This happens for monk2, monk2-
f, monk3, monk3-f, car-eval-f, nursery-f, zoo and zoo-f as
shown in Table 2. According to https://bitbucket.
org/EmirD/murtree/src/master/, the authors of
MurTree indicate the release of a a newer and more general
version of the algorithm referring to STreeD. For this reason,
we will focus the remaining discussion on STreeD, GOSDT
and BRANCHES.

Comparing STreeD with BRANCHES and GOSDT:
STreeD is always optimal when it terminates similarly to
GOSDT and BRANCHES. On mushroom and mushroom-f it
is clearly the superior method as it terminates in 10.8s and
126s respectively while both GOSDT and BRANCHES reach

timeout. In Appendix H.4 we show that the main reason
behind STreeD’s success on mushroom is the depth 2 solver,
a technique introduced by Demirović et al. (2022). On
the other hand, despite reaching timeout, BRANCHES still
proposes the true optimal sparse DT unlike GOSDT, thus
showcasing the superiority of BRANCHES’ anytime be-
haviour. On the remaining datasets, STreeD’s DFS strat-
egy suffers from the large maximum depth while GOSDT
and BRANCHES achieve optimality significantly faster even
while running at an infinite maximum depth, this is espe-
cially the case for BRANCHES because STreeD outperforms
GOSDT on monk3, monk3-f, mushroom, mushroom-f and
zoo-f, while it outperforms BRANCHES only on mushroom
and mushroom-f. Furthermore, STreeD’s lack of anytime
behaviour prevents it from proposing a solution when it
reaches timeout. This happens for monk2, monk2-f, tic-tac-
toe, car-eval, car-eval-f, nursery, nursery-f, kr-vs-kp, lymph,
lymph-f, balance and balance-f.

The superiority of BRANCHES and GOSDT over STreeD
on these experiments is mainly due to their BFS strategies,

8

https://github.com/MurTree/pymurtree.git
https://github.com/MurTree/pymurtree.git
https://bitbucket.org/EmirD/murtree/src/master/
https://bitbucket.org/EmirD/murtree/src/master/

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

which tend to find the optimal solution quicker than DFS
at the expense of more memory consumption. We note that
while neither BRANCHES nor GOSDT ran out of memory on
these experiments, such an undesirable outcome can happen
in some cases. To alleviate this problem, hybrid methods,
using BFS until exhausting a memory budget then switching
to DFS, can be employed (Pearl, 1984, Section 2.5). These
extensions are outside the scope of our current work and we
will consider them in a future work.

Comparing BRANCHES with GOSDT: BRANCHES out-
performs GOSDT on all the experiments except car-eval-f
and balance-f where GOSDT terminates faster. Sometimes
the difference in speed is so significant that BRANCHES ter-
minates while GOSDT reaches timeout and as a conse-
quence fails to produce the optimal solution. This happens
in car-eval and nursery-f. Moreover, whenever both algo-
rithms reach timeout, BRANCHES proposes a better solution
than GOSDT’s, hence displaying a better anytime behaviour.
To see this, refer to tic-tac-toe, nursery, mushroom, kr-vs-kp,
lymph, lymph-f and balance. Another important point is that
the experiments on ordinal encoded datasets terminate sig-
nificantly faster than their binary encoded counterparts. In-
deed, no experiment with ordinal encoding reaches timeout,
and the slowest one is lymph-o with 12.3s. In Appendix E
we discuss the reasons behind this phenomenon. Further-
more, on many occasions, the non-binary optimal sparse
DTs obtained with ordinal encoding are of better quality
(in terms ofHλ) than those obtained through a preliminary
binary encoding. This happens for monk3-o, nursery-o,
mushroom-o, zoo-o and lymph-o, but this is not the case for
the remaining datasets. In fact, we shall see in Appendix E
that the obtained non-binary sparse DTs can themselves be
collapsed into sparser solutions with fewer splits. Knowing
that scalability is a major issue in the literature of optimal
sparse DTs, the ability to support non-binary DTs is very
helpful in this regard. BRANCHES being the only method
that displays this property has a clear advantage from a
scalability standpoint.

Additional experiments are provided in Appendix H:

• Appendix H.1 compares BRANCHES with Python im-
plemented algorithms OSDT and PYGOSDT.

• Appendix H.2 compares BRANCHES, CART and
DL8.5 in terms of their Pareto fronts with respect to
the joint optimisation of accuracy and number of splits.

• Appendix H.3 investigates the suboptimality of DL8.5
with respect to the joint optimisation of accuracy and
number of splits.

• Appendix H.4 extends the comparison between
BRANCHES, GOSDT and STreeD to a wide range of
values for the maximum depth.

6. Conclusion and Future Work
In this work, we have developed BRANCHES, a novel al-
gorithm seeking optimal sparse DTs. BRANCHES lever-
ages an AO* approach to solve the problem within an
AND/OR graph search framework and employs a custom
heuristic called the Purification bound. We have shown
that BRANCHES is optimal and satisfies better theoretical
complexity guarantees than those derived in the literature.
Furthermore, we illustrated through multiple experiments
that BRANCHES outperforms the state of the art in terms of
runtime, number of iterations and anytime behaviour. It is es-
pecially worth noting that BRANCHES outperforms its C++
competitors in runtime despite being currently implemented
in Python, which indicates that a future C++ implementa-
tion of BRANCHES promises to widen the performance gap
further with the other methods.

There are several ideas to extend this work in the future. A
straightforward one is to implement BRANCHES in C++ and
incorporate multi-threading as follows: During the Selec-
tion step, whenever we take a split action, we could choose
a subset of the children branches and keep running Selection
from each one of them in parallel. As a consequence, the
Selection step would return a subset of branches, for which
we run Expansion in parallel then Backpropagation in a syn-
chronous parallel fashion. This would yield a notably better
pruning of the search graph and as a result a significantly
faster optimal convergence. Another promising idea is to
incorporate the depth-2 solver (Demirović et al., 2022), we
saw in Appendix H.4 how it is crucial to STreeD’s perfor-
mance. Moreover, to alleviate high memory consumption
issues we could design a hybrid strategy between BFS and
DFS as described in (Pearl, 1984, Section 2.5). Lastly, we
could improve the Purification Bound by using a strong aux-
iliary classifier f such as a Multi-Layer Perceptron. Given
a branch l for which we want to initialise the heuristic V (l),
if we can derive the number m of employed variables by f
in l then we can tighten the Purification Bound with:

V (l) = max
{
H (l) ,−mλ+P [l (X) = 1, f (X) = Y]

}

Acknowledgements
We would like to thank Mathijs M. de Weerdt and Pierre
Schaus for their helpful discussions, and the anonymous
reviewers for their valuable feedback.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

9

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

References
Aglin, G., Nijssen, S., and Schaus, P. Learning optimal

decision trees using caching branch-and-bound search.
Proceedings of the AAAI Conference on Artificial Intel-
ligence, 34(04):3146–3153, Apr. 2020. doi: 10.1609/
aaai.v34i04.5711. URL https://ojs.aaai.org/
index.php/AAAI/article/view/5711.

Bellman, R. E. and Dreyfus, S. E. Applied dynamic program-
ming, volume 2050. Princeton university press, 2015.

Bennett, K. P. Decision tree construction via linear program-
ming. Technical report, University of Wisconsin-Madison
Department of Computer Sciences, 1992.

Bennett, K. P. Global tree optimization: A non-greedy
decision tree algorithm. Computing Science and Statistics,
pp. 156–156, 1994.

Bennett, K. P. and Blue, J. A. Optimal decision trees. Rens-
selaer Polytechnic Institute Math Report, 214(24):128,
1996.

Bertsimas, D. and Dunn, J. Optimal classification trees.
Machine Learning, 106:1039–1082, 2017.

Bessiere, C., Hebrard, E., and O’Sullivan, B. Minimising
decision tree size as combinatorial optimisation. In Gent,
I. P. (ed.), Principles and Practice of Constraint Program-
ming - CP 2009, pp. 173–187, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg. ISBN 978-3-642-04244-7.

Blanquero, R., Carrizosa, E., Molero-Rı́o, C., and Morales,
D. R. Optimal randomized classification trees. Computers
& Operations Research, 132:105281, 2021.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A.
Classification and regression trees. CRC press, 1984.

Chaouki, A., Read, J., and Bifet, A. Online learning of
decision trees with Thompson sampling. In Dasgupta,
S., Mandt, S., and Li, Y. (eds.), Proceedings of The
27th International Conference on Artificial Intelligence
and Statistics, volume 238 of Proceedings of Machine
Learning Research, pp. 2944–2952. PMLR, 02–04 May
2024. URL https://proceedings.mlr.press/
v238/chaouki24a.html.

Demirović, Lukina, A., Hebrard, E., Chan, J., Bailey,
J., Leckie, C., Ramamohanarao, K., and Stuckey, P. J.
Murtree: Optimal decision trees via dynamic program-
ming and search. Journal of Machine Learning Re-
search, 23(26):1–47, 2022. URL http://jmlr.org/
papers/v23/20-520.html.

Günlük, O., Kalagnanam, J., Li, M., Menickelly, M., and
Scheinberg, K. Optimal decision trees for categorical data
via integer programming. Journal of global optimization,
81:233–260, 2021.

Hansen, E. A. and Zilberstein, S. LAO*: A heuristic search
algorithm that finds solutions with loops. Artificial
Intelligence, 129(1):35–62, 2001. ISSN 0004-3702.
doi: https://doi.org/10.1016/S0004-3702(01)00106-0.
URL https://www.sciencedirect.com/
science/article/pii/S0004370201001060.

Hu, H., Siala, M., Hebrard, E., and Huguet, M.-J. Learning
optimal decision trees with maxsat and its integration
in adaboost. In IJCAI-PRICAI 2020, 29th International
Joint Conference on Artificial Intelligence and the 17th
Pacific Rim International Conference on Artificial Intelli-
gence, 2020.

Hu, X., Rudin, C., and Seltzer, M. Optimal sparse
decision trees. In Wallach, H., Larochelle, H., Beygelz-
imer, A., d'Alché-Buc, F., Fox, E., and Garnett, R.
(eds.), Advances in Neural Information Process-
ing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.
cc/paper_files/paper/2019/file/
ac52c626afc10d4075708ac4c778ddfc-Paper.
pdf.

Hyafil, L. and Rivest, R. L. Constructing optimal
binary decision trees is np-complete. Information
Processing Letters, 5(1):15–17, 1976. ISSN 0020-0190.
doi: https://doi.org/10.1016/0020-0190(76)90095-8.
URL https://www.sciencedirect.com/
science/article/pii/0020019076900958.

Lawler, E. L. and Wood, D. E. Branch-and-bound methods:
A survey. Operations research, 14(4):699–719, 1966.

Lin, J., Zhong, C., Hu, D., Rudin, C., and Seltzer,
M. Generalized and scalable optimal sparse deci-
sion trees. In III, H. D. and Singh, A. (eds.), Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 6150–6160. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/
v119/lin20g.html.

Lomax, S. and Vadera, S. A survey of cost-sensitive de-
cision tree induction algorithms. ACM Comput. Surv.,
45(2), March 2013. ISSN 0360-0300. doi: 10.1145/
2431211.2431215. URL https://doi.org/10.
1145/2431211.2431215.

Martelli, A. and Montanari, U. Optimizing decision trees
through heuristically guided search. Communications of
the ACM, 21(12):1025–1039, 1978.

McTavish, H., Zhong, C., Achermann, R., Karimalis, I.,
Chen, J., Rudin, C., and Seltzer, M. Fast sparse deci-
sion tree optimization via reference ensembles. Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, 36(9):9604–9613, Jun. 2022. doi: 10.1609/

10

https://ojs.aaai.org/index.php/AAAI/article/view/5711
https://ojs.aaai.org/index.php/AAAI/article/view/5711
https://proceedings.mlr.press/v238/chaouki24a.html
https://proceedings.mlr.press/v238/chaouki24a.html
http://jmlr.org/papers/v23/20-520.html
http://jmlr.org/papers/v23/20-520.html
https://www.sciencedirect.com/science/article/pii/S0004370201001060
https://www.sciencedirect.com/science/article/pii/S0004370201001060
https://proceedings.neurips.cc/paper_files/paper/2019/file/ac52c626afc10d4075708ac4c778ddfc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/ac52c626afc10d4075708ac4c778ddfc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/ac52c626afc10d4075708ac4c778ddfc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/ac52c626afc10d4075708ac4c778ddfc-Paper.pdf
https://www.sciencedirect.com/science/article/pii/0020019076900958
https://www.sciencedirect.com/science/article/pii/0020019076900958
https://proceedings.mlr.press/v119/lin20g.html
https://proceedings.mlr.press/v119/lin20g.html
https://doi.org/10.1145/2431211.2431215
https://doi.org/10.1145/2431211.2431215

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

aaai.v36i9.21194. URL https://ojs.aaai.org/
index.php/AAAI/article/view/21194.

Montanari, U. et al. From dynamic programming to search
algorithms with functional costs. 1975.

Narodytska, N., Ignatiev, A., Pereira, F., Marques-Silva, J.,
and Ras, I. Learning optimal decision trees with sat. In
IJCAI, pp. 1362–1368, 2018.

Nijssen, S. and Fromont, E. Mining optimal decision
trees from itemset lattices. In Proceedings of the 13th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’07, pp. 530–539,
New York, NY, USA, 2007. Association for Comput-
ing Machinery. ISBN 9781595936097. doi: 10.
1145/1281192.1281250. URL https://doi.org/
10.1145/1281192.1281250.

Nijssen, S. and Fromont, E. Optimal constraint-based de-
cision tree induction from itemset lattices. Data Mining
and Knowledge Discovery, 21:9–51, 2010.

Nilsson, N. J. Principles of artificial intelligence. Morgan
Kaufmann, 2014.

Norouzi, M., Collins, M., Johnson, M. A., Fleet, D. J., and
Kohli, P. Efficient non-greedy optimization of decision
trees. In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 28. Curran Associates, Inc.,
2015. URL https://proceedings.neurips.
cc/paper_files/paper/2015/file/
1579779b98ce9edb98dd85606f2c119d-Paper.
pdf.

Pearl, J. Heuristics: intelligent search strategies for com-
puter problem solving. Addison-Wesley Longman Pub-
lishing Co., Inc., 1984.

Quinlan, J. C4. 5: programs for machine learning. Elsevier,
2014.

van der Linden, J., de Weerdt, M., and Demirović, E. Nec-
essary and sufficient conditions for optimal decision trees
using dynamic programming. In Oh, A., Naumann, T.,
Globerson, A., Saenko, K., Hardt, M., and Levine, S.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 36, pp. 9173–9212. Curran Associates, Inc.,
2023.

Verhaeghe, H., Nijssen, S., Pesant, G., Quimper, C.-G.,
and Schaus, P. Learning optimal decision trees using
constraint programming. Constraints, 25:226–250, 2020.

Verwer, S. and Zhang, Y. Learning optimal classification
trees using a binary linear program formulation. Proceed-
ings of the AAAI Conference on Artificial Intelligence,

33(01):1625–1632, Jul. 2019. doi: 10.1609/aaai.v33i01.
33011624. URL https://ojs.aaai.org/index.
php/AAAI/article/view/3978.

11

https://ojs.aaai.org/index.php/AAAI/article/view/21194
https://ojs.aaai.org/index.php/AAAI/article/view/21194
https://doi.org/10.1145/1281192.1281250
https://doi.org/10.1145/1281192.1281250
https://proceedings.neurips.cc/paper_files/paper/2015/file/1579779b98ce9edb98dd85606f2c119d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/1579779b98ce9edb98dd85606f2c119d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/1579779b98ce9edb98dd85606f2c119d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/1579779b98ce9edb98dd85606f2c119d-Paper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/3978
https://ojs.aaai.org/index.php/AAAI/article/view/3978

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

A. Notation

Table 3. Table of Notation

X =
(
X(1), . . . , X(q)

)
, a datum.

X(i) ∈ {1, . . . , Ci}, a feature.
Y ∈ {1, . . . ,K}, a class.
D = {(Xm, Ym)}nm=1, dataset of examples.

l =
∧S(l)

v=1 I
{
X(iv) = jv

}
a branch. Also, a non-terminal state.

S (l) ≜ The size of branch l, the number of splits in l, the number of clauses in l.
l (X) ≜ Valuation of l for input X . When l (X) = 1, we say that X is in l.

Ω ≜ The root. Branch that valuates to 1 for all possible inputs.
Ch (l, i) ≜ Children of l when splitting it with respect to feature i.
Ch (l, i) = {l1, . . . , lCi}, lj = l ∧ I

{
X(i) = j

}
n (l) =

∑n
m=1 l (Xm) Number of examples in l.

nk (l) =
∑n

m=1 l (Xm) I{Ym = k} Number of examples in l of class k.
k∗ (l) = Argmax1≤k≤K{nk (l)}, majority class in l
H (l) = P [l (X) = 1, Y = k∗ (l)], probability that an example is in l and is

correctly classified.
sub-DT rooted in l ≜ Collection of branches tha stem from a series of splits from l.

DT ≜ A sub-DT rooted in the root Ω.
T (X) ≜ Predicted class of X by T . Majority class of the branch containing X .
H (T) = P [T (X) = Y], accuracy of DT T .
Hλ (T) = P [T (X) = Y]− λS (T), the objective evaluating T .
S (T) ≜ Number of splits to construct T from the branch where it is rooted.

λ ∈]0, 1], penalty parameter.
T ∗ = ArgmaxT {Hλ (T)}, optimal DT.
a ≜ Terminal action.
l ≜ Terminal state that stems from taking a in l.

Vπ (l) ≜ Value of policy π starting at non-terminal state l.
Qπ (T, a) ≜ State-action value of policy π at non-terminal state l and action a.

Tπ
l ≜ Sub-DT of π rooted in l. See Proposition 3.1.
τπl ≜ Minimum time for policy π to get to Tπ

l .
Tπ ≡ Tπ

Ω

π∗ ∈ ArgmaxπVπ (Ω), an optimal policy.
T ∗ = Tπ∗

V∗ ≡ Vπ∗

Q∗ ≡ Qπ∗

τ∗l ≡ τπ
∗

l

V (l) ≜ Heuristic estimate of V∗ (l).
Q (l, a) ≜ Heuristic estimate of Q∗ (l, a)

π̃ ≜ Selection policy π̃ (l) = Argmaxa∈A(l)Q (l, a).

B. Choosing an UNSOLVED branch during Selection
Regarding the choice of an UNSOLVED branch introduced in the Selection process in Section 4.2, we choose branch l of
lowestHλ

(
T̂l

)
where T̂l is the best sub-DT rooted in l found so far in terms of the objectiveHλ. The reason is to quickly

prune branches that contribute low Hλ

(
T̂l

)
to the solution. Indeed, this approach either yields better subtrees rooted in

these branches, or bad subtrees that indicate this region to be unpromising, hence incentivizing the algorithm to search
elsewhere. This selection approach is likely to induce a good anytime behaviour. We note that a similar idea was proposed

12

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

in (Nilsson, 2014, p.107):

Possibly the expansion of that leaf node having the highest h value would most likely result in a changed estimate.

The h value in (Nilsson, 2014, p.107) refers to the heuristic value, which is akin to our V value albeit for a minimisation
context instead of a maximisation one. As such, a direct application of (Nilsson, 2014, p.107) to our setting would yield
choosing the UNSOLVED branch l with lowest V (l). We noticed in practice that employingHλ

(
T̂l

)
instead yields better

anytime behaviour for the reasons explained above. Currently, we have not investigated other strategies of this type, and it is
a promising idea for future work.

C. Anytime behaviour
There are settings where the search takes a substantial or even unfeasible amount of time to terminate. In these situations,
we set a time limit on BRANCHES’ execution and even if it does not terminate within this time, we expect it to still return a
good solution. This property is called the anytime behaviour. For BFS methods, it is straightforward to implement while it is
less trivial for DFS algorithms. STreeD for example, does not enjoy the anytime property.

We formulate BRANCHES’ anytime behaviour as follows. For each branch l that is currently in the memo, we define its
greedy value V̂ (l) recursively as:

V̂ (l) =

{
H (l) if l is a tip node (leaf) of the current search graph G.

maxa∈A(l)\{a}

{
H (l) ,−λ+

∑
l′∈Ch(l,a) V̂ (l′)

} (16)

Basically V̂ (l) is the best value of the regularised objective found so far for all sub-DTs rooted in l. Based on this definition,
we also introduce the greedy state-action values and the greedy policy:

Q̂ (l, a) =

{
H (l) if a = a

−λ+
∑

l′∈Ch(l,a) V̂ (l′) if a ∈ A (l) \ {a}

π̂ (l) = Argmaxa∈A(l)Q̂ (l, a)

The estimates V̂ (l) and Q̂ (l, a) are updated in similar fashion to V (l) andQ (l, a) during the Backpropagation step, i.e. via
(12) and (11). When BRANCHES reaches timeout we unroll π̂ from Ω to get T π̂

Ω the best DT found so far in terms of the
objectiveHλ. T π̂

Ω is the proposed solution by BRANCHES when it runs out of time.

Unfortunately, unlike settings where BRANCHES terminates, the anytime behaviour does not provide any theoretical
guarantees with respect to the quality of the proposed solution. Such guarantees necessitate the assumption of some
smoothness properties ofHλ on the state space S . Nevertheless, the use of selection strategies such as the one we propose
in Appendix B can lead to empirically satisfying results for BRANCHES’ anytime behaviour.

D. Implementation Details
The search strategy we introduced in Section 4.2 is an abstract description of BRANCHES. In this section, we provide
concrete elements for the implementation of the algorithm, along with micro-optimisation techniques that substantially
improve its computational efficiency.

D.1. Branch objects

For each branch l =
∧S(l)

v=1 I{X(iv) = jv}, we define an object with the following elements:

• id_branch: l is identified with the unique string ”(i1, j1)(i1, j2) . . . (iS(l), jS(l))”. We recall that this string is
unique because we impose the condition i1 < i2 < . . . < iS(l). We store each encountered branch in a memo
dictionary using its identifier.

• attributes_categories: Dictionary containing the number of categories per unused feature in l. We recall that
the set of unused features is the set of split actions.

13

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

• bit_vector: Vector of the indices of the data contained in l. This vector allows quick access to the data in l.

• children: Dictionary containing the children of l, i.e. the set Ch (l, i) for each unused feature i in l. Initialised with
an empty dictionary.

• attribute_opt: The greedy action π̂ (l) as per the definition in Appendix C. If π̂ (l) = a then we set
attribute_opt to None.

• terminal: Boolean describing whether l is terminal or not.

• complete: Boolean describing whether l is SOLVED or not.

• value: The estimated value V (l).

• value_terminal: The value of the terminal action at l.

Q (l, a) = Q∗ (l, a) = H (l) = P [l (X) = 1, k∗ (l) = Y] =
nk∗(l) (l)

n

• value_greedy: The greedy value V̂ (l) as per the definition in Appendix C.

• freq: Proportion of examples in l:

freq = P [l (X) = 1] =
n (l)

n
=

1

n

n∑
m=1

l (Xm)

• pred: Majority class at l:
pred = k∗ (l) = Argmax1≤k≤Knk (l)

• queue: Heap queue containing (-value, -value_complete, attribute, children) tuples. For each
unused feature (split action) attribute: value is the estimate:

value = Q (l,attribute) = −λ+
∑

l′∈Ch(l,attribute)

V (l′)

On the other hand, value_complete is the sum of the estimated values V (l′) of the children l′ ∈
Ch (l,attribute) that are SOLVED. By definition, the SOLVED children l′ satisfy V (l′) = V∗ (l′), we store
the sum of their values in value_complete, which serves to efficiently update Q (l,attribute) during the
Backpropagation step. children is a dictionary containing the UNSOLVED children, it is from this dictionary that
we choose the next branch to visit during the Selection step. During Backpropagation, If an UNSOLVED branch l′

in children becomes SOLVED, it is discarded from children. We note that these tuples are stored in queue,
thus the first element of queue is always the tuple with the highest value, i.e. queue[0][2] is the split action
maximising Q (l, a). This is the reason we store -value in the tuple, Python implements min heaps instead of max
heaps. We do not need to sort all actions by their values, but rather to just keep track of the action with the highest
value. As a result, l becomes SOLVED if and only if one of the following holds:

– The terminal action is the current best action:

Q (l, a) = Argmaxa∈A(l)Q (l, a)

which happens if:
−queue[0][0] ≤ value_terminal

– The dictionary of UNSOLVED children that result from taking the current best split action in l queue[0][3] is
empty.

14

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

There is an additional benefit to storing -value_complete. When there are multiple split actions attribute
that maximise value, then we prioritise the one maximising value_complete. This further serves as a heuris-
tic allowed by the flexibility of BRANCHES’ selection step compared to GOSDT’s. To see the benefit of this
scheme, consider such situation and suppose that one of these split actions, attribue, maximising the esti-
mate is such that Ch (l,attribute) are all SOLVED. Ideally we want to prioritise this action, i.e. we want
queue[0][2] = attribute. The reason behind this is that it allows us to immediately conclude that l is
SOLVED and that attribute = Argmaxa∈A(l)\{a}Q∗ (l, a). This is exactly what happens by using a priority based
on value_complete as well. Indeed, if Ch (l,attribute) are all SOLVED, then by definition attribute
maximises value_complete among all the split actions maximising value.

D.2. The Algorithm

In this section, we go over BRANCHES’ search strategy, introduced in Section 4.2, and we outline it from an implementation
perspective. We initialise the root Ω, then we apply the search steps at each iteration as follows:

Selection: Initialise the current branch l = Ω and the path list to path = [l]. While l is UNSOLVED and l.children
is not empty, i.e. l has been expanded. Consider the tuple:

(-value, -value_complete, attribute, children) = l.queue[0]

As we have seen in Appendix D.1, attribute is the optimal split action with respect to the current estimates Q (l, a) and
children is the subset of UNSOLVED children in Ch (l,attribute). Therefore, we choose the next branch l from the
dictionary children. As explained in Appendix B, here choosing the UNSOLVED child of lowest value_greedy is
our practical choice. Append l to path.

Expansion: Let l be the Selected branch. If l.complete, we go to the Backpropagation step. Otherwise, for each
(unused) feature-category pair (i, j) ∈ l.attributes_categories let lij = l ∧ I{X(i) = j} be the child branch of l
that corresponds to feature i taking the value j. Our objective is to calculate V (lij). We first check whether lij .id_branch
is in the memo, if it is, then we can directly access V (lij). Otherwise, we initialise V (lij) according to Proposition 4.2. To
do this efficiently, consider a fixed feature i and let us go over its categories j ∈ {1, . . . , Ci} one by one. For li1, we first
extract the data in l using l.bit_vector:

Dl = {Xm ∈ D : l (Xm) = 1} = D[l.bit_vector]

Since li1 (X) = 1 =⇒ l (X) = 1, we can extract the data in li1 directly from the smaller set Dl instead of D:

Dli1 = {Xm ∈ D : li1 (Xm) = 1} = {Xm ∈ Dl : li1 (Xm) = 1}

The indices of the data in Dli1 form the vector li1.bit_vector. Now we can initialise V (li1) with Proposition 4.2 using
Dli1 . For li2, if li2.id_branch is not in the memo, then to initialise V (li2), instead of extracting Dli2 from Dl via:

Dli2 = {Xm ∈ Dl : li2 (Xm) = 1}

We rather use the fact that li1 and li2 are mutually exclusive, in the sense that:

∀X ∈ X : li2 (X) = 1 =⇒ li1 (X) = 0

Which means that we can extract Dli2 from the smaller set Dl \ Dli1 instead of Dl and then initialise V (li2). We repeat
this process for all categories j ∈ {1, . . . , Ci} and then we do the same thing for the remaining unused features in
l.attributes_categories. These micro-optimisations we perform allow for a substantial computational gain.

Backpropagation: For j = length (path) − 1, . . . , 1 let parent = path[j-1] and child = path[j], then
we pop the heap queue parent.queue:

(-value, -value_complete, attribute, children) = parent.queue.pop()

During the Selection step, attribute was the action taken at the branch parent to transition to the branch child.
Now during Backpropagation, we need to update the estimates Q (parent, attribute) and V (parent), hence why

15

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

we pop the corresponding tuple from parent.queue, and once we update its values, we will push the tuple back in the
heap queue. If child.complete then we add its value to value_complete:

value_complete← value_complete + child.value

and we pop child from the dictionary of UNSOLVED children children.pop(child). Now we push the tuple back
in parent.queue, this rearranges the tuples is such a way that the most promising one (with maximum value) is at
parent.queue[0]. The next step is to check:

(-value, -value_complete, attribute, children) = parent.queue[0]

if attribute is the same attribute we have just treated with the last tuple, then we stop the update of parent.queue.
Otherwise, we pop the queue again and we update this tuple in similar fashion to what we did with the previous tuple.
The reason we check this is that an update could already be made here because the UNSOLVED children in dictionary
children might have been updated during other iterations of BRANCHES. We continue this process until we get an
attribute that has already been treated in this process, in which case there is no need for further updates. Now
parent.queue[0] is the tuple corresponding to the best split action:

(-value, -value_complete, attribute, children) = parent.queue[0]

Therefore, the value of parent is equal to the maximum between the value of taking this best split action and the value of
taking the terminal action:

V (parent) = max
{
Q (parent, a) ,Q (parent,attribute)

}

Which, in our implementation translates to:

parent.value← max
{
parent.value_terminal,value

}

Moreover, if V (parent) = Q (parent, a), then a = Argmaxa∈A(parent)Q (parent, a), and since we know
that Q∗ (parent, a) = Q (parent, a) (according to Equation (10)), then we deduce that parent is SOLVED and
V∗ (parent) = Q∗ (parent, a). Therefore we update:

parent.complete← True

This is not the only condition that makes parent SOLVED. Indeed, parent can also be SOLVED if
Ch (parent, attribute) are all SOLVED, which happens when the dictionary children is empty.

16

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

Algorithm 1 BRANCHES

1: Input: Dataset D = {(Xm, Ym)}nm=1, penalty parameter λ ≥ 0.
2: memo← {} ▷ Initialise an empty memo
3: INITIALISE(Ω,D)
4: while not Ω.complete do ▷ While the root Ω is not SOLVED
5: (l,path)← SELECT()
6: if l.complete then ▷ If l is SOLVED
7: BACKPROPAGATE(path)
8: else
9: EXPAND(l,D)

10: BACKPROPAGATE(path)
11: end if
12: end while
13: return INFER()
14: procedure SELECT()
15: l← Ω
16: path← [l]
17: while l.expanded and (not l.complete) do
18: (Q (l, i) , return complete, i, children incomplete)← l.queue[0]
19: l← children incomplete [0]
20: path.append (l)
21: end while
22: return (l,path)
23: end procedure
24: procedure EXPAND(l,D)
25: l.expanded← True
26: for i ∈ A (l) \ {a} do
27: SPLIT(l, i,D)
28: V (l)← max

{
Q (l, a) , l.queue [0] [0]

}
▷ This update comes from Equation (12)

29: end for
30: if V (l) = Q (l, a) then ▷ In this case V∗ (l) = Q∗ (l, a) = H (l)
31: l.complete← True ▷ V∗ (l) is known
32: l.terminal← True ▷ Label l terminal if the optimal action at l is π∗ (l) = a
33: end if
34: end procedure

17

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

35: procedure BACKPROPAGATE(path)
36: N ← length (path)
37: for t = N − 2 to 0 do
38: l← path [t]
39: (Q (l, i) , return complete, i, children incomplete)← l.queue.pop ()
40: Q (l, i)← return complete ▷ Initialise Q (l, i)
41: for l′ ∈ children incomplete do
42: Q (l, i)← Q (l, i) + V (l′)
43: if l′.complete then ▷ Check if l′ is SOLVED now
44: children incomplete.discard (l′) ▷ Delete l′ from children incomplete
45: end if
46: end for
47: l.queue.push ((Q (l, i) , return complete, i, children incomplete))
48: (Q (l, i∗) , return complete, i∗, children incomplete)← l.queue [0] [0]
49: V (l)← Q (l, i∗)
50: if (V (l) = Q (l, a)) or (children incomplete is empty) then
51: l.complete← True
52: l.terminal← True ▷ Label l terminal if the optimal action at l is π∗ (l) = a
53: end if
54: end for
55: end procedure
56: procedure INFER()
57: T ← []
58: Q← queue ()
59: Q.put (Ω)
60: while Q is not empty do
61: l← Q.pop ()
62: if l.terminal then
63: T.append (l)
64: else
65: (Q (l, i) , return complete, i, children incomplete)← l.queue[0]
66: for l′ ∈ l.children [i] do
67: Q.put (l′)
68: end for
69: end if
70: end while
71: return T
72: end procedure

18

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

73: procedure INITIALISE(l,D)
74: l.expanded← False ▷ Label l as not expanded yet
75: l.children← dict () ▷ Initialise the dictionary of children
76: l.queue← queue ([]) ▷ Initialise the priority queue of l
77: Q (l, a)← H (l) ▷H (l) is calculated with D
78: if A (l) = {a} then
79: l.terminal← True ▷ Label l as terminal if it cannot be split
80: l.complete← True ▷ l is SOLVED, V∗ (l) is known
81: V (l)← Q (l, a) ▷ In this case V∗ (l) = Q∗ (l, a) = H (l)
82: else
83: l.terminal← False
84: Initialise V (l) according to Equation (12) and Equation (11)
85: if V (l) = Q (l, a) then
86: l.complete← True ▷ V∗ (l) is known, V∗ (l) = Q∗ (l, a) = H (l)
87: l.terminal← True ▷ Label l terminal if the optimal action at l is π∗ (l) = a
88: else
89: l.complete← False ▷ V∗ (l) is still unknown
90: end if
91: end if
92: memo.add(l) ▷ Add the initialised branch to the memo
93: end procedure
94: procedure SPLIT(l, i,D)
95: l.children[i]← [] ▷ Initialise the list of children that stem taking split action i in l
96: Q (l, i)← −λ ▷ Initialise the Upper Bound Q (l, i)
97: return complete← −λ ▷ Initialise the return due to SOLVED children
98: children incomplete← [] ▷ Initialise the list of UNSOLVED children
99: for j ∈ {1, . . . , Ci} do
100: lij ← l ∧ I{X(i) = j}
101: if lij /∈ memo then ▷ Only initialise the branches that are not in the memo
102: INITIALISE(lij ,D)
103: end if
104: l.children[i].append (lij)
105: Q (l, i)← Q (l, i) + V (lij) ▷ Update the Upper Bound Q (l, i)
106: if lij .complete then
107: return complete← return complete + V (lij)
108: else
109: children incomplete.append (lij)
110: end if
111: end for
112: l.queue.push ((Q (l, i) , return complete, i, children incomplete))
113: end procedure

E. Drawbacks of Binary Encoding
In Table 2, we have shown that optimal sparse DTs are always found significantly faster in the context of ordinal encoding
compared to binary encoding. In this section, we investigate the reason behind this phenomenon.

To answer this question, let us consider the following simple binary classification problem. Suppose there is only one feature
X(1) with 4 categories, i.e. the feature space is X = {1, 2, 3, 4} and that class Y satisfies Y = 1 if and only if X(1) = 1 or
X(1) = 3. The optimal sparse DT in this case consists of only one split splitting the root Ω with respect to feature X(1), as
shown in Figure 3. In this setting, BRANCHES only needs one iteration to terminate. Indeed, on its first iteration, it expands
Ω, estimates Q (Ω, a) and Q (Ω, a) where a is the split action with respect to X(1). In this case, BRANCHES can already

19

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

Figure 3. Optimal DT depicting the class variable that satisfies Y = 1 if and only if X(1) = 1 or X(1) = 3 on the space X = {1, 2, 3, 4}.

Figure 4. The new optimal sparse DT on the new feature space X ′.

deduce that:

Q∗ (Ω, a) = Q (Ω, a) = −λ+ P [Ω (X) = 1]︸ ︷︷ ︸
=1

> P [Ω (X) = 1, k∗ (Ω) = Y] = Q∗ (Ω, a)

and therefore that Ω is SOLVED and a = Argmaxa′∈A(Ω)Q∗ (Ω, a′).

Consider now the binary encoding of feature space X , this yields a new feature space X ′ = {0, 1}×{0, 1}×{0, 1}×{0, 1}
where the new features X ′(1), X ′(2), X ′(3), X ′(4) describe the existence of a category or its absence:

∀i ∈ {1, 2, 3, 4} : X ′(i) = I{X(1) = i}

Figure 4 depicts the new optimal sparse DT on X ′. In this setting, BRANCHES can no longer achieve optimality from the
first iteration, because the first iteration only explores branches of size 1 and the optimal solution includes also branches
of sizes 2. Moreover, Binary encoding introduces unnecessary branches that make the search space larger than necessary,
thereby wasting some of the search time. To see this, consider the branch:

l′ = I{X ′(1) = 1} ∧ I{X ′(2) = 1}

This branch exists in the new search space (search graph) constructed on X ′ and it could be explored at some point by the
search algorithm. However, this would be a waste of time because l′ does not describe a possible subset of X . Indeed,
translating l′ to its corresponding branch on X yields:

l = I{X(1) = 1} ∧ I{X(1) = 2}

20

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

5 10 15 20 25 30
Number of features q

5

10

15

20

Nu
m

be
r o

f c
at

eg
or

ie
s p

er
 fe

at
ur

e
C

4 68 132 196 260 324 388 452 516 580
Log(Number of unnecessary branches)

Figure 5. The number of unnecessary branches introduced by Binary Encoding.

which always valuates to 0 for any datum X ∈ X . As a consequence, l can never be part of the optimal solution, in fact, it
can never be part of any Decision Tree on X , l is not even a proper branch by virtue of the definition in Section 3.1 as it
violates condition (1). While it is true that the algorithm will prune this branch because its support set {X ∈ D : l (X) = 1}
is null, it still has to waste time calculating this support set. To properly evaluate the computational inefficiency induced by
binary encoding, we analyse the number of these introduced unnecessary branches. Theorem E.1 provides this analysis for
the case where all features have an equal number categories.

Theorem E.1. Consider a classification problem where all features share the same number of categories C, i.e. X =
{1, . . . , C}q is the feature space. Performing a binary encoding on X yields the new feature space X ′ = {0, 1}qC . We
define an unnecessary branch l on X ′ as a branch that valuates to 0 for any input vector X ∈ X :

∀X ∈ X : l (X) = 0

The number of unnecessary branches introduced by binary encoding is:

U (q, C) = A (q, C)− B (q, C) = 3qC − [2C + 1]
q

Proof. The proof of this Theorem proceeds by counting the total number of branches possible on X ′ and subtracting the
total number of branches that are not unnecessary.

Let us start with the total number of branches on X ′. Any branch on X ′ has the form:

l =

w∧
v=1

I{X ′(iv) = zv}

Where X ′(iv) are the features on the space X ′, w ∈ {0, . . . , qC}, iv ∈ {1, . . . , qC}, zv ∈ {0, 1}. We note that w = 0
corresponds to l = Ω by definition.

• There are qC possibilities for choosing w.

• For each possible value w, there are
(
qC
w

)
possible combinations {i1, . . . , iw}.

• For each combination {i1, . . . , iw}, there are 2w possible assignments (z1, . . . , zw)

Therefore the total number of branches on X ′ is:

A (q, C) =

qC∑
w=0

(
qC

w

)
2w = 3qC (17)

21

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

X_17=0

Y=0

X_17=1

Y=1

X_17=2

Y=1

X_17=3

Y=0

X_17=4

Y=1

X_17=5

Y=0

X_17=6

Y=1

X_17=7

Y=1

X_17=8

Y=1

Figure 6. Optimal sparse DT for mushroom-o.

X_17={0,3,5}

Y=0

X_17={1,2,4,6,7,8}

Y=1

Figure 7. Collapsed optimal sparse DT for mushroom-o.

Let us now count the number of non-unnecessary branches. To do this, we consider a slightly different notation of the
features on X ′.

∀i ∈ {1, . . . , q},∀j ∈ {1, . . . , C} : X ′(i,j) = I{X(i) = j}
A branch l =

∧w
v=1 I{X ′(iv,jv) = zv} is not unnecessary if and only if w ∈ {0, . . . , q}, iv ∈ {1, . . . , q}, jv ∈

{1, . . . , C}, zv ∈ {0, 1}.

• For each possible value w ∈ {0, . . . , q}, there are
(
q
w

)
possible combinations {i1, . . . , iw}.

• For each combination {i1, . . . , iw}, there are Cw possible assignments (j1, . . . , jw).

• For each assignment (j1, . . . , jw), there are 2w possible assignments (z1, . . . , zw).

The total number of branches that are not unnecessary is therefore:

B (q, C) =

q∑
w=0

(
q

w

)
2wCw = [2C + 1]

q (18)

From Equation (17) and Equation (18) we deduce that the total number of unnecessary branches is:

U (q, C) = A (q, C)− B (q, C) = 3qC − [2C + 1]
q

There is a subtlety here. We define l on X ′, which means that it involves clauses defined with the features of X ′, and yet the
definition in Theorem E.1 pertains to valuating l on inputs from the feature space X . There is no mistake or lack of rigour
in this definition, we are allowed to do this because Binary Encoding is an injective map from X to X ′, thus implicitly,
valuating l on an input X ∈ X is defined as valuating l on the image of X in X ′ with this map.

Figure 5 is a contour plot of the number of unnecessary branches as a function of q and C in Logarithmic scale. It shows
how immense this number becomes as q and C increase. We should note that, not all of these unnecessary branches will be
explored by BRANCHES, in fact many of them (depending on the problem) will be pruned pre-emptively. Nevertheless,
many will inevitably be visited, which hinders the search efficiency as we clearly demonstrated in Table 2. This inefficiency
is most apparent on the mushroom dataset, where GOSDT and BRANCHES reach timeout on the binary encoding. However,
in contrast, when applied to the ordinal encoding of mushroom, BRANCHES achieves an extremely fast optimal convergence
in only 0.16s and 6 iterations. Moreover, in the mushroom dataset case, the optimal sparse DT only involves one split as
depicted in Figure 6. This solution can further be collapsed into a single split DT with only two leaves as shown in Figure 7,
which is a highly interpretable solution. On the other hand, binary encoding does not allow for such flexibility and its
solution, depicted in Figure 8, is clearly less interpretable than the one in Figure 7.

When using binary encoding, it is usually a good idea to drop one category per feature. The reason pertains to reducing
the number of the resulting binary features, which in turn makes it easier for the algorithm to quickly find the optimal

22

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

X_86=0

X_89=0

X_91=0

Y=1

X_91=1

Y=0

X_89=1

Y=0

X_86=1

Y=0

Figure 8. Optimal sparse DT for mushroom.

X_1=0

X_7=0

X_10=0

X_8=0

X_9=0

Y=1

X_9=1

Y=0

X_8=1

Y=0

X_10=1

X_8=0

Y=0

X_8=1

Y=1

X_7=1

X_9=0

Y=0

X_9=1

Y=1

X_1=1

Y=1

Figure 9. Optimal sparse DT for monk1-l, it has 7 splits.

sparse DT. Notice in Table 2 the difference in execution times between dropping and not dropping a category. In some cases
like tic-tac-toe/tic-tac-toe-f, nursery/nursery-f and balance/balance-f, just dropping the first category pushes BRANCHES to
terminate in time while it reaches timeout otherwise. However, choosing the adequate category to drop is not trivial and can
lead to widely varying solutions and difficulties. We illustrate this point with monk1-l and monk1-f. Figure 9 and Figure 10
show very different optimal sparse DTs, with the option of dropping the last category leading to a solution with only 7
splits while dropping the first category induces a solution with 17 splits. Obviously in this case we prefer dropping the last
category, but there is no trivial way of knowing this beforehand. On the other hand, employing a direct ordinal encoding
yields the optimal solution in Figure 11 with 10 splits. By noticing sibling branches that share the same sub-DTs rooted
in them, this solution can be collapsed into the DT in Figure 12 reducing its number of splits to 7. In this case, ordinal
encoding allowed us to achieve a solution of similar quality to the one induced by monk1-l without the need to guess an
adequate category to drop.

To conclude, we demonstrated in this section the reason why finding an optimal sparse DT is significantly faster via ordinal
encoding than binary encoding. This discrepancy stems from the large amount of unnecessary branches that binary encoding
introduces, as explained in Theorem E.1. Furthermore, we showed that these faster to get solutions can be even more
desirable from an interpretability standpoint, we showcased this for the mushroom dataset. Using the monk1 dataset example,
we explained the notion of collapsing the non-binary DT solution to yield better interpretable alternatives. This notion of
collapse should be further investigated in the future. It could be of great use from a scalability standpoint. Indeed, for large
datasets, using a preliminary binary encoding can greatly amplify the difficulty of the already challenging optimisation task.
The idea is to rather utilise ordinal encoding to quickly find a non-binary DT solution, and then transform this solution,
through some form of collapse, into a more interpretable version, maybe even a binary DT depending on how we conduct
the collapsing process.

23

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

X_9=0

X_7=0

X_10=0

X_8=0

Y=1

X_8=1

X_3=0

X_1=0

X_2=0

Y=1

X_2=1

Y=0

X_1=1

Y=0

X_3=1

Y=0

X_10=1

X_8=0

X_1=0

X_2=0

Y=1

X_2=1

Y=0

X_1=1

Y=0

X_8=1

Y=1

X_7=1

X_1=0

X_2=0

X_3=0

Y=1

X_3=1

Y=0

X_2=1

Y=0

X_1=1

Y=0

X_9=1

X_7=0

X_3=0

X_2=0

X_1=0

Y=1

X_1=1

Y=0

X_2=1

Y=0

X_3=1

Y=0

X_7=1

Y=1

Figure 10. Optimal sparse DT for monk1-f, it has 17 splits.

X_4=0

X_5=0

Y=1

X_5=1

X_1=0

Y=1

X_1=1

Y=0

X_1=2

Y=0

X_1=3

Y=0

X_5=2

X_1=0

Y=1

X_1=1

Y=0

X_1=2

Y=0

X_1=3

Y=0

X_4=1

X_5=0

X_1=0

Y=1

X_1=1

Y=0

X_1=2

Y=0

X_1=3

Y=0

X_5=1

Y=1

X_5=2

X_1=0

Y=1

X_1=1

Y=0

X_1=2

Y=0

X_1=3

Y=0

X_4=2

X_5=0

X_1=0

Y=1

X_1=1

Y=0

X_1=2

Y=0

X_1=3

Y=0

X_5=1

X_1=0

Y=1

X_1=1

Y=0

X_1=2

Y=0

X_1=3

Y=0

X_5=2

Y=1

Figure 11. Optimal sparse DT for monk1-o, it has 10 splits.

F. BRANCHES vs GOSDT
Among the state of the art algorithms, GOSDT is the closest to BRANCHES. Indeed, MurTree and STreeD are DFS
methods unlike OSDT, GOSDT and BRANCHES. Moreover OSDT operates on the space of DTs instead of the space of
branches unlike GOSDT and BRANCHES. For this reason, we dedicate this section to discussing the differences between
BRANCHES and GOSDT.

Support for ordinal encoding: The first straightforward difference is BRANCHES’ support for non-binary DTs that stem
from ordinal encoding. In contrast, GOSDT (as well as all the algorithms we compare with) is only applicable to binary
features, which necessitates a preliminary binary encoding. As we see in Section 5 and Appendix H.4, this detail is crucial,
it confers BRANCHES’ more scalability potential as these non-binary DT solutions are always found significantly faster (in
the span of few seconds). In Appendix E we explained the drawbacks of binary encoding from a theoretical standpoint.

The Purification Bound: It is true that (Lin et al., 2020, bounds (9) and (10)) and the purification bound stem from the
same reasoning, which we call purification when explaining the intuition behind Proposition 4.2. Furthermore (Lin et al.,
2020, bounds (9) and (10)) support equivalent points, a situation that arises when the dataset includes duplicate instances
with different classes, while our bound does not currently support this. However, this is straightforward to incorporate in the
purification bound and it will be in a future version of BRANCHES. Moreover, we emphasize that while (Lin et al., 2020,
bounds (9) and (10)) and the purification bound stem from a similar reasoning, they are different. The purification bound
pertains to penalising the number of splits while (Lin et al., 2020, bounds (9) and (10)) rather correspond to penalising the
number of leaves. This could lead to differences when considering non-binary features. Moreover, (Lin et al., 2020, bounds
(9) and (10)) are formulated for a binary classification setting with binary features. On the other hand, the purification bound
is formulated for the general case of multiclass classification with categorical features that are not necessarily binary. We
further prove in Proposition 4.2 that the purification bound upper bounds the true optimal values Q∗ (l, a) and V∗ (l) when
it is initialised and also when it is updated during Backpropagation.

24

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

X_4={0}

X_5={0}

Y=1

X_5={1,2}

X_1={0}

Y=1

X_1={1,2,3}

Y=0

X_4={1}

X_5={0,2}

X_1={0}

Y=1

X_1={1,2,3}

Y=0

X_5={1}

Y=1

X_4={2}

X_5={0,1}

X_1={0}

Y=1

X_1={1,2,3}

Y=0

X_5={2}

Y=1

Figure 12. Collapsed optimal sparse DT for monk1-o, it has 7 splits similarly to the solution induced for monk1-l.

The Selection process: By Selection process, we refer to the strategy of choosing the branch to explore, by expanding it
into children branches and then updating its value estimate (or bound). For BRANCHES, this is performed within our AO*
framework where we start from Ω and follow the action with highest value estimate Argmaxa∈A(l)Q (l, a) until reaching
a branch that is either SOLVED or that has not been expanded yet. This process is achieved through the use of multiple
small priority queues at the level of each branch to keep track of Argmaxa∈A(l)Q (l, a). In contrast, GOSDT employs one
global priority queue where all the encountered branches are stored. Using this queue, GOSDT selects the most promising
branch, i.e. the branch with the best (lowest in GOSDT’s setting) bound. However, this branch would not necessarily be
the most promising one for BRANCHES because it does not necessarily lie in BRANCHES’ selection path. Indeed, the
branch with highest V (l) does not necessarily lie in the path following Argmaxa∈A(l)Q (l, a) from Ω, in the AO* terms
of (Nilsson, 2014, Chapter 3), the branch chosen by GOSDT does not necessarily even lie in BRANCHES’ current best
partial solution graph. Due to the use of this one global priority queue, GOSDT resembles more an OR search than an
AND/OR search algorithm. This difference in the selection strategies explain the large difference in the number of iterations
of BRANCHES and GOSDT, which is in favour of BRANCHES. In addition to this fundamental difference, our Selection
process allows us to incorporate heuristics for adequately choosing an UNSOLVED child, as explained in Appendix B. This
flexibility has the potential of improving the anytime behaviour as explained in Appendix C, and indeed our experiments in
Section 5 and Appendix H.4 show BRANCHES’ anytime behaviour to always outperform GOSDT’s. We emphasize here that
these properties are provided due to the AND/OR nature of BRANCHES.

The Backpropagation process: BRANCHES updates value estimates along the selection path only. It is true that multiple
paths lead to the same selected branch l, and as such the branches along these paths could also be updated in principle.
However, the number of these paths is equal to the number of permutations of the clauses of l, which quickly becomes
computationally costly. Moreover, many of these branches will be pre-emptively pruned and thus updating them would be a
waste of time. Those that are not pruned will inevitably be visited by BRANCHES, and only then do we update them. In
contrast, GOSDT updates the values along all the ancestors of the selected branch. This idea of backpropagating along the
selection path only is discussed in (Nilsson, 2014, p. 106):

Therefore, not all ancestors need have cost revisions, but only those ancestors having best partial solution graphs
containing descendants with revised costs (hence step 12).

In addition to this difference, we explained in Appendix D that BRANCHES further sorts split actions via their
value_complete. As a consequence, if many split actions share the value Argmaxa∈A(l)\{a}Q (l, a), then the ac-
tion a for which Ch (l, a) are all SOLVED (when it exists) will always be prioritised, thus deducing immediately that l is
SOLVED and avoiding wasting time exploring it again in the future.

Caching procedure: BRANCHES uses branch caching while GOSDT uses dataset caching or support set caching. We
could implement this caching procedure in the future for BRANCHES, however, we have some doubts about its soundness
when it comes to the sparsity problem, or even for optimisation with a hard constraint on depth. Indeed, two branches l1 and
l2 could share the same support set (subset of the dataset that they contain) but differ in their number of splits S (l1) < S (l2).
In this case, the support set is insufficient to fully grasp the optimisation problem from each branch. From l1 we have
more splits to use before reaching the maximum depth than from l2. Using dataset caching in this situation might lead to a
suboptimal solution. This warrants further investigation in the future, in the absence of a proof of optimality (to our best
knowledge) specific to dataset caching, we chose the conservative option of branch caching for BRANCHES.

25

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

Computational complexity analysis: In Section 4.2 we analysed the computational complexity of BRANCHES by
bounding the number of branch evaluations it performs before terminating. Such analysis was not conducted for GOSDT.
(Lin et al., 2020, Theorem H.1) provides a big-O bound on the total number of binary DTs that can be constructed from a set
of M binary features, but it does not specifically analyse GOSDT’s computational complexity. To our knowledge, only (Hu
et al., 2019, Theorem E.2) provides such analysis for OSDT, hence why we compared with it in Table 1.

Empirical results: The experiments we conduct in Section 5 and Appendix H.4 show that BRANCHES dominates GOSDT
on the majority of experiments and for different metrics. From a lower execution time and significantly fewer iterations to a
better anytime behaviour. This further supports the more efficient AND/OR search strategy of BRANCHES.

G. Proofs and Additional Theoretical Results
Proposition G.1. Let 0 < λ < 1 and consider T ∗ = ArgmaxTHλ (T), then for any DT T we have the following:

S (T) ≤ S (T ∗) =⇒ H (T) ≤ H (T ∗)

Proof. Let T be a DT and suppose that S (T) ≤ S (T ∗). Since T ∗ = ArgmaxTHλ (T) we have:

Hλ (T) ≤ Hλ (T
∗)

=⇒ −λS (T) +H (T) ≤ −λS (T ∗) +H (T ∗)

=⇒ 0 ≤ λ (S (T ∗)− S (T)) ≤ H (T ∗)−H (T)

Lemma G.2. Let π be a policy and l ∈ S \ T a non-terminal state. If π (l) = a then Tπ
l,0 = {l} and ∀t ≥ 1 : Tπ

l,0 = {l},
otherwise we can define the trajectory

(
Tπ
l,t

)
t≥0

recursively as follows:{
Tπ
l,0 = {l}

Tπ
l,t =

⋃
lu∈Tπ

l,1
Tπ
lu,t−1 ∀t ≥ 1

Proof. The case π (l) = a is trivial by the definition of the trajectory, thus we focus on the case π (l) ̸= a. By induction on
t ≥ 1, for t = 1 we have by definition ∀lu ∈ Tπ

l,1 : Tπ
lu,0

= {lu} and thus Tπ
l,1 =

⋃
lu∈Tπ

l,1
Tπ
lu,0

.

Now suppose that the inductive hypothesis is true for some t ≥ 1 and let us prove it for t+ 1. We have:

Tπ
l,t+1 =

⋃
l′∈Tπ

l,t\T

F (l′, π (l′))
⋃

l′∈Tπ
l,t∩T

{l′}

On the other hand, the inductive hypothesis states that:

Tπ
l,t =

⋃
lu∈Tπ

l,1

Tπ
lu,t−1

Moreover, we know that
(
Tπ
lu,t−1

)
lu∈Tπ

l,1

are mutually exclusive because they are sub-DTs rooted in mutually exclusive

roots lu ∈ Tπ
l,1, hence

(
Tπ
lu,t−1

)
lu∈Tπ

l,1

forms a partition of Tπ
l,t and we can rewrite Tπ

l,t+1 as:

Tπ
l,t+1 =

⋃
lu∈Tπ

l,1

{ ⋃
l′∈Tπ

lu,t−1

F (l′, π (l′))
⋃

l′∈Tπ
lu,t−1∩T

{l′}

︸ ︷︷ ︸
=Tπ

lu,t

}

=
⋃

lu∈Tπ
l,1

Tπ
lu,t

Thus concluding the induction proof.

26

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

Proposition 3.1. Let π be a policy and l ∈ S \ T , then there exists a minimum τπl ≥ 1 such that for any t ≥ τπl ,
Tπ
l,t =

{
l1, . . . , l|Tτπ

l
|
}

is composed of terminal states only.

Proof. We follow a proof by induction on S (l) ∈ {0, . . . , q}.

If S (l) = q :
Then A (l) = {a} and π (l) = a. Therefore Tπ

l,0 = {l} and Tπ
l,1 = F (l, π (l)) = F (l, a) = {l}, and thus for τπl = 1 we

have:
∀t ≥ τπl : Tπ

l,t = {l}

Now assume the inductive hypothesis to hold for some 1 ≤ S (l) = p ≤ q and let us prove it for S (l) = p− 1:
If π (l) = a then Tπ

l,1 = {l} and the result holds for τπl = 1. Otherwise when π (l) ̸= a, Lemma G.2 states that:

∀t ≥ 1 : Tπ
l,t =

⋃
lu∈Tπ

l,1

Tπ
lu,t−1

On the other hand we know that ∀lu ∈ Tπ
l,1 : S (lu) = S (l) + 1 = p, thus the inductive hypothesis implies that:

∀lu ∈ Tπ
l,1 ∃τπlu ≥ 1 ∀t ≥ τπlu : Tπ

lu,t =
{
l1, . . . , l∣∣Tπ

τπ
lu

∣∣} = Tπ
lu,τπ

lu

Take τπl = maxlu∈Tπ
l,1

{
τπlu

}
+ 1, then we get:

∀t ≥ τπl : Tπ
l,t =

⋃
lu∈Tπ

l,1

Tπ
lu,t−1 =

⋃
lu∈Tπ

l,1

Tπ
lu,τπ

lu

Since ∀l′ ∈ Tπ
lu,τπ

lu

: l′ ∈ T then:

∀t ≥ τπl ∀l′ ∈ Tπ
l,t : l

′ ∈ T
Thus concluding the induction proof.

Proposition 3.2. Let π be a policy and l ∈ S \ T a non-terminal state, then Vπ (l) satisfies the following:

Vπ (l) = Hλ (T
π
l) = −λS (Tπ

l) +H (Tπ
l)

Moreover, the optimal DT T ∗ is the DT of an optimal policy π∗, in other words T ∗ = Tπ∗
.

Proof. We proceed by induction on S (l) ∈ {0, . . . , q}.

If S (l) = q:
Then we have π (l) = a and thus τπl = 1 and Tπ

l = {l}. Therefore:

Vπ (l) = r (l, π (l)) = r (l, a) = H (l) = Hλ (T
π
l)

The equalityH (l) = Hλ (T
π
l) stems from the fact that Tπ

l = {l} is the sub-DT rooted in l that requires no splits of l.

Now let us assume the inductive hypothesis to hold true for some 1 ≤ S (l) = p ≤ q and let us prove the result for
S (l) = p− 1:
If π (l) = a, the result holds trivially with the same reasoning as the one we used for the case S (l) = q.
Now consider the case π (l) ̸= a, we have the following:

Vπ (l) =

τπ
l −1∑
t=0

∑
lu∈Tπ

l,t\T

r (lu, π (lu))

= r (l, π (l)) +

τπ
l −1∑
t=1

∑
lu∈Tπ

l,t\T

r (lu, π (lu))

= −λ+

τπ
l −1∑
t=1

∑
lu∈Tπ

l,t\T

r (lu, π (lu))

27

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

The last equality stems from the fact that r (l, π (l)) = −λ because π (l) ̸= a is a split action. Lemma G.2 states that(
Tπ
lu,t−1

)
lu∈F (l,π(l))

is a partition of Tπ
l,t and therefore we can write:

Vπ (l) = −λ+

τπ
l −1∑
t=1

∑
l′∈F (l,π(l))

∑
lu∈Tπ

l′,t−1
\T

r (lu, π (lu))

= −λ+
∑

l′∈F (l,π(l))

τπ
l −1∑
t=1

∑
lu∈Tπ

l′,t−1
\T

r (lu, π (lu))

We know that ∀l′ ∈ Tπ
l,1 : τπl′ ≤ τπl − 1 and thus:

Vπ (l) = −λ+
∑

l′∈F (l,π(l))

τπ
l′−1∑
t=0

∑
lu∈Tπ

l′,t\T

r (lu, π (lu))

= −λ+
∑

l′∈F (l,π(l))

Vπ (l′)

On the other hand we know that ∀l′ ∈ F (l, π (l)) : S (l′) = S (l) + 1 = p, therefore the inductive hypothesis implies:

∀l′ ∈ F (l, π (l)) : Vπ (l′) = Hλ (T
π
l′)

Going back to Vπ (l) induces:

Vπ (l) = −λ+
∑

l′∈F (l,π(l))

Hλ (T
π
l′)

= −λ+
∑

l′∈F (l,π(l))

{
− λS (Tπ

l′)
}
+

∑
l′∈F (l,π(l))

H (Tπ
l′)

= −λ

{
1 +

∑
l′∈F (l,π(l))

S (Tπ
l′)

}
+

∑
l′∈F (l,π(l))

H (Tπ
l′)

The sub-DT Tπ
l is constituted of the sub-DTs Tπ

l′ that are each rooted in l′ ∈ F (l, π (l)), thus the number of splits of Tπ
l is

equal to 1 (the first splits at l) plus the sum of the numbers of splits of Tπ
l′ for l′ ∈ F (l, π (l)), i.e.

S (Tπ
l) = 1 +

∑
l′∈F (l,π(l))

S (Tπ
l′)

Moreover (Tπ
l′)l′∈F (l,π(l)) is a partition of Tπ

l and thus:

H (Tπ
l) =

∑
l′∈F (l,π(l))

H (Tπ
l′)

Going back to Vπ (l) we get:
Vπ (l) = −λS (Tπ

l) +H (Tπ
l) = Hλ (T

π
l)

This concludes the induction proof.

Lemma G.3. Let π∗ be an optimal policy, i.e. π∗ ∈ ArgmaxπVπ (Ω) and consider the set of non-terminal states in its
trajectory from Ω:

S∗ =

τ∗
Ω−1⋃
t=0

T ∗
Ω,t \ T

Then for any policy π we have the following:

∀l ∈ S∗ : Vπ (l) = V∗ (l)

28

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

Proof. We follow a proof by contradiction procedure. Suppose that there exists a policy π such that:

∃l ∈ S∗ : Vπ (l) > V∗ (l)

Since l ∈ S∗, there exists 1 ≤ tl ≤ τ∗l − 1 such that l ∈ T ∗
Ω,tl

. We write:

V∗ (Ω) =

tl−1∑
t=0

∑
lu∈T∗

Ω,t\T

r (lu, π
∗ (lu)) +

∑
l′∈T∗

Ω,tl
\T \{l}

V∗ (l′) + V∗ (l) (19)

Now we define a new policy π′ as follows:{
π′ = π on l and all of its descendents.
π′ = π∗ elsewhere.

The first term in (19) is therefore equal to:

tl−1∑
t=0

∑
lu∈T∗

Ω,t\T

r (lu, π
∗ (lu)) =

tl−1∑
t=0

∑
lu∈T∗

Ω,t\T

r (lu, π
′ (lu))

Let us now analyse the second term
∑

l′∈T∗
Ω,tl

\T \{l} V∗ (l′). Since l ∈ T ∗
Ω,tl

, then for all l′ ∈ T ∗
Ω,tl
\ T \ {l}, l and l′ share

no descendents. Therefore, for any descendent l” of l′ we have π′ (l′) = π∗ (l′) and therefore:

∀l′ ∈ T ∗
Ω,tl
\ T \ {l} : V∗ (l′) = Vπ′

(l′)

=⇒
∑

l′∈T∗
Ω,tl

\T \{l}

V∗ (l′) =
∑

l′∈T∗
Ω,tl

\T \{l}

Vπ′
(l′)

For the third term in (19), since π′ = π on l and all of its descendents, then we have Vπ′
(l) = Vπ (l) > V∗ (l). We can now

rewrite (19) as follows:

V∗ (Ω) <

tl−1∑
t=0

∑
lu∈T∗

Ω,t\T

r (lu, π
′ (lu)) +

∑
l′∈T∗

Ω,tl
\T \{l}

Vπ′
(l′) + Vπ′

(l′)

︸ ︷︷ ︸
=Vπ′ (Ω)

< Vπ′
(Ω)

This contradicts the fact that π∗ is optimal, which concludes our proof.

Proposition 4.1 (Bellman Optimality Equations). Let π∗ be an optimal policy, i.e. π∗ ∈ ArgmaxπVπ (Ω) and consider the
set of non-terminal states in its trajectory from Ω:

S∗ =

τ∗
Ω−1⋃
t=0

T ∗
Ω,t \ T

Now consider a policy π and suppose that for all l ∈ S∗:

Vπ (l) = max
a∈A(l)

Qπ (l, a) (8)

Then π is optimal and we also have:
π (l) = Argmaxa∈A(l)Qπ (l, a) (9)

Proof. We know that ∀l ∈ S∗ ∃0 ≤ tl ≤ τ∗Ω : l ∈ T ∗
Ω,tl
\ T . We will now show that ∀l ∈ S∗ : Vπ (l) = V∗ (l) which

would include Vπ (Ω) = V∗ (Ω). The proof proceeds by backward induction on tl.

29

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

For tl = τ∗Ω − 1, by definition we have:

Vπ (l) = max
a∈A(l)

Qπ (l, a) ≥ Qπ (l, a) = H (l) = Q∗ (l, a) (20)

On the other hand, we know that π∗ (l) = a. Indeed, this is true because otherwise π∗ (l) would be a split action leading to
non-terminal states, which means that T ∗

Ω,tl+1 = Tπ∗

Ω,τ∗
Ω

includes non-terminal states, and this would contradict the definition
of τ∗Ω. Therefore:

V∗ (l) = Q∗ (l, π (l)) = Q∗ (l, a) (21)

From Equation (20) and Equation (21) we get:
Vπ (l) ≥ V∗ (l) (22)

On the other hand, since π∗ is optimal and l ∈ S∗ we have Vπ (l) ≤ Vπ∗
(l) according to Lemma G.3, and we deduce that:

Vπ (l) = V∗ (l)

Now suppose that Vπ (l) = V∗ (l) for all l ∈ S∗ such that tl = t for some 1 ≤ t ≤ τ∗Ω − 1 and let us show that the result
still holds for t− 1. Let l ∈ S∗ such that tl = t− 1, we have Vπ (l) = maxa∈A(l)Qπ (l, a). On the other hand:

Qπ (l, π∗ (l)) = r (l, π∗ (l)) +
∑

lu∈F (l,π∗(l))\T

Vπ (lu) (23)

Moreover ∀lu ∈ F (l, π∗ (l)) \ T : lu ∈ S∗, tlu = t. The induction hypothesis then implies that:

∀lu ∈ F (l, π∗ (l)) \ T : Vπ (lu) = V∗ (lu)

Going back to Equation (23), we get:

Qπ (l, π∗ (l)) = r (l, π∗ (l)) +
∑

lu∈F (l,π∗(l))\T

V∗ (lu) = Q∗ (l, π∗ (l)) = V∗ (l)

Now we have:
Vπ (l) = max

a∈A(l)
Qπ (l, a) ≥ Qπ (l, π∗ (l)) = V∗ (l)

On the other hand Vπ (l) ≤ V∗ (l) because π∗ is optimal. Therefore we deduce that:

Vπ (l) = V∗ (l)

which concludes the inductive proof.

Proposition 4.2 (Purification Bound). Let l ∈ S \ T , we define the Purification Bound as follows:

If A (l) \ {a} ≠ ∅:

V (l) = max{H (l) ,−λ+ P [l (X) = 1]}

= max
{nk∗(l) (l)

n
,−λ+

n (l)

n

}
(13)

Otherwise:

V (l) = V∗ (l) = H (l) =
nk∗(l) (l)

n
(14)

The bounds V (l) are initialised with (13) or (14), then they are recursively backpropagated to the ancestors of l in the
AND/OR graph through (11) and (12). The resulting heuristic estimates Q (l, a) and V (l) are upper bounds on the true
optimal values Q∗ (l, a) and V∗ (l) respectively.

30

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

Proof. Let us first show that the initialisations in Equation (13) and Equation (14) are upper bounds on the true optimal
values V∗ (l):

The case A (l) = {a} is trivial because the only action that can be taken at l is a, which means that all policies π map l to
π (l) = a, therefore:

∀π : Vπ (l) = r (l, a) = H (l)

Now consider the case A (l) \ {a} ≠ ∅, we have the following:

V (l) = max{H (l) ,−λ+ P [l (X) = 1]}
= max{Q∗ (l, a) ,−λ+ P [l (X) = 1]}

It suffices to show now that:
∀a ∈ A (l) \ {a} : Q∗ (l, a) ≤ −λ+ P [l (X) = 1]

Let a ∈ A (l) \ {a} be a split action, we have the following:

Q∗ (l, a) = r (l, a) +
∑

lu∈F (l,a)\T

V∗ (lu)

= −λ+
∑

lu∈F (l,a)

V∗ (lu) (24)

On the other hand, Proposition 3.2 implies that:

∀lu ∈ F (l, a) : V∗ (lu) = Hλ

(
T ∗
lu

)
= −λS

(
T ∗
lu

)
+H

(
T ∗
lu

)
≤ P

[
lu (X) = 1, T ∗

lu (X) = Y
]

≤ P [lu (X) = 1]

The second line stems from the definition ofH
(
T ∗
lu

)
and the fact that S

(
T ∗
lu

)
≥ 0. Going back to Equation (24) yields:

Q∗ (l, a) ≤ −λ+
∑

lu∈F (l,a)

P [lu (X) = 1]

Since F (l, a) is a partition of l we know that P [l (X) = 1] =
∑

lu∈F (l,a)P [lu (X) = 1] and thus:

Q∗ (l, a) ≤ −λ+ P [l (X) = 1]

We deduce that:

V (l) = max{Q∗ (l, a) ,−λ+ P [l (X) = 1]}
≥ max

a∈A(l)
Q∗ (l, a) ≥ Q∗ (l, π∗ (l)) = V∗ (l)

Now let l ∈ S \ T and suppose that for all its children, the upper bounds V (lu) are available. For all split actions
a ∈ A (l) \ {a}, the definition (11) implies that:

Q (l, a) = −λ+
∑

lu∈F (l,a)

V (lu)

Since ∀lu ∈ F (l, a) : V (lu) ≥ V∗ (lu), we get:

Q (l, a) ≥ −λ+
∑

lu∈F (l,a)

V∗ (lu) = Q∗ (l, a)

On the other hand, the definition (12) implies that:

V (l) = max
a∈A(l)

Q (l, a)

≥ max
a∈A(l)

Q∗ (l, a)

≥ Q∗ (l, π∗ (l))

≥ V∗ (l)

which concludes our proof.

31

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

Theorem 4.3 (Optimality). Upon termination, the selection policy π̃ becomes optimal. In other words:

V π̃ (Ω) = V∗ (Ω) = max
π
Vπ (Ω)

Proof. To prove this we show that for any l ∈ S \ T , l is SOLVED if and only if:

V π̃ (l) = V (l) ≥ V∗ (l)

where V∗ is the value function of an optimal policy π∗. We proceed by induction on 1 ≤ τ π̃l ≤ q:

If τ π̃l = 1, then we have:
π̃ (l) = a = Argmaxa∈A(l)Q (l, a) (25)

On the other hand:
V π̃ (l) = Qπ̃ (l, π̃ (l)) = Qπ̃ (l, a) = Q (l, a) (26)

From Equation (25) and Equation (26) we deduce that:

V π̃ (l) = max
a∈A(l)

Q (l, a) = V (l) ≥ V∗ (l)

The last inequality is due to Proposition 4.2. Note that we do not necessarily have V π̃ (l) ≤ V∗ (l) even though π∗ is an
optimal policy. Indeed this would only be necessarily satisfied if l ∈ S∗ as per Lemma G.3.

Now suppose that the result is true for τ π̃l = t for some 1 ≤ t ≤ q − 1 and let us prove it for any l ∈ S \ T such that
τ π̃l = t+ 1. We have:

V π̃ (l) = Qπ̃ (l, π̃ (l))

= r (l, π̃ (l)) +
∑

lu∈F (l,π̃(l))

V π̃ (lu)

Since τ π̃l = t+ 1 ≥ 2 then we necessarily have π̃ (l) ∈ A (l) \ {a}, i.e. π̃ (l) is a split action. Indeed, this is true because
otherwise we would have τ π̃l = 1. Therefore we get:

V π̃ (l) = −λ+
∑

lu∈F (l,π̃(l))

V π̃ (lu)

On the other hand ∀lu ∈ F (l, π̃ (l)) : τ π̃lu = t and thus the inductive hypothesis implies that V π̃ (lu) = V (lu) ≥ V∗ (lu),
which means that:

V π̃ (l) = −λ+
∑

lu∈F (l,π̃(l))

V (lu) = Q (l, π̃ (l)) = max
a∈A(l)

Q (l, a) = V (l)

≥ Q (l, π∗ (l))

≥ Q∗ (l, π∗ (l))

≥ V∗ (l)

which concludes the inductive proof.

Now, since BRANCHES terminates when Ω becomes SOLVED, then we have:

V π̃ (Ω) ≥ V∗ (Ω)

On the other hand, since Ω ∈ S∗, then by Lemma G.3, we necessarily have:

V π̃ (Ω) ≤ V∗ (Ω)

Hence deducing that:
V π̃ (Ω) = V∗ (Ω)

32

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

Lemma G.4. A branch l ∈ S \ T can be chosen for Expansion only if there exists a DT T such that:{
l ∈ T \ L
−λS (T) +

∑
l′∈LH (l′) +

∑
l′∈T\L

{
− λ+ P [l′ (X) = 1]

}
≥ −λS (T ∗) +H (T ∗)

Where L = {l′ ∈ T : H (l′) ≥ −λ+ P [l′ (X) = 1]}.

Proof. A branch l ∈ S \ T can only be chosen for Expansion if it is a tip node (leaf) of the search graph G and is selected
by the selection policy π̃, i.e.

∃tl ≥ 0 : l ∈ T π̃
Ω,tl

We know that there exists τ ≥ 0 such that for all l ∈ T π̃
Ω,τ , l is a tip node of G. This is true because otherwise G would

be bottomless, which is false because it has a maximum depth of q (the total number of features). On the other hand, the
recursive definition of V yields:

V (Ω) = −λS
(
T π̃
Ω,τ

)
+

∑
l′∈T π̃

l,τ

V (l′)

Since all branches l′ ∈ T π̃
Ω,τ are tip nodes of G, then V (l′) = H (l′) if H (l′) ≥ −λ + P [l′ (X) = 1] and V (l′) =

−λ+ P [l′ (X) = 1] otherwise. Define L = {l′ ∈ T π̃
Ω,τ : H (l′) ≥ −λ+ P [l′ (X) = 1]}, we have:

V (Ω) = −λS
(
T π̃
Ω,τ

)
+

∑
l′∈L

H (l′) +
∑

l′∈T π̃
Ω,τ\L

{
− λ+ P [l′ (X) = 1]

}
On the other hand, according to Proposition 4.2 and Proposition 3.2 we have the following:

V (Ω) ≥ V∗ (Ω) = −λS (T ∗) +H (T ∗)

Thus:
−λS

(
T π̃
Ω,τ

)
+

∑
l′∈L

H (l′) +
∑

l′∈T π̃
Ω,τ\L

{
− λ+ P [l′ (X) = 1]

}
≥ λS (T ∗) +H (T ∗)

Moreover, l can only be expanded if l ∈ T π̃
Ω,τ because all the branches in L are SOLVED. This concludes our proof.

Theorem G.5 (Problem-dependent complexity of BRANCHES). Let Γ (q, C, λ) denote the total number of branch evaluations
performed by BRANCHES for an instance of the classification problem with q ≥ 2 features, 0 < λ ≤ 1 the penalty parameter,
and C ≥ 2 the number of categories per feature. Then, Γ (q, C, λ) satisfies the following bound:

Γ (q, C, λ) ≤
κ∑

h=0

(q − h)Ch+1

(
q

h

)
; κ = min

{⌊
S (T ∗)− 1 +

1−H (T ∗)

λ

⌋
, q

}

Proof. Let l be a branch. According to Lemma G.4, for l to be considered for Expansion, there has to exist a DT T such
that: {

l ∈ T \ L
−λS (T) +

∑
l′∈LH (l′) +

∑
l′∈T\L

{
− λ+ P [l′ (X) = 1]

}
≥ −λS (T ∗) +H (T ∗)

where L = {l′ ∈ T : H (l′) ≥ −λ+ P [l′ (X) = 1]}. Suppose l is such a branch, then we have:

−λS (T) +
∑
l′∈L

H (l′)︸ ︷︷ ︸
≤P[l′(X)=1]

+
∑

l′∈T\L

{
− λ+ P [l′ (X) = 1]

}
≥ −λS (T ∗) +H (T ∗)

=⇒ −λ
{
S (T) + |T \ L|

}
+

∑
l′∈T

P [l′ (X) = 1] ≥ −λS (T ∗) +H (T ∗)

33

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

Since l ∈ T \ L, then |T \ L| ≥ 1 and we get:

−λ
{
S (T) + 1

}
+ 1 ≥ −λS (T ∗) +H (T ∗)

=⇒ S (T) ≤ S (T ∗)− 1 +
1−H (T ∗)

λ

=⇒ S (l) ≤ S (T ∗)− 1 +
1−H (T ∗)

λ

Let C =
{
l branch : S (l) ≤ S (T ∗)− 1 + 1−H(T∗)

λ

}
. Then the number of branches that are expanded is upper bounded by

|C|.

We recall that we rather seek to upper bound the number of branches that are evaluated, i.e. for which we calculateH (l).
These evaluations happen during the Expansion step of BRANCHES. When a branch l is expanded, we evaluate all of its
children. There are q − S (l) features left to use for splitting l, and for each split, C children branches are created. Thus,
there are (q − S (l))C children of l, hence (q − S (l))C evaluations happen during the expansion of l. Let us now upper
bound Γ (q, C, λ).

For each branch l ∈ C:

• We choose S (l) ∈

{
0, . . . ,min

{⌊
S (T ∗)− 1 + 1−H(T∗)

λ

⌋
, q

}}
. The minimum comes from the fact that l ∈ C and

S (l) ≤ q.

• For each h = S (l), we construct l by choosing h features among the total q features, there are
(
q
h

)
such choices.

• For each choice among the
(
q
h

)
choices, for each feature among the h features, there are C choices of values, therefore

there are Ch
(
q
h

)
branches with depth h.

• For each branch of depth h, when it is expanded, (q − h)C evaluations occur.

With these considerations, we deduce that:

Γ (q, C, λ) ≤
κ∑

h=0

(q − h)Ch+1

(
q

h

)
; κ = min

{⌊
S (T ∗)− 1 +

1−H (T ∗)

λ

⌋
, q

}

Theorem 4.4 (Complexity). Let Γ (q, C, λ) denote the total number of branch evaluations performed by BRANCHES for a
classification problem with a number of features q ≥ 2, a penalty parameter 0 < λ < 1, and a number of categories per
feature C ≥ 2. Then, Γ (q, C, λ) satisfies:

Γ (q, C, λ) ≤
κ∑

h=0

(q − h)Ch+1

(
q

h

)

where κ = min
{⌊

1
Kλ

⌋
− 1, q

}
.

Proof. This is a corollary of Theorem G.5. To make the bound problem-independent, let us upper bound κ and make it
independent of T ∗. We know that:

Hλ (T
∗) = −λS (T ∗) +H (T ∗) ≥ Hλ (Ω) = H (Ω) = P [Y = k∗ (Ω)] ≥ 1

K

=⇒ S (T ∗)− 1 +
1−H (T ∗)

λ
≤ K − 1

Kλ
− 1

Which concludes the proof.

34

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

Table 4. Number of examples n, number of features q, number of classes K and penalty parameter λ for the different datasets used in our
experiments. d is the depth of optimal solution, which we employ in Appendix H.3.

Dataset n q K λ d

monk1 124 17 2 0.01 4
monk1-l 124 11 2 0.01 5
monk1-f 124 11 2 0.001 7
monk1-o 124 6 2 0.01 3

monk2 169 17 2 0.001 6
monk2-f 169 11 2 0.001 9
monk2-o 169 6 2 0.001 3

monk3 122 17 2 0.001 8
monk3-f 122 11 2 0.001 7
monk3-o 122 6 2 0.001 4

tic-tac-toe 958 27 2 0.005 6
tic-tac-toe-f 958 18 2 0.005 6
tic-tac-toe-o 958 9 2 0.005 5

car-eval 1728 21 4 0.005 8
car-eval-f 1728 15 4 0.005 8
car-eval-o 1728 6 4 0.005 4

nursery 12960 27 5 0.01 6
nursery-f 12960 19 5 0.01 4
nursery-o 12960 8 4 0.01 3

mushroom 8124 117 2 0.01 3
mushroom-f 8124 95 2 0.01 3
mushroom-o 8124 22 2 0.01 1

kr-vs-kp 3196 73 2 0.01 4
zoo 101 36 7 0.001 6

zoo-f 101 20 7 0.001 7
zoo-o 101 16 7 0.001 5

lymph 148 59 4 0.01 4
lymph-f 148 41 4 0.01 5
lymph-o 148 18 4 0.01 4
balance 576 20 3 0.01 8

balance-f 576 16 3 0.01 10
balance-o 576 4 3 0.01 3

H. Additional Experiments
All the experiments were run on a personal Machine (2,6 GHz 6-Core Intel Core i7), they are easily reproducible. Below we
provide references to the implementations we used:

• BRANCHES https://github.com/Chaoukia/branches.

• DL8.5 https://github.com/aia-uclouvain/pydl8.5.git.

• OSDT https://github.com/xiyanghu/OSDT.git.

• GOSDT https://github.com/ubc-systopia/gosdt-guesses.git.

• MurTree https://github.com/MurTree/pymurtree.git.

• STreeD https://github.com/AlgTUDelft/pystreed.git.

35

https://github.com/Chaoukia/branches
https://github.com/aia-uclouvain/pydl8.5.git
https://github.com/xiyanghu/OSDT.git
https://github.com/ubc-systopia/gosdt-guesses.git
https://github.com/MurTree/pymurtree.git
https://github.com/AlgTUDelft/pystreed.git

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

Table 5. Comparing BRANCHES with the state of the art python implementations for a large maximum depth 20.

Dataset OSDT PYGOSDT BRANCHES

ob
je

ct
iv

e

ac
cu

ra
cy

sp
lit

s

tim
e

(s
)

ite
ra

tio
ns

ob
je

ct
iv

e

ac
cu

ra
cy

sp
lit

s

tim
e

(s
)

ite
ra

tio
ns

ob
je

ct
iv

e

ac
cu

ra
cy

sp
lit

s

tim
e

(s
)

ite
ra

tio
ns

monk1 0.940 1 6 2.38 94901 0.940 1 6 6.03 174523 0.940 1 6 0.05 146
monk1-l 0.930 1 7 71 2028577 0.930 1 7 181 3731292 0.930 1 7 0.02 117
monk1-f 0.971 1 29 TO 22308 0.970 1 30 TO 2018 0.983 1 17 0.39 2125
monk1-o 0.900 1 10 0.02 64

monk2 0.948 1 52 TO 41 0.948 1 52 TO 44 0.968 1 32 14.2 60611
monk2-f 0.904 0.982 76 TO 44083 0.903 0.982 77 TO 32475 0.933 1 67 2.94 28968
monk2-o 0.955 1 45 0.18 1213

monk3 0.976 0.991 15 TO 17728 0.976 0.991 15 TO 5765 0.985 1 15 4.05 14807
monk3-f 0.975 0.991 15 TO 11875 0.973 0.991 17 TO 897 0.983 1 17 0.36 3026
monk3-o 0.987 1 13 0.03 156

tic-tac-toe 0.794 0.869 15 TO 76 0.794 0.869 15 TO 69 0.838 0.928 18 TO 390000
tic-tac-toe-f 0.764 0.824 11 TO 40 0.808 0.824 11 TO 37 0.850 0.945 19 16.3 74627
tic-tac-toe-o 0.773 0.858 17 0.68 3339

mushroom 0.955 0.985 3 76.2 1186819 0.955 0.985 3 211 2681260 0.955 0.985 3 TO 21000
mushroom-f 0.945 0.985 4 TO 4704419 0.945 0.985 4 TO 2487909 0.945 0.985 4 TO 24000
mushroom-o 0.975 0.985 1 0.15 6

kr-vs-kp 0.900 0.940 4 TO 67161 0.900 0.940 4 TO 25379 0.900 0.940 4 TO 46000

MurTree, STreeD and GOSDT use support set caching and the similarity bound. On the other hand, the current imple-
mentation of BRANCHES only supports branch caching and it does not include a similarity bound. Additionally, we set
the maximum nodes for MurTree to 80. We noticed that without this constraint, the kernel dies immediately. The optimal
sparse DT for all the experiments we consider have less than 80 nodes, thus this constraint should not cause MurTree to be
suboptimal.

Table 4 summarises the properties of the datasets we employed in our experiments. The λ values reported in Table 4 are those
employed in the experiments of Section 5, they were chosen from a pool of values λ ∈ {0.1, 0.05, 0.025, 0.01, 0.005, 0.001}
to yield meaningful solutions. Appendix H.2 provides the induced Pareto fronts by these values for a 10-fold crossvalidation.

H.1. Comparing BRANCHES with Python implementations

We have shown in Section 5 that BRANCHES outperforms its C++ competitors in terms of runtime even though it is
implemented in Python. To further illustrate the importance of this achievement, we compare BRANCHES with Python
implementations and show the vast difference in performance in favour of BRANCHES.

Table 5 compares BRANCHES with OSDT and PYGOSDT, it contains less datasets than Table 2 because the implementations
of OSDT and PYGOSDT are restrained to binary classification problems. Table 5 shows that BRANCHES outperforms OSDT
and GOSDT in terms of runtime, number of iterations and quality of the proposed solution on all the experiments except
mushroom. On mushroom, OSDT and PYGOSDT terminate in 76.2s and 211s respectively while BRANCHES reaches
timeout. Nevertheless, BRANCHES’ anytime behaviour still allowed the retrieval of the true optimal sparse DT in this case.

Table 5 showcases the shortcomings of Python implementations for the sparsity problem as both OSDT and PYGOSDT
reach timeout and are suboptimal on the vast majority of datasets. Due to the optimisation difficulty of the sparsity problem,
a lot of care has to be dedicated to low-level optimisation of the proposed implementations, a property that C++ offers better
than Python, hence the vast adoption of C++ in the state of the art algorithms solving the sparsity problem. BRANCHES being
implemented in Python and yet outperforming its C++ competitors is a testament to its efficient AO*-based search strategy.
Moreover, a future C++ implementation of BRANCHES is very promising especially when coupled with multi-threading.

H.2. Pareto fronts

The purpose of this section is to compare DT algorithms of different natures. BRANCHES solves the sparsity problem, CART
is a greedy search algorithms for DTs and DL8.5 seeks the optimal DT subject to a hard constraint on maximum depth.
Figure 13, Figure 14, Figure 15 and Figure 16 report the median and the quartiles of the accuracy and number of splits of the
proposed solutions induced by a 10 fold crossvalidation, branches-o in the legends represents BRANCHES applied to ordinal

36

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

encoding. For DL8.5, we ran it with with maximum depths raging between 1 and 10. As for BRANCHES and CART, they
were run with λ ∈ {0.1, 0.05, 0.025, 0.01, 0.005, 0.001}. Note that λ in the context of CART refers to the cost-complexity
parameter (ccp alpha in scikit-learn) that is used for the pruning phase. It plays a similar role to the penalty parameter λ,
hence why we tested both with the same set of values. A similar set of experiments was conducted by Hu et al. (2020)
albeit with the maximum depth for CART instead of the cost-complexity parameter. We noticed that the cost-complexity
parameter yields better frontiers for CART than the maximum depth, hence our choice. Figure 15 and Figure 16 report the
same results as Figure 13 and Figure 14 respectively but with the inclusion of DL8.5. We made this distinction for clarity
purposes because DL8.5’s solutions become so complex (high number of splits) that the differences between the frontiers of
CART and BRANCHES become less apparent.

Figure 13 shows that BRANCHES displays better training frontiers than those of CART, and on many occasions branches-o
yields even better training frontiers as we can see in monk1-f, monk2-f, careval-f, nursery, nursery-f, mushroom, mushroom-f,
zoo, zoo-f, lymph-f and balance-f. This indicates that applying BRANCHES on an ordinal encoding of the data is not only
good from a scalability standpoint (as we have seen with the extremely fast convergence in Table 2) but can also yield better
solutions in terms of accuracy and the number of splits. On the other hand, the differences in the test frontiers, depicted
in Figure 14 are less clear than for the training frontiers. Nevertheless, we can still observe an advantage for BRANCHES’
test frontiers over CART’s. Moreover, Figure 14 illustrates a tendency of branches-o to overfit as we observe in monk2,
monk2-f, tictactoe, tictactoe-f, lymph, lymph-f, balance and balance-f. This phenomenon can be explained by the tendency
of non-binary DTs on ordinal encodings to induce branches containing smaller subsets of data than those induced by their
binary DTs counterparts, thus increasing the risk of overfitting. Notice that for large datasets (nursery with 12960 data and
mushroom with 8124 data) branches-o does not run into this overfitting issue.

Figure 15 and Figure 16 illustrate how DL8.5 actively seeks more and more complex DTs as the maximum depth parameter
increases, thus disregarding sparsity concerns and inducing poor frontiers compared to BRANCHES and CART. To alleviate
this tendency, Aglin et al. (2020) further include a constraint on the minimum support size of DL8.5, i.e. the minimum
number of data that a branch has to contain in order to be considered for expansion. In the next section, we investigate this
constraint and show that even with the best configurations DL8.5 is still suboptimal.

H.3. Suboptimality of DL8.5

In all the experiments, we set the maximum depth of DL8.5 to the depth of the true optimal sparse DT that we derive using
BRANCHES, these depth values are reported in Table 4. We analyse DL8.5’s performance over 20 values of minimum
support size (minimum allowed number of instances per branch) taken between 1 and 50. Figure 17 shows that, even with
the knowledge of the best possible maximum depth parameter and the best configuration of minimum support size, DL8.5
almost never approaches the baseline derived by BRANCHES. Figure 18 further illustrates that BRANCHES’ solution is
always outside the accuracy-splits frontier displayed by DL8.5, which means that BRANCHES’ solution always dominates
DL8.5’s solution from a sparsity perspective.

H.4. Comparison across a wide range of maximum depths

We compare the performance of BRANCHES, GOSDT and STreeD on a set of maximum depth values ranging from 4 to 20.
For all the algorithms, we compare the objectiveHλ, accuracy and number of splits of the proposed solution in addition to
the execution time. Moreover, we compare GOSDT and BRANCHES in terms of the number of iterations. We also compare
the depth of the proposed solutions between BRANCHES and STreeD only because, to our knowledge, the implementation
of GOSDT does not provide this metric. The legends of the figures contain:

• branches: BRANCHES applied to binary encoding.

• branches-o: BRANCHES applied to ordinal encoding.

• gosdt: GOSDT applied to binary encoding.

• streed: STreeD applied to binary encoding.

• streed1: STreeD with the depth 2 solver, introduced by Demirović et al. (2022), disabled. The reason we introduce
this baseline is to assess the contribution of the depth 2 solver to STreeD’s performance. We shall see that this option
improves STreeD’s performance significantly.

37

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

The results are reported in Figures 19 to 40. We start by discussing the performance of GOSDT. Interestingly, the
objectiveHλ reported for GOSDT does not match the one reported for BRANCHES and STreeD. This might indicate that
the implementation of max depth for GOSDT forces the solution to have a depth strictly lower than max depth, unlike
BRANCHES and STreeD where the solution is allowed to reach max depth. Nevertheless, this does not undermine the
following discussion. Surprisingly, GOSDT performs often worse when limiting its maximum depth than otherwise. There
are even cases where it runs out of memory even though this phenomenon has not been observed in Table 2. This happens
for mushroom, mushroom-f, lymph, lymph-f, tic-tac-toe, krvskp, nursery and nursery-f, hence why GOSDT’s results are
missing in those figures. We note that this phenomenon has been observed by McTavish et al. (2022), the authors that
incorporate the maximum depth parameter into GOSDT. They state:

Interestingly, using a large depth constraint is often less efficient than removing the depth constraint entirely for GOSDT,
because when we use a branch-and-bound approach with recursion, the ability to re-use solutions of recurring

sub-problems diminishes in the presence of a depth constraint.

On the other hand, despite being a BFS method as well and as such being more memory consuming than DFS methods,
BRANCHES never ran into this issue in both sets of experiments. This is likely explained by BRANCHES’ ability to terminate
significantly earlier than GOSDT in terms of iterations, and thus terminating before running into memory issues. This large
discrepancy in the number of iterations was observed in Table 2 and is further observed in all the experiments in this section.
Furthermore, except on few cases such as balance, BRANCHES dominates GOSDT in terms of execution speed.

On these experiments the comparison with STreeD is more insightful. A common pattern is that STreeD dominates
BRANCHES in terms of speed for small depths up until a certain point where BRANCHES becomes the dominating method.
This is best observed in tic-tac-toe-f, car-eval-f, nursery-f, zoo and balance-f. We note also that in some cases such as
balance, lymph-f, lymph and tic-tac-toe, STreeD proposes better solutions altogether than BRANCHES because the latter
reaches timeout, albeit for higher depths we cannot even compare the solutions of BRANCHES and STreeD because STreeD
does not even propose solutions then. A very insightful experiment here is mushroom. We have seen in Table 2 that STreeD
performs exceptionally well on mushroom and mushroom-f even for a large maximum depth. The experiments on this
section further support this observation. Thus we naturally wonder: Why does STreeD perform exceptionally well on the
mushroom datasets? Is it the DFS strategy or something else? To investigate this, we looked into a powerful tool in
STreeD’s arsenal, the depth 2 solver that was introduced by Demirović et al. (2022). This solver allows for finer estimates to
be computed early on, it has been proven to yield significant runtime improvements, and moreover neither GOSDT nor
BRANCHES utilise it for now. Fortunately, STreeD’s implementation allows the disabling of the depth 2 solver. Indeed,
the depth 2 solver turns out to be paramount to STreeD’s performance, without it, STreeD always runs out of time on the
mushroom datasets. Moreover, now BRANCHES largely dominates STreeD across the full range of max depth values, except
on very few cases such as depths 13, 14 and 15 in balance-f. With this, we conclude that STreeD’s better performance on
mushroom and smaller depths is not due to its DFS strategy, but rather to the depth 2 solver. This observation motivates us
to consider adapting the depth 2 solver to the purification bound and incorporating it in a future version of BRANCHES. This
is a promising idea that could push BRANCHES to dominate STreeD for small depths as well.

Next we discuss the anytime behaviour. We have seen in Table 2 that STreeD lacks the anytime behaviour unlike GOSDT
and BRANCHES, which hinders its applicability. To cite a few examples, STreeD (with the depth 2 solver) starts reaching
timeout from depth 7 for lymph and depth 8 for lymph-f and tic-tac-toe. On the other hand, notice that the solutions proposed
by BRANCHES even after reaching timeout always dominate those proposed by GOSDT in terms of the objectiveHλ. This
is especially the case for car-eval, balance and balance-f and we recall that we could not report GOSDT’s performance on
many other datasets because it runs our of memory.

Lastly, we discuss the application of BRANCHES to ordinal encoding. On all experiments, the optimal sparse DT is found
significantly faster in this setting, even for the largest dataset nursery with 12960 examples. This further supports the
scalability potential of this property. Moreover, while it is true that from the objective’s perspective, the induced solutions
with ordinal encodings are not always the best compared to those induced by binary encoding, however, they happen to
be better often such as in monk2-f, monk3, monk3-f, car-eval-f, nursery, nursery-f zoo, zoo-f, lymph, lymph-f, balance-f,
mushroom and mushroom-f.

38

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

5 10 15 20

0.75

0.80

0.85

0.90

0.95

1.00
monk1

0 10 20 30 40 50 60 70
0.5

0.6

0.7

0.8

0.9

1.0
monk1-f

0 20 40 60 80 100
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
monk2

0 50 100 150 200 250
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
monk2-f

1 2 3 4 5 6 7

0.80

0.85

0.90

0.95

1.00
monk3

1 2 3 4 5 6 7

0.80

0.85

0.90

0.95

1.00
monk3-f

0 20 40 60
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
tictactoe

0 20 40 60
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
tictactoe-f

0 10 20 30 40 50 60
0.70

0.75

0.80

0.85

0.90

0.95

1.00
careval

0 10 20 30 40 50 60 70
0.70

0.75

0.80

0.85

0.90

0.95

careval-f

0 10 20 30 40 50 60
0.65

0.70

0.75

0.80

0.85

0.90

0.95

nursery

0 10 20 30 40 50 60
0.70

0.75

0.80

0.85

0.90

0.95
nursery-f

2 4 6 8 10

0.88

0.90

0.92

0.94

0.96

0.98

1.00
mushroom

2 4 6 8 10 12

0.88

0.90

0.92

0.94

0.96

0.98

1.00
mushroom-f

2 3 4 5 6 7 8 9

0.75

0.80

0.85

0.90

0.95

1.00
zoo

2 3 4 5 6 7 8 9

0.75

0.80

0.85

0.90

0.95

1.00
zoo-f

0 5 10 15 20
0.75

0.80

0.85

0.90

0.95

1.00
lymph

0 5 10 15 20 25
0.75

0.80

0.85

0.90

0.95

1.00
lymph-f

0 25 50 75 100 125 150

0.5

0.6

0.7

0.8

0.9

1.0
balance

0 50 100 150 200

0.5

0.6

0.7

0.8

0.9

1.0
balance-f

Tr
ai

n
Ac

cu
ra

cy

Number of splits
cart branches branches-o

Figure 13. Pareto fronts of training accuracy against the number of splits of the proposed solutions. branches-o indicated that BRANCHES is
applied to an ordinal encoding of the data.

39

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

5 10 15 20
0.5

0.6

0.7

0.8

0.9

1.0
monk1

0 10 20 30 40 50 60 70
0.5

0.6

0.7

0.8

0.9

1.0
monk1-f

0 20 40 60 80 100

0.4

0.5

0.6

0.7

0.8

0.9

1.0
monk2

0 50 100 150 200 250

0.4

0.5

0.6

0.7

0.8

0.9

monk2-f

1 2 3 4 5 6 7

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

monk3

1 2 3 4 5 6 7

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

monk3-f

0 20 40 60
0.5

0.6

0.7

0.8

0.9

tictactoe

0 20 40 60
0.5

0.6

0.7

0.8

0.9

tictactoe-f

0 10 20 30 40 50 60

0.65

0.70

0.75

0.80

0.85

0.90
careval

0 10 20 30 40 50 60 70

0.65

0.70

0.75

0.80

0.85

0.90
careval-f

0 10 20 30 40 50 60
0.65

0.70

0.75

0.80

0.85

0.90
nursery

0 10 20 30 40 50 60
0.65

0.70

0.75

0.80

0.85

0.90
nursery-f

2 4 6 8 10
0.75

0.80

0.85

0.90

0.95

1.00
mushroom

2 4 6 8 10 12
0.75

0.80

0.85

0.90

0.95

1.00
mushroom-f

2 3 4 5 6 7 8 9
0.70

0.75

0.80

0.85

0.90

0.95

1.00
zoo

2 3 4 5 6 7 8 9
0.70

0.75

0.80

0.85

0.90

0.95

1.00
zoo-f

0 5 10 15 20
0.65

0.70

0.75

0.80

0.85

lymph

0 5 10 15 20 25
0.65

0.70

0.75

0.80

0.85

lymph-f

0 25 50 75 100 125 150

0.3

0.4

0.5

0.6

0.7

balance

0 50 100 150 200

0.2

0.3

0.4

0.5

balance-f

Te
st

 A
cc

ur
ac

y

Number of splits
cart branches branches-o

Figure 14. Pareto fronts of test accuracy against the number of splits of the proposed solutions. branches-o indicated that BRANCHES is
applied to an ordinal encoding of the data.

40

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

0 20 40 60

0.75

0.80

0.85

0.90

0.95

1.00
monk1

0 20 40 60 80 100 120 140
0.5

0.6

0.7

0.8

0.9

1.0
monk1-f

0 50 100 150 200 250
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
monk2

0 50 100 150 200 250 300
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
monk2-f

0 25 50 75 100 125 150 175

0.80

0.85

0.90

0.95

1.00
monk3

0 25 50 75 100 125 150 175

0.80

0.85

0.90

0.95

1.00
monk3-f

0 50 100 150 200 250
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
tictactoe

0 50 100 150 200 250 300
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
tictactoe-f

0 50 100 150 200 250 300
0.70

0.75

0.80

0.85

0.90

0.95

1.00
careval

0 100 200 300 400
0.70

0.75

0.80

0.85

0.90

0.95

1.00
careval-f

0 200 400 600 800
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
nursery

0 200 400 600 800

0.6

0.7

0.8

0.9

1.0
nursery-f

0 10 20 30 40 50

0.88

0.90

0.92

0.94

0.96

0.98

1.00
mushroom

0 10 20 30 40

0.88

0.90

0.92

0.94

0.96

0.98

1.00
mushroom-f

2.5 5.0 7.5 10.0 12.5 15.0 17.5
0.6

0.7

0.8

0.9

1.0
zoo

2.5 5.0 7.5 10.0 12.5 15.0 17.5
0.6

0.7

0.8

0.9

1.0
zoo-f

0 10 20 30 40 50 60
0.75

0.80

0.85

0.90

0.95

1.00
lymph

0 10 20 30 40 50
0.75

0.80

0.85

0.90

0.95

1.00
lymph-f

0 50 100 150 200

0.5

0.6

0.7

0.8

0.9

1.0
balance

0 50 100 150 200

0.5

0.6

0.7

0.8

0.9

1.0
balance-f

Tr
ai

n
Ac

cu
ra

cy

Number of splits
dl8.5 cart branches branches-o

Figure 15. Pareto fronts of training accuracy against the number of splits of the proposed solutions. This figure is similar to Figure 13 but
further includes DL8.5.

41

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

0 20 40 60
0.5

0.6

0.7

0.8

0.9

1.0
monk1

0 20 40 60 80 100 120 140
0.4

0.5

0.6

0.7

0.8

0.9

1.0
monk1-f

0 50 100 150 200 250

0.4

0.5

0.6

0.7

0.8

0.9

1.0
monk2

0 50 100 150 200 250 300

0.4

0.5

0.6

0.7

0.8

0.9

monk2-f

0 25 50 75 100 125 150 175

0.6

0.7

0.8

0.9

1.0
monk3

0 25 50 75 100 125 150 175

0.7

0.8

0.9

1.0
monk3-f

0 50 100 150 200 250
0.3

0.4

0.5

0.6

0.7

0.8

0.9

tictactoe

0 50 100 150 200 250 300

0.3

0.4

0.5

0.6

0.7

0.8

0.9

tictactoe-f

0 50 100 150 200 250 300
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

careval

0 100 200 300 400

0.5

0.6

0.7

0.8

0.9
careval-f

0 200 400 600 800
0.3

0.4

0.5

0.6

0.7

0.8

0.9
nursery

0 200 400 600 800

0.4

0.5

0.6

0.7

0.8

0.9
nursery-f

0 10 20 30 40 50
0.75

0.80

0.85

0.90

0.95

1.00
mushroom

0 10 20 30 40
0.75

0.80

0.85

0.90

0.95

1.00
mushroom-f

2.5 5.0 7.5 10.0 12.5 15.0 17.5
0.6

0.7

0.8

0.9

1.0
zoo

2.5 5.0 7.5 10.0 12.5 15.0 17.5
0.6

0.7

0.8

0.9

1.0
zoo-f

0 10 20 30 40 50 60
0.65

0.70

0.75

0.80

0.85

0.90

lymph

0 10 20 30 40 50
0.65

0.70

0.75

0.80

0.85

0.90

lymph-f

0 50 100 150 200

0.3

0.4

0.5

0.6

0.7

balance

0 50 100 150 200

0.2

0.3

0.4

0.5

balance-f

Te
st

 A
cc

ur
ac

y

Number of splits
dl8.5 cart branches branches-o

Figure 16. Pareto fronts of test accuracy against the number of splits of the proposed solutions. This figure is similar to Figure 14 but
further includes DL8.5.

42

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

0 10 20 30 40 50

0.6

0.7

0.8

0.9

monk1

0 10 20 30 40 50

0.6

0.7

0.8

0.9

1.0
monk1-f

0 10 20 30 40 50

0.65

0.70

0.75

0.80

0.85

0.90

0.95

monk2

0 10 20 30 40 50

0.65

0.70

0.75

0.80

0.85

0.90

monk2-f

0 10 20 30 40 50

0.6

0.7

0.8

0.9

1.0
monk3

0 10 20 30 40 50

0.6

0.7

0.8

0.9

1.0
monk3-f

0 10 20 30 40 50

0.76

0.78

0.80

0.82

0.84
tictactoe

0 10 20 30 40 50
0.76

0.78

0.80

0.82

0.84

tictactoe-f

0 10 20 30 40 50

0.3

0.4

0.5

0.6

0.7

0.8

careval

0 10 20 30 40 50

0.2

0.3

0.4

0.5

0.6

0.7

0.8
careval-f

0 10 20 30 40 50

0.4

0.5

0.6

0.7

0.8
nursery

0 10 20 30 40 50

0.72

0.73

0.74

0.75

0.76

0.77
nursery-f

0 10 20 30 40 50

0.930

0.935

0.940

0.945

0.950

0.955
mushroom

0 10 20 30 40 50

0.9300

0.9325

0.9350

0.9375

0.9400

0.9425

0.9450
mushroom-f

0 10 20 30 40
0.4

0.5

0.6

0.7

0.8

0.9

1.0
zoo

0 10 20 30 40
0.4

0.5

0.6

0.7

0.8

0.9

1.0
zoo-f

0 10 20 30 40 50

0.76

0.78

0.80

0.82

lymph

0 10 20 30 40 50

0.72

0.74

0.76

0.78

0.80

lymph-f

0 10 20 30 40 50
0.4

0.5

0.6

0.7

balance

0 10 20 30 40 50
0.2

0.0

0.2

0.4

0.6

balance-f

Ob
je

ct
iv

e
(T

)

Minimum support size
dl8.5 branches

Figure 17. Comparing Hλ (T) of the proposed solutions by DL8.5 for different values of the minimum support size with the
BRANCHES baseline. The maximum depth of DL8.5 is set to the depth of the true optimal solution, which we derive using BRANCHES.

43

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

2 4 6 8 10

0.6

0.7

0.8

0.9

1.0
monk1

0 10 20 30 40

0.6

0.7

0.8

0.9

1.0
monk1-f

0 10 20 30 40

0.7

0.8

0.9

1.0
monk2

0 20 40 60 80 100 120

0.7

0.8

0.9

1.0
monk2-f

0 10 20 30 40 50

0.6

0.7

0.8

0.9

1.0
monk3

0 10 20 30 40 50

0.6

0.7

0.8

0.9

1.0
monk3-f

15 20 25 30 35 40 45
0.825

0.850

0.875

0.900

0.925

0.950

0.975

tictactoe

15 20 25 30 35 40
0.825

0.850

0.875

0.900

0.925

0.950

0.975

tictactoe-f

20 40 60 80 100 120 140

0.88

0.90

0.92

0.94

0.96

0.98

careval

25 50 75 100 125 150
0.84

0.86

0.88

0.90

0.92

0.94

0.96

careval-f

10 20 30 40 50 60
0.87

0.88

0.89

0.90

0.91

0.92

0.93

nursery

7 8 9 10 11 12 13 14

0.8425

0.8450

0.8475

0.8500

0.8525

0.8550

0.8575 nursery-f

3 4 5 6 7

0.986

0.988

0.990

0.992

0.994

0.996

0.998

mushroom

3 4 5 6 7

0.986

0.988

0.990

0.992

0.994

0.996

0.998

mushroom-f

2 4 6 8 10 12
0.4

0.5

0.6

0.7

0.8

0.9

1.0
zoo

2 4 6 8 10 12
0.4

0.5

0.6

0.7

0.8

0.9

1.0
zoo-f

2 4 6 8 10 12 14
0.75

0.80

0.85

0.90

0.95

lymph

0 5 10 15 20 25 30
0.75

0.80

0.85

0.90

0.95

1.00
lymph-f

20 40 60 80 100

0.775
0.800
0.825
0.850
0.875
0.900
0.925

balance

0 50 100 150 200
0.70

0.75

0.80

0.85

0.90

balance-f

Ac
cu

ra
cy

Number of splits
dl8.5 branches

Figure 18. Comparing the Accuracy and number of splits of the induced solution by DL8.5 for different values of the minimum support
size with the BRANCHES baseline.

44

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

4 6 8 10 12 14 16 18 20
0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94
Objective

4 6 8 10 12 14 16 18 20

0.92

0.94

0.96

0.98

1.00
Accuracy

4 6 8 10 12 14 16 18 20
0

20000

40000

60000

80000

100000

Iterations

4 6 8 10 12 14 16 18 20
4

5

6

7

8

9

10
Splits

4 6 8 10 12 14 16 18 20
3.0

3.2

3.4

3.6

3.8

4.0
Depths

4 6 8 10 12 14 16 18 20
0

2

4

6

8

Timem
on

k1

branches branches-o gosdt streed streed1

Figure 19. Depth analysis for monk1.

4 6 8 10 12 14 16 18 20
0.825

0.850

0.875

0.900

0.925

0.950

0.975

Objective

4 6 8 10 12 14 16 18 20

0.850

0.875

0.900

0.925

0.950

0.975

1.000
Accuracy

4 6 8 10 12 14 16 18 20
0

25000

50000

75000

100000

125000

150000

Iterations

4 6 8 10 12 14 16 18 20

8

10

12

14

16

Splits

4 6 8 10 12 14 16 18 20
3

4

5

6

7
Depths

4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30
Time

m
on

k1
_f

branches branches-o gosdt streed streed1

Figure 20. Depth analysis for monk1-f.

45

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

4 6 8 10 12 14 16 18 20
0.87

0.88

0.89

0.90

0.91

0.92

0.93
Objective

4 6 8 10 12 14 16 18 20

0.92

0.94

0.96

0.98

1.00
Accuracy

4 6 8 10 12 14 16 18 20
0

10000

20000

30000

Iterations

4 6 8 10 12 14 16 18 20
4

5

6

7

8

9

10
Splits

4 6 8 10 12 14 16 18 20
3.0

3.5

4.0

4.5

5.0
Depths

4 6 8 10 12 14 16 18 20
0

1

2

3

4

Time

m
on

k1
_l

branches branches-o gosdt streed streed1

Figure 21. Depth analysis for monk1-l.

4 6 8 10 12 14 16 18 20

0.65
0.70
0.75
0.80
0.85
0.90
0.95

Objective

4 6 8 10 12 14 16 18 20

0.7

0.8

0.9

1.0
Accuracy

4 6 8 10 12 14 16 18 20
0

100000

200000

300000

400000

Iterations

4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

Splits

4 6 8 10 12 14 16 18 20
4.0

4.5

5.0

5.5

6.0
Depths

4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300
Timem

on
k2

branches branches-o gosdt streed streed1

Figure 22. Depth analysis for monk2.

46

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

4 6 8 10 12 14 16 18 20
0.70

0.75

0.80

0.85

0.90

0.95
Objective

4 6 8 10 12 14 16 18 20
0.70

0.75

0.80

0.85

0.90

0.95

1.00
Accuracy

4 6 8 10 12 14 16 18 20
0

50000

100000

150000

200000

250000

Iterations

4 6 8 10 12 14 16 18 20

10

20

30

40

50

60

70
Splits

4 6 8 10 12 14 16 18 20
4

5

6

7

8

9

10
Depths

4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300
Time

m
on

k2
_f

branches branches-o gosdt streed streed1

Figure 23. Depth analysis for monk2-f.

4 6 8 10 12 14 16 18 20

0.95

0.96

0.97

0.98

Objective

4 6 8 10 12 14 16 18 20
0.95

0.96

0.97

0.98

0.99

1.00
Accuracy

4 6 8 10 12 14 16 18 20
0

50000

100000

150000

200000

250000

300000
Iterations

4 6 8 10 12 14 16 18 20
4

6

8

10

12

14

16

Splits

4 6 8 10 12 14 16 18 20
4

5

6

7

8
Depths

4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120
Timem

on
k3

branches branches-o gosdt streed streed1

Figure 24. Depth analysis for monk3.

47

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

4 6 8 10 12 14 16 18 20

0.94

0.95

0.96

0.97

0.98

Objective

4 6 8 10 12 14 16 18 20
0.94

0.95

0.96

0.97

0.98

0.99

1.00
Accuracy

4 6 8 10 12 14 16 18 20
0

20000

40000

60000

80000

100000
Iterations

4 6 8 10 12 14 16 18 20
6

8

10

12

14

16

Splits

4 6 8 10 12 14 16 18 20
4

5

6

7

8
Depths

4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14

Time

m
on

k3
_f

branches branches-o gosdt streed streed1

Figure 25. Depth analysis for monk3-f.

4 6 8 10 12 14 16 18 20

0.78

0.80

0.82

0.84

Objective

4 6 8 10 12 14 16 18 20

0.86

0.88

0.90

0.92

0.94

Accuracy

4 6 8 10 12 14 16 18 20
0

100000

200000

300000

400000
Iterations

4 6 8 10 12 14 16 18 20

12

14

16

18

Splits

4 6 8 10 12 14 16 18 20
4.0

4.5

5.0

5.5

6.0
Depths

4 6 8 10 12 14 16 18 20
0

100

200

300

400
Time

tic
ta

ct
oe

branches branches-o gosdt streed streed1

Figure 26. Depth analysis for tic-tac-toe.

48

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

4 6 8 10 12 14 16 18 20
0.74

0.76

0.78

0.80

0.82

0.84

Objective

4 6 8 10 12 14 16 18 20
0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950
Accuracy

4 6 8 10 12 14 16 18 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

1e6 Iterations

4 6 8 10 12 14 16 18 20
6

8

10

12

14

16

18

Splits

4 6 8 10 12 14 16 18 20
4.0

4.5

5.0

5.5

6.0
Depths

4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300
Time

tic
ta

ct
oe

_f

branches branches-o gosdt streed streed1

Figure 27. Depth analysis for tic-tac-toe-f.

4 6 8 10 12 14 16 18 20
0.79

0.80

0.81

0.82

0.83

0.84

0.85

Objective

4 6 8 10 12 14 16 18 20

0.82

0.84

0.86

0.88

0.90

0.92

Accuracy

4 6 8 10 12 14 16 18 20
0

1

2

3

4

1e6 Iterations

4 6 8 10 12 14 16 18 20
4

6

8

10

12

14

16
Splits

4 6 8 10 12 14 16 18 20
4

5

6

7

8
Depths

4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

Time

ca
re

va
l

branches branches-o gosdt streed streed1

Figure 28. Depth analysis for car-eval.

49

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

4 6 8 10 12 14 16 18 20

0.78

0.79

0.80

0.81

Objective

4 6 8 10 12 14 16 18 20

0.80

0.82

0.84

0.86

0.88

Accuracy

4 6 8 10 12 14 16 18 20
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
1e6 Iterations

4 6 8 10 12 14 16 18 20
4

6

8

10

12

14
Splits

4 6 8 10 12 14 16 18 20
4

5

6

7

8
Depths

4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300
Time

ca
re

va
l_f

branches branches-o gosdt streed streed1

Figure 29. Depth analysis for car-eval-f.

4 6 8 10 12 14 16 18 20

0.810

0.812

0.814

0.816

0.818

0.820

0.822
Objective

4 6 8 10 12 14 16 18 20

0.860

0.865

0.870

0.875

0.880

0.885

0.890

Accuracy

4 6 8 10 12 14 16 18 20
0

20000

40000

60000

80000

100000

120000

140000
Iterations

4 6 8 10 12 14 16 18 20
5.0

5.5

6.0

6.5

7.0
Splits

4 6 8 10 12 14 16 18 20
3.0

3.5

4.0

4.5

5.0

5.5

6.0
Depths

4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350
Time

nu
rs

er
y

branches branches-o gosdt streed streed1

Figure 30. Depth analysis for nursery.

50

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

4 6 8 10 12 14 16 18 20

0.78

0.79

0.80

0.81

0.82

Objective

4 6 8 10 12 14 16 18 20

0.85

0.86

0.87

0.88

0.89

Accuracy

4 6 8 10 12 14 16 18 20
0

10000

20000

30000

40000

50000
Iterations

4 6 8 10 12 14 16 18 20

6.7
6.8
6.9
7.0
7.1
7.2
7.3

Splits

4 6 8 10 12 14 16 18 20
3.0

3.5

4.0

4.5

5.0
Depths

4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300
Time

nu
rs

er
y_

f

branches branches-o gosdt streed streed1

Figure 31. Depth analysis for nursery-f.

4 6 8 10 12 14 16 18 20
0.955

0.960

0.965

0.970

0.975
Objective

4 6 8 10 12 14 16 18 20

0.94

0.96

0.98

1.00

1.02

Accuracy

4 6 8 10 12 14 16 18 20
0

5000

10000

15000

20000

Iterations

4 6 8 10 12 14 16 18 20
1.0

1.5

2.0

2.5

3.0
Splits

4 6 8 10 12 14 16 18 20
1.0

1.5

2.0

2.5

3.0
Depths

4 6 8 10 12 14 16 18 20
0

100

200

300

Time

m
us

hr
oo

m

branches branches-o gosdt streed streed1

Figure 32. Depth analysis for mushroom.

51

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

4 6 8 10 12 14 16 18 20
0.945

0.950

0.955

0.960

0.965

0.970

0.975
Objective

4 6 8 10 12 14 16 18 20

0.94

0.96

0.98

1.00

1.02

Accuracy

4 6 8 10 12 14 16 18 20
0

10000

20000

30000

Iterations

4 6 8 10 12 14 16 18 20
1.0

1.5

2.0

2.5

3.0

3.5

4.0
Splits

4 6 8 10 12 14 16 18 20
1.0

1.5

2.0

2.5

3.0

3.5

4.0
Depths

4 6 8 10 12 14 16 18 20
0

50
100
150
200
250
300
350

Time

m
us

hr
oo

m
_f

branches branches-o gosdt streed streed1

Figure 33. Depth analysis for mushroom-f.

4 6 8 10 12 14 16 18 20

0.86

0.88

0.90

0.92

0.94

Objective

4 6 8 10 12 14 16 18 20

0.90

0.92

0.94

0.96

0.98

Accuracy

4 6 8 10 12 14 16 18 20
35000

40000

45000

50000

55000

Iterations

4 6 8 10 12 14 16 18 20
3.8

3.9

4.0

4.1

4.2
Splits

4 6 8 10 12 14 16 18 20
3.8

3.9

4.0

4.1

4.2
Depths

4 6 8 10 12 14 16 18 20
0

100

200

300

400
Timekr

vs
kp

branches branches-o gosdt streed streed1

Figure 34. Depth analysis for kr-vs-kp.

52

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

4 6 8 10 12 14 16 18 20

0.95

0.96

0.97

0.98

0.99

Objective

4 6 8 10 12 14 16 18 20
0.95

0.96

0.97

0.98

0.99

1.00
Accuracy

4 6 8 10 12 14 16 18 20
0.0

0.2

0.4

0.6

0.8

1.0
1e6 Iterations

4 6 8 10 12 14 16 18 20
7

8

9

10

11
Splits

4 6 8 10 12 14 16 18 20
4.0

4.5

5.0

5.5

6.0
Depths

4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

Timezo
o

branches branches-o gosdt streed streed1

Figure 35. Depth analysis for zoo.

4 6 8 10 12 14 16 18 20

0.95

0.96

0.97

0.98

0.99

Objective

4 6 8 10 12 14 16 18 20
0.95

0.96

0.97

0.98

0.99

1.00
Accuracy

4 6 8 10 12 14 16 18 20
0.0

0.2

0.4

0.6

0.8

1.0
1e6 Iterations

4 6 8 10 12 14 16 18 20
7.0

7.5

8.0

8.5

9.0

9.5

10.0
Splits

4 6 8 10 12 14 16 18 20
4.0

4.5

5.0

5.5

6.0

6.5

7.0
Depths

4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300
Timezo

o_
f

branches branches-o gosdt streed streed1

Figure 36. Depth analysis for zoo-f.

53

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

4 6 8 10 12 14 16 18 20

0.830

0.835

0.840

0.845

0.850

Objective

4 6 8 10 12 14 16 18 20

0.90

0.91

0.92

0.93

0.94

0.95

Accuracy

4 6 8 10 12 14 16 18 20

20000

40000

60000

80000

100000
Iterations

4 6 8 10 12 14 16 18 20
7

8

9

10

11
Splits

4 6 8 10 12 14 16 18 20
4.0

4.5

5.0

5.5

6.0
Depths

4 6 8 10 12 14 16 18 20
0

100

200

300

400
Timely

m
ph

branches branches-o gosdt streed streed1

Figure 37. Depth analysis for lymph.

4 6 8 10 12 14 16 18 20
0.81

0.82

0.83

0.84

0.85

Objective

4 6 8 10 12 14 16 18 20
0.89

0.90

0.91

0.92

0.93

0.94

0.95

Accuracy

4 6 8 10 12 14 16 18 20
0

25000
50000
75000

100000
125000
150000
175000

Iterations

4 6 8 10 12 14 16 18 20
8

9

10

11

12
Splits

4 6 8 10 12 14 16 18 20
4.0

4.5

5.0

5.5

6.0

6.5

7.0
Depths

4 6 8 10 12 14 16 18 20
0

100

200

300

400
Time

ly
m

ph
_f

branches branches-o gosdt streed streed1

Figure 38. Depth analysis for lymph-f.

54

Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*

4 6 8 10 12 14 16 18 20

0.71

0.72

0.73

0.74

0.75

0.76

0.77
Objective

4 6 8 10 12 14 16 18 20

0.74

0.76

0.78

0.80

0.82
Accuracy

4 6 8 10 12 14 16 18 20
0.0

0.5

1.0

1.5

2.0

1e6 Iterations

4 6 8 10 12 14 16 18 20
5

6

7

8

9

10
Splits

4 6 8 10 12 14 16 18 20
3
4
5
6
7
8
9

10
Depths

4 6 8 10 12 14 16 18 20
0

50
100
150
200
250
300
350

Time

ba
la

nc
e

branches branches-o gosdt streed streed1

Figure 39. Depth analysis for balance.

4 6 8 10 12 14 16 18 20

0.65

0.66

0.67

0.68

0.69

0.70

0.71

Objective

4 6 8 10 12 14 16 18 20

0.68

0.70

0.72

0.74

0.76

Accuracy

4 6 8 10 12 14 16 18 20
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1e6 Iterations

4 6 8 10 12 14 16 18 20
5

6

7

8

9

10

11
Splits

4 6 8 10 12 14 16 18 20
3
4
5
6
7
8
9

10
Depths

4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300
Time

ba
la

nc
e_

f

branches branches-o gosdt streed streed1

Figure 40. Depth analysis for balance-f.

55

