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Abstract

In this work, we utilize Large Language Mod-001
els (LLMs) for a novel use case: constructing002
Performance Predictors (PP) that estimate the003
performance of specific deep neural network004
architectures on downstream tasks. We create005
PP prompts for LLMs, comprising (i) role de-006
scriptions, (ii) instructions for the LLM, (iii)007
hyperparameter definitions, and (iv) demon-008
strations presenting sample architectures with009
efficiency metrics and ‘training from scratch’010
performance. In machine translation (MT)011
tasks, GPT-4 with our PP prompts (LLM-PP)012
achieves a SoTA mean absolute error and a013
slight degradation in rank correlation coeffi-014
cient compared to baseline predictors. Addi-015
tionally, we demonstrate that predictions from016
LLM-PP can be distilled to a compact regres-017
sion model (LLM-Distill-PP), which surpris-018
ingly retains much of the performance of LLM-019
PP. This presents a cost-effective alternative020
for resource-intensive performance estimation.021
Specifically, for Neural Architecture Search022
(NAS), we introduce a Hybrid-Search algo-023
rithm (HS-NAS) employing LLM-Distill-PP024
for the initial search stages and reverting to the025
baseline predictor later. HS-NAS performs sim-026
ilarly to SoTA NAS, reducing search hours by027
approximately 50%, and in some cases, improv-028
ing latency, GFLOPs, and model size.029

1 Introduction030

Large language models (LLMs) have diverse ap-031

plications, encompassing both open-ended tasks032

(e.g., brainstorming and chat) and closed-ended033

tasks (e.g., summarization and question answering).034

This study explores a unique application of LLMs:035

constructing a performance predictor (LLM-PP)036

for a deep neural network (DNN) architecture. The037

predictor takes the DNN architecture description,038

typically hyperparameters (e.g., #layers, #attention039

heads), as input and predicts the performance (e.g.,040

BLEU score) for a specific downstream task. The041

aim is to create a performance predictor with low 042

prediction errors compared to training from scratch. 043

The hypothesis is that LLMs possess a ‘general 044

understanding’ of DNN architectures, derived from 045

relevant training data like DNN research papers 046

and GitHub repositories. The main objective of 047

this work is to leverage this understanding to de- 048

sign accurate, efficient, and broadly applicable per- 049

formance predictors, beneficial for tasks like neural 050

architecture search (NAS). 051

How to design an accurate performance pre- 052

dictor (PP)? To answer this, we create PP prompts 053

precisely specifying the task. These prompts in- 054

clude: (i) role: high-level description of the as- 055

signed LLM role, (ii) instructions: detailed task in- 056

structions (e.g., downstream task, architecture, per- 057

formance/efficiency metric) for the LLM to follow, 058

(iii) hyperparameters: definitions of architecture- 059

specific hyperparameters, and (iv) demonstrations: 060

supervised examples for the PP task with archi- 061

tecture descriptions and performance metrics (e.g., 062

BLEU score). Using GPT-4 (OpenAI, 2023a) as 063

our primary LLM and WMT datasets for machine 064

translation (MT) tasks, we find that GPT-4 with our 065

PP prompts (LLM-PP) predicts architecture perfor- 066

mance with a mean absolute error achieving the 067

state-of-the-art (SoTA) and a slightly lower rank 068

correlation coefficient compared to previous SoTA 069

weight-sharing supernet-based performance predic- 070

tors (Wang et al., 2020; Jawahar et al., 2023b). 071

Using GPT-4 for LLM-PP entails utilizing the 072

GPT-4 API to score each architecture, rendering 073

LLM-PP prohibitively expensive for various use 074

cases. One example is NAS, where PP evaluates ap- 075

proximately 3,000 candidate architectures for each 076

constraint (e.g., latency ≤ 100ms) (Wang et al., 077

2020). As of August 2023, GPT-4 pricing is 0.03$ 078

per 1K tokens 1. Assuming PP prompts consume 079

about one-third of 1K tokens, the estimated cost 080

1https://openai.com/pricing
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is approximately ∼30$ for a single constraint on081

the target hardware. With varying constraint values082

(e.g., 100ms, 200ms), constraint types (e.g., la-083

tency, FLOPs, memory), and target hardware (e.g.,084

Nvidia A100, Raspberry Pi), the cumulative cost085

can quickly become exorbitant (e.g., 1,800$).086

How to design cost-effective PP? To answer087

this, we distill LLM-PP performance predictions088

into a tiny MLP model (LLM-Distill-PP) using ar-089

chitecture descriptions (e.g., hyperparameter lists)090

as input features. Surprisingly, LLM-Distill-PP can091

significantly maintain the performance of LLM-PP.092

Assuming LLM-Distill-PP needs only 3,000 exam-093

ples, the estimated cost is approximately ∼30$ for094

a single downstream task, amortized across various095

constraint values, types, and target hardware.096

Can LLM-Distill-PP speed up architecture097

search while preserving the efficiency and the098

quality of SoTA NAS? To answer this, we ap-099

ply using LLM-Distill-PP as the PP to design effi-100

cient MT architectures via SoTA NAS methods like101

HAT (Wang et al., 2020). We introduce the Hybrid-102

Search algorithm (HS-NAS), where LLM-Distill-103

PP serves as the PP for the first 15 search iterations,104

and a weight-sharing supernet (SoTA performance105

predictor) takes over for the remaining 15 itera-106

tions. HS-NAS achieves roughly 50% faster search107

than SoTA NAS, maintaining or improving on the108

performance of architectures designed by SoTA109

NAS. In some cases, it also yields reduced latency110

(∼2%), FLOPs (∼1%), and model size (∼2%).111

Main contributions: (1) We propose LLM-PP,112

leveraging few-shot prompting of LLM for accu-113

rate performance predictors, achieving SoTA mean114

absolute error. (2) We introduce LLM-Distill-PP,115

with a better amortized cost than LLM-PP, suitable116

for PP-heavy use cases. (3) HS-NAS, a search algo-117

rithm, reduces NAS search time by half compared118

to SoTA, identifying more efficient architectures by119

leveraging LLM-Distill-PP and SoTA performance120

estimators. (4) We provide prompts, training and121

evaluation data for LLM-Distill-PP models, and122

code with detailed reproducibility instructions.123

2 Related Work124

Performance Predictors. In NLP, a common ap-125

proach to construct performance predictors is train-126

ing a weight-sharing supernet model, jointly train-127

ing various architectures by sharing weights with128

the largest model in the search space (Wang et al.,129

2020; Xu et al., 2022a; Jawahar et al., 2023a,b).130

During each training step, an architecture is ran- 131

domly selected from the search space, and its cor- 132

responding weights are extracted from the largest 133

model’s weight matrices. These weights are then 134

trained for the target task. Post-training, archi- 135

tecture performance is predicted by extracting the 136

relevant weights and evaluating on the validation 137

set. Key challenges in supernet training include 138

weight co-adaptation (Bender et al., 2018; Zhao 139

et al., 2021), capacity bottleneck (Jawahar et al., 140

2023b), and gradient conflict (Gong et al., 2021). 141

NAS for NLP. NAS is a general framework for 142

designing efficient NLP architectures meeting user- 143

defined constraints across various dimensions: (i) 144

architecture family (encoder-only (Yin et al., 2021; 145

Xu et al., 2022a, 2021, 2022b), decoder-only (Java- 146

heripi et al., 2022), encoder-decoder (Wang et al., 147

2020; Jawahar et al., 2023a,b) without limiting 148

to Transformers), (ii) constraint types (latency, 149

FLOPs, model size), and (iii) tasks (task-agnostic 150

pretraining (Xu et al., 2022a; Javaheripi et al., 2022; 151

Jawahar et al., 2023b), task-specific training (Wang 152

et al., 2020; Jawahar et al., 2023a)). The evolution- 153

ary search-based algorithm employs a performance 154

predictor to identify high-quality architectures, uti- 155

lizing real or predicted efficiency metrics to discard 156

those not meeting specified constraints. 157

LLMs for NAS. GENIUS (Zheng et al., 2023), a re- 158

cent search algorithm for image classification, uses 159

LLMs to generate convolution-based architectures. 160

However, it trains these candidates from scratch, 161

incurring high practical costs. Contrasting with 162

our approach, (i) GENIUS uses LLMs to generate 163

architectures, while we use LLMs to predict their 164

performance, (ii) the search cost for our work is up- 165

per bounded by SoTA NAS for MT (∼ 5 NVIDIA 166

V100 hours), much more efficient than GENIUS 167

(∼ 960 NVIDIA V100 hours), and (iii) we focus on 168

Transformer-based encoder-decoder architectures 169

for machine translation. For more on the synergy 170

between LLMs and AutoML, see Tornede et al. 171

(2023). Additional background on related topics 172

such as LLMs and distillation can be found in A.1. 173

3 Performance Prediction Problem 174

Informally, the performance prediction problem 175

entails providing a DNN architecture descrip- 176

tion (usually hyperparameters like #layers, #at- 177

tention heads) to the predictor, which then out- 178

puts the performance (e.g., BLEU score) for a 179

specified downstream task. An ideal predictor 180
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should minimize prediction errors compared to181

the performance achieved through training from182

scratch. Formally, let T represent a downstream183

task, AT its search space of architectures, and184

YT ⊂ R the real space of performance scores.185

Define DT as the data distribution over AT ×186

YT . The performance predictor is denoted by187

fT : AT → YT . The labeled test set LtestT =188

{(ai, pi)}mi=1 ∼ (D)mT comprises architecture, per-189

formance pairs drawn i.i.d. from DT . pi is the190

performance obtained by training the architecture191

ai from scratch to convergence on task T (known192

as ‘training from scratch’ (TFS) performance).193

The performance predictor’s quality is assessed194

using two metrics: Mean Absolute Error (MAE)195

calculates the mean absolute difference between196

predictions and their corresponding TFS perfor-197

mances, formalized as
∑

(ai,pi)∼(D)T
|fT (ai)−pi|

|(D)T | .198

Kendall rank correlation coefficient is another199

metric that computes the ranking correlation be-200

tween a set of predictions and their correspond-201

ing TFS performances, formalized as Kendall-202

Tau([fT (a1), . . . , fT (am)], [p1, . . . , pm]). Exam-203

ples for these metrics are discussed in Section A.2.204

Recently, Jawahar et al. (2023b) emphasized the205

importance of both MAE and Kendall-Tau metrics206

in evaluating performance predictor quality. For207

instance, a predictor with a 38% better MAE and a208

12% worse Kendall-Tau, compared to a base pre-209

dictor, led NAS to find an architecture with a 4%210

BLEU improvement. Conversely, a predictor with211

a 5% worse MAE and a 6% higher Kendall-Tau re-212

sulted in a NAS architecture with a 0.1% BLEU im-213

provement. Hence, better MAE and better Kendall-214

Tau are positively correlated with higher-quality215

architecture.216

4 Baseline Performance Predictors217

In NAS for NLP literature, the SoTA method for218

constructing performance predictors (fT ) involves219

training a weight-sharing supernet model on task220

T . Simply put, a weight-sharing supernet model is221

the largest model in the search space, capable of222

parameterizing all architectures via weight sharing.223

The parameters for a specific architecture are ob-224

tained by extracting the relevant rows and columns225

from the supernet model’s weight matrix. Typi-226

cally, the supernet is trained by iteratively sampling227

an architecture from the search space and training228

the extracted weights for that architecture. For-229

malizing the supernet’s training objective: Denote230

the training data distribution as Xtrain. Represent 231

the training sample and label as x and y, where 232

x, y ∼ Xtrain. arand is a uniformly sampled ar- 233

chitecture from the search space AT . alarge and 234

asmall denote the largest and smallest architectures 235

inAT . The subnet with architecture a is denoted by 236

sa, parameterized by the supernet model weights 237

W . The training objective of the supernet using 238

sandwich sampling (Yu et al., 2020) is given by 239

min
W

Ex,y∼Xtrain [Earand∼A[L(sarand
(x;W ), y)] 240

+ L(salarge(x;W ), y) + L(sasmall
(x;W ), y)]. 241

Hardware-aware Transformers (Wang et al., 2020) 242

employs single-path one-shot (SPOS) optimiza- 243

tion (Guo et al., 2020), focusing on optimizing 244

only arand at each training step. Mixture-of- 245

Supernets (Jawahar et al., 2023b) (MoS) utilizes 246

mixture-of-experts (MoE) (Fedus et al., 2022) to 247

enhance the supernet’s capacity, with the router 248

specializing weights for each architecture. MoS 249

comes in two variants: layer-wise MoS and neuron- 250

wise MoS, differing in the degree of freedom for 251

weight generation. Both variants of MoS employ 252

sandwich sampling for supernet training. 253

5 LLM Performance Predictor (LLM-PP) 254

LLM demonstrates a “general understanding" of 255

DNN architectures, likely acquired through train- 256

ing on relevant data sources like research papers 257

and GitHub repositories. Testing these architec- 258

ture understanding capabilities involves prompting 259

LLM to generate hyperparameter definitions and 260

design principles for architecture search (Zheng 261

et al., 2023). These LLM capabilities contribute to 262

effective performance prediction by aiding the map- 263

ping of DNN architectures to their performances. 264

To this end, we propose the LLM-based Per- 265

formance Predictor (LLM-PP), which involves 266

prompting an LLM to generate performance predic- 267

tions for DNN architectures. The prompts, referred 268

to as PP prompts, must be meticulously designed to 269

precisely convey the performance prediction task to 270

the LLM. Illustrated in Figure 1, PP prompts break 271

down the task into four main components: role, in- 272

structions, hyperparameters, and demonstrations, 273

followed by the test architecture. The role specifies 274

the LLM’s role, describing the downstream task 275

(e.g., machine translation) and the performance 276

metric (e.g., BLEU). The instructions provide five 277

detailed instructions covering the downstream task, 278
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You are a performance estimator for machine translation task, where you will estimate the
BLEU score for the test architecture.

You should follow these instructions:
1. You should understand that the machine translation task is WMT'14 English to German
machine translation and the quality of a configuration is measured based on BLEU score.
2. Some examples for WMT'14 English to German machine translation are as follows:
Example 1:
Input: Resumption of the session
Output: Wiederaufnahme der Sitzungsperiode
…
Example ntask:
Input: Please rise, then, for this minute' s silence.
Output: Ich bitte Sie, sich zu einer Schweigeminute zu erheben.
3. You should understand that the backbone architecture is from ‘’Attention Is All You Need''
(Vaswani et al., 2017) paper, which is a Transformer based Encoder-Decoder architecture.
We use the same hyperparameters and optimization algorithms.
4. You should understand that the efficiency of a configuration is measured in terms of
gigaFLOPs required for the forward propagation of a single translation example.
5. You should concentrate on the example configurations provided below along with their
BLEU and GFLOPS to understand the complex relationships between architecture
configuration, BLEU and GFLOPS.

Hyperparameter definition:
‘encoder-embed-dim-subtransformer' corresponds to encoder embedding dimension
‘encoder-layer-num-subtransformer' corresponds to number of encoder layers
‘encoder-ffn-embed-dim-all-subtransformer' correspond to embedding dimension of each FFN
layer in encoder
…

Example 1:
encoder-embed-dim-subtransformer: 512
encoder-layer-num-subtransformer: 6
encoder-ffn-embed-dim-all-subtransformer: [1024, 1024, 2048, 2048, 2048, 1024]
…
BLEU: 24.30
GFLOPS: 2.7
...
Example narch:
…

Test Architecture:
encoder-embed-dim-subtransformer: 640
encoder-layer-num-subtransformer: 6
encoder-ffn-embed-dim-all-subtransformer: [2048, 1024, 1024, 1024, 2048, 1024]
…
BLEU:

Role

Instruction

Hyperparameters

Demonstrations

Test

Figure 1: Prompt template to prompt LLM to generate
performance predictions for WMT’14 EN-DE task. The
expanded version of the prompt template can be seen in
Appendix A.3.

DNN architecture, and model efficiency metrics.279

The first two focus on the task specifics, specifying280

the task type (e.g., machine translation), dataset281

(e.g., WMT’14 En-De), performance metric (e.g.,282

BLEU), and inputs/outputs (e.g., source/target lan-283

guage) for ntask examples from the dataset. The284

third instruction details the DNN architecture, in-285

cluding backbone (e.g., Transformer), type (e.g.,286

encoder-decoder), and a reference to the original287

DNN paper. The fourth instruction outlines effi-288

ciency metrics details (e.g., GFLOPs), included in289

the demonstrations. The final instruction directs the290

LLM to consider complex relationships between291

architecture configuration, performance, and effi-292

ciency metric. The third component, hyperparame-293

ters, defines architecture-specific hyperparameters.294

Demonstrations is the final component containing295

narch supervised examples, each representing an296

architecture from the search space with hyperpa-297

rameter values, efficiency score, and TFS perfor-298

mance score. The design process of the LLM-PP299

prompt is discussed in A.4.300

5.1 Evaluation Setup 301

Downstream tasks. We utilize established re- 302

search (Wang et al., 2020; Jawahar et al., 2023a,b) 303

and opt for popular machine translation (MT) 304

benchmarks: WMT’14 En-De, WMT’14 En-Fr, 305

and WMT’19 En-De. Detailed statistics of these 306

benchmarks are available in A.6.1. Our chosen per- 307

formance metric is BLEU (Papineni et al., 2002). 308

DNN architecture. We adopt the Transformer- 309

based Encoder-Decoder architecture (Vaswani 310

et al., 2017). The implementation, training settings, 311

and search space (A) mirror Wang et al. (2020), de- 312

tailed in A.6.2. Our evaluation dataset (TFS-Eval) 313

is sourced from Jawahar et al. (2023b), featuring 314

30 architectures with their TFS performance scores 315

for each WMT dataset. FLOPs, latency, and model 316

size computations for architectures are done using 317

the implementation from Wang et al. (2020). 318

Performance predictors. Baseline performance 319

predictors include: (i) HAT (Wang et al., 2020), 320

(ii) Supernet (Sandwich) (Jawahar et al., 2023b) 321

(HAT, with sandwich sampling instead of SPOS), 322

(iii) Layer-wise MoS (Jawahar et al., 2023b), and 323

(iv) Neuron-wise MoS (Jawahar et al., 2023b). 324

We build three LLM-PP variants, utilizing Mis- 325

tral (Jiang et al., 2023) (Mistral-7B-Instruct-v0.1), 326

ChatGPT (OpenAI, 2023b) (GPT-3.5-turbo, June 327

version), and GPT-4 (OpenAI, 2023a) (June ver- 328

sion). For PP prompts, we randomly sample: (i) 329

5 examples (ntask = 5) from the downstream task 330

for the second instruction and (ii) 10 examples 331

(ntask = 10) from TFS-eval for the demonstra- 332

tions component. The remaining 20 examples from 333

TFS-eval will be used for reporting the predictor 334

quality. For all predictors, we repeat the experi- 335

ments with three different seeds and report the av- 336

erage MAE and Kendall-Tau between the predictor 337

performance and the TFS performance. 338

5.2 Results 339

LLM-PP predictions closely align with TFS per- 340

formance scores compared to the baselines. Fig- 341

ure 2 illustrates the TFS versus performance pre- 342

dictor validation BLEU for different WMT bench- 343

marks. The diagonal line (red line) represents the 344

perfect predictor, where the predicted performance 345

exactly matches the TFS score. The predictions 346

from the supernet-based predictors (i.e., all non- 347

LLM-based ones) are consistently underestimates 348

of the TFS performance for all architectures across 349

three benchmarks. In contrast, LLM-PP predictions 350
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Figure 2: Training from scratch validation BLEU vs. performance predictor validation BLEU for WMT benchmarks.
Performance scores from the optimal predictor should lie on the diagonal (red line).

Dataset WMT’14 En-De WMT’14 En-Fr WMT’19 En-De Average
Performance Predictor MAE Kendall MAE Kendall MAE Kendall MAE (↓) Kendall (↑)

Baseline
HAT 1.14 0.71 1.59 0.79 0.91 0.72 1.21 0.74
Supernet (Sandwich) 1.05 0.81 1.27 0.78 0.91 0.72 1.08 0.77
Layer-wise MoS 0.97 0.56 1.16 0.79 0.96 0.74 1.03 0.70
Neuron-wise MoS 0.87 0.79 1.18 0.87 0.87 0.67 0.97 0.78

LLM-PP
Mistral 0.73 0.22 0.60 0.34 0.92 0.18 0.75 0.25
ChatGPT 0.42 0.52 0.82 0.61 0.72 0.56 0.65 0.56
GPT-4 0.28 0.65 0.28 0.75 0.32 0.65 0.29 0.68

LLM-PP GPT-4 Ablation
Demonstraions only 0.31 0.52 0.30 0.66 0.34 0.61 0.32 0.60
+ Role + Hyp. 0.27 0.53 0.32 0.71 0.32 0.67 0.30 0.64
+ First instruction 0.26 0.60 0.34 0.68 0.34 0.58 0.31 0.62
+ Second instruction 0.27 0.60 0.31 0.72 0.35 0.66 0.31 0.66
+ Third instruction 0.31 0.50 0.33 0.73 0.29 0.67 0.31 0.63
+ Fourth instruction 0.25 0.63 0.32 0.65 0.33 0.71 0.30 0.66
+ Fifth instruction 0.28 0.65 0.28 0.75 0.32 0.65 0.29 0.68

LLM-Distill-PP
ChatGPT 0.32 0.6 1.01 0.79 0.95 0.65 0.76 0.68
GPT-4 0.22 0.64 0.34 0.76 0.38 0.68 0.31 0.69

Table 1: Average MAE and Kendall-Tau between the performance predictor performance and the TFS performance,
across three different seeds.

are largely closer to the diagonal line, showcasing351

the high accuracy of LLM-PP.352

LLM-PP achieves SoTA MAE, slightly trailing353

baselines in Kendall-Tau. Table 1 displays the354

MAE and Kendall-Tau of baseline and LLM-PP355

predictors. Neuron-wise MoS stands out as the best356

baseline on average across datasets, boasting the357

lowest MAE and highest Kendall-Tau score. LLM-358

PP Mistral outperforms supernet-based baselines359

in MAE for WMT’14 En-De and WMT’14 En-360

Fr tasks. LLM-PP ChatGPT and LLM-PP GPT-4361

surpass Neuron-wise MoS in MAE, with LLM-PP362

GPT-4 achieving the SoTA MAE score. However,363

LLM-PP slightly lags behind baselines in Kendall-364

Tau. In A.5, we examine the histogram of distances365

between items in discordant pairs in the gold rank-366

ing for Neuron-wise MoS and LLM GPT-4. Dis-367

cordant pairs of LLM-PP mostly cluster around368

the low gold ranking distances region, similar to369

Neuron-wise MoS, which shouldn’t significantly370

impact PP use cases (as observed in Section 7.1).371

The resulting CDF of gold ranking distances for372

discordant pairs for LLM-PP GPT-4 and Neuron-373

wise MoS are very similar. These results indicate 374

that PP prompts can effectively design accurate per- 375

formance predictors. Within LLM-PP, GPT-4 out- 376

performs ChatGPT on both metrics across datasets. 377

LLM-PP benefits from all the components of 378

PP prompts. The last major row in Table 1 dis- 379

plays the performance when ablating different com- 380

ponents of PP prompts. LLM-PP’s overall su- 381

perior performance is attributed to having all PP 382

prompt components together. Surprisingly, LLM- 383

PP outperforms baselines in MAE even without 384

any instructions (Demonstration only), showcasing 385

the LLM’s remarkable ability to grasp the perfor- 386

mance prediction task based solely on demonstra- 387

tions. While the MAE performance of different 388

ablation variants is largely similar, there are differ- 389

ences in Kendall-Tau performance across variants. 390

The second instruction (introducing downstream 391

task-specific examples) and the fourth instruction 392

(describing the efficiency metric) play crucial roles 393

in achieving high Kendall-Tau for LLM-PP. 394

LLM-PP exceeds non-supernet baselines (White 395

et al., 2022), with LLM-PP GPT-4 achieving a high 396
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Kendall Tau, as discussed in A.8.1. LLM-PP at-397

tains SoTA MAE and SoTA Kendall-Tau scores398

for low-resource/indigenous languages (Ebrahimi399

et al., 2023) (see A.8.2) and uncommon evalua-400

tion metric (COMET (Rei et al., 2022), see A.8.3).401

LLM-PP provides fairly robust performance pre-402

dictions (see A.8.4). While LLM-PP excels in per-403

formance prediction quality, its cost scales linearly404

with the number of predictions. This cost can be-405

come prohibitive, especially for PP-heavy applica-406

tions like NAS, where the number of predictions407

can reach several thousand.408

6 Distillation of LLM-PP409

To illustrate the cost, let’s consider the example410

of NAS run by HAT (Wang et al., 2020) for a la-411

tency constraint on a given hardware, involving the412

evaluation of approximately 3,000 candidate archi-413

tectures. As of August 2023, the pricing for GPT-4414

is 0.03$ per 1K tokens. Assuming PP prompts con-415

sume about one-third of 1K tokens, the estimated416

cost per constraint on a given hardware would be417

around 30$ (0.03∗30003 ). The total cost depends on418

the number of constraint types (e.g., latency, mem-419

ory, FLOPs), values (e.g., 100ms, 200ms), and420

hardware options (e.g., Nvidia A100, Raspberry421

Pi). For instance, with three constraint types, five422

values for each constraint, and four target hard-423

wares, the estimated cost could soar to approxi-424

mately 1, 800$ (0.03∗3000∗3∗5∗43 ) per downstream425

task. To address this cost challenge, we propose426

LLM-Distill-PP, a cost-effective alternative trained427

on distilled outputs of LLM-PP. LLM-Distill-PP, a428

MLP based regressor, is trained using a distillation429

dataset for the PP task. This dataset is created by430

sampling architectures from the search space and431

recording the downstream task performance pre-432

dicted by LLM-PP. LLM-Distill-PP is trained using433

architecture-specific hyperparameters as features434

and the distilled output as labels. Once trained,435

LLM-Distill-PP can predict the performance of un-436

seen architectures for the given downstream task.437

If the number of distillation examples is small (e.g.,438

3, 000), the estimated cost to query LLM-PP will439

be approximately 30$ (0.03∗30003 ). This one-time440

cost of LLM-Distill-PP is amortized across differ-441

ent constraint types, values, and hardwares (e.g.,442

60 search runs), leading to a substantial 98.3% re-443

duction in cost (from 1, 800$ to 30$). LLM-Distill-444

PP achieves a superior efficiency-accuracy trade-445

off, offering comparable accuracy to LLM-PP but446

with significantly faster prediction times (0.01s vs. 447

11.9s), as detailed in A.10.1. 448

Setup. LLM-Distill-PP’s architecture encoding de- 449

tails can be found in A.6.3. The hyperparameters of 450

its regression model, borrowed from HAT’s latency 451

predictor, include 3 hidden layers, 400 as the hid- 452

den dimension, 128 as the batch size, 1e-5 as the 453

learning rate, and 5000 as the number of training 454

steps. Distillation from LLM-PP uses only 3000 455

architecture examples for each downstream task. 456

Results. LLM-Distill-PP’s results are summarized 457

in the third major row of Table 1. Despite its simple 458

model design, LLM-Distill-PP performs similarly 459

or better than LLM-PP for both ChatGPT and GPT- 460

4. In the case of ChatGPT, LLM-Distill-PP exhibits 461

an average improvement of roughly 17% in both 462

MAE and Kendall-Tau over LLM-PP. For GPT- 463

4, LLM-Distill-PP has a 7% lower average MAE 464

compared to LLM-PP while maintaining similar 465

Kendall-Tau. Notably, LLM-Distill-PP achieves 466

the SoTA MAE for the WMT’14 En-De task, out- 467

performing LLM-PP by 20%. Two main factors 468

contribute to this result. First, the smaller size of 469

LLM-Distill-PP (a linear regression model with 470

only 486K parameters) reduces the likelihood of 471

overfitting compared to LLM-PP (an LLM with 472

several billion parameters), resulting in better per- 473

formance. Second, LLM-Distill-PP is a special- 474

ist model with parameters trained specifically for 475

the performance prediction task using a few thou- 476

sand examples. In contrast, LLM-PP is a generalist 477

model that performs in-context learning with PP 478

prompts and 10 demonstrations. 479

7 LLM-Distill-PP for Architecture Search 480

Given LLM-Distill-PP’s ability to achieve high- 481

performance prediction quality in a cost-effective 482

manner, we explore its application in a real-world 483

task: NAS. In NAS, performance predictors typi- 484

cally rank candidate architectures to identify high- 485

performing ones. As discussed in Section 2, 486

existing NAS research in NLP primarily uses 487

weight-sharing supernets as performance predic- 488

tors. Therefore, we address the research ques- 489

tion: Can LLM-Distill-PP accelerate architecture 490

search while maintaining the efficiency and qual- 491

ity of SoTA NAS? To answer this question, we 492

introduce the Hybrid-Search algorithm for NAS 493

(HS-NAS). The core idea of HS-NAS is to employ 494

LLM-Distill-PP for a subset of search iterations, 495

utilizing the supernet for the remaining iterations. 496
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Search Algorithm BLEU (↑) Latency (ms) (↓) GFLOPs (↓) Model Size (M) (↓) Search Hours (↓)

WMT’14 En-De
HAT 27.9 102.0 3.0 64.4 1.09
Layer-wise MoS 27.8 100.4 3.08 64.4 1.45
Neuron-wise MoS 28.0 99.0 3.26 72.2 1.39
HS-NAS (GPT-4, HAT, 1, 15) 27.9 99.7 2.96 63.1 0.56

WMT’14 En-Fr
HAT 40.8 96.4 2.61 63.8 6.33
Layer-wise MoS 40.5 99.4 2.96 70.5 6.81
Neuron-wise MoS 40.9 97.6 3.13 70.5 7.03
HS-NAS (GPT-4, HAT, 1, 15) 40.7 98.2 2.54 63.8 3.15

WMT’19 En-De
HAT 44.7 100.8 3 73.06 1.11
Layer-wise MoS 44.9 96.8 3.26 82.95 1.13
Neuron-wise MoS 44.9 122.4 3.34 82.95 1.21
HS-NAS (GPT-4, HAT, 1, 15) 44.4 70.0 2.51 66.36 0.46

Table 2: HS-NAS versus SoTA NAS on three MT benchmarks for latency constraint of 100ms - Test BLEU, latency
in milliseconds, GFLOPs, model size in millions, and search hours.

This approach is applied to the evolutionary search497

algorithm proposed in HAT.

Algorithm 1 Hybrid-Search algorithm for Neural
Architecture Search (HS-NAS). Changes to HAT’s
search algorithm are in red color. The expanded
algorithm can be found in A.9.
Input: LLM-Distill-PP model: llm-distill-pp,
Weight-sharing supernet: supernet, Latency
predictor: latency-predictor, #Search
iterations: num-iterations, Population
size: population-size, Latency constraint:
latency-constraint, LLM-Distill-PP Start Iter-
ation: llm-start-iteration, LLM-Distill-PP
End Iteration: llm-end-iteration, ...
Output: best-architecture

1: popu ← population-size rand. samples
from search space // create init. population

2: for iter ← 1 to num-iterations do
3: // gen. parents by picking top cand. arch.
4: if llm-start-iteration < iter <

llm-end-iteration then
5: parents ← top ‘num-parents’ arch.

from popu by llm-distill-pp
6: else
7: parents ← top ‘num-parents’ arch.

from popu by supernet

8: mut-popu = HAT’s mutation logic
9: cross-popu = HAT’s crossover logic

10: popu = parents∪mut-pop∪cross-pop
11: return top arch. from popu

498
LLM-Distill-PP will be used as perfor-499

mance predictor for all the search itera-500

tions in between llm-start-iteration and501

llm-end-iteration. In rest of the iterations,502

supernet will be used as performance pre- 503

dictor. When llm-start-iteration=1 and 504

llm-end-iteration=num-iterations, HS-NAS 505

uses LLM-Distill-PP as performance predictor 506

for all the search iterations. HS-NAS comes with 507

four arguments: (llm-distill-pp, supernet, 508

llm-start-iteration, llm-end-iteration). 509

For all our search experiments, we use LLM- 510

Distill-PP GPT-4 as llm-distill-pp due to its 511

superior performance over the ChatGPT coun- 512

terpart (see the third major row in Table 1). We 513

use the latency-predictor and supernet from 514

HAT. Other details of the setup (e.g., efficiency 515

metric for search (search hours), and architecture 516

(latency, GFLOPs, model size)) can be seen in A.7. 517

7.1 Results 518

Varying benchmarks. HS-NAS shows compara- 519

ble performance to the SoTA across benchmarks, 520

achieving approximately a 50% reduction in search 521

hours. In some cases, it even enhances latency, 522

GFLOPs, and model size, as illustrated in Table 2. 523

This pattern highlights the effectiveness of using 524

LLMs as good initializers for architecture search. 525

Varying latency constraints. The trend observed 526

in HS-NAS remains consistent across different la- 527

tency constraints. Table 3 presents a comparison 528

of the HS-NAS configuration (GPT-4, HAT, 1, 15) 529

against the SoTA NAS for different latency con- 530

straints: 100ms, 150ms, and 200ms. Alongside a 531

50% reduction in search hours, HS-NAS attains 532

comparable or improved GFLOPs and maintains 533

the same model size compared to SoTA NAS. 534

Varying start and end iteration pairs. Among 535

different start and end iteration pairs, HS-NAS uti- 536

lizing LLM-Distill-PP (GPT-4) for the initial 50% 537
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Search Algorithm BLEU (↑) Latency (ms) (↓) GFLOPs (↓) Model Size (M) (↓) Search Hours (↓)

100ms
HAT 40.8 96.4 2.61 63.8 6.33
Layer-wise MoS 40.5 99.4 2.96 70.5 6.81
Neuron-wise MoS 40.9 97.6 3.13 70.5 7.03
HS-NAS (GPT-4, HAT, 1, 15) 40.7 98.2 2.54 63.8 3.15

150ms
HAT 41.3 176.4 3.31 74.3 7.33
Layer-wise MoS 41.4 158.7 4.3 92.8 8.39
Neuron-wise MoS 41.4 200.2 4.26 92.8 8.35
HS-NAS (GPT-4, HAT, 1, 15) 41.4 172.6 3.31 74.3 3.69

200ms
HAT 41.5 187.5 3.7 79.5 7.8
Layer-wise MoS 41.4 205.6 4.49 99.4 8.63
Neuron-wise MoS 41.6 184.1 4.53 99.4 8.77
HS-NAS (GPT-4, HAT, 1, 15) 42.0 187.8 3.7 79.5 3.88

Table 3: HS-NAS versus SoTA NAS on WMT’14 En-Fr for different latency constraints - Test BLEU, latency in
milliseconds, GFLOPs, model size in millions, and search hours.

Search Algorithm BLEU (↑) Latency (ms) (↓) GFLOPs (↓) Model Size (M) (↓) Search Hours (↓)

HAT 27.9 102.0 3.0 64.4 1.09
HS-NAS (GPT-4, HAT, 1, 30) 27.5 99.3 3.34 72.2 0.04
HS-NAS (GPT-4, HAT, 1, 5) 27.4 100.4 2.96 63.1 0.97
HS-NAS (GPT-4, HAT, 25, 30) 28.0 119.1 3.18 70.9 0.95
HS-NAS (GPT-4, HAT, 1, 15) 27.9 99.7 2.96 63.1 0.56
HS-NAS (GPT-4, HAT, 16, 30) 27.6 101.7 3.34 72.2 0.75
HS-NAS (GPT-4, HAT, 1, 25) 27.7 98.9 3.01 63.1 0.23

Table 4: HS-NAS versus HAT on WMT’14 En-De for latency constraint: 100ms - Test BLEU, latency in
milliseconds, GFLOPs, model size in millions, and search hours.

of iterations and HAT supernet for the remainder538

performs comparably or outperforms HAT across539

all metrics. Table 4 presents the results of HS-NAS540

for various start and end iteration pairs. Utilizing541

LLM-Distill-PP for the entire search yields lower542

performance, indicating that a marginal degrada-543

tion in Kendall-Tau hinders LLM-Distill-PP’s ef-544

fectiveness in handling the complete search. These545

trends underscore the utility of a predictor with546

SoTA MAE scores for the initial search, while a547

predictor with SoTA Kendall-Tau is valuable for548

the later stages of the search.549

Varying initialization seeds, FLOPs constraints,550

underlying supernet. HS-NAS exhibits resilience551

to initialization effects stemming from different552

seeds, yielding largely consistent results across553

metrics. Further details are provided in A.10.2.554

HS-NAS performs comparably to HAT under vary-555

ing FLOPs constraints, showcasing a minimum556

16% reduction in search hours, a 1.2% improve-557

ment in latency, consistent GFLOPs, and identi-558

cal model sizes. These trends persist consistently559

across benchmarks, as outlined in A.10.3. The su-560

periority of HS-NAS remains robust across differ-561

ent underlying supernets, as elucidated in A.10.4.562

Trivially constructed efficient adaptations of563

SoTA. Search hours can be trivially reduced in564

several ways: halving the total number of search 565

iterations and/or using distilled SoTA predictor in- 566

stead of using supernet predictor directly. While 567

these adaptations lead to a big drop in BLEU perfor- 568

mance (1.8% for HAT (num-iter.=15)) or a big 569

increase in latency and GFLOPs (9.7% and 32% 570

respectively for Distilled HAT (num-iter.=15)), 571

HS-NAS dominates these adaptions in search hour 572

reductions, while maintaining SoTA performance 573

and not degrading on any footprint metric, as de- 574

tailed in A.10.5. Putting all the observed trends 575

of HS-NAS together, we find that the generality 576

of HS-NAS extends to constraint types (latency, 577

FLOPs), constraint values (different latencies, dif- 578

ferent FLOPs), different tasks (MT benchmarks), 579

and underlying supernet (HAT, Neuron-wise MoS), 580

while being robust to initialization effects. 581

8 Conclusion 582

This work shows that LLMs can be employed to 583

create accurate and cost-effective performance pre- 584

dictors, providing insights into enhancing NAS. 585

This contribution adds to the expanding field of 586

LLMs in NAS, suggesting future research direc- 587

tions in adapting LLMs for both candidate architec- 588

ture generation and joint performance prediction. 589
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9 Limitations590

• Expanding task domains. Our evaluation591

setup, centered on machine translation bench-592

marks, aligns with existing NAS for NLP lit-593

erature (Wang et al., 2020; Jawahar et al.,594

2023a,b), primarily focusing on machine595

translation tasks. Investigating the applicabil-596

ity of the LLM-PP framework to diverse NLP597

tasks (e.g., summarization, language mod-598

eling) and non-NLP domains (e.g., speech599

recognition, computer vision) stands as a cru-600

cial avenue for future exploration.601

• Exploring diverse architectures. This work602

focused on classic Transformer architectures603

as outlined by Vaswani et al., aligning with604

NAS for NLP literature. While our primary605

investigation remained focused on these archi-606

tectures, examining other architecture types607

(e.g., convolution embedding based (Salesky608

et al., 2023)) stands as a pertinent future direc-609

tion.610
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A Appendix 906

A.1 Related Work - Extended 907

LLMs. LLMs can be classified into two categories 908

based on their training methods: foundation and 909

instruction-tuned LLMs. Foundation LLMs, which 910

includes GPT-3 (Brown et al., 2020), GLaM (Du 911

et al., 2022), LLaMA-1 (Touvron et al., 2023a), 912

undergo language model training on unannotated 913

corpus from the web. These LLMs typically encode 914

a lot of useful knowledge in their parameters and 915

can be used for a downstream task by either fine- 916

tuning or zero/few-shot prompting. Instruction- 917

tuned LLMs are usually foundation LLMs that un- 918

dergo instruction-tuning, where LLMs are explic- 919

itly fine-tuned to follow user defined instructions 920

well. Such LLMs include InstructGPT (Ouyang 921

et al., 2022), ChatGPT (OpenAI, 2023b), GPT- 922

4 (OpenAI, 2023a), LLaMA-2 (Touvron et al., 923

2023b), and PaLM-2 (Anil et al., 2023). In practice, 924

instruction-tuned LLMs can follow a wide range of 925
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user’s instructions, even those that are outside the926

instruction tuning data distribution (Ouyang et al.,927

2022). However, depending on the task, instruction-928

tuned LLMs are prone to generating content that929

are factually incorrect, hallucinated, ignores user’s930

instruction, toxic, and so on (Ouyang et al., 2022).931

These challenges make the current SoTA LLMs932

unreliable for critical applications such as medical933

diagnosis (Singhal et al., 2022).934

Distilling LLMs. Distilling the generations from935

LLMs to smaller student models has become com-936

monplace in NLP these days (Taori et al., 2023;937

Chiang et al., 2023; Wu et al., 2023; Mukherjee938

et al., 2023). The key motivations for such ef-939

forts include: (i) cost reduction: most LLMs are940

either behind a paywall or require high-end GPUs941

(e.g., NVIDIA A100) with high GPU memory (e.g.,942

80GB) to use, (ii) latency reduction: most LLMs943

are too slow even on high-end hardware (e.g.,944

OPT-175B takes 4s for decoding 16 sequences of945

length 1024 on 8 NVIDIA A100 80GB GPUs (Xiao946

et al., 2022)), and (iii) customization: most LLMs947

are general purpose and are difficult to finetune.948

The commonly used distillation technique is se-949

quence level knowledge distillation (Kim and Rush,950

2016), where the student models are finetuned on951

responses from teacher LLMs via a standard lan-952

guage modeling objective.953

A.2 Examples for Metrics954

A.2.1 Mean Absolute Error955

If predictions and TFS performances match per-956

fectly, MAE will be zero, e.g., predictions are [23.4,957

25.9, 28.1] and TFS performances are [23.4, 25.9,958

28.1]. If predictions and TFS performances are959

mostly similar, MAE will be low, e.g., predictions960

are [23.4, 25.9, 28.1] and TFS performances are961

[23.3, 25.8, 28.2], MAE is 0.1. If predictions and962

TFS performances are extremely different, MAE963

will be high, e.g., predictions are [21.2, 24.0, 22.1]964

and TFS performances are [23.3, 25.8, 28.2], MAE965

is 3.33.966

A.2.2 Kendall-Tau967

If predictions and TFS performances match per-968

fectly, Kendall-Tau will be 100, e.g., predictions969

are [23.4, 25.9, 28.1] and TFS performances are970

[23.4, 25.9, 28.1]. If predictions and TFS perfor-971

mances are different but their architecture rankings972

are similar, Kendall-Tau will be 100, e.g., predic-973

tions are [23.4, 25.9, 28.1] and TFS performances974

are [22.2, 23.4, 25.1]. If predictions and TFS per-975

formances are different and their architecture rank- 976

ings are dissimilar, Kendall-Tau will be negative, 977

e.g., predictions are [23.4, 25.9, 28.1] and TFS per- 978

formances are [23.4, 25.1, 22.2], Kendall-Tau is 979

-0.33. 980

A.3 Prompt Template - Expanded version 981

The expanded version of the prompt template can 982

be seen in Figure 3. 983

A.4 Prompt Template - Design Process 984

The design process began by examining crucial el- 985

ements of the machine translation task, commonly 986

used model architectures, and relevant efficiency 987

metrics. Initially, we presented only demonstra- 988

tions, borrowing hyperparameter wording from 989

HAT’s configuration file. Subsequently, we added 990

the role and definition of each hyperparameters, us- 991

ing wording from HAT’s helper description. Mov- 992

ing forward, our aim was to craft instructions en- 993

abling the LLM to grasp essential tasks, architec- 994

ture, and metric details. Most instructions are pre- 995

fixed with ‘You should’ to encourage strict adher- 996

ence. Five instructions were incorporated. The 997

first specifies the dataset, translation direction, and 998

quality metric. The second provides examples ran- 999

domly sampled from the training set, presented 1000

with generic prefixes (‘Input:’ for source sentence, 1001

‘Output:’ for target sentence). The third outlines 1002

the architecture, citing the ‘Attention Is All You 1003

Need’ (Vaswani et al., 2017) paper, assuming the 1004

LLM is familiar with this popular work. Standard 1005

settings and optimization algorithms are noted for 1006

training the architectures. The fourth identifies the 1007

efficiency metric in the demonstrations. The final 1008

instruction aims to summarize the relationships the 1009

LLM should learn to solve the task effectively. 1010

A.5 Kendall-Tau - Fine-grained analysis 1011

We perform a fine-grained analysis of Kendall-Tau 1012

performance for Neuron-wise MoS and LLM-PP 1013

GPT-4. In figure 4, we plot the histogram of dis- 1014

tance between the items in the discordant pairs in 1015

the gold ranking for Neuron-wise MoS and LLM 1016

GPT-4 across three MT benchmarks. The discor- 1017

dant pairs of LLM-PP lie mostly around low gold 1018

ranking distances region (like Neuron-wise MoS), 1019

which should not ideally have a big negative impact 1020

for the NAS task. In figure 5, we plot the corre- 1021

sponding cummulative distribution function (CDF). 1022

The CDF of gold ranking distances for discordant 1023
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You are a performance estimator for machine translation task, where you will estimate the
BLEU score for the test architecture.

You should follow these instructions:
1. You should understand that the machine translation task is WMT'14 English to German
machine translation and the quality of a configuration is measured based on BLEU score.
2. Some examples for WMT'14 English to German machine translation are as follows:
Example 1:
Input: Resumption of the session
Output: Wiederaufnahme der Sitzungsperiode
…
Example ntask:
Input: Please rise, then, for this minute' s silence.
Output: Ich bitte Sie, sich zu einer Schweigeminute zu erheben.
3. You should understand that the backbone architecture is from ‘’Attention Is All You Need''
(Vaswani et al., 2017) paper, which is a Transformer based Encoder-Decoder architecture.
We use the same hyperparameters and optimization algorithms.
4. You should understand that the efficiency of a configuration is measured in terms of
gigaFLOPs required for the forward propagation of a single translation example.
5. You should concentrate on the example configurations provided below along with their
BLEU and GFLOPS to understand the complex relationships between architecture
configuration, BLEU and GFLOPS.

Hyperparameter definition:
‘encoder-embed-dim-subtransformer' corresponds to encoder embedding dimension
‘encoder-layer-num-subtransformer' corresponds to number of encoder layers
‘encoder-ffn-embed-dim-all-subtransformer' correspond to embedding dimension of each FFN
layer in encoder
‘encoder-self-attention-heads-all-subtransformer' correspond to number of self attention
heads in each encoder layer
‘decoder-embed-dim-subtransformer' corresponds to decoder embedding dimension
‘decoder-layer-num-subtransformer' corresponds to number of decoder layers
’decoder-ffn-embed-dim-all-subtransformer' correspond to embedding dimension of each FFN
layer in decoder
‘decoder-self-attention-heads-all-subtransformer' correspond to number of self attention
heads in each decoder layer
‘decoder-ende-attention-heads-all-subtransformer' correspond to number of cross attention
heads in each decoder layer
‘decoder-arbitrary-ende-attn-all-subtransformer' correspond to number of encoder layers
attended by cross-attention heads in each decoder layer (-1 means only attend to the last
layer; 1 means attend to last two layers, 2 means attend to last three layers)

Example 1:
encoder-embed-dim-subtransformer: 512
encoder-layer-num-subtransformer: 6
encoder-ffn-embed-dim-all-subtransformer: [1024, 1024, 2048, 2048, 2048, 1024]
encoder-self-attention-heads-all-subtransformer: [4, 8, 8, 8, 4, 4]
decoder-embed-dim-subtransformer: 512
decoder-layer-num-subtransformer: 4
decoder-ffn-embed-dim-all-subtransformer: [2048, 1024, 1024, 1024]
decoder-self-attention-heads-all-subtransformer: [4, 4, 8, 4]
decoder-ende-attention-heads-all-subtransformer: [4, 8, 8, 8]
decoder-arbitrary-ende-attn-all-subtransformer: [-1, -1, 1, -1]
BLEU: 24.30
GFLOPS: 2.7
...
Example narch:
…

Test Architecture:
encoder-embed-dim-subtransformer: 640
encoder-layer-num-subtransformer: 6
encoder-ffn-embed-dim-all-subtransformer: [2048, 1024, 1024, 1024, 2048, 1024]
encoder-self-attention-heads-all-subtransformer: [4, 8, 8, 4, 4, 4]
decoder-embed-dim-subtransformer: 512
decoder-layer-num-subtransformer: 3
decoder-ffn-embed-dim-all-subtransformer: [1024, 2048, 2048]
decoder-self-attention-heads-all-subtransformer: [8, 8, 8]
decoder-ende-attention-heads-all-subtransformer: [8, 4, 4]
decoder-arbitrary-ende-attn-all-subtransformer: [-1, 1, 1]
BLEU:

Role

Instruction

Demonstrations

Test

Hyperparameters

Figure 3: Prompt template to prompt LLM to generate performance predictions for WMT’14 EN-DE task.
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pairs for LLM-PP GPT-4 and Neuron-wise MoS1024

are very similar.1025

A.6 Machine Translation Details1026

A.6.1 Machine Translation - Dataset Statistics1027

The statistics of the MT benchmarks is shown in1028

Table 5.1029

A.6.2 Machine Translation - Training Details1030

and Search Space1031

Settings for training machine translation model in-1032

clude: 40K training steps, a cosine learning rate1033

scheduler, Adam optimizer, and a warmup of learn-1034

ing rate from 10−7 to 10−3 with cosine annealing.1035

The validation loss is used for model selection. The1036

beam size is four with length penalty of 0.6. The1037

search space (A) is borrowed from HAT (Wang1038

et al., 2020), which is also shown in Table 6.1039

A.6.3 Architecture Encoding1040

Each machine translation architecture is encoded1041

using a list of following 10 values:1042

1. Encoder embedding dimension corresponds1043

to embedding dimension of the encoder.1044

2. Encoder #layers corresponds to number of1045

encoder layers.1046

3. Average encoder FFN. intermediate dimen-1047

sion corresponds to average of FFN interme-1048

diate dimension across encoder layers.1049

4. Average encoder self attention heads corre-1050

sponds to average of number of self attention1051

heads across encoder layers.1052

5. Decoder embedding dimension corresponds1053

to embedding dimension of the decoder.1054

6. Decoder #Layers corresponds to number of1055

decoder layers.1056

7. Average Decoder FFN. Intermediate Dimen-1057

sion corresponds to average of FFN interme-1058

diate dimension across decoder layers.1059

8. Average decoder self attention heads corre-1060

sponds to average of number of self attention1061

heads across decoder layers.1062

9. Average decoder cross attention heads corre-1063

sponds to average of number of cross attention1064

heads across decoder layers.1065

10. Average arbitrary encoder decoder attention 1066

corresponds to average number of encoder 1067

layers attended by cross-attention heads in 1068

each decoder layer (-1 means only attend to 1069

the last layer, 1 means attend to the last two 1070

layers, 2 means attend to the last three layers). 1071

A.7 Search and Evaluation Setup - Details 1072

The hyperparameters of HS-NAS’s search algo- 1073

rithm are taken from HAT: num-iterations=30, 1074

population-size=125, num-parents=25, 1075

num-mutations=50, num-crossover=50, and 1076

mutate-prob=0.3. We experiment with three 1077

latency-constraints: 100ms, 150ms, and 1078

200ms. Once the search returns the best archi- 1079

tecture, the final weights for this architecture is 1080

obtained by training the architecture from scratch 1081

to convergence using HAT’s training settings 1082

(see A.6.2). The target hardware for search is 1083

NVIDIA V100 GPU with 32GB GPU RAM. 1084

The efficiency metric for search is search hours, 1085

which accounts for the time taken to complete all 1086

the search iterations. We focus on the following 1087

architecture-specific efficiency metrics: (i) latency 1088

- time taken in milliseconds to encode a sentence 1089

in source language and generate the translation in 1090

target language, (ii) GFLOPs - gigaFLOPs taken 1091

for the feedforward propagation, and (iii) model 1092

size - number of architecture-specific parameters 1093

in millions. Scripts to compute these metrics are 1094

taken from HAT’s codebase 2 and we refer readers 1095

to the HAT paper for more details about how these 1096

metrics are computed. 1097

A.8 LLM-PP - Extended Results 1098

A.8.1 LLM-PP vs. non-supernet baselines. 1099

LLM-PP beats non-supernet baselines as well. We 1100

add comparison to five non-supernet baselines: 1101

#Params, #FLOPs, grad-norm, snip, and snyflow 1102

(see White et al. for details). From Table 7, it is 1103

clear that LLM-PP GPT-4 achieves a high Kendall 1104

Tau, outperforming all the non-supernet baselines. 1105

These results along with Table 1 showcases the 1106

superior performance of LLM-PP across a wide 1107

range of baselines. 1108

A.8.2 LLM-PP on recent datasets and 1109

low-resource/indigenous languages. 1110

LLM-PP works well for recent datasets and low- 1111

resource/indigenous languages. Compared to SoTA 1112

2https://github.com/mit-han-lab/
hardware-aware-transformers
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(d) LLM GPT-4 - WMT’14 En-De
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(f) LLM GPT-4 - WMT’19 En-De

Figure 4: Histogram of distance between the items in the discordant pairs in the gold ranking for Neuron-wise MoS
and LLM GPT-4 across three MT benchmarks. The discordant pairs of LLM-PP lie mostly around low gold ranking
distances region (like Neuron-wise MoS), which should not ideally have a big negative impact for the NAS task.
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(d) LLM GPT-4 - WMT’14 En-De
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(e) LLM GPT-4 - WMT’14 En-Fr
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(f) LLM GPT-4 - WMT’19 En-De

Figure 5: Cummulative distribution function of distance between the items in the discordant pairs in the gold ranking
for Neuron-wise MoS and LLM GPT-4 across three MT benchmarks. The cummulative distribution function of
gold ranking distances for discordant pairs for LLM-PP GPT-4 and Neuron-wise MoS are very similar.

performance predictors, LLM-PP GPT-4 works1113

well for recent datasets (e.g., 2023 benchmark),1114

low-resource/indigenous languages (e.g., Bribri,1115

Chatino). From the recent shared task: “Ameri-1116

casNLP 2023 Shared Task on Machine Transla- 1117

tion into Indigenous Languages” (Ebrahimi et al., 1118

2023), we take three machine translation bench- 1119

marks: Bribri to Spanish, Chatino to Spanish, and 1120
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Dataset Year Source Lang Target Lang #Train #Valid #Test

WMT 2014 English (en) German (de) 4.5M 3000 3000
WMT 2019 English (en) German (de) 43M 2900 2900
WMT 2014 English (en) French (fr) 35M 26000 26000

Table 5: Statistics - Machine translation benchmark.

Hyperparameter Attribute Value choices

Encoder-Embedding-Dim {512, 640}
Decoder-Embedding-Dim {512, 640}
#Encoder-Layers {6}
#Decoder-Layers {1, 2, 3, 4, 5, 6}
Encoder-QKV-Dim {512}
Decoder-QKV-Dim {512}
#Encoder-Self-Attention-Heads (PL) {4, 8}
#Decoder-Self-Attention-Heads (PL) {4, 8}
#Decoder-Cross-Attention-Heads (PL) {4, 8}
#Decoder-Arbitrary-Attention (PL) {-1, 1, 2}
Encoder-FFN-Intermediate-Embed-Dim (PL) {1024, 2048, 3072}
Decoder-FFN-Intermediate-Embed-Dim (PL) {1024, 2048, 3072}

Table 6: Search space (A), borrowed from HAT (Wang
et al., 2020). ‘PL’ refers to hyperparameters that vary
per layer.

Kendall-Tau WMT’14 En-
De

WMT’14 En-
Fr

WMT’19 En-
De

# Params 0.42 0.51 0.54
# FLOPs 0.43 0.53 0.54
grad-norm -0.42 -0.42 -0.52
snip -0.42 -0.27 -0.3
synflow -0.31 -0.47 -0.49
LLM-PP GPT-4 0.65 0.75 0.65

Table 7: Kendall-Tau of LLM-PP GPT-4 vs. non-
supernet baselines. LLM-PP beats non-supernet base-
lines as well.

Spanish to Bribri. Compared to WMT 2014, WMT1121

2019 benchmarks, these three benchmarks are very1122

recent (2023 year) and one of the languages in each1123

translation direction is an low-resource/indigenous1124

language (Bribri, Chatino). As shown in Table 8,1125

we compare LLM-PP GPT-4 against SoTA perfor-1126

mance (BLEU) predictors on these benchmarks in1127

terms of quality (MAE, Kendall-Tau). It is clear1128

that LLM-PP achieves the SoTA MAE score across1129

these benchmarks, which is consistent with the1130

trends in WMT 2014, WMT 2019 benchmarks1131

(as shown in Table 1). Impressively, on two of1132

these benchmarks, LLM-PP also achieves the SoTA1133

Kendall-Tau score. Put together, these results1134

clearly showcase that LLM-PP generalizes well1135

to recent datasets and low-resource languages.1136

A.8.3 LLM-PP for COMET metric.1137

LLM-PP generalizes well to uncommon evalua-1138

tion metrics. We build performance predictors1139

that predict the Crosslingual Optimized Metric for1140

Evaluation of Translation (COMET) (Rei et al., 1141

2022) (Unbabel/wmt22-comet-da), which is rela- 1142

tively newer than the BLEU metric. Consider the 1143

Table 9 (performance averaged across two seeds), 1144

on the Bribri to Spanish task and the Chatino to 1145

Spanish task, LLM-PP achieves the SoTA MAE 1146

and SoTA Kendall Tau performance compared to 1147

SoTA performance predictors. These results show 1148

that LLM-PP generalizes well to uncommon evalu- 1149

ation metrics like COMET. Note that we exclude 1150

Spanish to BriBri task, since COMET does not 1151

support Bribri. 1152

A.8.4 LLM-PP for robust predictions. 1153

LLM-PP provides fairly robust performance pre- 1154

dictions. We compute the predictions for 8500 1155

randomly sampled architectures using LLM-PP 1156

GPT-4 three times and compute the standard devia- 1157

tion of the three predictions for each architecture. 1158

The mean of the standard deviation for 8500 archi- 1159

tectures is very low: 0.21, 0.27, 0.27 BLEU for 1160

WMT’14 En-De, WMT’14 En-Fr, and WMT’19 1161

En-De respectively. Thus, LLM-PP provides fairly 1162

robust performance predictions. For all our search 1163

experiments, we use a single estimate from LLM- 1164

PP. 1165

A.9 HS-NAS - Expanded Algorithm 1166

The expanded algorithm for HS-NAS can be found 1167

in Algorithm 2. 1168

A.10 LLM-Distill-PP - Extended Results 1169

A.10.1 Performance predictor quality vs. 1170

prediction time. 1171

Table 10 shows the efficiency (time taken to pre- 1172

dict performance for 10 architectures) and accu- 1173

racy (MAE, Kendall) for supernet-based PP (HAT, 1174

Layer-wise MoS, Neuron-wise MoS), LLM-PP 1175

(GPT-4), and LLM-Distill-PP (GPT-4). LLM- 1176

Distill-PP provides the best efficiency-accuracy 1177

tradeoff with on par accuracy as LLM-PP but sig- 1178

nificantly faster prediction time (0.01s vs. 11.9s). 1179

A.10.2 Varying initialization seeds. 1180

HS-NAS seems robust to initialization effects 1181

caused by different seeds, achieving largely similar 1182
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Algorithm 2 Hybrid-Search algorithm for Neural Architecture Search (HS-NAS). Changes to HAT (Wang
et al., 2020)’s search algorithm are in red color.
Input:
LLM-Distill-PP model: llm-distill-pp,
Weight-sharing supernet: supernet,
Latency predictor: latency-predictor,
#Search iterations: num-iterations,
Population size: population-size,
#Parents: num-parents,
#Mutations: num-mutations,
#Crossovers: num-crossover,
Mutate probability: mutate-prob,
Latency constraint: latency-constraint,
LLM-Distill-PP Start Iteration: llm-start-iteration,
LLM-Distill-PP End Iteration: llm-end-iteration
Output: best-architecture

1: popu← population-size rand. samples from search space // create init. population
2: for iter ← 1 to num-iterations do
3: // gen. parents by picking top cand. arch.
4: if llm-start-iteration < iter < llm-end-iteration then
5: parents← top ‘num-parents’ arch. from popu by llm-distill-pp
6: else
7: parents← top ‘num-parents’ arch. from popu by supernet

8: // gen. cand. via mutation
9: mutate-popu = {}

10: for mi← 1 to num-mutations do
11: gene← mutate a random eg from popu with mutate-prob
12: if gene satisfies latency-constraint via latency-predictor then
13: mutate-popu = mutate-popu ∪ gene

14: // gen. cand. via cross-over
15: crossover-popu = {}
16: for ci← 1 to num-crossover do
17: gene← crossover two random eg from popu
18: if gene satisfies latency-constraint via latency-predictor then
19: crossover-popu = crossover-popu ∪ gene

20: // upd. population
21: popu = parents ∪ mutate-popu ∪ crossover-popu

22: return top arch. from popu
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Dataset Bribri to Spanish Chatino to Spanish Spanish to Bribri
Performance Predictor MAE Kendall MAE Kendall MAE Kendall

HAT 0.28 0.15 1.55 0.16 0.72 0.02
Layer-wise MoS 0.33 -0.13 2.42 -0.17 0.63 -0.14

Neuron-wise MoS 0.29 -0.35 2.94 -0.06 0.43 0.09
LLM-PP GPT-4 0.16 0.29 1.21 0.08 0.32 0.20

Table 8: MAE and Kendall-Tau between the performance predictor performance and the TFS performance, across
two different seeds. LLM-PP works well for recent datasets and low-resource/indigenous languages.

Dataset Bribri to Spanish Chatino to Spanish
Performance Predictor MAE Kendall MAE Kendall

HAT 0.03 0.24 0.02 -0.15
Layer-wise MoS 0.02 -0.05 0.02 0.26

Neuron-wise MoS 0.02 0.32 0.01 0.34
LLM-PP GPT-4 0.01 0.32 0.01 0.54

Table 9: MAE and Kendall-Tau between the performance predictor performance and the TFS performance for
COMET metric, across two different seeds. LLM-PP generalizes well to uncommon evaluation metrics like COMET.

Performance Predictor MAE Kendall-Tau Prediction Time (s)

HAT 1.14 0.71 10.5
Layer-wise MoS 1.05 0.81 13.9
Neuron-wise MoS 0.97 0.56 13.3
LLM-PP GPT-4 0.28 0.65 11.9
LLM-Distill-PP GPT-4 0.22 0.64 0.01

Table 10: Performance predictor quality vs. prediction
time.

numbers on all metrics. This result is shown in1183

Table 11, where latency numbers change slightly1184

while numbers for other metrics are almost the1185

same.1186

A.10.3 Varying FLOPs constraints.1187

HS-NAS performs similarly to HAT for different1188

FLOPs constraints, with at least 16% reduction in1189

search hours, 1.2% improvement in latency, same1190

GFLOPs and same model size. Table 12 contains1191

these superior results of HS-NAS across 2.5 and 3.01192

GFLOPs constraints. These trends largely hold true1193

across benchmarks as well, as shown in Table 13.1194

A.10.4 Varying underlying supernet.1195

The dominance of HS-NAS seems consistent1196

across the underlying supernet. In the results so far,1197

HAT is the supernet used by HS-NAS. In Table 14,1198

we replace HAT with Neuron-wise MoS and show1199

that HS-NAS performs similarly to Neuron-wise1200

MoS, with at least 50% reduction in search hours,1201

better or similar model size and GFLOPs.1202

A.10.5 Trivially constructed efficient1203

adaptations of SoTA1204

Search hours can be trivially reduced in several1205

ways: halving the total number of search itera-1206

tions and/or using distilled SoTA predictor instead1207

of using supernet predictor directly. As shown 1208

in Table 15, the former approach suffers from a 1209

big drop in BLEU performance (1.8% for HAT 1210

(num-iter.=15)), while the latter approach suf- 1211

fers from a big increase in latency and GFLOPs 1212

(9.7% and 32% respectively for Distilled HAT 1213

(num-iter.=15)). On the other hand, HS-NAS 1214

dominates these adaptions in search hour reduc- 1215

tions, while maintaining the performance of SoTA 1216

and not degrading on any footprint metric. 1217
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Seed BLEU (↑) Latency (ms) (↓) GFLOPs (↓) Model Size (M) (↓) Search Hours (↓)

100ms
1 40.7 104.1 2.54 63.8 3.14
2 40.7 98.2 2.54 63.8 3.15
3 40.7 101.2 2.58 63.8 3.16

150ms
1 41.5 160.4 3.35 74.3 3.89
2 41.4 172.6 3.31 74.3 3.69
3 41.5 158.5 3.35 74.3 3.84

Table 11: Initialization effects of HS-NAS (GPT-4, HAT, 1, 15) on WMT’14 En-Fr for different latency constraints -
Test BLEU, latency in milliseconds, GFLOPs, model size in millions, and search hours. HS-NAS seems robust to
initialization effects, achieving similar numbers on all metrics of interest.

Search BLEU (↑) Latency (ms) (↓) GFLOPs (↓) Model Size (M) (↓) Search Hours (↓)

2.5 GFLOPs
HAT 26.9 69.5 2.47 41.0 2.54

HS-NAS 26.7 68.6 2.47 41.0 2.13

3.0 GFLOPs
HAT 27.5 125.4 2.98 49.4 2.08

HS-NAS 27.6 123.9 2.98 49.4 1.51

Table 12: HS-NAS (GPT-4, HAT, 1, 15) vs. HAT on WMT’14 En-De for different FLOPs constraints - Test BLEU,
latency in milliseconds, GFLOPs, model size in millions, and search hours. HS-NAS (GPT-4, HAT, 1, 15) performs
similarly to HAT, with at least 16% reduction in search hours, 1.2% improvement in latency, same GFLOPs and
same model size.

Search BLEU (↑) Latency (ms) (↓) GFLOPs (↓) Model Size (M) (↓) Search Hours (↓)

WMT’14 En-De
HAT 27.5 125.4 2.98 49.4 2.08

HS-NAS 27.6 (+0.4%) 123.9 (-1.2%) 2.98 49.4 1.51 (-27.4%)

WMT’14 En-Fr
HAT 39.4 69.6 2.99 49.1 6.69

HS-NAS 39.8 (+1%) 96.8 (+39.1%) 3 49.1 4.2 (-37.2%)

WMT’19 En-De
HAT 42.9 85.5 2.99 49.6 2.35

HS-NAS 43.1 (+0.5%) 71.9 (+15.9%) 2.99 49.6 2.03 (-13.6%)

Table 13: HS-NAS (GPT-4, HAT, 1, 15) vs. HAT across benchmarks for 3.0 GFLOPs constraint - Test BLEU,
latency in milliseconds, GFLOPs, model size in millions, and search hours. HS-NAS (GPT-4, HAT, 1, 15) performs
similarly or better than HAT, with at least 13% reduction in search hours, at least 1.2% improvement in latency (in
most cases), same GFLOPs, and same model size.

Search BLEU (↑) Latency (ms) (↓) GFLOPs (↓) Model Size (M) (↓) Search Hours (↓)

100ms
Neuron-wise MoS 40.9 97.6 3.13 70.5 7.03
HS-NAS (GPT-4, Neur., 1, 15) 40.9 126.9 (+30%) 3.13 70.5 3.36 (-52.2%)

150ms
Neuron-wise MoS 41.4 200.2 4.26 92.8 8.35
HS-NAS (GPT-4, Neur., 1, 15) 41.3 (-0.2%) 162.2 (19.0%) 4.22 (-0.9%) 91.5 (1.4%) 4.14 (-50.4%)

200ms
Neuron-wise MoS 41.6 184.1 4.53 99.4 8.77
HS-NAS (GPT-4, Neur., 1, 15) 41.7 (+0.2%) 191.2 (+3.9%) 4.53 99.4 4.22 (-51.8%)

Table 14: HS-NAS (GPT-4, Neuron-wise MoS, 1, 15) versus SoTA NAS on WMT’14 En-Fr for different latency
constraints - Test BLEU, latency in milliseconds, GFLOPs, model size in millions, and search hours. HS-NAS is
accompanied by four arguments: (llm-distill-pp, supernet, llm-start-iteration, llm-end-iteration ).
Across latency constraints, HS-NAS performs similarly or improves upon SoTA NAS, with at least 50% reduction
in search hours, better or similar model size and GFLOPs.
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Search BLEU (↑) Latency (ms) (↓) GFLOPs (↓) Model Size (M) (↓) Search Hours (↓)

HAT (num-iter.=30) 27.9 102.0 3.0 64.4 1.09
HAT (num-iter.=15) 27.4 (-1.8%) 107.6 (+5.5%) 2.96 (-1.3%) 63.1 (-2%) 0.65 (-40.4%)
Distilled HAT (num-iter.=15) 27.8 (-0.4%) 111.9 (+9.7%) 3.97 (+32%) 63.1 (-2%) 0.58 (-46.8%)
HS-NAS (GPT-4, HAT, 1, 15) 27.9 99.7 (-2.3%) 2.96 (-1.3%) 63.1 (-2%) 0.56 (-48.6%)

Table 15: HS-NAS versus trivial efficient adaptations of SoTA with half of the original search iterations (original
num-iterations = 30): original SoTA, distilled SoTA on WMT’14 En-De for 100ms latency constraint - Test
BLEU, latency in milliseconds, GFLOPs, model size in millions, and search hours. HS-NAS is accompanied by four
arguments: (llm-distill-pp, supernet, llm-start-iteration, llm-end-iteration). Efficient adaptations
of SoTA reduce search hours by at least 40%, at the expense of either a big drop in BLEU performance (1.8%
for HAT (num-iter.=15) ) or big increase in latency and GFLOPs (9.7% and 32% respectively for Distilled
HAT (num-iter.=15)). On the other hand, HS-NAS dominates these adaptions in search hour reductions, while
maintaining the performance of SoTA and not degrading on any footprint metric.
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