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Abstract

Tabular datasets are inherently heterogeneous, presenting significant challenges for
developing pre-trained foundation models. The recently introduced transformer-
based Tabular Prior-data Fitted Network v2 (TabPFN v2) achieves unprecedented
in-context learning performance across diverse downstream datasets, marking a
pivotal advancement in tabular foundation models. In this paper, we take a closer
look at TabPFN v2 to examine how it effectively handles heterogeneity and achieves
high predictive accuracy, and to explore how its limitations in high-dimensional,
many-category, and large-scale tasks can be mitigated. We find that TabPFN v2 can
infer attribute relationships even when provided with randomized attribute token
inputs, eliminating the need to explicitly learn dataset-specific attribute embeddings
to address heterogeneity. We further show that TabPFN v2 can be transformed into
a feature extractor, revealing its ability to construct a highly separable feature space
for accurate predictions. Lastly, we demonstrate that TabPFN v2’s limitations can
be addressed through a test-time divide-and-conquer strategy, enabling scalable
inference without requiring re-training. By uncovering the mechanisms behind
TabPFN v2’s success and introducing strategies to extend its applicability, this
study offers key insights into the design of future tabular foundation models.

1 Introduction

Tabular data is ubiquitous across a wide range of applications, including healthcare [32], finance [43],
and scientific research [33, 32]. In this format, each instance (e.g., a patient’s record) is represented
as a vector of attributes, and the goal of a machine learning model is to map these vectors to their
corresponding labels [7]. Traditionally, tree-based models [56, 12] have dominated this domain, but
recent advances in deep tabular models are increasingly closing the performance gap [22, 29, 76].

However, unlike vision and language domains, where pre-trained foundation models have driven
significant progress [40, 81], tabular data is still desperately awaiting a similar breakthrough [63,
27, 54, 82, 77, 66]. A primary challenge arises from the inherent heterogeneity of tabular datasets,
which often vary in dimensionality and attribute meanings, making the development of effective
and versatile foundation models difficult. Additionally, there is an urgent need for such models, as
many tabular datasets are small-scale—such as medical data with limited patient numbers. Training
individual models from scratch for these datasets is highly sensitive to hyperparameter choices and
often fails to generalize due to limited data [18, 24, 25].
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Recently, the Tabular Prior-Fitted Network v2 (TabPFN v2) [28] has emerged as a significant step
forward. Built on transformer architectures [67] and pre-trained on gigantic synthetic datasets [27, 28],
TabPFN v2 can be directly applied to diverse downstream tasks without additional tuning. Specifically,
TabPFN v2 takes both a labeled training set and an unlabeled test instance as input, predicting the test
label in an “in-context learning” manner. When evaluated across both classification and regression
tasks, TabPFN v2 consistently outperforms prior tabular methods, achieving state-of-the-art accuracy.

Motivated by the remarkable performance of TabPFN v2, we aim to take a step further to understand
the mechanisms behind its success1—specifically, how it effectively handles dataset heterogeneity
and achieves high predictive accuracy. In addition, we investigate how to overcome its current
limitations—namely, its suggested data regime of no more than 10,000 samples, 500 dimensions, and
10 classes [28]—ideally without requiring model re-training. We outline major insights as follows.

1. TabPFN v2 internalizes attribute token learning to handle data heterogeneity. Given an
instance with d attributes, TabPFN v2 transforms it into a set of fixed-dimensional tokens and uses
a transformer architecture to handle variability in d, following [64, 22, 74]. In sharp contrast to
prior methods that rely on known attribute semantics (e.g., word vectors) or learn dataset-specific
attribute tokens, TabPFN v2 instead employs randomized attribute tokens—resampled at each
inference. This design “syntactically” allows TabPFN v2 to be directly applied to new downstream
datasets with varying dimensionalities and attribute meanings without additional tuning, but raises
a fundamental question: how does it still make accurate predictions? Our analysis shows that,
regardless of the randomness, TabPFN v2 can consistently infer attribute relationships through
in-context learning, essentially integrating attribute token learning into the inference itself. In
short, TabPFN v2 unifies representation learning and prediction within a single forward pass.

2. TabPFN v2 can be repurposed as a feature extractor for downstream tasks. The exceptional
predictive performance of TabPFN v2 suggests that it produces instance-level feature represen-
tations that are highly discriminative. However, verifying this is non-trivial, as TabPFN v2’s
in-context learning mechanism assigns distinct roles to labeled training and unlabeled test in-
stances, resulting in embeddings that are not directly comparable. To overcome this, we propose a
leave-one-fold-out strategy that enables the extraction of instance features more closely aligned
across training and test data. Our findings reveal that TabPFN v2 effectively maps tabular instances
into a nearly linearly separable embedding space. Remarkably, training a linear model on these
features yields accuracy comparable to that of TabPFN v2’s in-context learner, highlighting its
potential as a powerful feature encoder. This not only offers insights into TabPFN v2’s inner
workings but also opens the door to broader applications (e.g., visualization and error analysis).

3. Test-time divide-and-conquer effectively mitigates TabPFN v2’s limitations. As noted in [28],
TabPFN v2 faces challenges when applied to high-dimensional, many-category, or large-scale
datasets. Rather than resorting to model re-training, we show that these limitations can be effec-
tively addressed through carefully designed post-hoc divide-and-conquer strategies, reminiscent
of test-time scaling techniques developed for large language models [70, 51]. Empirical results
show significant accuracy gains across these challenging data regimes, highlighting the potential
of advanced post-hoc methods to further extend the capabilities of tabular foundation models.

Remark. This paper presents a timely and in-depth investigation into TabPFN v2, offering valuable
insights for advancing tabular foundation models. While we do not propose a new architecture or
training scheme, our contribution lies in the novel analysis and principled extension of TabPFN v2.
This reflects a growing trend in foundation model research, where understanding, evaluating, and
adapting powerful models is increasingly seen as being as impactful as designing new ones.

2 Related Work

Tabular foundation models. Pre-trained models have revolutionized the vision and language domains
[40, 81], but their adoption in tabular data remains limited due to the substantial heterogeneity across
datasets. Variations in attribute spaces, dimensionalities, and label distributions present significant
challenges for joint training and transferability. One solution is to leverage the semantic meanings of
attributes, as demonstrated by methods that convert tabular instances into textual descriptions and

1We note that TabPFN v2 [28], like many recent large language models (LLMs) and foundation models, does
not release its training data or training recipe. Accordingly, our focus is on understanding the properties of the
released pre-trained model and exploring ways to extend its applicability.
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Figure 1: Left: Illustration of TabPFN v2’s mechanism for binary classification [28]. {A1, . . . , Ad} denote d
attributes of the task. Training examples and a test instance are combined into a tabular context and transformed
into a (N + 1)× (d+ 1)× k tensor using a combination of learnable and randomized tokens. Two types of
self-attention are applied alternately across rows (inter-sample) and columns (inter-feature). The output token
corresponding to the (dummy) label of the test instance is processed through an MLP to generate a 10-class logit.
Right: Wilcoxon-Holm test at a significance level of 0.05 over 273 small- to medium-scale datasets. We omit
the 27 datasets used to select TabPFN v2’s checkpoint from the 300 datasets in [75].

apply large language models for prediction [26, 79, 69, 71]. Alternatively, some approaches aim to
improve transferability by pre-computing attribute tokens based on semantic embeddings [74, 39]. In
practical domains such as healthcare or scientific measurement, the semantic meanings of attributes
are often inaccessible due to privacy constraints, annotation costs, or a lack of describability. To
address this, [77] proposed representing each instance by its similarity profile to a fixed number of
nearest neighbor examples, thereby mapping it into a consistent latent space with shared dimensional
semantics. The TabPFN family [27, 28] leverages the in-context learning capabilities of transformers
to directly predict labels by contextualizing test instances among training examples. This strategy
inspired subsequent pre-trained tabular models such as [48, 15, 57]. While TabPFN v1 pads attribute
vectors to a fixed dimension, TabPFN v2 introduces a specialized attribute tokenizer to handle
heterogeneous input spaces. Meta-learning has also been explored to generate model weights
tailored for downstream tabular tasks with limited data [34, 6, 50]. Other pre-trained models rely on
lightweight fine-tuning to adapt to variations in attribute and label spaces [44, 80, 62, 82].

3 Background

Learning with a single tabular dataset. A tabular dataset D = {(xi, yi)}Ni=1 contains N training
examples, corresponding to the rows in a table. Each instance xi is characterized by d features or
attributes (i.e., columns in the table), where d typically varies across datasets. Its label yi belongs to
[C] = {1, . . . , C} for a classification task or is a numerical value for a regression task. We assume
that all attributes of an instance are numerical (continuous). Categorical (discrete) attributes, if present,
are transformed using ordinal or one-hot encoding beforehand. The goal of tabular machine learning
is to learn a mapping f from instances to their labels. Specifically, given an unseen instance x∗ ∈ Rd

sampled from the same distribution as D, the learned mapping f predicts its label as ŷ∗ = f(x∗ | D).
A smaller discrepancy between ŷ∗ and the true label y∗ indicates stronger generalizability of f .

TabPFN. The original TabPFN implements f for classification using a transformer-like architec-
ture [27]. Both training and test instances are first zero-padded to a fixed dimension k′ (e.g., 100).
Then, xi and yi are linearly projected to x̃i ∈ Rk and ỹi ∈ Rk, respectively. TabPFN processes both
a labeled training set and an unlabeled test instance jointly, predicting the test label in an in-context
learning manner. The task context is defined as C = {(x̃1+ỹ1), . . . , (x̃N+ỹN ), (x̃∗)} ∈ R(N+1)×k,
consisting of N +1 tokens, each of dimension k. These tokens are processed by multiple transformer
layers, which accommodate variable-length inputs (i.e., variable N ). The output token corresponding
to the test instance is passed through a multi-layer perceptron (MLP) to produce a 10-class logit.

TabPFN v2. The recently proposed variant [28] introduces several key modifications. First, each
of the d attributes in D is embedded into a k-dimensional space, with random perturbations added
to differentiate attributes. Together with the label embedding ỹi ∈ Rk, each training instance xi is
represented by (d+ 1) tokens with dimension k. For a test instance x∗, where the label is unknown,
a dummy label (e.g., the average label of the training set) is used to generate the label embedding ỹ∗.

The full input to TabPFN v2—comprising the training set and the test instance—is thus represented as
a tensor of shape (N + 1)× (d+ 1)× k. Two types of self-attention are applied in alternation: one
over samples (among the N+1 instances) and the other over attributes (among the d+1 dimensions),
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Figure 2: Probability of Achieving the Maximum
Accuracy or Minimum RMSE across 273 datasets.
Values inside rectangles show the percentage of
datasets on which a method achieves the best result.

↓ TabPFN v2 CatB MNCA R-MLP LR

High-Dim 3.36 2.82 4.41 2.14 2.27
Large-Scale 3.97 1.89 2.27 1.94 4.47
>10 classes 3.33 2.75 3.17 1.42 4.33

Table 1: Average rank (lower is better) of TabPFN v2
and representative baselines on 18 high-dimensional, 18
large-scale, and 12 datasets with more than 10 classes.
Full results with our extensions are in Figure 5.

enabling in-context learning along both axes. Finally, the output token corresponding to the test
instance’s dummy label ỹ∗ is extracted and mapped to a 10-class logit for classification or a single-
value logit for regression. An overview of this process is illustrated in Figure 1 (left).

The weights in TabPFN v2 are pre-trained on diverse synthetic datasets generated using structural
causal models (SCMs), with the checkpoint selected based on real-world datasets. For additional
details, including feature pre-processing, acceleration, and post-hoc ensembling, please refer to [28].

Remark. In the tabular domain, years of research into deep and foundation models have culminated
in TabPFN v2 [28]—a breakthrough that, for the first time, enables deep models to consistently
outperform traditional methods without fine-tuning. However, due to venue constraints, many
technical details were omitted from the main paper. For example, the use of randomized tokens was
documented in the supplementary material and code. In light of this, we aim to systematically analyze
TabPFN v2, as we believe such a study is more impactful than proposing yet another architecture.

4 Comprehensive Evaluation of TabPFN v2

Before presenting our core studies, we first extend TabPFN v2’s evaluation beyond the original set of
datasets to over 300, covering a much broader range of domains, attributes, scales, dimensionalities,
and tasks [23, 49, 75, 60], aiming to more thoroughly assess its generalizability and limitations.

4.1 Setups

We first adopt the benchmark from [75], comprising 120 binary classification, 80 multi-class classifi-
cation, and 100 regression tasks. It resolves common issues such as mislabeled data and redundancies
from overlapping dataset versions [42], enabling more reliable evaluations. Out of the 300 datasets,
27 belong to the validation set used for checkpoint selection in TabPFN v2 [28]. To avoid evaluation
bias, we exclude these datasets and report results on the remaining 273 datasets.

Following the protocol in [21, 22], each dataset is randomly split into training, validation, and test
partitions in a 64%/16%/20% ratio. TabPFN v2 predicts test set labels directly using in-context
learning, without any additional parameter or hyperparameter tuning. Baseline tabular methods—both
deep and traditional—perform hyperparameter tuning using Optuna [1], with 100 trials on the training
set and early stopping based on validation performance.

All methods are evaluated using 15 random seeds, and we report the average performance across
seeds. For classification tasks, we report accuracy (higher is better), while regression tasks are
evaluated using Root Mean Square Error (RMSE; lower is better). For tasks with more than 10
classes, we adopt the built-in Error-Correcting Output Codes (ECOC) strategy for TabPFN v2.

4.2 Empirical Results: Strengths of TabPFN v2

We compare TabPFN v2 against 26 representative tabular methods (see Appendix for full references).
To assess statistical significance, we apply the Wilcoxon-Holm test with a significance level of
0.05 [14]. As shown in the critical difference diagram in Figure 1 (right), TabPFN v2 consistently
outperforms both tree-based methods, such as CatBoost [56], and deep tabular models, including
RealMLP [29], ModernNCA [76], TabM [19], TabR [21], and FT-Transformer [22].
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To further assess performance, we report the Probability of Achieving the Maximum Accuracy or
Minimum RMSE (PAMA) [13], which measures the proportion of datasets on which a method
achieves the best performance. As shown in Figure 2, TabPFN v2 attains the highest score, delivering
the top results on 26.02% of the datasets—outperforming other methods such as ModernNCA
(11.79%) and TabM (9.78%). These results underscore TabPFN v2’s strong generalizability.

4.3 Empirical Results: Limitations of TabPFN v2

The above evaluation focuses on small- to medium-scale datasets, specifically those with fewer than
10,000 examples. However, as noted in [28], the computational complexity of transformers constrains
TabPFN v2’s ability to scale effectively to datasets with larger sample sizes or higher dimensionality.

To verify this, we conduct additional evaluations on 18 high-dimensional datasets with d ≥ 2,000 [36]
and 18 large-scale datasets where N × d > 1,000,000. For high-dimensional datasets, we follow
the same protocol as before. For large-scale datasets, due to the prohibitive cost of hyperparameter
tuning, default hyperparameters are used for all methods. The average ranks of several representative
methods are summarized in Table 1. The full results—along with our extensions—are in Section 7.

As shown, TabPFN v2’s performance degrades on both large-scale and high-dimensional datasets.
On large-scale datasets, it ranks below both CatBoost and RealMLP; on high-dimensional datasets, it
even falls behind the simple Logistic Regression (LR) model. Beyond these two limitations, Table 1
also reports results on the 12 datasets in Section 4.2 that contain more than 10 categories, where the
ECOC strategy currently used by TabPFN v2 appears ineffective in achieving high accuracy. While
increased computational complexity may contribute to this reduced effectiveness, we hypothesize
that TabPFN v2 was pre-trained exclusively on small- to medium-scale synthetic datasets with fewer
than 10 categories, leading to a mismatch when applied to larger or more complex real-world data.

These results underscore the limitations of TabPFN v2, suggesting areas for further improvement.

5 How Does TabPFN v2 Effectively Handle Data Heterogeneity?

Section 4 demonstrates TabPFN v2’s excellent generalizability to heterogeneous downstream tasks
while also highlighting its current limitations. In the rest of the paper, we first examine the mechanisms
behind its strengths, followed by methods to overcome its limitations.

5.1 Diving into TabPFN v2’s Mechanisms for Heterogeneous Input

Revisiting the problem. As noted in Sections 2 and 3, tabular datasets often differ in both the number
of attributes (i.e., d) and the semantics of those attributes. Even when dimensionalities match, the
dimensional semantics from different datasets are typically not directly comparable. A robust tabular
foundation model must therefore handle such heterogeneity effectively, enabling it to learn from
diverse pre-training datasets and transfer its capabilities to new downstream tasks.

Tokenization as a feasible solution. Among prior approaches, the most relevant to TabPFN v2 are
token-based methods [64, 22, 74]. The core idea is to convert a d-dimensional instance x ∈ Rd into
a set of d fixed-dimensional tokens (each of dimension k), with one token per attribute. This enables
the use of transformer architectures, which naturally accommodate variability in d across datasets.

To embed each attribute into a shared k-dimensional space, prior work either uses pre-defined semantic
embeddings [74] (e.g., word vectors of attribute names) or learns dataset-specific embeddings [64, 22].
Given d attribute-specific tokens [r1, . . . , rd] ∈ Rd×k, each instance xi ∈ Rd can then be transformed
into

[
x1
i · r1, . . . , xd

i · rd
]
∈ Rd×k, where xj

i denotes the j-th element of xi.

By embedding all attributes into a shared, fixed-dimensional feature space, this approach allows the
transformer to learn transferable patterns and knowledge from heterogeneous datasets.

Difficulty in direct generalization. While appealing, the aforementioned methods face a notable
challenge when applied to downstream tasks: attribute names or semantics are not always acces-
sible, as discussed in Section 2. Although it is possible to learn dataset-specific attribute tokens,
doing so incurs additional computational cost and prohibits the reuse of previously learned tokens.
Consequently, this limits the direct generalization of the foundation model to new tasks.
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Figure 3: Attribute relationships inferred by TabPFN v2. The first and third rows show PCA projections of
the d attribute tokens from all N training instances at various layers for the churn and bank datasets. Colors
indicate different attributes (see legend on the right). The second and fourth rows display the attribute-wise
attention maps. Each matrix cell represents the average attention weight between attributes; the last element
along each axis (e.g., the last column and row) corresponds to the label. The first plots in the second and fourth
rows summarize the cosine similarity of attention maps across random seeds. See text for details.

TabPFN v2’s mechanisms. TabPFN v2 builds on prior token-based methods by representing each
instance xi as a sequence of tokens. However, rather than assigning a deterministic token to each
attribute, TabPFN v2 samples random tokens at inference time. Specifically, it learns a shared vector
u ∈ Rk that lifts each element of xi into a k-dimensional space. To distinguish attributes, TabPFN v2
adds a random perturbation to each one.2 For the j-th attribute (i.e., xj

i ), the representation becomes
xj
i ·u+ rj , where rj = Wpj . Here, pj ∈ Rk′

is a randomly generated vector, and W ∈ Rk×k′
is a

learned projection matrix that conditions the perturbation. The full instance xi is then represented as:

[x1
i · u+ r1, . . . , x

d
i · u+ rd, ỹi] ∈ Rk×(d+1), (1)

where the last token ỹi encodes the label information (see Figure 1 for an illustration).

5.2 TabPFN v2 Internalizes Attribute Token Learning

TabPFN v2’s randomized tokenization scheme eliminates the need to define attribute- or dataset-
specific tokens across tasks, thereby syntactically enabling direct application of the pre-trained model.
At first glance, this may appear to disregard the valuable semantic meaning of attributes. However,
we show that through in-context learning, TabPFN v2 can consistently infer relationships among
attributes within a dataset—despite the randomness introduced during tokenization. Specifically, we
analyze the behavior of attribute tokens from three perspectives, as illustrated in Figure 3, using two
representative downstream datasets: churn and bank.

First, we visualize the attribute token embeddings (i.e., the first d tokens in Equation (1)) across all
N training instances. The first and third rows of Figure 3 present PCA projections of these N × d
tokens at the input stage and after transformer layers {3, 6, 9, 12}, with colors indicating different
attributes. Initially, tokens from different attributes appear randomly scattered. However, as the input
progresses through the transformer layers, these tokens become increasingly structured. For example,

2This detail was identified from the supplementary material and code of [28].
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Figure 4: Visualization of the extracted instance features from four datasets: churn (first row, binary), bank
(second row, binary), website_phishing (third row, three classes), and KDD (fourth row, binary). Blue and red
indicate classes; darker crosses and lighter circles denote training and test samples. (a) shows the raw input
features (e.g., xi), while (b) presents embeddings from the vanilla strategy. (c)-(f) display embeddings produced
by our method at different layers. Classification accuracy is reported by training a linear logistic regression
model on the training embeddings and evaluating on the test set.

in the bank dataset (which predicts term deposit subscriptions), attributes such as “job,” “education,”
and “balance” eventually cluster into semantically coherent groups.

Second, we examine attribute-wise attention patterns across layers, including attention to the label
token. The second and fourth rows of Figure 3 show heatmaps of attention weights averaged over
heads and training instances. Each row in the heatmap represents the attention distribution from one
attribute to all others; the last element along each axis (e.g., the last column and row) corresponds to
the label. Darker shades indicate stronger attention. We observe a consistent pattern across datasets:
in early layers, attributes predominantly attend to the label token, likely to absorb task-specific
signals. In intermediate layers, attention becomes more uniformly distributed, facilitating information
exchange across attributes. In deeper layers, attention concentrates on semantically relevant attributes,
suggesting the model has inferred inter-attribute relationships useful for prediction.

Lastly, to assess robustness against random token initialization, we compute attribute-wise attention
weights across 10 runs. The cosine similarities and variances of these attention patterns are summa-
rized in the first plots of the second and fourth rows in Figure 3. The results confirm that attention
patterns remain stable across runs, except for the first layer.

Remark. The above results suggest that TabPFN v2 can reliably infer meaningful attribute relation-
ships through in-context learning. Although input embeddings are randomized, they consistently
differentiate attributes across instances—functionally akin to one-hot encodings. Pre-training on di-
verse tasks thus enables the model to extract predictive patterns (e.g., co-occurrence across attributes,
value distributions, and relative magnitudes) directly from the statistical structure of each dataset,
without relying on pre-defined attribute semantics. As a result, the model effectively internalizes
attribute token learning within the inference process. See the Appendix for further discussion.

6 TabPFN v2 Can Be Transformed into an Effective Feature Encoder

In Section 5, we show that TabPFN v2’s in-context learning process infers meaningful attribute
relationships. Here, we examine whether TabPFN v2 also produces separable instance representations.

6.1 Naive Feature Extraction Fails

As shown in Figure 1 (left), TabPFN v2 makes predictions based on the output token corresponding to
the (dummy) label embedding ỹ∗ of the test instance. This output token can thus be interpreted as the

7



instance embedding for the test example. A natural extension to obtain embeddings for the training
instances is to extract the output tokens corresponding to the training label embeddings {ỹi}Ni=1.

However, as shown in Figure 4 (b), this naive approach leads to surprisingly discrepant feature
distributions between training (darker cross) and test (lighter circle) examples. As a result, a linear
classifier trained on these embeddings performs poorly on the test set. We attribute this discrepancy
to the distinct roles of labeled training data and unlabeled test data in TabPFN v2’s in-context learning
process. Specifically, the label embeddings for the training instances are derived from true labels,
whereas those for the test instances rely on dummy labels. This mismatch renders the resulting output
embeddings non-comparable between training and test instances.

6.2 Leave-one-fold-out Feature Extraction

To address this challenge, we propose a leave-one-fold-out strategy that enables the extraction of
comparable embeddings for training and test data. In the TabPFN v2 framework, we treat examples
with true labels as the support set S, and those with dummy labels as the query set Q. Under the
standard configuration, S corresponds to the labeled training set and Q to the unlabeled test instances.
To extract comparable embeddings for the training examples, they must also be included in Q with
dummy label embeddings. This, however, creates a dilemma: effective in-context learning relies on
maximizing the size of S to ensure sufficient knowledge transfer to Q. Including training examples
in Q thus competes with the need to keep S as large as possible.

To overcome this dilemma, we partition the training set into multiple folds (e.g., 10). In each round,
one fold serves as Q—with dummy labels used for embedding extraction—while the remaining folds
form S with true labels. This setup preserves sufficient label supervision in S while enabling the
extraction of embeddings for training instances in Q. Results in Figure 4 (c)-(f) show that embeddings
extracted by this strategy (with 10 folds) more faithfully capture dataset structure. We observe that
TabPFN v2 simplifies the original tabular data distributions, transforming datasets into nearly linearly
separable embedding spaces—especially after intermediate transformer layers.

We also experimented with a variant that uses the same context and query without partitioning, where
the context contains all training samples and the query set includes both training and test points. This
“non-partitioned” strategy improves upon the vanilla feature extraction baseline but still underperforms
compared to our proposed leave-one-fold-out method. We attribute this to role ambiguity: query points
that appear in the support set (either with dummy or ground-truth labels) are treated inconsistently,
preventing the network from fully distinguishing between training and test roles and thereby degrading
feature consistency. Detailed results for this variant are provided in the Appendix.

6.3 Validation of Embedding Quality Table 2: Average rank (lower is better) of TabPFN v2 and
linear classifiers trained on the extracted embeddings across
29 classification datasets. Combined: embeddings from up
to three layers (from the 12 available layers) are selected and
concatenated, based on the validation set performance.

↓ TabPFN v2 Vanilla Layer 6 Layer 9 Layer 12 Combined

Rank 2.69 5.97 4.28 4.00 2.12 1.94

To validate the quality of the extracted em-
beddings, we train a logistic regression
on embeddings derived from the training
set and evaluate it on test set embeddings.
The average rank across 29 classification
datasets from the tiny benchmark2 in [75]
is reported in Table 2.

Remarkably, training a simple linear classifier on the extracted embeddings achieves performance
comparable to that of TabPFN v2’s in-context learner. Furthermore, concatenating embeddings from
multiple layers (e.g., both output and intermediate representations) can sometimes lead to even better
results. These findings underscore TabPFN v2’s potential as a strong and versatile feature encoder,
suggesting broader applicability in downstream tasks such as tabular data analysis.

7 Improving TabPFN v2 via Test-Time Divide-and-Conquer

This section addresses the limitations discussed in Section 4.3, aiming to extend TabPFN v2’s
applicability beyond the boundaries. Specifically, we propose post-hoc divide-and-conquer strategies
inspired by Chain-of-Thought (CoT) prompting [70], which decompose challenging tasks into simpler
subtasks that TabPFN v2 can effectively handle.
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7.1 High Dimension Datasets

High-dimensional datasets [36] present a unique challenge due to the quadratic complexity of
TabPFN v2 with respect to the number of dimensions. To mitigate this, we propose subsampling
the feature space into smaller subsets, processing each subset independently, and combining the
predictions in an ensemble (bagging) fashion, similar to random forests [8].

In detail, we iteratively sample m subsets, each containing d′ < d randomly selected attributes.
For each subset, we leverage TabPFN v2’s ability to handle lower-dimensional data to obtain
predictions. We denote this divide-and-conquer and then ensemble strategy as TabPFN v2∗, which
aggregates outputs using averaging (for regression) or majority voting (for classification). To address
high-dimensional tasks, we introduce a baseline variant, TabPFN v2-PCA, which incorporates dimen-
sionality reduction. Specifically, TabPFN v2-PCA reduces the feature dimension to 500 using PCA
to satisfy the input constraints of TabPFN v2. This process is repeated multiple times with different
PCA projections, and the resulting predictions are aggregated via bagging to improve robustness.

Figure 5 (left) summarizes the results on 18 high-dimensional classification datasets. A variant that
utilizes PCA to reduce the dimensionality, together with bagging, resolves the dimensionality issue to
some extent. TabPFN v2∗ with d′ = 500 and m = ⌈d/d′⌉ significantly increases the mean accuracy
(to the highest), effectively extending TabPFN v2’s scalability to datasets with d ≥ 2000.

7.2 Multi-Class Problems with More Than 10 Classes

To extend TabPFN v2 to tasks with more than 10 categories, we propose a decimal encoding approach
that decomposes multi-class problems into multiple 10-class subproblems, ensuring compatibility
with TabPFN v2’s constraints.

For a task with C > 10 classes, we encode each label y ∈ [C] as a t-digit decimal representation,
where t = ⌈log10 C⌉. For each digit position j ∈ {1, . . . , t}, we train a separate TabPFN v2 model
fj to predict the j-th digit. During inference, the predicted digits are reconstructed to obtain the
final class label. This strategy is also developed in [48], and we denote it as TabPFN v2-DPT. As
the decimal encoding inherently introduces artificial correlations among classes — classes that share
the same digit at a given position are grouped together, even if they are semantically unrelated. To
mitigate this effect, our TabPFN v2∗ randomly permutes the class-to-digit mapping

√
C times, leading

to different groupings in each run, and the prediction results are ensembles to improve robustness.

We consider the following variants of TabPFN v2 to address the 10-class limit in classification tasks:

• TabPFN v2-ECOC: We use the implementation provided in the official TabPFN extensions reposi-
tory, which applies Error-Correcting Output Codes (ECOC).

• TabPFN v2-DPT: We encode each class label as a t-digit decimal string and train a separate
TabPFN v2 to predict each digit. For instance, a 15-class problem is decomposed into two
subproblems: one for the tens digit (classes {0, 1}) and one for the ones digit (classes {0, . . . , 9}).
The predicted digits are then decoded to recover the final class label.

We implement TabPFN v2 ∗ based on TabPFN v2-DPT for efficiency. Specifically, TabPFN v2 ∗

permutes the class-to-digit mapping
√
C times. For fair comparison, we also increase the number of

ensembles in TabPFN v2-DPT to
√
C per digit to match the total number of predictions. As shown

in Figure 5 (middle), this approach achieves the second-best mean accuracy on 12 datasets with more
than 10 classes while preserving computational efficiency.

7.3 Large-Scale Datasets

For large-scale datasets, we randomly sample 10,000 training examples from the full training set
as the support set and treat the remaining training examples and test instances as the query set. We
extract their embeddings to form a new tabular dataset, on which a logistic regression classifier is
trained to make predictions on the test set embeddings. This process is repeated four times, and the
final predictions are aggregated. We denote this version as TabPFN v2∗-SQ.

We also investigate integrating TabPFN v2 with decision trees to handle large-scale tasks. We note
that a similar strategy was mentioned in [28] to handle within-dataset heterogeneity for a drastically
different purpose. Specifically, we sample 32 subsets from the original training set, each containing
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Figure 5: “*” indicates our extension. Left: Mean accuracy on 18 high-dimensional datasets. “-PCA” is another
variant using PCA to reduce dimensions. Middle: Mean accuracy on 12 datasets with more than 10 classes.
“-ECOC” denotes the multi-class ECOC strategy implemented by [28]. Right: Average rank on 18 large-scale
datasets. “-B” refers to the variant that randomly subsamples 10,000 training examples four times and aggregates
their predictions. “-K” denotes the variant that selects a representative subset of 10,000 training examples based
on proximity to prototypes obtained via KMeans. All variants improve TabPFN v2.

60% of the original data (sampled without replacement). For each subset, we first train a shallow
decision tree by setting the minimum number of samples required to split an internal node to 10,000.
The decision tree partitions the training set into smaller, more manageable subsets. During inference,
a test instance is first passed through each of the shallow decision tree to a leaf node and then predicted
by the corresponding TabPFN v2 model. The predictions from all 32 models are aggregated. We
denote this extension as TabPFN v2∗-DF.

We consider the following variants of TabPFN v2 to scale to larger datasets:

• TabPFN v2-DT: A shallow decision tree is trained with a minimum split size of 10,000. The tree
partitions the dataset into smaller subsets, and a separate TabPFN v2 model is applied to each leaf
node. At inference, a test instance is routed through the tree to a corresponding leaf, where it is
predicted by the respective TabPFN v2 model.

• TabPFN v2-B: A bagging-based variant that randomly samples 10,000 training examples four times
and aggregates their predictions.

• TabPFN v2-K: Selects a representative subset of 10,000 training examples based on proximity to
KMeans-derived prototypes.

Our TabPFN v2 ∗-DF is an extension of TabPFN v2-DT to a forest-based ensemble. Specifically, we
sample 32 subsets from the original training data, each containing 60% of the samples (without re-
placement), and train a separate TabPFN v2∗-DT model on each subset. During inference, predictions
from all 32 models are aggregated—e.g., by majority voting or averaging—depending on the task type.

Figure 5 (right) shows the average rank results, including TabPFN v2∗-SQ and TabPFN v2∗-DF
alongside variants using bagging and KMeans-based sampling. We observe that all variants improve
upon the vanilla TabPFN v2 on large-scale datasets, with TabPFN v2∗-DF and TabPFN v2∗-SQ
achieving the most significant improvement.

8 Conclusion

We present a timely investigation into TabPFN v2, a groundbreaking foundation model for tabular
tasks. Our analysis uncovers the core mechanism behind TabPFN v2’s strong performance across
heterogeneous tabular datasets: it can infer attribute relationships on-the-fly—even from randomly
initialized token inputs—without relying on pre-defined semantics or learning dataset-specific repre-
sentations. We also demonstrate that TabPFN v2 can be repurposed as a powerful feature encoder,
enabling broader applications such as data visualization and diagnostic analysis. To address its
limitations in more complex data regimes, we introduce post-hoc divide-and-conquer strategies that
extend TabPFN v2’s utility without requiring model re-training. Together, these contributions offer
fresh insights into advancing the development and application of foundation models for tabular data.
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Justification: The abstract and introduction state the claims made, including the contributions
made in the paper and important assumptions and limitations.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Appendix.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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Justification: This paper does not include theoretical results.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
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proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have disclosed all key information necessary to reproduce the experimental
results.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: We provide sufficient instructions to faithfully reproduce the main experimental
results.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Appendix.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In Appendix.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-
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the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We are confident that the creators or original owners of assets (e.g., code,
data, models) used in the paper are properly credited, and the license and terms of use are
explicitly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not use crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Justification: In this work, the LLM is used only for writing, editing, or formatting purposes
and does not impact the core methodology, scientific rigorousness, or originality of the
research.
Guidelines:
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involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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In the appendix, we provide additional details, discussions, and experimental results to complement
the main paper:

• Appendix A: Additional related work and discussions on methods closely related to our study (cf.
Section 2 of the main paper).

• Appendix B: Detailed descriptions of the comparison methods used in our evaluation (cf. Section 4
of the main paper).

• Appendix C: Additional qualitative and quantitative results for feature extraction using TabPFN v2,
supplementing Section 6 of the main paper.

• Appendix D: Analysis of the impact of feature engineering and ensemble strategies in TabPFN v2,
as well as a meta-feature-based analysis to identify the conditions under which TabPFN v2 performs
well or poorly.

• Appendix E: Complete results corresponding to the tables and figures referenced in the main paper.
• Appendix F: Limitation and social impact of the paper.

A Additional Related Work

Learning with Tabular Data. Tabular data is prevalent across diverse fields, including healthcare,
finance, and education [43, 32, 58, 2]. Tree-based models, such as XGBoost [12], LightGBM [38],
and CatBoost [56], have long dominated this domain. However, recent advances in deep neural
networks (DNNs) have demonstrated strong potential for tabular data [7]. Popular architectures like
multi-layer perceptrons [22, 37] and Transformers [31] have been adapted to tabular tasks, alongside
custom architectures designed specifically for tabular data [41, 68].

Deep tabular methods can be broadly categorized into two types. The first type directly processes raw
features [29, 21, 76], sometimes incorporating feature-specific encoding strategies [20]. The second
type tokenizes features, transforming an example into a set of tokens [64, 31, 59]. Comprehensive
benchmarks have been developed to evaluate these methods across diverse datasets [23, 49, 75, 60],
highlighting the strengths and weaknesses of deep tabular models in various scenarios.

Variants of TabPFN. TabPFN’s success stems from its pre-training on massive synthetic datasets,
enabling strong in-context learning performance on small-scale classification tasks [27]. Motivated
by its capabilities, researchers have explored a variety of applications, including tabular data gener-
ation [47], anomaly detection [61], and time series forecasting [30]. [53] provided a bias-variance
analysis of TabPFN, offering insight into its generalization behavior. Another line of research fo-
cuses on improving scalability by addressing TabPFN’s sensitivity to context size [16, 73]. Further
strategies to enhance downstream performance include context adaptation with nearest neighbor [65],
partial fine-tuning [17, 45], pre-training on real-world datasets [48], scalable ensemble [46], and more
powerful and efficient pre-training on synthetic data [57]. Most of these variants remain restricted to
classification tasks due to limitations in TabPFN v1.

The recently introduced TabPFN v2 [28] extends TabPFN to support regression tasks and accom-
modate larger context sizes. In this paper, we conduct a comprehensive evaluation of TabPFN v2,
analyze its strengths, and introduce methods to overcome its scalability and applicability challenges.

B Evaluation Details

Experimental Compute Resources. All experiments were conducted using 4 NVIDIA RTX 6000
Ada GPUs and 2 Intel(R) Xeon(R) Platinum 8352V CPUs.

Please refer [75] for details of the 300 small to medium datasets. For high-dimensional datasets,
we selected 18 datasets with more than 2000 features from the scikit-feature repository. Detailed
statistics of high-dimensional datasets and large-scale datasets are reported in Table 3 and Table 4.

We follow [75] and use different colors to represent various categories of methods in the result figures,
ensuring clarity and easy comparison. In Figure 1 (right) and Figure 2 of the main paper, we compare
the following methods:
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Table 3: Dataset Information for High-Dimensional Data Experiments: A collection of 18 datasets
with varying numbers of instances, features, and classes used in our high-dimensional experiments.

Dataset #Instances #Features #Classes Dataset #Instances #Features #Classes
BASEHOCK 1993 4862 2 lung 203 3312 5
PCMAC 1943 3289 2 warpPIE10P 210 2420 10
RELATHE 1427 4322 2 orlraws10P 100 10304 10
ALLAML 72 7129 2 Prostate_GE 102 5966 2
CLL_SUB_111 111 11340 3 SMK_CAN_187 187 19993 2
colon 62 2000 2 warpAR10P 130 2400 10
GLI_85 85 22283 2 arcene 200 10000 2
GLIOMA 50 4434 4 gisette 7000 5000 2
leukemia 72 7070 2 TOX_171 171 5748 4

Table 4: Dataset Information for Large-scale Data Experiments.
Dataset #Instances #Features #Classes Dataset #Instances #Features #Classes
BNG(credit-a) 1,000,000 15 2 CDC_Indicators 253,680 21 2
Higgs 1,000,000 28 2 Smoking_signal 991,346 23 2
nomao 34,465 118 2 sf-police-incidents 2,215,023 8 2
Data_Crowdfunding 671,025 11 4 Fashion-MNIST 70,000 784 10
covertype 581,012 54 7 jannis 83,733 54 4
poker-hand 1,025,009 10 10 volkert 58,310 180 10
Airlines_DepDelay 10,000,000 9 - Wave_Energy_Farm 36,043 99 -
UJIndoorLoc 21,048 520 - blogfeedback 60,021 276 -
microsoft 1,200,192 136 - yahoo 709,877 699 -

• Classical Methods ( ): The classical methods include Dummy, Logistic Regression (LR), K-
Nearest Neighbors (KNN), Support Vector Machines (SVM), Naive Bayes, Linear Regression, and
DNNR [52], which serve as basic baselines for classification and regression tasks.

• Tree-based Methods ( ): Tree-based methods such as Random Forest [8], XGBoost [12], Light-
GBM [38], and CatBoost [56] are known for their high performance on tabular data.

• MLP variants ( ): MLP variants, including vanilla MLP, MLP-PLR, Self-Normalizing Neural
Networks [41], Residual Network [22], and TabM [19] enhance the flexibility and generalization
of traditional MLP architectures through advanced regularization and residual connections.

• Special Architectures ( ): Methods with specially designed architectures, such as DCNv2 [68],
DANets [10], and TabCaps [9], focus on improving feature interaction and abstraction to capture
complex relationships in tabular data.

• Token-based Methods ( ): Token-based methods like AutoInt [64], TabTransformer [31], FT-
Transformer [22], and ExcelFormer [11] represent features as tokens, enabling models to capture
higher-order interactions through attention mechanisms.

• Regularization-based Methods ( ): Regularization-based methods, including TANGOS [35],
SwitchTab [72], and PTaRL [78], aim to improve model generalization by incorporating regulariza-
tion techniques during training to enhance the robustness of predictions.

• Tree-mimic Methods ( ): Tree-mimic methods, such as NODE [55], GrowNet [5], and TabNet [4],
combine the interpretability of decision trees with the power of deep learning, employing attention
mechanisms to select important features.

• Context-based Methods ( ): Context-based methods like TabR [21] and ModernNCA [76] lever-
age contextual information from the training data to improve predictions by utilizing neighborhood-
based and in-context learning strategies.

In addition to the aforementioned methods, for other experimental results, we will demonstrate the
performance of TabPFN v2 and its variants, which are represented by emerald teal ( ), ensuring
that their experimental effects are clearly distinguished from the other methods.

Remark. The standard checkpoint released by TabPFN employs a feature grouping size of 2, which
complicates the analysis of individual feature embeddings and inter-feature relationships. To facilitate
such analysis, we use a modified checkpoint with group size=1 for the experiments in Figure 3 of the
main paper, which is available at HuggingFace.
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C Additional Feature Extraction Results

In this section, we provide further results on regression tasks and additional variants of our feature
extraction strategy to validate the effectiveness and robustness of the proposed leave-one-fold-out
method with TabPFN v2. We also compare this supervised approach to two unsupervised embedding
extraction methods, as well as a non-partitioned variant that uses the same context and query without
data folding.

C.1 Additional results for leave-one-fold-out feature extraction strategy with TabPFN v2 on
regression tasks

To further demonstrate the versatility of our approach, we evaluate TabPFN v2 on regression tasks by
extracting embeddings using the leave-one-fold-out strategy and training simple linear regressors
on top. As shown in Table 5, our embeddings consistently outperform both vanilla and raw features
across different regressors, achieving the best average rank. This result indicates that TabPFN v2
can also serve as an effective feature extractor for regression problems, further supporting its general
applicability beyond classification tasks.

Table 5: Average rank comparison of embeddings on regression tasks using different regressors.
Lower is better. LR denotes Linear Regression.

Extraction Strategy Vanilla Vanilla Raw Raw Ours Ours
Regressor LR RidgeCV LR RidgeCV LR RidgeCV

Avg. Rank 5.58 5.08 3.83 3.17 2.08 1.25

C.2 Comparison Between Supervised and Unsupervised Feature Extraction

Our leave-one-fold-out strategy explicitly incorporates label information and accounts for the distinct
roles of training and test instances. To further understand the nature of the extracted embeddings, we
compare this supervised strategy to two unsupervised alternatives provided by the TabPFN extensions
repository.

Let X ∈ Rn×d denote a dataset with n samples and d features:

• Unsupervised-Dummy: Each sample is paired with a constant pseudo-target y = 0 ∈ Rn, forming
a regression task. The embedding ED ∈ Rn×h is obtained by extracting the output tokens of the
TabPFN regressor.

• Unsupervised-Permute: For each feature j ∈ {1, . . . , d}, we treat x(j) = X:,j as a pseudo-target
and use the remaining features X(−j) as input. Depending on the type of x(j), TabPFN is applied
in classification or regression mode to obtain E(j) ∈ Rn×h. These embeddings are concatenated to
a high-dimensional form:

EP = concat(E(1), E(2), . . . , E(d)) ∈ Rn×(d·h).

We compare these unsupervised methods with our supervised leave-one-fold-out strategy in Table 6.
Overall, unsupervised approaches underperform compared to the supervised ones and fail to recover
the classification ability of TabPFN v2. This performance gap arises because label information is
introduced only post hoc via a linear classifier rather than during embedding extraction. Among the
unsupervised methods, the permutation-based approach performs better, likely due to its ability to
encode attribute-specific structure.

Figure 6 presents a visual comparison of embeddings produced by the three methods using the same
color and marker scheme as in Figure 4. Since unsupervised methods lack label supervision during
embedding generation, their embeddings tend to scatter broadly without forming well-separated
clusters by class. These results further highlight the contrasting goals of supervised and unsupervised
strategies—class separation versus feature distribution coverage, respectively.

C.3 Results for the Non-Partitioned Feature Extraction Variant

Using the same context and query without partitioning, we experimented with a variant where the
context contains all training data and the query set includes both training and test points. This

24

https://github.com/PriorLabs/tabpfn-extensions/tree/main/src/tabpfn_extensions/unsupervised
https://github.com/PriorLabs/tabpfn-extensions/tree/main/src/tabpfn_extensions/unsupervised


Table 6: Average rank (lower is better) of TabPFN v2 and a linear classifier trained on the extracted
embeddings across 29 classification datasets. In addition to the supervised feature extraction strategy
considered in the main paper (including the vanilla one, our leave-one-fold-out, and the version based
on the combined features), we compare with two unsupervised embedding extraction approaches
by appending a column of dummy labels with zero values and permuting each column as labels,
respectively.

↓ TabPFN v2 Vanilla Dummy Permute Ours Combined

Rank 2.66 5.72 4.90 3.69 2.16 1.88

Accuracy:0.8600 Accuracy:0.5650 Accuracy:0.8660 Accuracy:0.8740 Accuracy:0.9590

Accuracy:0.8876 Accuracy:0.6105 Accuracy:0.8843 Accuracy:0.9012 Accuracy:0.9085

Accuracy:0.5899 Accuracy:0.7845 Accuracy:0.6236 Accuracy:0.7646 Accuracy:0.8123

Accuracy:0.8782

(a) Raw Feature

Accuracy:0.3690

(b) Vanilla

Accuracy:0.8266

(c) Dummy

Accuracy:0.9004

(d) Permute

Accuracy:0.9188

(e) Ours

Figure 6: Comparison between unsupervised and supervised (ours) feature extraction. Visualization of
extracted embeddings for four datasets: churn (first row, two classes), bank (second row, two classes),
KDD (third row, two classes), and website_phishing (fourth row, three classes). We use crosses to
denote training examples and circles to denote test examples. (a) shows the raw features, while
(b) presents the embeddings extracted using the vanilla strategy. (c) and (d) refer to unsupervised
embedding extraction approaches by appending a column of dummy labels with zero values and
permuting each column as labels, respectively. (e) depicts the embeddings obtained using our
proposed methods. The accuracy value is calculated by training a linear model (logistic regression)
over the extracted embeddings on the training set and predicting on the test set.

non-partitioned strategy improves upon the vanilla feature extraction baseline but still underperforms
compared to our proposed leave-one-fold-out method. We attribute this to role ambiguity: query points
that also appear in the support set (with dummy or ground-truth labels) are treated inconsistently,
preventing the network from fully distinguishing between training and test roles and thereby degrading
feature consistency.

D Influence of Key Modules and Meta-Feature Analysis

We investigate the influence of two key components in TabPFN v2, i.e., the feature engineering that
pre-processes the raw features of a given tabular dataset and the post-hoc ensembleing. In addition, we
analyze the conditions under which TabPFN v2 performs well or poorly through a meta-feature-based
classification analysis.
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Table 7: Performance ranking (lower is better) of different feature extraction strategies on classifica-
tion tasks. The non-partitioned variant uses the same context and query without data folding.

Method Avg. Rank
Leave-one-fold-out (Ours) 2.10
TabPFN v2 2.72
Non-partitioned (12 layers) 3.07
Non-partitioned (9 layers) 4.29
Non-partitioned (6 layers) 4.43
Vanilla (12 layers) 5.86
Vanilla (9 layers) 6.62
Vanilla (6 layers) 6.90
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Figure 7: Scatter plot comparing the normalized Accuracy/R2 scores. The x-axis represents the nor-
malized Accuracy/R2 scores without Feature Engineering, while the y-axis represents the normalized
Accuracy/R2 scores with Feature Engineering. The red dashed line (y = x) serves as a reference,
indicating equal performance.

Feature engineering. TabPFN v2 pre-processes the features of a given tabular dataset with various
strategies, such as quantile, category shuffling, SVD, and power transform. Specifically, we examine
the effects of adding fingerprint features (add_fingerprint_feature) and polynomial features
(polynomial_features) to the raw tabular data. The results indicate that TabPFN v2 performs well
even without the use of these engineered features, suggesting that, for the benchmark datasets of [75],
these specific feature engineering techniques do not provide a significant improvement. This finding
highlights the robustness of TabPFN v2 and its ability to handle raw features effectively, without
the need for extensive pre-processing or feature construction. We show the influence of this step
in Figure 7.

Model ensemble. Post hoc ensembling (PHE) involves applying TabPFN v2 to the datasets multiple
times with different perturbations and aggregating the predictions of these base models at different
temperatures. We show the change of performance of TabPFN v2 w.r.t. the number of ensemble
numbers (i.e., the number of base models) in Figure 8. On the benchmark of [75], we observe that,
overall, ensemble methods improve performance, with larger ensemble sizes yielding better results.
However, we also note that even without ensembling, TabPFN v2 performs exceptionally well, and
the relative performance gain from ensembling is limited. This suggests that while ensembling can
provide further improvements, the base TabPFN v2 model is already highly effective on its own.
The equivariant property described in [3] provides insight into this phenomenon. Since TabPFN v2
introduces random tokens to handle heterogeneous features, the model becomes less sensitive to the
arbitrary ordering of features, effectively enforcing equivariance in this aspect. As a result, the benefits
of ensembling through feature order permutations are less pronounced compared to TabPFN v1.

Meta-Feature Analysis of TabPFN v2 Performance. To better understand the conditions under
which TabPFN v2 performs well or poorly, we conducted a meta-learning-based classification
analysis using 300 datasets. Specifically, we used the average rank of TabPFN v2 across datasets as a
performance indicator. The threshold for classification was set at the mean rank, 6.31. Datasets where
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Figure 8: Box plot of relative performance improvements of TabPFN v2 with post hoc ensembling
(PHE) across different ensemble sizes (2, 4, 8, and 16 base models). The relative improvement
is calculated as the performance gain over the non-ensemble model, where higher values indicate
stronger performance. The box plots show the median, interquartile range (IQR), and outliers for
each ensemble size.

TabPFN v2 achieved a rank lower than or equal to 6.31 were labeled as “Good”, while those with
a higher rank were labeled as “Bad”. We extracted meta-features from each dataset and used them
to train a decision tree classifier, aiming to distinguish between the “Good” and “Bad” categories.
All the meta-features utilized in this task are detailed in Table 8, accompanied by their respective
explanations. A visual depiction of a simple depth-3 decision tree is shown in Figure 9, and the tree
reveals key factors that influence the effectiveness of TabPFN v2. The decision tree visualizes how to
predict whether TabPFN v2 performs well (“Good”) or poorly (“Bad”) on a given dataset, based on
dataset meta-features: The root node splits on the number of instances (nr_inst), indicating that
TabPFN v2 tends to perform better on datasets with fewer than 24,350 samples. For these smaller
datasets, the left subtree further splits on the mean joint entropy (joint_ent.mean), where higher
values (greater than 3.028) are associated with improved performance. For datasets with lower mean
joint entropy (≤ 3.028), TabPFN v2 also tends to perform well when the number of rows is relatively
small (≤ 4,862). In contrast, the right subtree, which represents larger datasets, reveals that a low
standard deviation of the interquartile range (iq_range.std) across features (≤ 0.657) is linked to
poorer model performance.

E Detailed Results

We list the detailed results of TabPFN v2 and our extensions on various benchmarks.

• We present the main results of TabPFN v2 on 300 datasets in Table 9. The table includes accuracy
for classification tasks and RMSE (Root Mean Squared Error) for regression tasks, along with the
corresponding mean and standard deviation for each dataset. Notably, we excluded 27 datasets
from these results in Table 9, as they were used by TabPFN v2 to select the best checkpoint. These
excluded datasets, which are not shown in Figure 1 (right) and Figure 2 of the main paper, include:
(1) ada_prior, allbp, baseball, delta_ailerons, eye_movements, eye_movements_bin,

GAMETES_Epistasis_2-Way_20atts_0.1H_EDM-1_1, hill-valley, JapaneseVowels,
jungle_chess_2pcs_raw_endgame_complete, led24, longitudinal-survey, page-blocks,
ringnorm, rl, thyroid-ann, waveform-5000,

(2) debutanizer, delta_elevators, mauna-loa-atmospheric, puma32H, stock_fardamento02, trea-
sury, weather_izmir, wind.

• In Table 10, we showcase the performance of various models on 18 high-dimensional datasets.
The results display the mean accuracy of different models, including ModernNCA (MNCA), MLP,
KNN, RealMLP, XGBoost (XGB), Random Forest (RForest), Logistic Regression (LogReg), and
TabPFN v2 (PFN-v2), along with variants like TabPFN v2-pca and TabPFN v2*. This highlights
the ability of these models to handle high-dimensional data with many features.

• We demonstrate the performance of various models on 12 multi-class classification tasks
with more than 10 classes in Table 11. The table provides the mean accuracy of models like
KNN, TabPFN-v2*, XGBoost (XGB), CatBoost (CatB), Random Forest (RForest), ModernNCA
(MNCA), MLP, Logistic Regression (LogReg), and RealMLP, showcasing how they perform on
multi-class tasks with a larger number of classes. Additionally, we compare PFN-v2-ECOC, a
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gini = 0.47
samples = 37

value = [23, 14]
class = Good

gini = 0.142
samples = 13
value = [1, 12]

class = Bad

gini = 0.338
samples = 209

value = [164, 45]
class = Good

gini = 0.0
samples = 3
value = [0, 3]
class = Bad

gini = 0.43
samples = 16
value = [5, 11]

class = Bad

gini = 0.0
samples = 4
value = [4, 0]
class = Good

nr_inst <= 4862.0
gini = 0.499

samples = 50
value = [24, 26]

class = Bad

joint_ent.sd <= 1.712
gini = 0.35

samples = 212
value = [164, 48]

class = Good

gini = 0.0
samples = 18
value = [0, 18]

class = Bad

iq_range.sd <= 0.657
gini = 0.495

samples = 20
value = [9, 11]

class = Bad

joint_ent.mean <= 3.028
gini = 0.405

samples = 262
value = [188, 74]

class = Good

True  

gravity <= 1.277
gini = 0.361

samples = 38
value = [9, 29]

class = Bad

  False

nr_inst <= 24350.5
gini = 0.451

samples = 300
value = [197, 103]

class = Good

Figure 9: Decision tree for predicting TabPFN v2 performance (Good vs. Bad) based on dataset
characteristics, constructed from experiments on 300 datasets. The tree splits on meta-features
such as number of instances (nr_inst), joint entropy (joint_ent.mean), number of numerical
features (nr_num), distance between minority and majority classes’ center of mass (gravity) and
interquartile range (iq_range) statistics. Each split is chosen to maximize information gain. The
leaf nodes indicate the predicted performance class, the Gini impurity, and class distribution. This
tree provides insights into the types of datasets where TabPFN v2 is expected to perform well.

multi-class classification solution provided by [28]. This method extends TabPFN-v2 by leveraging
Error-Correcting Output Codes (ECOC) to enhance multi-class classification performance.3

• In Table 12, we compare the performance of various models on 18 large-scale datasets. The
results show the mean accuracy or RMSE for MLP, Logistic/Linear Regression (LR), KNN,
XGBoost (XGB), Random Forest (RForest), CatBoost (CatB), ModernNCA (MNCA), RealMLP,
and different versions of TabPFN v2 (PFNv2, PFNv2 with K-means, PFNv2 with Bagging, and
PFNv2*). This illustrates the models’ performance on large-scale datasets.

• In Table 13, we show the performance of TabPFN v2 and the extracted feature embeddings
across 29 classification datasets. The table includes average classification accuracy for each dataset
when using feature embeddings from different transformer layers (Layer 6, Layer 9, Layer 12),
as well as a combined approach where embeddings from multiple layers are concatenated. The
“selected layers” column indicates the layers chosen based on validation set performance, offering
insights into how different layers contribute to overall model performance. In addition to evaluating
the performance of TabPFN v2 and the extracted feature embeddings, we also compared the results
with embeddings obtained using the vanilla strategy (Vanilla).

Table 9: Main results of TabPFN v2 on 300 datasets, including accuracy (for classification tasks) and
RMSE (for regression tasks), along with the corresponding mean and standard deviation for each
dataset. Among the 300 datasets, 200 are classification datasets, and 100 are regression datasets. The
results demonstrate the effectiveness of TabPFN v2 across both classification and regression tasks.

Dataset Mean + Std Dataset Mean + Std
ASP-POTASSCO-classification 43.50 ± 1.27 Amazon_employee_access 94.22 ± 0.04
BLE_RSSI_localization 73.37 ± 0.15 BNG(breast-w) 98.56 ± 0.07

3https://github.com/PriorLabs/tabpfn-community/blob/main/src/tabpfn_extensions/many_class/many_class_classifier.py
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BNG(cmc) 57.69 ± 0.17 BNG(tic-tac-toe) 79.42 ± 0.26
Bank_Customer_Churn_Dataset 87.53 ± 0.12 Basketball_c 70.65 ± 0.47
California-Housing-Classification 91.47 ± 0.17 Cardiovascular-Disease-dataset 72.92 ± 0.13
Click_prediction_small 83.29 ± 0.03 Contaminant-10.0GHz 94.42 ± 0.36
Contaminant-10.5GHz 95.17 ± 0.32 Contaminant-11.0GHz 93.93 ± 0.50
Contaminant-9.0GHz 93.01 ± 0.47 Contaminant-9.5GHz 93.21 ± 0.50
Credit_c 69.98 ± 0.15 Customer_Personality_Analysis 90.03 ± 0.21
Diabetic_Retinopathy_Debrecen 72.81 ± 1.07 E-CommereShippingData 67.54 ± 0.21
Employee 84.80 ± 0.30 FICO-HELOC-cleaned 75.35 ± 0.21
FOREX_audcad-day-High 74.51 ± 0.51 FOREX_audcad-hour-High 71.01 ± 0.20
FOREX_audchf-day-High 76.66 ± 0.45 FOREX_audjpy-day-High 78.00 ± 0.28
FOREX_audjpy-hour-High 71.41 ± 0.32 FOREX_audsgd-hour-High 69.81 ± 0.39
FOREX_audusd-hour-High 69.57 ± 0.48 FOREX_cadjpy-day-High 71.68 ± 0.53
FOREX_cadjpy-hour-High 70.55 ± 0.40 Firm-Teacher-Direction 84.42 ± 0.47
Fitness_Club_c 79.67 ± 0.24 GAMETES_Epistasis 68.75 ± 0.82
GAMETES_Heterogeneity 65.90 ± 1.84 Gender_Gap_in_Spanish_WP 60.58 ± 0.24
GesturePhaseSegmentationProcessed 71.36 ± 1.15 HR_Analytics 80.02 ± 0.13
Heart-Disease-Dataset 91.23 ± 0.54 INNHotelsGroup 87.98 ± 0.23
Indian_pines 96.41 ± 0.23 Insurance 75.75 ± 0.00
Intersectional-Bias-Assessment 94.73 ± 0.13 Is-this-a-good-customer 88.41 ± 0.00
JapaneseVowels 99.68 ± 0.08 KDD 80.14 ± 0.46
KDDCup09_upselling 81.06 ± 0.26 Long 99.88 ± 0.00
MIC 90.20 ± 0.56 MagicTelescope 88.13 ± 0.21
Marketing_Campaign 88.11 ± 0.41 Mobile_Price_Classification 97.10 ± 0.29
Nutrition_Health_Survey 83.45 ± 0.22 Performance-Prediction 73.23 ± 0.61
PhishingWebsites 96.74 ± 0.13 PieChart3 87.31 ± 0.28
Pima_Indians_Diabetes_Database 75.93 ± 0.66 PizzaCutter3 88.20 ± 0.45
Pumpkin_Seeds 87.93 ± 0.21 QSAR_biodegradation 88.50 ± 0.50
Rain_in_Australia 83.88 ± 0.11 SDSS17 97.33 ± 0.06
Shipping 68.73 ± 0.40 Telecom_Churn_Dataset 95.18 ± 0.50
UJI_Pen_Characters 45.71 ± 2.16 VulNoneVul 98.95 ± 0.00
Water_Quality_and_Potability 65.49 ± 0.50 Waterstress 71.37 ± 0.96
Wilt 99.28 ± 0.06 abalone 63.58 ± 0.38
accelerometer 73.96 ± 1.32 ada 85.40 ± 0.25
ada_agnostic 83.99 ± 0.34 ada_prior 85.32 ± 0.19
adult 85.93 ± 0.12 airlines_2000 62.28 ± 0.48
allbp 97.85 ± 0.19 allrep 98.65 ± 0.12
analcatdata_authorship 99.72 ± 0.29 artificial-characters 73.90 ± 0.99
autoUniv-au4-2500 69.81 ± 1.00 autoUniv-au7-1100 41.18 ± 1.58
bank 90.86 ± 0.19 banknote_authentication 55.64 ± 0.18
baseball 93.81 ± 0.40 car-evaluation 98.29 ± 0.22
churn 96.33 ± 0.28 cmc 59.59 ± 0.49
company_bankruptcy_prediction 97.33 ± 0.07 compass 71.05 ± 0.29
connect-4 76.78 ± 0.35 contraceptive_method_choice 62.10 ± 0.37
credit 78.10 ± 0.11 credit-g 79.50 ± 0.81
customer_satisfaction_in_airline 94.79 ± 0.11 dabetes_130-us_hospitals 63.08 ± 0.07
default_of_credit_card_clients 82.63 ± 0.08 delta_ailerons 95.47 ± 0.09
dis 99.07 ± 0.14 dna 97.25 ± 0.20
drug_consumption 40.32 ± 0.00 dry_bean_dataset 92.76 ± 0.10
eeg-eye-state 98.34 ± 0.12 electricity 86.57 ± 0.45
estimation_of_obesity_levels 98.66 ± 0.24 eucalyptus 72.88 ± 1.17
eye_movements 77.03 ± 1.68 eye_movements_bin 67.28 ± 2.60
first-order-theorem-proving 61.12 ± 0.70 gas-drift 99.47 ± 0.04
golf_play_dataset_extended 92.60 ± 0.44 helena 33.32 ± 0.21
heloc 72.75 ± 0.20 hill-valley 98.33 ± 0.52
house_16H 88.55 ± 0.18 htru 97.95 ± 0.06
ibm-employee-performance 100.0 ± 0.00 in_vehicle_coupon 73.20 ± 0.35
internet_firewall 92.85 ± 0.30 internet_usage 54.34 ± 2.64
jasmine 81.34 ± 0.42 jm1 81.32 ± 0.10
jungle_chess_2pcs_raw_endgame 85.97 ± 1.82 kc1 86.65 ± 0.34
kdd_ipums_la_97-small 88.50 ± 0.12 kr-vs-k 78.46 ± 1.01
kr-vs-kp 99.64 ± 0.15 kropt 77.96 ± 0.63
law-school-admission-bianry 100.0 ± 0.00 led24 73.29 ± 0.62
led7 73.99 ± 0.31 letter 97.57 ± 0.10
madeline 90.72 ± 0.48 mammography 98.71 ± 0.05
maternal_health_risk 83.28 ± 0.64 mfeat-factors 96.98 ± 0.28
mfeat-fourier 89.85 ± 0.86 mfeat-karhunen 96.42 ± 0.24
mfeat-morphological 76.63 ± 0.50 mfeat-pixel 96.10 ± 0.32
mfeat-zernike 84.10 ± 0.87 mice_protein_expression 100.0 ± 0.00
microaggregation2 62.80 ± 0.14 mobile_c36_oversampling 98.11 ± 0.08
mozilla4 93.58 ± 0.16 naticusdroid+android+permissions 96.41 ± 0.10
national-longitudinal-survey-binary 100.0 ± 0.00 okcupid_stem 74.47 ± 0.12
one-hundred-plants-margin 88.56 ± 0.74 one-hundred-plants-shape 79.52 ± 0.72
one-hundred-plants-texture 90.94 ± 0.75 online_shoppers 90.65 ± 0.10
optdigits 98.59 ± 0.12 ozone-level-8hr 94.92 ± 0.25
ozone_level 97.86 ± 0.11 page-blocks 97.67 ± 0.10
pc1 93.51 ± 0.46 pc3 88.78 ± 0.27
pc4 90.87 ± 0.36 pendigits 99.56 ± 0.06
philippine 84.20 ± 1.24 phoneme 88.47 ± 0.35
pol 98.80 ± 0.09 predict_students_dropout 78.11 ± 0.38
rice_cammeo_and_osmancik 92.74 ± 0.23 ringnorm 98.00 ± 0.13
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rl 86.04 ± 0.44 satimage 92.30 ± 0.29
segment 93.91 ± 0.19 seismic+bumps 93.40 ± 0.08
semeion 92.41 ± 0.94 shill-bidding 90.31 ± 0.18
shrutime 86.97 ± 0.11 shuttle 99.86 ± 0.04
spambase 94.85 ± 0.19 splice 96.61 ± 0.22
sports_articles 84.93 ± 0.40 statlog 72.13 ± 0.97
steel_plates_faults 84.68 ± 0.55 svmguide3 85.54 ± 0.54
sylvine 97.30 ± 0.27 taiwanese_bankruptcy_prediction 97.20 ± 0.07
telco-customer-churn 80.29 ± 0.28 texture 100.0 ± 0.00
W thyroid 99.48 ± 0.06 thyroid-ann 99.34 ± 0.08
thyroid-dis 68.75 ± 0.34 turiye_student_evaluation 51.74 ± 0.18
twonorm 97.94 ± 0.08 vehicle 84.31 ± 1.29
walking-activity 61.22 ± 0.22 wall-robot-navigation 99.44 ± 0.10
water_quality 90.12 ± 0.12 waveform-5000 86.29 ± 0.26
waveform_v1 86.59 ± 0.25 website_phishing 90.48 ± 0.48
wine 75.12 ± 0.72 wine-quality-red 58.35 ± 0.76
wine-quality-white 64.15 ± 0.69 yeast 60.18 ± 0.65

1000-Cameras-Dataset 607.71 ± 6.61 2dplanes 1.01 ± 0.00
RSSI_Estimation 0.00068 ± 0.00 RSSI_Estimation1 0.00092 ± 0.00
Abalone_reg 2.08 ± 0.00 Ailerons 0.00015 ± 0.00
Fiat 716.20 ± 4.05 BNG(echoMonths) 11.41 ± 0.03
BNG(lowbwt) 455.27 ± 0.78 BNG(mv) 4.63 ± 0.01
BNG(stock) 2.95 ± 0.02 Bias_correction_r 0.60 ± 0.01
Bias_correction_r_2 0.52 ± 0.01 Brazilian_houses_reproduced 0.01 ± 0.00
CPMP-2015-regression 478.02 ± 5.40 CPS1988 364.02 ± 0.24
CookbookReviews 1.52 ± 0.02 Data_Science_Salaries 60237.28 ± 102.97
Diamonds 533.30 ± 6.30 Facebook_Comment_Volume 23.16 ± 0.20
Food_Delivery_Time 7.55 ± 0.03 Goodreads-Computer-Books 0.43 ± 0.00
IEEE80211aa-GATS 0.02 ± 0.00 Job_Profitability 13.14 ± 0.02
bike_sharing_demand 68.41 ± 0.60 Laptop_Prices_Dataset 439.87 ± 3.10
Wave_Energy_Perth_100 15507.90 ± 104.31 Wave_Energy_Sydney_100 14737.67 ± 150.43
Wave_Energy_Sydney_49 4567.97 ± 64.02 MIP-2016-regression 20966.10 ± 454.90
MiamiHousing2016 83101.09 ± 507.30 Mobile_Phone_Market 714.87 ± 11.15
Moneyball 19.42 ± 0.08 NASA_PHM2008 40.24 ± 0.06
NHANES_age_prediction 15.47 ± 0.04 OnlineNewsPopularity 8606.54 ± 7.04
Parkinson_Sound_Record 14.58 ± 0.09 Parkinsons_Telemonitoring 0.60 ± 0.04
Physicochemical_r 3.45 ± 0.04 SAT11-HAND-runtime 1232.03 ± 58.01
Shop_Customer_Data 28.56 ± 0.01 Superconductivty 10.17 ± 0.07
Wine_Quality_red 0.65 ± 0.00 Wine_Quality_white 0.68 ± 0.00
airfoil_self_noise 1.16 ± 0.02 analcatdata_supreme 0.09 ± 0.00
archive2 342.64 ± 3.20 archive_r56_Portuguese 2.86 ± 0.02
auction_verification 1145.54 ± 146.94 avocado_sales 0.09 ± 0.00
bank32nh 0.08 ± 0.00 bank8FM 0.03 ± 0.00
boston 4.25 ± 0.19 chscase_foot 0.95 ± 0.00
colleges 0.14 ± 0.00 combined_cycle_power_plant 3.22 ± 0.05
communities_and_crime 0.13 ± 0.00 concrete_compressive_strength 4.63 ± 0.07
cpu_act 2.65 ± 0.03 cpu_small 3.06 ± 0.02
dataset_sales 4.04 ± 0.02 debutanizer 0.04 ± 0.00
delta_elevators 0.0014 ± 0.00 elevators 0.0019 ± 0.00
fifa 0.78 ± 0.00 fried 1.01 ± 0.00
garments_worker_productivity 0.13 ± 0.00 gas_turbine_emission 0.44 ± 0.00
healthcare_insurance_expenses 4716.87 ± 36.52 house_16H_reg 29631.75 ± 251.56
house_8L 28617.41 ± 202.41 house_prices_nominal 30676.02 ± 2455.48
house_sales_reduced 132655.03 ± 1847.33 houses 42559.98 ± 928.78
housing_price_prediction 1009361.62 ± 8758.05 kin8nm 0.08 ± 0.00
mauna-loa-atmospheric-co2 0.39 ± 0.01 mv 0.02 ± 0.00
pol_reg 3.84 ± 0.10 pole 3.21 ± 0.14
puma32H 0.01 ± 0.00 puma8NH 3.24 ± 0.00
qsar_aquatic_toxicity 1.05 ± 0.01 qsar_fish_toxicity 0.86 ± 0.01
satellite_image 0.65 ± 0.00 sensory 0.77 ± 0.01
socmob 19.53 ± 0.64 space_ga 0.09 ± 0.00
steel_industry_energy 0.37 ± 0.03 stock 0.65 ± 0.01
stock_fardamento02 17.57 ± 0.08 sulfur 0.03 ± 0.00
topo_2_1 0.03 ± 0.00 treasury 0.23 ± 0.00
us_crime 0.14 ± 0.00 volume 52.09 ± 0.34
weather_izmir 1.09 ± 0.01 wind 2.83 ± 0.00
wine+quality 0.72 ± 0.00 yprop_4_1 0.03 ± 0.00

F Limitations

While this paper does not introduce a new model architecture or training paradigm, it offers a timely
and principled analysis of TabPFN v2, a powerful tabular foundation model. Our contributions lie in
empirically evaluating its strengths, identifying its limitations, and proposing practical extensions
that enhance its applicability—particularly to large-scale, high-dimensional, and multi-class settings.
A key limitation of our work is that the proposed extensions are primarily post-hoc and do not fully
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Table 8: Meta-features used in the meta-feature analysis of TabPFN v2 performance.
Meta-Feature Explanation

attr_conc The concentration coef. of each pair of distinct attributes.
class_conc The concentration coefficient between each attribute and class.
class_ent The target attribute Shannon’s entropy.
inst_to_attr The ratio between the number of instances and attributes.
mean The mean value of each attribute.
sd The standard deviation of each attribute.
var The variance of each attribute.
range The range (max - min) of each attribute.
iq_range The interquartile range (IQR) of each attribute.
nr_attr The total number of attributes.
sparsity The (possibly normalized) sparsity metric for each attribute.
t_mean The trimmed mean of each attribute.
nr_bin The number of binary attributes.
nr_cat The number of categorical attributes.
nr_num The number of numeric features.
nr_norm The number of attributes normally distributed based in a given method.
nr_cor_attr The number of distinct highly correlated pair of attributes.
gravity The distance between minority and majority classes’ center of mass.
nr_class The number of distinct classes.
joint_ent The joint entropy between each attribute and class.
attr_ent Shannon’s entropy for each predictive attribute.
cov The absolute value of the covariance of distinct dataset attribute pairs.
eigenvalues The eigenvalues of covariance matrix from dataset.
eq_num_attr The number of attributes equivalent for a predictive task.
max The maximum value from each attribute.
min The minimum value from each attribute.
median The median value from each attribute.
freq_class The relative frequency of each distinct class.
mad The Median Absolute Deviation (MAD) adjusted by a factor.
mad The Median Absolute Deviation (MAD) adjusted by a factor.
mut_inf The mutual information between each attribute and target.
nr_inst The number of instances (rows) in the dataset.
nr_outliers The number of attributes with at least one outlier value.
ns_ratio The noisiness of attributes.
imblance_ratio The ratio of the number of instances in the minority to the majority class.
attr_to_inst The ratio between the number of attributes.

address the scalability constraints inherent to the original architecture. Nevertheless, by improving
model usability without retraining, we reduce the computational and environmental costs typically
associated with large model development.

To the best of our knowledge, this work poses no explicit ethical concerns. It provides practical
guidance for applying pre-trained tabular models in real-world domains such as healthcare and finance,
where transparency and efficiency are essential. Our study highlights the value of understanding and
extending foundation models alongside architectural innovation.
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Table 10: Performance of various models on 18 high-dimensional datasets. The results show the mean
accuracy of different models, including ModernNCA (MNCA), MLP, KNN, RealMLP, XGBoost
(XGB), Random Forest (RForest), Logistic Regression (LogReg), TabPFN v2 (PFN-v2), TabPFN
v2 with PCA (v2-pca), TabPFN v2 with subsampling (v2*), ProtoGate (ProtoG), and CatBoost
(CatB). The performance is evaluated on high-dimensional datasets, with the values representing
mean accuracy for each model.

Dataset MNCA MLP KNN RealMLP XGB RForest LogReg PFN-v2 v2-pca v2* ProtoG CatB

CLL_SUB_111 62.90 72.46 57.39 70.43 73.04 70.14 73.91 70.14 57.68 71.59 65.51 71.59
BASEHOCK 96.31 97.01 71.88 97.46 95.29 96.73 96.99 69.09 97.41 97.36 96.32 95.87
Prostate_GE 81.27 86.98 80.00 87.94 89.52 87.94 91.43 95.24 88.57 94.29 84.13 94.92
PCMAC 88.21 88.53 66.48 90.15 91.64 92.20 87.15 92.70 90.76 90.14 88.21 92.01
GLI_85 81.57 85.49 76.47 89.80 82.35 83.92 90.59 80.39 86.27 92.55 81.96 80.78
RELATHE 88.18 90.54 75.03 90.23 87.11 87.30 90.49 86.36 87.65 89.95 89.92 90.35
SMK_CAN_187 63.51 66.84 69.47 69.82 66.49 70.70 72.11 71.05 71.75 72.10 70.71 71.40
warpPIE10P 98.41 99.05 92.38 100.0 94.92 98.57 100.0 100.0 100.0 100.0 97.79 98.89
leukemia 90.22 95.11 86.67 94.67 97.78 92.00 96.00 92.44 93.33 96.00 94.00 94.22
orlraws10P 97.67 98.33 92.00 99.00 84.33 99.00 99.00 92.00 99.33 99.67 92.67 99.00
GLIOMA 58.00 60.67 68.00 67.33 66.67 64.00 64.00 62.67 69.33 68.67 69.91 66.67
warpAR10P 83.08 85.64 53.08 97.44 81.28 87.18 97.69 90.77 95.38 96.67 90.04 87.44
TOX_171 76.00 88.19 70.86 90.48 78.10 78.67 90.29 80.95 82.48 87.24 85.52 83.05
lung 91.54 95.45 93.66 95.28 93.66 92.68 95.12 95.28 93.50 95.61 95.43 93.01
ALLAML 87.56 95.56 81.33 96.89 96.00 96.44 92.00 92.89 93.78 94.67 91.14 94.67
colon 78.46 78.97 76.92 83.08 74.87 82.56 86.15 81.54 78.46 79.49 78.46 77.95
gisette 97.21 97.57 95.04 97.86 97.55 96.82 97.51 97.35 97.26 97.23 97.18 97.78
arcene 81.67 85.50 84.50 81.00 75.00 86.83 88.00 83.67 88.33 92.00 85.33 85.00

Mean 82.86 87.11 77.29 88.83 84.76 86.87 89.36 85.25 87.29 89.73 86.37 87.48

Table 11: Performance of various models on 12 multi-class classification tasks with more than 10
classes. The results show the mean accuracy of different models, including KNN, PFN-v2*, PFN-
v2-ECOC, XGB (XGBoost), CatBoost (CatB), Random Forest (RForest), ModernNCA (MNCA),
Multi-layer Perceptron (MLP), Logistic Regression (LogReg), and RealMLP. The performance is
evaluated on 12 multi-class datasets with more than 10 classes, with accuracy values presented for
each model on the respective datasets.

Dataset KNN PFN-v2* PFN-v2-DPT PFN-v2-ECOC XGB CatB RForest MNCA MLP LogReg RealMLP

100-plants-texture 79.69 90.94 82.67 84.92 77.06 89.73 82.65 80.52 83.92 86.88 88.35
100-plants-margin 77.50 88.56 81.94 79.40 74.25 84.06 82.79 77.60 80.44 79.69 83.58
100-plants-shape 60.31 79.52 72.15 63.38 56.15 65.19 64.33 70.10 47.33 65.94 72.08
UJI_Pen_Characters 36.26 45.71 33.38 44.20 30.35 38.88 34.24 44.03 37.75 19.41 46.37
texture 98.45 100.0 99.98 100.0 98.55 99.13 96.76 99.68 99.40 99.64 99.95
letter 94.90 97.57 96.69 97.78 96.26 96.75 91.56 97.96 96.40 75.80 98.31
walking-activity 60.29 61.22 57.28 61.92 65.06 64.92 61.74 64.85 60.64 27.02 65.13
helena 28.94 33.31 28.54 19.20 32.42 37.90 33.91 36.58 37.91 33.40 38.55
internet_usage 30.17 54.34 50.51 50.86 51.08 37.90 33.91 52.09 43.00 37.73 52.23
kropt 71.22 77.96 71.44 77.11 86.95 79.26 71.77 78.27 64.45 28.08 92.03
kr-vs-k 70.78 78.46 71.54 76.29 87.26 74.81 71.60 76.83 65.03 28.03 91.85
ASP-POTASSCO 34.75 43.50 41.88 45.27 42.24 41.08 42.86 37.45 29.63 35.14 41.70

Mean 61.94 70.93 65.67 66.69 66.47 67.47 64.01 68.00 62.16 51.40 72.51

Table 12: Performance of various models on 18 large-scale datasets. The results show the mean accu-
racy/RMSE of different models, including MLP, Logistic Regression/Linear Regression (LR), KNN,
XGBoost (XGB), Random Forest (RForest), CatBoost (CatB), ModernNCA (MNCA), RealMLP, and
various versions of TabPFN v2: original TabPFN v2 (PFNv2), TabPFN v2 with K-means (PFNv2-K),
TabPFN v2 with Bagging (PFNv2-B), PFNv2* (TabPFNv2*), PFNv2-DT (TabPFN-DT), and PFNv2-
DF (TabPFN-DF).

Dataset MLP LR KNN XGB RForest CatB MNCA RealMLP PFNv2 PFNv2-K PFNv2-B PFNv2* PFNv2-DT PFNv2-DF

BNG(credit-a) 90.07 85.98 87.41 90.21 89.25 91.13 89.98 90.91 89.55 89.01 89.66 89.89 90.45 90.43
CDC_Indicators 86.79 86.55 86.39 86.76 86.60 86.78 86.76 86.76 86.65 86.68 86.69 86.74 86.75 86.70
Higgs 75.53 64.29 65.16 73.33 71.87 74.81 73.28 75.36 71.64 71.56 72.01 72.13 73.53 73.62
Smoking_signal 73.90 72.53 72.36 73.87 73.08 73.99 73.63 74.00 73.47 73.37 73.55 73.69 73.74 73.84
nomao 96.19 94.59 95.20 96.92 96.07 97.03 96.68 96.37 96.08 96.29 96.12 96.18 96.75 96.34
sf-police-incidents 87.84 87.84 85.87 87.68 87.84 87.87 - 87.84 87.84 87.84 87.84 87.84 87.84 87.84
Data_Crowdfunding 96.48 67.04 93.70 96.89 95.29 96.81 96.53 96.71 94.59 91.81 94.96 95.07 96.90 96.83
Fashion-MNIST 89.54 85.69 86.00 90.03 86.57 90.24 89.36 90.25 68.40 82.82 83.89 86.26 78.91 78.82
covertype 94.01 72.54 92.76 96.30 78.30 90.77 97.31 97.38 83.54 82.95 84.16 86.85 97.38 97.44
jannis 71.99 64.60 65.67 71.83 69.19 72.26 72.57 73.00 70.24 70.26 70.59 71.31 72.57 72.50
poker-hand 99.99 50.12 54.01 99.51 64.63 97.69 76.31 99.88 41.97 38.86 36.80 54.12 91.13 92.33
volkert 69.85 58.75 67.41 69.74 62.71 70.88 77.18 73.76 62.82 62.15 62.81 64.84 68.66 67.76
Airlines_DepDelay (×101) 2.905 2.933 3.170 2.891 2.907 2.881 - 2.482 2.937 2.933 2.937 2.915 2.900 2.897
Wave_Energy_Farm (×103) 8.199 13.19 32.29 6.917 7.294 7.173 6.148 59.05 7.214 8.375 7.063 10.506 6.616 6.785
UJIndoorLoc (×100) 9.958 ∞ 9.004 10.47 23.19 9.139 5.990 65.34 66.49 7.825 7.435 9.538 14.404 7.472
blogfeedback (×101 ) 2.387 ∞ 2.410 2.093 2.026 2.044 1.953 2.105 3.073 2.687 2.700 2.014 1.914 1.944
microsoft (×10−1 ) 7.577 7.782 8.284 7.514 7.566 7.453 7.573 5.077 7.735 7.981 7.720 7.612 7.944 7.728
yahoo (×10−1 ) 7.692 7.997 8.504 7.629 - 7.514 - 5.671 8.148 8.332 8.132 7.961 16.409 8.069
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Table 13: Performance of TabPFN v2 and the extracted feature embeddings across 29 classification
datasets. The table shows the average classification accuracy for each dataset when using different
layers (Layer 6, Layer 9, Layer 12) of the transformer as feature embeddings, as well as the “combined”
approach, where embeddings from up to three selected layers are concatenated. The “selected layers”
column indicates the specific layers chosen for each dataset based on validation set performance.
“Vanilla” refers to the embeddings extracted using the vanilla strategy, which utilizes only the 12th
layer of the transformer. “S” and “P” refer to unsupervised embedding extraction approaches
by appending a column of dummy labels with zero values and permuting each column as labels,
respectively, as described in Appendix C.

PFN-v2 Vanilla S P layer-6 layer-9 layer-12 combined selected layers

FOREX_audchf-day-High 77.38 50.68 56.95 69.48 68.39 73.57 74.11 77.11 (5, 9, 11)
taiwanese_bankruptcy_prediction 96.99 56.45 96.77 95.75 97.14 96.77 97.07 97.14 (6)
rl 85.51 50.00 60.56 70.82 66.90 69.52 86.72 87.53 (11, 12)
pc3 89.46 10.22 89.78 86.90 90.10 88.82 88.82 88.82 (8)
eye_movements_bin 61.83 50.00 55.12 57.95 59.72 59.40 62.16 62.16 (6, 9, 12)
BNG(breast-w) 98.43 69.51 97.60 98.51 98.34 98.46 98.67 98.51 (6, 9)
FOREX_cadjpy-hour-High 69.53 51.79 66.55 71.12 62.12 64.87 70.66 70.88 (4, 5, 6)
dis 99.34 85.43 98.41 98.54 98.41 98.28 99.34 99.47 (4, 5, 6)
sylvine 97.46 85.66 72.78 95.71 92.49 93.95 97.27 96.49 (1, 11)
BNG(tic-tac-toe) 78.04 34.71 71.41 73.79 73.96 73.71 78.75 79.03 (5, 10, 12)
online_shoppers 90.59 84.51 85.93 89.46 90.02 90.11 90.63 90.02 (8)
Cardiovascular-Disease-dataset 72.84 50.86 68.73 72.60 72.96 73.06 73.14 73.09 (5, 8, 12)
credit 78.04 62.31 75.86 78.31 77.62 77.80 77.95 77.59 (4, 6, 9)
FOREX_audsgd-hour-High 67.26 51.48 65.49 70.14 57.24 61.06 69.62 70.41 (7, 10, 12)
waveform-5000 86.00 80.60 55.70 87.10 85.60 85.60 86.40 86.90 (1, 6, 11)
jungle_chess 85.65 39.60 64.12 72.14 78.55 80.44 86.66 86.85 (10, 11, 12)
BNG(cmc) 57.40 42.62 52.48 55.16 56.19 56.72 57.72 57.88 (9, 10, 12)
page-blocks 97.35 94.25 95.43 96.35 96.07 96.71 97.17 97.35 (6, 7, 12)
segment 93.07 72.29 69.26 87.23 91.99 88.10 93.51 92.64 (1, 12)
website_phishing 90.77 36.90 82.66 90.04 85.98 87.08 91.88 91.88 (7, 10)
baseball 93.66 78.73 92.54 92.16 93.28 94.03 93.66 95.15 (10, 11)
pendigits 99.50 59.75 72.40 98.18 92.81 93.04 99.41 99.45 (3, 4, 12)
Gender_Gap_in_Spanish_WP 60.84 33.68 59.47 60.84 59.68 60.32 60.53 60.84 (2, 12)
wine-quality-white 62.35 10.51 49.29 55.10 54.08 55.31 63.57 64.39 (8, 11, 12)
satimage 91.21 82.04 84.99 89.19 88.72 88.65 91.91 91.91 (8, 11, 12)
mfeat-fourier 90.00 55.50 46.75 85.75 77.75 82.25 89.50 89.50 (2, 7, 12)
VulNoneVul 98.95 1.05 98.95 98.33 98.95 98.95 98.95 98.95 (1)
law-school-admission-bianry 100.0 99.83 79.76 98.82 100.0 100.0 100.0 100.0 (6)
KDD 80.34 78.45 62.36 76.76 79.34 78.35 81.23 79.94 (1, 8, 10)
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