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ABSTRACT

The goal of domain generalization algorithms is to predict well on distributions
different from those seen during training. While a myriad of domain generalization
algorithms exist, inconsistencies in experimental conditions—datasets, network
architectures, and model selection criteria—render fair comparisons difficult. The
goal of this paper is to understand how useful domain generalization algorithms
are in realistic settings. As a first step, we realize that model selection is non-trivial
for domain generalization tasks, and we argue that algorithms without a model
selection criterion remain incomplete. Next we implement DOMAINBED, a testbed
for domain generalization including seven benchmarks, fourteen algorithms, and
three model selection criteria. When conducting extensive experiments using DO-
MAINBED we find that when carefully implemented and tuned, ERM outperforms
the state-of-the-art in terms of average performance. Furthermore, no algorithm in-
cluded in DOMAINBED outperforms ERM by more than one point when evaluated
under the same experimental conditions. We hope that the release of DOMAINBED,
alongside contributions from fellow researchers, will streamline reproducible and
rigorous advances in domain generalization.

1 INTRODUCTION

Machine learning systems often fail to generalize out-of-distribution, crashing in spectacular ways
when tested outside the domain of training examples (Torralba and Efros, 2011). The overreliance of
learning systems on the training distribution manifests widely. For instance, self-driving car systems
struggle to perform under conditions different to those of training, including variations in light (Dai
and Van Gool, 2018), weather (Volk et al., 2019), and object poses (Alcorn et al., 2019). As another
example, systems trained on medical data collected in one hospital do not generalize to other health
centers (Castro et al., 2019; AlBadawy et al., 2018; Perone et al., 2019; Heaven, 2020). Arjovsky et al.
(2019) suggest that failing to generalize out-of-distribution is failing to capture the causal factors of
variation in data, clinging instead to easier-to-fit spurious correlations prone to change across domains.
Examples of spurious correlations commonly absorbed by learning machines include racial biases
(Stock and Cisse, 2018), texture statistics (Geirhos et al., 2018), and object backgrounds (Beery et al.,
2018). Alas, the capricious behaviour of machine learning systems out-of-distribution is a roadblock
to their deployment in critical applications.

Aware of this problem, the research community has spent significant efforts during the last decade
to develop algorithms able to generalize out-of-distribution. In particular, the literature in Domain
Generalization (DG) assumes access to multiple datasets during training, each of them containing
examples about the same task, but collected under a different domain or experimental condition
(Blanchard et al., 2011; Muandet et al., 2013). The goal of DG algorithms is to incorporate the
invariances across these training domains into a classifier, in hopes that such invariances will also
hold in novel test domains. Different DG solutions assume different types of invariances, and propose
algorithms to estimate them from data.

Despite the enormous importance of DG, the literature is scattered: a plethora of different algorithms
appear yearly, each of them evaluated under different datasets, neural network architectures, and
model selection criteria. Borrowing from the success of standardized computer vision benchmarks
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Table 1: Our ERM baseline outperforms the state-of-the-art in terms of average domain generalization
performance, even when picking the best competitor per dataset.

Dataset / algorithm DG accuracy per test domain Average
Rotated MNIST (full) 0◦ 15◦ 30◦ 45◦ 60◦ 75◦

DIVA (Ilse et al., 2019) 95.3 98.7 98.7 98.4 97.7 94.5 97.2
Our ERM 95.9 98.9 98.8 98.9 98.9 96.4 98.0

VLCS C L S V
G2DM (Albuquerque et al., 2019) 95.5 67.6 69.4 71.1 75.9
Our ERM 97.7 64.3 73.4 74.6 77.5

PACS A C P S
RSC (Huang et al., 2020) 87.9 82.1 97.9 83.4 87.8
Our ERM 84.7 80.8 97.2 79.3 85.5

OfficeHome A C P R
DDAIG (Zhou et al., 2020) 59.2 52.3 74.6 76.0 65.5
Our ERM 61.3 52.4 75.8 76.6 66.5

All datasets
Best SOTA competitor 81.6
Our ERM 81.9

such as ImageNet (Russakovsky et al., 2015), the purpose of this work is to perform a rigorous
comparison of DG algorithms, as well as to open-source our software for anyone to replicate
and extend our analyses. This manuscript investigates the question: How useful are different DG
algorithms when evaluated in a consistent and realistic setting?

To answer this question, we implement and tune fourteen DG algorithms carefully, to compare
them across seven benchmark datasets and three model selection criteria. There are three major
takeaways from our investigations:

• Claim 1: A careful implementation of ERM outperforms the state-of-the-art in terms of
average performance across common benchmarks (Table 1, full list in Appendix A.5).

• Claim 2: When implementing fourteen DG algorithms in a consistent and realistic setting,
no competitor outperforms ERM by more than one point (Table 3).

• Claim 3: Model selection is non-trivial for DG, yet affects results (Table 3). As such, we
argue that DG algorithms should specify their own model selection criteria.

As a result of our research, we release DOMAINBED, a framework to streamline rigorous and
reproducible experimentation in DG. Using DOMAINBED, adding a new algorithm or dataset is a
matter of a few lines of code. A single command runs all experiments, performs all model selections,
and auto-generates all the result tables included in this work. DOMAINBED is a living project: we
welcome pull requests from fellow researchers to update the available algorithms, datasets, model
selection criteria, and result tables.

Section 2 kicks off our exposition with a review of the DG setup. Section 3 discusses the difficulties
of model selection in DG and makes recommendations for a path forward. Section 4 introduces
DOMAINBED, describing the features included in the initial release. Section 5 discusses the exper-
imental results of running the entire DOMAINBED suite, illustrating the competitive performance
of ERM and the importance of model selection criteria. Finally, Section 6 offers our view on future
research directions in DG. Appendix A reviews one hundred articles spanning a decade of research
in DG, summarizing the experimental performance of over thirty algorithms.
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Table 2: Learning setups. Ld and Ud denote the labeled and unlabeled distributions from domain d.

Setup Training inputs Test inputs

Generative learning U1 ∅
Unsupervised learning U1 U1

Supervised learning L1 U1

Semi-supervised learning L1, U1 U1

Multitask learning L1, . . . , Ldtr U1, . . . , Udtr

Continual (or lifelong) learning L1, . . . , L∞ U1, . . . , U∞

Domain adaptation L1, . . . , Ldtr , Udtr+1 Udtr+1

Transfer learning U1, . . . , Udtr , Ldtr+1 Udtr+1

Domain generalization L1, . . . , Ldtr Udtr+1

2 THE PROBLEM OF DOMAIN GENERALIZATION

The goal of supervised learning is to predict values y ∈ Y of a target random variable Y , given
values x ∈ X of an input random variable X . Predictions ŷ = f(x) about x originate from a
predictor f : X → Y . We often decompose predictors as f = w ◦ φ, where we call φ : X → H the
featurizer, and w : H → Y the classifier. To solve the prediction task we collect the training dataset
D = {(xi, yi)}ni=1, which contains identically and independently distributed (i.i.d.) examples from
the joint probability distribution P (X,Y ). Given a loss function ` : Y × Y → [0,∞) measuring
prediction error, supervised learning seeks the predictor minimizing the risk E(x,y)∼P [`(f(x), y)].
Since we only have access to the data distribution P (X,Y ) via the dataset D, we instead search a
predictor minimizing the empirical risk 1

n

∑n
i=1 `(f(xi), yi) (Vapnik, 1998).

The rest of this paper studies the problem of Domain Generalization (DG), an extension of supervised
learning where training datasets from multiple domains (or environments) are available to train
our predictor (Blanchard et al., 2011). Each domain d produces a dataset Dd = {(xdi , ydi )}nd

d=1

containing i.i.d. examples from some probability distribution P (Xd, Y d), for all training domains
d ∈ {1, . . . , dtr}. The goal of DG is out-of-distribution generalization: learning a predictor able to
perform well at some unseen test domain dtr + 1. Since no data about the test domain is available
during training, we must assume the existence of statistical invariances across training and testing
domains, and incorporate such invariances (but nothing else) into our predictor. The type of invariance
assumed, as well as how to estimate it from the training datasets, varies between DG algorithms. We
review a hundred articles in DG spanning a decade of research and thirty algorithms in Appendix A.5.

DG differs from unsupervised domain adaptation. In the latter, unlabeled data from the test domain is
available during training (Pan and Yang, 2009; Patel et al., 2015; Wilson and Cook, 2018). Table 2
compares different machine learning setups to highlight the nature of DG problems. The causality
literature refers to DG as learning from multiple environments (Peters et al., 2016; Arjovsky et al.,
2019). Although challenging, the DG framework can capture some of the difficulty of real prediction
problems, where unforeseen distributional discrepancies between training and testing data are surely
expected. At the same time, the framework can be limiting: in many real world scenarios there
may be external variables informing about task relatedness (space, time, annotations) that the DG
framework ignores.

3 MODEL SELECTION AS PART OF THE LEARNING PROBLEM

Here we discuss issues surrounding model selection (choosing hyperparameters, training checkpoints,
architecture variants) in DG and make specific recommendations for a path forward. Because we
lack access to a validation set identically distributed to the test data, model selection in DG is not as
straightforward as in supervised learning. Some works adopt heuristic strategies whose behavior is
not well-studied, while others simply omit a description of how to choose hyperparameters. This
leaves open the possibility that hyperparameters were chosen using the test data, which is not
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methodologically sound. Differences in results arising from inconsistent tuning practices may be
misattributed to the algorithms under study, complicating fair assessments.

We believe that much of the confusion surrounding model selection in DG arises from treating it
as merely a question of experimental design. To the contrary, model selection requires making
theoretical assumptions about how the test data relates to the training data. Different DG algorithms
make different assumptions, and it is not clear a priori which ones are correct, or how they influence
the model selection criterion. Indeed, choosing reasonable assumptions is at the heart of DG research.
Therefore, a DG algorithm without a strategy to choose its hyperparameters should be regarded as
incomplete.

Recommendation 1 A DG algorithm should be responsible for specifying a model selection method.

While algorithms without well-justified model selection methods are incomplete, they may be useful
stepping-stones in a research agenda. In this case, instead of using an ad-hoc model selection method,
we can evaluate incomplete algorithms by considering an oracle model selection method, where we
select hyperparameters using some data from the test domain. Of course, it is important to avoid
invalid comparisons between oracle results and baselines tuned without an oracle method. Also,
unless we restrict access to the test domain data somehow, we risk obtaining meaningless results (we
could just train on such test domain data using supervised learning).

Recommendation 2 Researchers should disclaim any oracle-selection results as such and specify
policies to limit access to the test domain.

3.1 THREE MODEL SELECTION METHODS FOR DG

Having made broad recommendations, we review and justify three model selection criteria for DG.
Appendix B.3 illustrates these with an specific example.

Training-domain validation We split each training domain into training and validation subsets.
We train models using the training subsets, and choose the model maximizing the accuracy on the
union of validation subsets. This strategy assumes that the training and test examples follow similar
distributions. For example, Ben-David et al. (2010) bound the test error of a classifier with the
divergence between training and test domains.

Leave-one-domain-out validation Given dtr training domains, we train dtr models with equal
hyperparameters, each holding one of the training domains out. We evaluate each model on its
held-out domain, and average the accuracies of these dtr models over their held-out domains. Finally,
we choose the model maximizing this average accuracy, retrained on all dtr domains. This strategy
assumes that training and test domains follow a meta-distribution over domains, and that our goal is
to maximize the expected performance under this meta-distribution. Note that leaving k > 1 domains
out would increase greatly the number of experiments, and introduces a hyperparameter k.

Test-domain validation (oracle) We choose the model maximizing the accuracy on a validation
set that follows the distribution of the test domain. Following our earlier recommendation to limit test
domain access, we allow one query (the last checkpoint) per choice of hyperparameters, disallowing
early stopping. Recall that this is not a valid benchmarking methodology. Oracle-based results can be
either optimistic, because we select models using the test distribution, or pessimistic, because the
query limit reduces the number of considered hyperparameters. We also tried limiting the size of the
oracle test set instead of the number of queries, but this led to unacceptably high variance.

3.2 CONSIDERATIONS FROM THE LITERATURE

Some references in prior work discuss additional strategies to choose hyperparameters in DG. For
instance, Krueger et al. (2020, Appendix B.1) suggest choosing hyperparameters to maximize the
performance across all domains of an external dataset. This “leave-one-dataset out” is akin to the
second strategy outlined above. Albuquerque et al. (2019, Section 5.3.2) suggest performing model
selection based on the loss function (which often incorporates an algorithm-specific regularizer), and
D’Innocente and Caputo (2018, Section 3) derive an strategy specific to their algorithm. Finally, tools
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from differential privacy enable multiple reuses of a validation set (Dwork et al., 2015), which could
be a tool to control the power of test-domain validation (oracle).

4 DOMAINBED: A PYTORCH TESTBED FOR DOMAIN GENERALIZATION

At the heart of our large scale experimentation is DOMAINBED, a PyTorch (Paszke et al., 2019)
testbed to streamline reproducible and rigorous research in DG:

https://github.com/facebookresearch/DomainBed/.

The initial release comprises fourteen algorithms, seven datasets, and three model selection methods
(those described in Section 3), as well as the infrastructure to run all the experiments and generate
all the LATEX tables below with a single command. The first version of DOMAINBED focuses on
image classification, leaving for future work other types of tasks. DOMAINBED is a living project:
together with pull requests from collaborators, we continuously update the above repository with new
algorithms, datasets, and result tables. As illustrated in Appendix B.5, adding a new algorithm or
dataset to DOMAINBED is a matter of a few lines of code.

Algorithms DOMAINBED currently includes fourteen algorithms chosen based on their impact
over the years, their published performance, and a desire to include varied DG strategies. These are
Empirical Risk Minimization (ERM, Vapnik (1998)), Group Distributionally Robust Optimization
(GroupDRO, Sagawa et al. (2019)), Inter-domain Mixup (Mixup, Xu et al. (2019); Yan et al. (2020);
Wang et al. (2020b)), Meta-Learning for Domain Generalization (MLDG, Li et al. (2018a)), Domain-
Adversarial Neural Networks (DANN, Ganin et al. (2016)), Class-conditional DANN (C-DANN,
Li et al. (2018d)), Deep CORrelation ALignment (CORAL, Sun and Saenko (2016)), Maximum
Mean Discrepancy (MMD, Li et al. (2018b)), Invariant Risk Minimization (IRM Arjovsky et al.
(2019)), Adaptive Risk Minimization (ARM, Zhang et al. (2020)), Marginal Transfer Learning (MTL,
Blanchard et al. (2011; 2017)), Style-Agnostic Networks (SagNet, Nam et al. (2019)), and Represen-
tation Self Challenging (RSC, Huang et al. (2020)). Appendix B.1 describes these algorithms, and
Appendix B.4 lists their network architectures and hyperparameter search distributions.

Datasets DOMAINBED currently includes downloaders and loaders for seven standard DG image
classification benchmarks. These are Colored MNIST (Arjovsky et al., 2019), Rotated MNIST
(Ghifary et al., 2015), PACS (Li et al., 2017), VLCS (Fang et al., 2013), OfficeHome (Venkateswara
et al., 2017), Terra Incognita (Beery et al., 2018), and DomainNet (Peng et al., 2019). The datasets
based on MNIST are “synthetic” since changes across domains are well understood (colors and
rotations). The rest of the datasets are “real” since domains vary in unknown ways. Appendix B.2
describes these datasets.

Implementation choices We highlight three implementation choices made towards a consistent
and realistic evaluation setting. First, whereas prior work is inconsistent in its choice of network
architecture, we finetune ResNet-50 models (He et al., 2016) pretrained on ImageNet for all non-
MNIST experiments. We note that recent state-of-the-art results (Balaji et al., 2018; Nam et al.,
2019; Huang et al., 2020) also use ResNet-50 models. Second, for all non-MNIST datasets, we
augment training data using the following protocol: crops of random size and aspect ratio, resizing
to 224× 224 pixels, random horizontal flips, random color jitter, grayscaling the image with 10%
probability, and normalization using the ImageNet channel statistics. This augmentation protocol
is increasingly standard in state-of-the-art DG work (Nam et al., 2019; Huang et al., 2020; Krueger
et al., 2020; Carlucci et al., 2019a; Zhou et al., 2020; Dou et al., 2019; Hendrycks et al., 2020; Wang
et al., 2020a; Seo et al., 2020; Chattopadhyay et al., 2020). We use no augmentation for MNIST-based
datasets. Third, and for RotatedMNIST, we divide all the digits evenly among domains, instead of
replicating the same 1000 digits to construct all domains. We deviate from standard practice for
two reasons: using the same digits across training and test domains leaks test data, and reducing the
amount of training data complicates the task in an unrealistic way.
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5 EXPERIMENTS

We run experiments for all algorithms, datasets, and model selection criteria shipped in DOMAINBED.
We consider all configurations of a dataset where we hide one domain for testing, resulting in the
training of 58,000 models. To generate the following results, we simply run sweep.py at commit
0x7df6f06 from DOMAINBED’s repository.

Hyperparameter search For each algorithm and test domain, we conduct a random search
(Bergstra and Bengio, 2012) of 20 trials over a joint distribution of all hyperparameters (Appendix B.4).
Appendix C.4 shows that running more than 20 trials does not improve our results significantly. We
use each model selection criterion to select amongst the 20 models from the random search. We split
the data from each domain into 80% and 20% splits. We use the larger splits for training and final
evaluation, and the smaller splits to select hyperparameters (for an illustration, see Appendix B.3). All
hyperparameters are optimized anew for each algorithm and test domain, including hyperparameters
like learning rates which are common to multiple algorithms.

Standard error bars While some DG literature reports error bars across seeds, randomness arising
from model selection is often ignored. This is acceptable if the goal is best-versus-best comparison,
but prohibits analyses concerning the model selection process itself. Instead, we repeat our entire
study three times, making every random choice anew: hyperparameters, weight initializations, and
dataset splits. Every number we report is a mean (and its standard error) over these repetitions.

5.1 RESULTS

Table 3 summarizes the results of our experiments. Appendix C contains the full results per dataset
and domain. As anticipated in our introduction, we draw three conclusions from our results.

Claim 1: Carefully tuned ERM outperforms the previously published state-of-the-art Table 1
(full version in Appendix A.5) shows this result, when we provide ERM with a training-domain
validation set for hyperparameter selection. Such state-of-the-art average performance of our ERM
baseline holds even when we select the best competitor available in the literature separately for
each benchmark. One reason for ERM’s strong performance is that we use ResNet-50, whereas
some prior work uses smaller ResNet-18 models. As recently shown in the literature (Hendrycks
et al., 2020), this suggests that better in-distribution generalization is a dominant factor behind better
out-of-distribution generalization. Our result does not refute prior work: it is possible that with
stronger implementations, some competing methods may improve upon ERM. Rather, we provide a
strong, realistic, and reproducible baseline for future work to build upon.

Claim 2: When evaluated in a consistent setting, no algorithm outperforms ERM in more than
one point We observe this result in Table 3, obtained by running from scratch every combination
of dataset, algorithm, and model selection criterion in DOMAINBED. Given any model selection
criterion, no method improves the average performance of ERM in more than one point. At the
number of trials performed, no improvement over ERM is statistically significant according to a
t-test at a significance level α = 0.05. While new algorithms could improve upon ERM (an exciting
premise!), getting substantial DG improvements in a rigorous way proved challenging. Most of
our baselines can achieve ERM-like performance because there have hyperparameter configurations
under which they behave like ERM (e.g. regularization coefficients that can be set to zero). Our
advice to DG practitioners is to use ERM (which is a safe contender) or CORAL (Sun and Saenko,
2016) (which achieved the highest average score).

Claim 3: Model selection methods matter We observe that model selection with a training
domain validation set outperforms leave-one-domain-out cross-validation across multiple datasets
and algorithms. This does not mean that using a training domain validation set is the right way to
tune hyperparameters. In fact, the stronger performance of oracle-selection (+2.3 points for ERM)
suggests headroom to develop improved DG model selection criteria.
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Table 3: DG accuracy for all algorithms, datasets and model selection criteria in DOMAINBED. These
experiments compare fourteen popular DG algorithms across seven benchmarks in the exact same
conditions, showing the competitive performance of ERM.

Algorithm CMNIST RMNIST VLCS PACS OfficeHome TerraInc DomainNet Average
ERM 51.5 ± 0.1 98.0 ± 0.0 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 66.6
IRM 52.0 ± 0.1 97.7 ± 0.1 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 47.6 ± 0.8 33.9 ± 2.8 65.4
GroupDRO 52.1 ± 0.0 98.0 ± 0.0 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 43.2 ± 1.1 33.3 ± 0.2 64.8
Mixup 52.1 ± 0.2 98.0 ± 0.1 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 39.2 ± 0.1 66.7
MLDG 51.5 ± 0.1 97.9 ± 0.0 77.2 ± 0.4 84.9 ± 1.0 66.8 ± 0.6 47.7 ± 0.9 41.2 ± 0.1 66.7
CORAL 51.5 ± 0.1 98.0 ± 0.1 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 67.5
MMD 51.5 ± 0.2 97.9 ± 0.0 77.5 ± 0.9 84.6 ± 0.5 66.3 ± 0.1 42.2 ± 1.6 23.4 ± 9.5 63.3
DANN 51.5 ± 0.3 97.8 ± 0.1 78.6 ± 0.4 83.6 ± 0.4 65.9 ± 0.6 46.7 ± 0.5 38.3 ± 0.1 66.1
CDANN 51.7 ± 0.1 97.9 ± 0.1 77.5 ± 0.1 82.6 ± 0.9 65.8 ± 1.3 45.8 ± 1.6 38.3 ± 0.3 65.6
MTL 51.4 ± 0.1 97.9 ± 0.0 77.2 ± 0.4 84.6 ± 0.5 66.4 ± 0.5 45.6 ± 1.2 40.6 ± 0.1 66.2
SagNet 51.7 ± 0.0 98.0 ± 0.0 77.8 ± 0.5 86.3 ± 0.2 68.1 ± 0.1 48.6 ± 1.0 40.3 ± 0.1 67.2
ARM 56.2 ± 0.2 98.2 ± 0.1 77.6 ± 0.3 85.1 ± 0.4 64.8 ± 0.3 45.5 ± 0.3 35.5 ± 0.2 66.1
VREx 51.8 ± 0.1 97.9 ± 0.1 78.3 ± 0.2 84.9 ± 0.6 66.4 ± 0.6 46.4 ± 0.6 33.6 ± 2.9 65.6
RSC 51.7 ± 0.2 97.6 ± 0.1 77.1 ± 0.5 85.2 ± 0.9 65.5 ± 0.9 46.6 ± 1.0 38.9 ± 0.5 66.1

Model selection: training-domain validation set

Algorithm CMNIST RMNIST VLCS PACS OfficeHome TerraInc DomainNet Average
ERM 36.7 ± 0.1 97.7 ± 0.0 77.2 ± 0.4 83.0 ± 0.7 65.7 ± 0.5 41.4 ± 1.4 40.6 ± 0.2 63.2
IRM 40.3 ± 4.2 97.0 ± 0.2 76.3 ± 0.6 81.5 ± 0.8 64.3 ± 1.5 41.2 ± 3.6 33.5 ± 3.0 62.0
GroupDRO 36.8 ± 0.1 97.6 ± 0.1 77.9 ± 0.5 83.5 ± 0.2 65.2 ± 0.2 44.9 ± 1.4 33.0 ± 0.3 62.7
Mixup 33.4 ± 4.7 97.8 ± 0.0 77.7 ± 0.6 83.2 ± 0.4 67.0 ± 0.2 48.7 ± 0.4 38.5 ± 0.3 63.8
MLDG 36.7 ± 0.2 97.6 ± 0.0 77.2 ± 0.9 82.9 ± 1.7 66.1 ± 0.5 46.2 ± 0.9 41.0 ± 0.2 64.0
CORAL 39.7 ± 2.8 97.8 ± 0.1 78.7 ± 0.4 82.6 ± 0.5 68.5 ± 0.2 46.3 ± 1.7 41.1 ± 0.1 65.0
MMD 36.8 ± 0.1 97.8 ± 0.1 77.3 ± 0.5 83.2 ± 0.2 60.2 ± 5.2 46.5 ± 1.5 23.4 ± 9.5 60.7
DANN 40.7 ± 2.3 97.6 ± 0.2 76.9 ± 0.4 81.0 ± 1.1 64.9 ± 1.2 44.4 ± 1.1 38.2 ± 0.2 63.4
CDANN 39.1 ± 4.4 97.5 ± 0.2 77.5 ± 0.2 78.8 ± 2.2 64.3 ± 1.7 39.9 ± 3.2 38.0 ± 0.1 62.2
MTL 35.0 ± 1.7 97.8 ± 0.1 76.6 ± 0.5 83.7 ± 0.4 65.7 ± 0.5 44.9 ± 1.2 40.6 ± 0.1 63.5
SagNet 36.5 ± 0.1 94.0 ± 3.0 77.5 ± 0.3 82.3 ± 0.1 67.6 ± 0.3 47.2 ± 0.9 40.2 ± 0.2 63.6
ARM 36.8 ± 0.0 98.1 ± 0.1 76.6 ± 0.5 81.7 ± 0.2 64.4 ± 0.2 42.6 ± 2.7 35.2 ± 0.1 62.2
VREx 36.9 ± 0.3 93.6 ± 3.4 76.7 ± 1.0 81.3 ± 0.9 64.9 ± 1.3 37.3 ± 3.0 33.4 ± 3.1 60.6
RSC 36.5 ± 0.2 97.6 ± 0.1 77.5 ± 0.5 82.6 ± 0.7 65.8 ± 0.7 40.0 ± 0.8 38.9 ± 0.5 62.7

Model selection: leave-one-domain-out cross-validation

Algorithm CMNIST RMNIST VLCS PACS OfficeHome TerraInc DomainNet Average
ERM 57.8 ± 0.2 97.8 ± 0.1 77.6 ± 0.3 86.7 ± 0.3 66.4 ± 0.5 53.0 ± 0.3 41.3 ± 0.1 68.7
IRM 67.7 ± 1.2 97.5 ± 0.2 76.9 ± 0.6 84.5 ± 1.1 63.0 ± 2.7 50.5 ± 0.7 28.0 ± 5.1 66.9
GroupDRO 61.1 ± 0.9 97.9 ± 0.1 77.4 ± 0.5 87.1 ± 0.1 66.2 ± 0.6 52.4 ± 0.1 33.4 ± 0.3 67.9
Mixup 58.4 ± 0.2 98.0 ± 0.1 78.1 ± 0.3 86.8 ± 0.3 68.0 ± 0.2 54.4 ± 0.3 39.6 ± 0.1 69.0
MLDG 58.2 ± 0.4 97.8 ± 0.1 77.5 ± 0.1 86.8 ± 0.4 66.6 ± 0.3 52.0 ± 0.1 41.6 ± 0.1 68.7
CORAL 58.6 ± 0.5 98.0 ± 0.0 77.7 ± 0.2 87.1 ± 0.5 68.4 ± 0.2 52.8 ± 0.2 41.8 ± 0.1 69.2
MMD 63.3 ± 1.3 98.0 ± 0.1 77.9 ± 0.1 87.2 ± 0.1 66.2 ± 0.3 52.0 ± 0.4 23.5 ± 9.4 66.9
DANN 57.0 ± 1.0 97.9 ± 0.1 79.7 ± 0.5 85.2 ± 0.2 65.3 ± 0.8 50.6 ± 0.4 38.3 ± 0.1 67.7
CDANN 59.5 ± 2.0 97.9 ± 0.0 79.9 ± 0.2 85.8 ± 0.8 65.3 ± 0.5 50.8 ± 0.6 38.5 ± 0.2 68.2
MTL 57.6 ± 0.3 97.9 ± 0.1 77.7 ± 0.5 86.7 ± 0.2 66.5 ± 0.4 52.2 ± 0.4 40.8 ± 0.1 68.5
SagNet 58.2 ± 0.3 97.9 ± 0.0 77.6 ± 0.1 86.4 ± 0.4 67.5 ± 0.2 52.5 ± 0.4 40.8 ± 0.2 68.7
ARM 63.2 ± 0.7 98.1 ± 0.1 77.8 ± 0.3 85.8 ± 0.2 64.8 ± 0.4 51.2 ± 0.5 36.0 ± 0.2 68.1
VREx 67.0 ± 1.3 97.9 ± 0.1 78.1 ± 0.2 87.2 ± 0.6 65.7 ± 0.3 51.4 ± 0.5 30.1 ± 3.7 68.2
RSC 58.5 ± 0.5 97.6 ± 0.1 77.8 ± 0.6 86.2 ± 0.5 66.5 ± 0.6 52.1 ± 0.2 38.9 ± 0.6 68.2

Model selection: test-domain validation set (oracle)
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Table 4: Ablation study on ERM showing the impact of (i) using raw images versus data augmentation,
and (ii) using ResNet-18 versus ResNet-50 models. Model selection: training-domain validation set.

Algorithm VLCS PACS OfficeHome TerraInc DomainNet Avg
ERM (raw, 18) 75.8 ± 0.3 79.6 ± 0.3 61.0 ± 0.1 35.0 ± 1.3 35.8 ± 0.2 62.4
ERM (aug, 18) 75.8 ± 0.1 79.1 ± 0.8 60.0 ± 0.6 40.0 ± 0.6 35.3 ± 0.0 62.8
ERM (raw, 50) 78.6 ± 0.1 83.2 ± 0.6 67.7 ± 0.2 41.5 ± 2.5 41.4 ± 0.1 66.0
ERM (aug, 50) 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 66.6

5.2 ABLATION STUDY ON ERM

To better understand our ERM performance, we perform an ablation study on the neural network
architecture and the data augmentation protocol. Table 5.2 shows that using a ResNet-50 neural
network architecture, instead of a smaller ResNet-18, improves DG test accuracy by 3.7 points.
Using data augmentation improves DG test accuracy by 0.5 points. However, these ResNet models
were pretrained on ImageNet using data augmentation, so the benefits of augmentation are partly
absorbed by the model. In fact, we hypothesize that among models pretrained on ImageNet, domain
generalization performance is mainly influenced by the model’s original test accuracy on ImageNet.

6 DISCUSSIONS

We provide several discussions to help the reader interpret our results and motivate future work.

Our negative claims are fundamentally limited Broad negative claims (e.g. “algorithm X does
not outperform ERM”) do not specify an exact experimental setting and are therefore impossible to
rigorously prove. In order to be verifiable, such claims must be restricted to a specific setting. This
limitation is fundamental to all negative result claims, and ours (Claim 2) is no exception. We have
shown that many algorithms don’t substantially improve on ERM in our setting, but the relevance of
that setting is a subjective matter ultimately left for the reader.

In making this judgement, the reader should consider whether they agree with our methodological
and implementation choices, which we have explained and motivated throughout the paper. We also
note that our implementation can outperform previous results (Table 1). Finally, DomainBed is not a
black box: our implementation is open-source and actively maintained, and we invite the research
community to improve on our results.

Is this as good as it gets? We question whether DG is possible in some of the considered datasets.
Why do we assume that a neural network should be able to classify cartoons, given only photorealistic
training data? In the case of Rotated MNIST, do truly rotation-invariant features discriminative of the
digit class exist? Are those features expressible by a neural network? Even in the presence of correct
model selection, is the out-of-distribution performance of modern ERM implementations as good as
it gets? Or is it simply as poor as every other alternative? How far are we from the achievable DG
performance? Is this upper-bound simply the test error in-domain?

Are these the right datasets? Most datasets considered in the DG literature do not reflect realistic
situations. If one wanted to classify cartoons, the easiest option would be to collect a small labeled
dataset of cartoons. Should we consider more realistic, impactful tasks for better research in DG?
Some alternatives are medical imaging in different hospitals and self-driving cars in different cities.

Generalization requires untestable assumptions Every time we use ERM, we assume that train-
ing and testing examples follow the same distribution. This is an untestable assumption in every
single instance. The same applies for DG: each algorithm assumes a different (untestable) type of
invariance across domains. Therefore, the performance of a DG algorithm depends on the problem
at hand, and only time can tell if we have made a good choice. This is akin to the generalization
of a scientific theory such as Newton’s gravitation, which cannot be proven, but rather only resist
falsification.
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7 CONCLUSION

Our extensive empirical evaluation of DG algorithms leads to three conclusions. First, a carefully
tuned ERM baseline outperforms the previously published state-of-the-art results in terms of average
performance (Claim 1). Second, when compared to thirteen popular DG alternatives on the exact
same experimental conditions, we find out that no competitor is able to outperform ERM by more
than one point (Claim 2). Third, model selection is non-trivial for DG, and it should be an integral
part of any proposed method (Claim 3). Going forward, we hope that our results and DOMAINBED
promote realistic and rigorous evaluation and enable advances in domain generalization.
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A A DECADE OF LITERATURE ON DOMAIN GENERALIZATION

In this section, we provide an exhaustive literature review on a decade of domain generalization
research. The following classifies domain generalization algorithms according into four strategies
to learn invariant predictors: learning invariant features, sharing parameters, meta-learning, or
performing data augmentation.

A.1 LEARNING INVARIANT FEATURES

Muandet et al. (2013) use kernel methods to find a feature transformation that (i) minimizes the
distance between transformed feature distributions across domains, and (ii) does not destroy any
of the information between the original features and the targets. In their pioneering work, Ganin
et al. (2016) propose Domain Adversarial Neural Networks (DANN), a domain adaptation technique
which uses generative adversarial networks (GANs, Goodfellow et al. (2014)), to learn a feature
representation that matches across training domains. Akuzawa et al. (2019) extend DANN by
considering cases where there exists an statistical dependence between the domain and the class label
variables. Albuquerque et al. (2019) extend DANN by considering one-versus-all adversaries that try
to predict to which training domain does each of the examples belong to. Li et al. (2018b) employ
GANs and the maximum mean discrepancy criteria (Gretton et al., 2012) to align feature distributions
across domains. Matsuura and Harada (2019) leverages clustering techniques to learn domain-
invariant features even when the separation between training domains is not given. Li et al. (2018c;d)
learns a feature transformation φ such that the conditional distributions P (φ(Xd) | Y d = y) match
for all training domains d and label values y. Shankar et al. (2018) use a domain classifier to construct
adversarial examples for a label classifier, and use a label classifier to construct adversarial examples
for the domain classifier. This results in a label classifier with better domain generalization. Li et al.
(2019a) train a robust feature extractor and classifier. The robustness comes from (i) asking the
feature extractor to produce features such that a classifier trained on domain d can classify instances
for domain d′ 6= d, and (ii) asking the classifier to predict labels on domain d using features produced
by a feature extractor trained on domain d′ 6= d. Li et al. (2020) adopt a lifelong learning strategy to
attack the problem of domain generalization. Motiian et al. (2017) learn a feature representation such
that (i) examples from different domains but the same class are close, (ii) examples from different
domains and classes are far, and (iii) training examples can be correctly classified. Ilse et al. (2019)
train a variational autoencoder (Kingma and Welling, 2014) where the bottleneck representation
factorizes knowledge about domain, class label, and residual variations in the input space. Fang et al.
(2013) learn a structural SVM metric such that the neighborhood of each example contains examples
from the same category and all training domains. The algorithms of Sun and Saenko (2016); Sun
et al. (2016); Rahman et al. (2019a) match the feature covariance (second order statistics) across
training domains at some level of representation. The algorithms of Ghifary et al. (2016); Hu et al.
(2019) use kernel-based multivariate component analysis to minimize the mismatch between training
domains while maximizing class separability.

Although popular, learning domain-invariant features has received some criticism (Zhao et al., 2019;
Johansson et al., 2019). Some alternatives exist, as we review next. Peters et al. (2016); Rojas-Carulla
et al. (2018) considered that one should search for features that lead to the same optimal classifier
across training domains. In their pioneering work, Peters et al. (2016) linked this type of invariance
to the causal structure of data, and provided a basic algorithm to learn invariant linear models, based
on feature selection. Arjovsky et al. (2019) extend the previous to general gradient-based models,
including neural networks, in their Invariant Risk Minimization (IRM) principle. Teney et al. (2020)
build on IRM to learn a feature transformation that minimizes the relative variance of classifier
weights across training datasets. The authors apply their method to reduce the learning of spurious
correlations in Visual Question Answering (VQA) tasks. Ahuja et al. (2020) analyze IRM under
a game-theoretic perspective to develop an alternative algorithm. Krueger et al. (2020) propose
an approximation to the IRM problem consisting in reducing the variance of error averages across
domains. Bouvier et al. (2019) attack the same problem as IRM by re-weighting data samples.

A.2 SHARING PARAMETERS

Blanchard et al. (2011) build classifiers f(xd, µd), where µd is a kernel mean embedding (Muandet
et al., 2017) that summarizes the dataset associated to the example xd. Since the distributional
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identity of test instances is unknown, these embeddings are estimated using single test examples at
test time. See Blanchard et al. (2017); Deshmukh et al. (2019) for theoretical results on this family of
algorithms (only applicable when using RKHS-based learners). Zhang et al. (2020) is an extension
of Blanchard et al. (2011) where a separate CNN computes the domain embedding, appended to
the input image as additional channels. Khosla et al. (2012) learn one max-margin linear classifier
wd = w + ∆d per domain d, from which they distill their final, invariant predictor w. Ghifary et al.
(2015) use a multitask autoencoder to learn invariances across domains. To achieve this, the authors
assume that each training dataset contains the same examples; for instance, photographs about the
same objects under different views. Mancini et al. (2018b) train a deep neural network with one set of
dedicated batch-normalization layers (Ioffe and Szegedy, 2015) per training dataset. Then, a softmax
domain classifier predicts how to linearly-combine the batch-normalization layers at test time. Seo
et al. (2020) combines instance normalization with batch-normalization to learn a normalization
module per domain, enhancing out-of-distribution generalization. Similarly, Mancini et al. (2018a)
learn a softmax domain classifier used to linearly-combine domain-specific predictors at test time.
D’Innocente and Caputo (2018) explore more sophisticated ways of aggregating domain-specific
predictors. Li et al. (2017) extends Khosla et al. (2012) to deep neural networks by extending each of
their parameter tensors with one additional dimension, indexed by the training domains, and set to a
neutral value to predict domain-agnostic test examples. Ding and Fu (2017) implement parameter-
tying and low-rank reconstruction losses to learn a predictor that relies on common knowledge across
training domains. Hu et al. (2016); Sagawa et al. (2019) weight the importance of the minibatches of
the training distributions proportional to their error. Chattopadhyay et al. (2020) overlays multiple
weight masks over a single network to learn domain-invariant and domain-specific features.

A.3 META-LEARNING

Li et al. (2018a) employ Model-Agnostic Meta-Learning, or MAML (Finn et al., 2017), to build a
predictor that learns how to adapt fast between training domains. Dou et al. (2019) use a similar
MAML strategy, together with two regularizers that encourage features from different domains to
respect inter-class relationships, and be compactly clustered by class labels. Li et al. (2019b) extend
the MAML meta-learning strategy to instances of domain generalization where the categories vary
from domain to domain. Balaji et al. (2018) use MAML to meta-learn a regularizer encouraging the
model trained on one domain to perform well on another domain.

A.4 AUGMENTING DATA

Data augmentation is an effective strategy to address domain generalization (Zhang et al., 2019).
Unfortunately, how to design efficient data augmentation routines depends on the type of data at
hand, and demands a significant amount of work from human experts. Xu et al. (2019); Yan et al.
(2020); Wang et al. (2020b) use mixup (Zhang et al., 2018) to blend examples from the different
training distributions. Carlucci et al. (2019a) constructs an auxiliary classification task aimed at
solving jigsaw puzzles of image patches. The authors show that this self-supervised learning task
learns features that improve domain generalization. Similarly, Wang et al. (2020a) use metric learning
and self-supervised learning to augment the out-of-distribution performance of an image classifier.
Albuquerque et al. (2020) introduce the self-supervised task of predicting responses to Gabor filter
banks, in order to learn more transferrable features. Wang et al. (2019) remove textural information
from images to improve domain generalization. Volpi et al. (2018) show that training with adversarial
data augmentation on a single domain is sufficient to improve domain generalization. Nam et al.
(2019) promote representations of data that ignore image style and focus on content. Rahman et al.
(2019b); Zhou et al. (2020); Carlucci et al. (2019a) are three alternatives that use GANs to augment
the data available during training time. Representation Self-Challenging (Huang et al., 2020) learns
robust neural networks by iteratively dropping-out important features. Hendrycks et al. (2020)
show that, together with larger models and data, data augmentation improves out-of-distribution
performance.
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A.5 PREVIOUS STATE-OF-THE-ART NUMBERS

Table 5 compiles the best out-of-distribution test accuracies reported across a decade of domain
generalization research.

Table 5: Previous state-of-the-art in the literature of domain generalization.

Benchmark Accuracy (by domain) Algorithm

Rotated
MNIST

0 15 30 45 60 75 Average
82.50 96.30 93.40 78.60 94.20 80.50 87.58 D-MTAE (Ghifary et al., 2015)
84.60 95.60 94.60 82.90 94.80 82.10 89.10 CCSA (Motiian et al., 2017)
83.70 96.90 95.70 85.20 95.90 81.20 89.80 MMD-AAE (Li et al., 2018b)
85.60 95.00 95.60 95.50 95.90 84.30 92.00 BestSources (Mancini et al., 2018a)
88.80 97.60 97.50 97.80 97.60 91.90 95.20 ADAGE (Carlucci et al., 2019b)
88.30 98.60 98.00 97.70 97.70 91.40 95.28 CrossGrad (Shankar et al., 2018)
90.10 98.90 98.90 98.80 98.30 90.00 95.80 HEX (Wang et al., 2019)
89.23 99.68 99.20 99.24 99.53 91.44 96.39 FeatureCritic (Li et al., 2019b)
93.50 99.30 99.10 99.20 99.30 93.00 97.20 DIVA (Ilse et al., 2019)
95.90 98.90 98.80 98.90 98.90 96.40 98.00 Our ERM

VLCS

C L S V Average
88.92 59.60 59.20 64.36 64.06 SCA (Ghifary et al., 2016)
92.30 62.10 59.10 67.10 65.00 CCSA (Motiian et al., 2017)
89.15 64.99 58.88 62.59 67.67 MTSSL (Albuquerque et al., 2020)
89.05 60.13 61.33 63.90 68.60 D-MTAE (Ghifary et al., 2015)
91.12 60.43 60.85 65.65 69.41 CIDG (Li et al., 2018c)
88.83 63.06 62.10 64.38 69.59 CIDDG (Li et al., 2018d)
92.64 61.78 59.60 66.86 70.22 MDA (Hu et al., 2019)
92.76 62.34 63.54 65.25 70.97 MDA (Ding and Fu, 2017)
93.63 63.49 61.32 69.99 72.11 DBADG (Li et al., 2017)
94.40 62.60 64.40 67.60 72.30 MMD-AAE (Li et al., 2018b)
94.10 64.30 65.90 67.10 72.90 Epi-FCR (Li et al., 2019a)
96.93 60.90 64.30 70.62 73.19 JiGen (Carlucci et al., 2019a)
96.72 60.40 63.68 70.49 73.30 VREx (Krueger et al., 2020)
96.40 64.80 64.00 68.70 73.50 S-MLDG (Li et al., 2020)
96.66 58.77 68.13 71.96 73.88 MMLD (Matsuura and Harada, 2019)
94.78 64.90 67.64 69.14 74.11 MASF (Dou et al., 2019)
97.33 63.49 68.02 69.83 74.67 EISNet (Wang et al., 2020a)
97.61 61.86 68.32 73.93 75.43 RSC (Huang et al., 2020)
95.52 67.63 69.37 71.14 75.92 G2DM (Albuquerque et al., 2019)
97.70 64.30 73.40 74.60 77.50 Our ERM

PACS

A C P S Average
62.86 66.97 89.50 57.51 69.21 DBADG (Li et al., 2017)
61.67 67.41 84.31 63.91 69.32 MTSSL (Albuquerque et al., 2020)
62.70 69.73 78.65 64.45 69.40 CIDDG (Li et al., 2018d)
62.64 65.98 90.44 58.76 69.45 JAN-COMBO (Rahman et al., 2019b)
66.23 66.88 88.00 58.96 70.01 MLDG (Li et al., 2018a)
66.80 69.70 87.90 56.30 70.20 HEX (Wang et al., 2019)
64.10 66.80 90.20 60.10 70.30 BestSources (Mancini et al., 2018a)
64.40 68.60 90.10 58.40 70.40 FeatureCritic (Li et al., 2019b)
67.04 67.97 89.74 59.81 71.14 VREx (Krueger et al., 2020)
65.52 69.90 89.16 63.37 71.98 CAADG (Rahman et al., 2019a)
64.70 72.30 86.10 65.00 72.00 Epi-FCR (Li et al., 2019a)
66.60 73.36 88.12 66.19 73.55 G2DM (Albuquerque et al., 2019)
70.35 72.46 90.68 67.33 75.21 MASF (Dou et al., 2019)
79.42 75.25 96.03 71.35 80.51 JiGen (Carlucci et al., 2019a)
80.50 77.80 94.80 72.80 81.50 S-MLDG (Li et al., 2020)
79.48 77.13 94.30 75.30 81.55 D-SAM-Λ (D’Innocente and Caputo, 2018)
81.28 77.16 96.09 72.29 81.83 MMLD (Matsuura and Harada, 2019)
84.20 78.10 95.30 74.70 83.10 DDAIG (Zhou et al., 2020)
83.58 77.66 95.47 76.30 83.25 SagNets (Nam et al., 2019)
82.57 78.11 94.49 78.32 83.37 DMG (Chattopadhyay et al., 2020)
87.20 79.20 97.60 70.30 83.60 MetaReg (Balaji et al., 2018)
84.70 80.80 97.20 79.30 85.50 Our ERM
86.64 81.53 97.11 78.07 85.84 EISNet (Wang et al., 2020a)
87.04 80.62 95.99 82.90 86.64 DSON (Seo et al., 2020)
87.89 82.16 97.92 83.35 87.83 RSC (Huang et al., 2020)

Office
Home

A C P R Average
48.09 45.20 66.52 68.35 57.04 JAN-COMBO (Rahman et al., 2019b)
53.04 47.51 71.47 72.79 61.20 JiGen (Carlucci et al., 2019a)
54.53 49.04 71.57 71.90 61.76 D-SAM-Λ (D’Innocente and Caputo, 2018)
60.20 45.38 70.42 73.38 62.34 SagNets (Nam et al., 2019)
59.37 45.70 71.84 74.68 62.90 DSON (Seo et al., 2020)
58.42 47.90 71.63 74.54 63.12 RSC (Huang et al., 2020)
59.20 52.30 74.60 76.00 65.50 DDAIG (Zhou et al., 2020)
61.30 52.40 75.80 76.60 66.50 Our ERM
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B MORE ABOUT DOMAINBED

B.1 ALGORITHMS

1. Empirical Risk Minimization (ERM, Vapnik (1998)) minimizes the errors across domains.
2. Group Distributionally Robust Optimization (DRO, Sagawa et al. (2019)) performs ERM while

increasing the importance of domains with larger errors.
3. Inter-domain Mixup (Mixup, Xu et al. (2019); Yan et al. (2020); Wang et al. (2020b)) performs

ERM on linear interpolations of examples from random pairs of domains and their labels.
4. Meta-Learning for Domain Generalization (MLDG, Li et al. (2018a)) leverages MAML (Finn

et al., 2017) to meta-learn how to generalize across domains.
5. Domain-Adversarial Neural Networks (DANN, Ganin et al. (2016)) employ an adversarial net-

work to match feature distributions across environments.
6. Class-conditional DANN (C-DANN, Li et al. (2018d)) is a variant of DANN matching the

conditional distributions P (φ(Xd)|Y d = y) across domains, for all labels y.
7. CORAL (Sun and Saenko, 2016) matches the mean and covariance of feature distributions.
8. MMD (Li et al., 2018b) matches the MMD (Gretton et al., 2012) of feature distributions.
9. Invariant Risk Minimization (IRM Arjovsky et al. (2019)) learns a feature representation φ(Xd)

such that the optimal linear classifier on top of that representation matches across domains.
10. Risk Extrapolation (VREx, Krueger et al. (2020)) approximates IRM with a variance penalty.
11. Marginal Transfer Learning (MTL, Blanchard et al. (2011; 2017)) estimates a mean embedding

per domain, passed as a second argument to the classifier.
12. Adaptive Risk Min. (ARM, Zhang et al. (2020)) extends MTL with a separate embedding CNN.
13. Style-Agnostic Networks (SagNets, Nam et al. (2019)) learns neural networks by keeping image

content and randomizing style.
14. Representation Self-Challenging (RSC, Huang et al. (2020)) learns robust neural networks by

iteratively discarding (challenging) the most activated features.

B.2 DATASETS

DOMAINBED includes downloaders and loaders for seven multi-domain image classification tasks:

1. Colored MNIST (Arjovsky et al., 2019) is a variant of the MNIST handwritten digit classification
dataset (LeCun, 1998). Domain d ∈ {0.1, 0.3, 0.9} contains a disjoint set of digits colored either
red or blue. The label is a noisy function of the digit and color, such that color bears correlation d
with the label and the digit bears correlation 0.75 with the label. This dataset contains 70, 000
examples of dimension (2, 28, 28) and 2 classes.

2. Rotated MNIST (Ghifary et al., 2015) is a variant of MNIST where domain d ∈ { 0, 15, 30, 45,
60, 75 } contains digits rotated by d degrees. Our dataset contains 70, 000 examples of dimension
(1, 28, 28) and 10 classes.

3. PACS (Li et al., 2017) comprises four domains d ∈ { art, cartoons, photos, sketches }. This
dataset contains 9, 991 examples of dimension (3, 224, 224) and 7 classes.

4. VLCS (Fang et al., 2013) comprises photographic domains d ∈ { Caltech101, LabelMe, SUN09,
VOC2007 }. This dataset contains 10, 729 examples of dimension (3, 224, 224) and 5 classes.

5. OfficeHome (Venkateswara et al., 2017) includes domains d ∈ { art, clipart, product, real }. This
dataset contains 15, 588 examples of dimension (3, 224, 224) and 65 classes.

6. Terra Incognita (Beery et al., 2018) contains photographs of wild animals taken by camera traps
at locations d ∈ {L100,L38,L43,L46}. Our version of this dataset contains 24, 788 examples of
dimension (3, 224, 224) and 10 classes.

7. DomainNet (Peng et al., 2019) has six domains d ∈ { clipart, infograph, painting, quickdraw,
real, sketch }. This dataset contains 586, 575 examples of size (3, 224, 224) and 345 classes.

For all datasets, we first pool the raw training, validation, and testing images together. For each
random seed, we then instantiate random training, validation, and testing splits.

17



Published as a conference paper at ICLR 2021

B.3 MODEL SELECTION CRITERIA, ILLUSTRATED

Consider Figure 1, and let Ti = {Ai, Bi, Ci} for i ∈ {1, 2}. Training-domain validation trains each
hyperparameter configuration on T1 and chooses the configuration with the highest performance in
T2. Leave-one-out validation trains one clone FZ of each hyperparameter configuration on T1 \Z, for
Z ∈ T1; then, it chooses the configuration with highest

∑
Z∈T1

Performance(FZ , Z). Test-domain
validation trains each hyperparameter configuration on T1 and chooses the configuration with the
highest performance onD2, only looking at its final epoch. Finally, result tables show the performance
of selected models on D1.

domain A domain B domain C domain D

training domains test domain

A2 B2 C2 D2

A1 B1 C1 D1big split

small split

Figure 1: Data configuration for a benchmark with four domains A, B, C, D, where the test domain is
D. We shuffle and divide the data from each domain into a big split and a small split.

B.4 ARCHITECTURES AND HYPERPARAMETERS

Neural network architectures used for each dataset:

Dataset Architecture
Colored MNIST MNIST ConvNetRotated MNIST

PACS

ResNet-50
VLCS
OfficeHome
TerraIncognita

Neural network architecture for MNIST experiments:

# Layer
1 Conv2D (in=d, out=64)
2 ReLU
3 GroupNorm (groups=8)
4 Conv2D (in=64, out=128, stride=2)
5 ReLU
6 GroupNorm (8 groups)
7 Conv2D (in=128, out=128)
8 ReLU
9 GroupNorm (8 groups)
10 Conv2D (in=128, out=128)
11 ReLU
12 GroupNorm (8 groups)
13 Global average-pooling

For “ResNet-50”, we replace the final (softmax) layer of a ResNet50 pretrained on ImageNet and
fine-tune the entire network. Since minibatches from different domains follow different distributions,
batch normalization degrades domain generalization algorithms (Seo et al., 2020). Therefore, we
freeze all batch normalization layers before fine-tuning. We insert a dropout layer before the final
ResNet-50 linear layer.
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Table 6 lists all algorithm hyperparameters, their default values, and their sweep random search
distribution. We optimize all models using Adam (Kingma and Ba, 2015).

Table 6: Hyperparameters, their default values and distributions for random search.

Condition Parameter Default value Random distribution

ResNet

learning rate 0.00005 10Uniform(−5,−3.5)

batch size 32 2Uniform(3,5.5)

batch size (if ARM) 8 8
ResNet dropout 0 RandomChoice([0, 0.1, 0.5])
generator learning rate 0.00005 10Uniform(−5,−3.5)

discriminator learning rate 0.00005 10Uniform(−5,−3.5)

not ResNet

learning rate 0.001 10Uniform(−4.5,−3.5)

batch size 64 2Uniform(3,9)

generator learning rate 0.001 10Uniform(−4.5,−2.5)

discriminator learning rate 0.001 10Uniform(−4.5,−2.5)

MNIST weight decay 0 0
generator weight decay 0 0

not MNIST weight decay 0 10Uniform(−6,−2)

generator weight decay 0 10Uniform(−6,−2)

DANN,
C-DANN

lambda 1.0 10Uniform(−2,2)

discriminator weight decay 0 10Uniform(−6,−2)

discriminator steps 1 2Uniform(0,3)

discriminator width 256 int(2Uniform(6,10))
discriminator depth 3 RandomChoice([3, 4, 5])
discriminator dropout 0 RandomChoice([0, 0.1, 0.5])
discriminator grad penalty 0 10Uniform(−2,1)

Adam β1 0.5 RandomChoice([0, 0.5])

DRO eta 0.01 10Uniform(−1,1)

IRM lambda 100 10Uniform(−1,5)

warmup iterations 500 10Uniform(0,4)

Mixup alpha 0.2 10Uniform(0,4)

MLDG beta 1 10Uniform(−1,1)

MMD gamma 1 10Uniform(−1,1)

MTL ema 0.99 RandomChoice([.5, .9, .99, 1])

RSC feature drop percentage 1/3 Uniform(0, 0.5)
batch drop percentage 1/3 Uniform(0, 0.5)

SagNet adversary weight 0.1 10Uniform(−2,1)

VREx lambda 10 10Uniform(−1,5)

warmup iterations 500 10Uniform(0,4)

19



Published as a conference paper at ICLR 2021

B.5 EXTENDING DOMAINBED

Algorithms are classes that implement two methods: .update(minibatches) and
.predict(x). The update method receives a list of minibatches, one minibatch per training
domain, and each minibatch containing one input and one output tensor. For example, to implement
group DRO (Sagawa et al., 2019, Algorithm 1), we simply write the following in algorithms.py:

class GroupDRO(ERM):
def __init__(self, input_shape, num_classes, num_domains, hparams):

super().__init__(input_shape, num_classes, num_domains, hparams)
self.register_buffer("q", torch.Tensor())

def update(self, minibatches):
device = "cuda" if minibatches[0][0].is_cuda else "cpu"

if not len(self.q):
self.q = torch.ones(len(minibatches)).to(device)

losses = torch.zeros(len(minibatches)).to(device)

for m in range(len(minibatches)):
x, y = minibatches[m]
losses[m] = F.cross_entropy(self.predict(x), y)
self.q[m] *= (self.hparams["dro_eta"] * losses[m].data).exp()

self.q /= self.q.sum()
loss = torch.dot(losses, self.q) / len(minibatches)

self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()

return {’loss’: loss.item()}

ALGORITHMS.append(’GroupDRO’)

By inheriting from ERM, the new GroupDRO class has access to a default classifier .network, op-
timizer .optimizer, and prediction method .predict(x). Finally, we tell DOMAINBED about
the default values and hyperparameter search distributions of the hyperparameters of this new algo-
rithm. We do so by adding the following to the function hparams in hparams registry.py:

hparams[’dro_eta’] = (1e-2, 10**random_state.uniform(-3, -1))

To add a new image classification dataset to DOMAINBED, arrange your image files as
/root/MyDataset/domain/class/image.jpg. Then, append to datasets.py:

class MyDataset(MultipleEnvironmentImageFolder):
ENVIRONMENTS = [’Env1’, ’Env2’, ’Env3’]
def __init__(self, root, test_envs, augment=True):

self.dir = os.path.join(root, "MyDataset/")
super().__init__(self.dir, test_envs, augment)

DATASETS.append(’MyDataset’)

We are now ready to train our new algorithm on our new dataset, using the second domain as test:

python train.py --model DRO --dataset MyDataset --data_dir /root --test_envs 1 \
--hparams ’{"dro_eta": 0.2}’

Finally, we can run a fully automated sweep on all datasets, algorithms, test domains, and
model selection criteria by simply invoking python sweep.py, after extending the file
command launchers.py to your computing infrastructure. When the sweep finishes, the script
collect results.py automatically generates all the result tables shown in this manuscript.

Extension to UDA One can use DOMAINBED to perform experimentation on unsupervised domain
adaptation by extending the .update(minibatches) methods to accept unlabeled examples
from the test domain.
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C FULL DOMAINBED RESULTS

C.1 MODEL SELECTION: TRAINING-DOMAIN VALIDATION SET

C.1.1 COLOREDMNIST

Algorithm +90% +80% -90% Avg
ERM 71.7 ± 0.1 72.9 ± 0.2 10.0 ± 0.1 51.5
IRM 72.5 ± 0.1 73.3 ± 0.5 10.2 ± 0.3 52.0
GroupDRO 73.1 ± 0.3 73.2 ± 0.2 10.0 ± 0.2 52.1
Mixup 72.7 ± 0.4 73.4 ± 0.1 10.1 ± 0.1 52.1
MLDG 71.5 ± 0.2 73.1 ± 0.2 9.8 ± 0.1 51.5
CORAL 71.6 ± 0.3 73.1 ± 0.1 9.9 ± 0.1 51.5
MMD 71.4 ± 0.3 73.1 ± 0.2 9.9 ± 0.3 51.5
DANN 71.4 ± 0.9 73.1 ± 0.1 10.0 ± 0.0 51.5
CDANN 72.0 ± 0.2 73.0 ± 0.2 10.2 ± 0.1 51.7
MTL 70.9 ± 0.2 72.8 ± 0.3 10.5 ± 0.1 51.4
SagNet 71.8 ± 0.2 73.0 ± 0.2 10.3 ± 0.0 51.7
ARM 82.0 ± 0.5 76.5 ± 0.3 10.2 ± 0.0 56.2
VREx 72.4 ± 0.3 72.9 ± 0.4 10.2 ± 0.0 51.8
RSC 71.9 ± 0.3 73.1 ± 0.2 10.0 ± 0.2 51.7

C.1.2 ROTATEDMNIST

Algorithm 0 15 30 45 60 75 Avg
ERM 95.9 ± 0.1 98.9 ± 0.0 98.8 ± 0.0 98.9 ± 0.0 98.9 ± 0.0 96.4 ± 0.0 98.0
IRM 95.5 ± 0.1 98.8 ± 0.2 98.7 ± 0.1 98.6 ± 0.1 98.7 ± 0.0 95.9 ± 0.2 97.7
GroupDRO 95.6 ± 0.1 98.9 ± 0.1 98.9 ± 0.1 99.0 ± 0.0 98.9 ± 0.0 96.5 ± 0.2 98.0
Mixup 95.8 ± 0.3 98.9 ± 0.0 98.9 ± 0.0 98.9 ± 0.0 98.8 ± 0.1 96.5 ± 0.3 98.0
MLDG 95.8 ± 0.1 98.9 ± 0.1 99.0 ± 0.0 98.9 ± 0.1 99.0 ± 0.0 95.8 ± 0.3 97.9
CORAL 95.8 ± 0.3 98.8 ± 0.0 98.9 ± 0.0 99.0 ± 0.0 98.9 ± 0.1 96.4 ± 0.2 98.0
MMD 95.6 ± 0.1 98.9 ± 0.1 99.0 ± 0.0 99.0 ± 0.0 98.9 ± 0.0 96.0 ± 0.2 97.9
DANN 95.0 ± 0.5 98.9 ± 0.1 99.0 ± 0.0 99.0 ± 0.1 98.9 ± 0.0 96.3 ± 0.2 97.8
CDANN 95.7 ± 0.2 98.8 ± 0.0 98.9 ± 0.1 98.9 ± 0.1 98.9 ± 0.1 96.1 ± 0.3 97.9
MTL 95.6 ± 0.1 99.0 ± 0.1 99.0 ± 0.0 98.9 ± 0.1 99.0 ± 0.1 95.8 ± 0.2 97.9
SagNet 95.9 ± 0.3 98.9 ± 0.1 99.0 ± 0.1 99.1 ± 0.0 99.0 ± 0.1 96.3 ± 0.1 98.0
ARM 96.7 ± 0.2 99.1 ± 0.0 99.0 ± 0.0 99.0 ± 0.1 99.1 ± 0.1 96.5 ± 0.4 98.2
VREx 95.9 ± 0.2 99.0 ± 0.1 98.9 ± 0.1 98.9 ± 0.1 98.7 ± 0.1 96.2 ± 0.2 97.9
RSC 94.8 ± 0.5 98.7 ± 0.1 98.8 ± 0.1 98.8 ± 0.0 98.9 ± 0.1 95.9 ± 0.2 97.6

C.1.3 VLCS

Algorithm C L S V Avg
ERM 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
IRM 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.5
GroupDRO 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7
Mixup 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4
MLDG 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2
CORAL 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8
MMD 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5
DANN 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6
CDANN 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5
MTL 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2
SagNet 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8
ARM 98.7 ± 0.2 63.6 ± 0.7 71.3 ± 1.2 76.7 ± 0.6 77.6
VREx 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3
RSC 97.9 ± 0.1 62.5 ± 0.7 72.3 ± 1.2 75.6 ± 0.8 77.1
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C.1.4 PACS

Algorithm A C P S Avg
ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
IRM 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
GroupDRO 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4
Mixup 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6
MLDG 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9
CORAL 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2
MMD 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.6
DANN 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6
CDANN 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6
MTL 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6
SagNet 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3
ARM 86.8 ± 0.6 76.8 ± 0.5 97.4 ± 0.3 79.3 ± 1.2 85.1
VREx 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9
RSC 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2

C.1.5 OFFICEHOME

Algorithm A C P R Avg
ERM 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
IRM 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
GroupDRO 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0
Mixup 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1
MLDG 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8
CORAL 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7
MMD 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.3
DANN 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9
CDANN 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.8
MTL 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4
SagNet 63.4 ± 0.2 54.8 ± 0.4 75.8 ± 0.4 78.3 ± 0.3 68.1
ARM 58.9 ± 0.8 51.0 ± 0.5 74.1 ± 0.1 75.2 ± 0.3 64.8
VREx 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4
RSC 60.7 ± 1.4 51.4 ± 0.3 74.8 ± 1.1 75.1 ± 1.3 65.5

C.1.6 TERRAINCOGNITA

Algorithm L100 L38 L43 L46 Avg
ERM 49.8 ± 4.4 42.1 ± 1.4 56.9 ± 1.8 35.7 ± 3.9 46.1
IRM 54.6 ± 1.3 39.8 ± 1.9 56.2 ± 1.8 39.6 ± 0.8 47.6
GroupDRO 41.2 ± 0.7 38.6 ± 2.1 56.7 ± 0.9 36.4 ± 2.1 43.2
Mixup 59.6 ± 2.0 42.2 ± 1.4 55.9 ± 0.8 33.9 ± 1.4 47.9
MLDG 54.2 ± 3.0 44.3 ± 1.1 55.6 ± 0.3 36.9 ± 2.2 47.7
CORAL 51.6 ± 2.4 42.2 ± 1.0 57.0 ± 1.0 39.8 ± 2.9 47.6
MMD 41.9 ± 3.0 34.8 ± 1.0 57.0 ± 1.9 35.2 ± 1.8 42.2
DANN 51.1 ± 3.5 40.6 ± 0.6 57.4 ± 0.5 37.7 ± 1.8 46.7
CDANN 47.0 ± 1.9 41.3 ± 4.8 54.9 ± 1.7 39.8 ± 2.3 45.8
MTL 49.3 ± 1.2 39.6 ± 6.3 55.6 ± 1.1 37.8 ± 0.8 45.6
SagNet 53.0 ± 2.9 43.0 ± 2.5 57.9 ± 0.6 40.4 ± 1.3 48.6
ARM 49.3 ± 0.7 38.3 ± 2.4 55.8 ± 0.8 38.7 ± 1.3 45.5
VREx 48.2 ± 4.3 41.7 ± 1.3 56.8 ± 0.8 38.7 ± 3.1 46.4
RSC 50.2 ± 2.2 39.2 ± 1.4 56.3 ± 1.4 40.8 ± 0.6 46.6
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C.1.7 DOMAINNET

Algorithm clip info paint quick real sketch Avg
ERM 58.1 ± 0.3 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9
IRM 48.5 ± 2.8 15.0 ± 1.5 38.3 ± 4.3 10.9 ± 0.5 48.2 ± 5.2 42.3 ± 3.1 33.9
GroupDRO 47.2 ± 0.5 17.5 ± 0.4 33.8 ± 0.5 9.3 ± 0.3 51.6 ± 0.4 40.1 ± 0.6 33.3
Mixup 55.7 ± 0.3 18.5 ± 0.5 44.3 ± 0.5 12.5 ± 0.4 55.8 ± 0.3 48.2 ± 0.5 39.2
MLDG 59.1 ± 0.2 19.1 ± 0.3 45.8 ± 0.7 13.4 ± 0.3 59.6 ± 0.2 50.2 ± 0.4 41.2
CORAL 59.2 ± 0.1 19.7 ± 0.2 46.6 ± 0.3 13.4 ± 0.4 59.8 ± 0.2 50.1 ± 0.6 41.5
MMD 32.1 ± 13.3 11.0 ± 4.6 26.8 ± 11.3 8.7 ± 2.1 32.7 ± 13.8 28.9 ± 11.9 23.4
DANN 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.8 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3
CDANN 54.6 ± 0.4 17.3 ± 0.1 43.7 ± 0.9 12.1 ± 0.7 56.2 ± 0.4 45.9 ± 0.5 38.3
MTL 57.9 ± 0.5 18.5 ± 0.4 46.0 ± 0.1 12.5 ± 0.1 59.5 ± 0.3 49.2 ± 0.1 40.6
SagNet 57.7 ± 0.3 19.0 ± 0.2 45.3 ± 0.3 12.7 ± 0.5 58.1 ± 0.5 48.8 ± 0.2 40.3
ARM 49.7 ± 0.3 16.3 ± 0.5 40.9 ± 1.1 9.4 ± 0.1 53.4 ± 0.4 43.5 ± 0.4 35.5
VREx 47.3 ± 3.5 16.0 ± 1.5 35.8 ± 4.6 10.9 ± 0.3 49.6 ± 4.9 42.0 ± 3.0 33.6
RSC 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.2 ± 0.2 55.7 ± 0.7 47.8 ± 0.9 38.9

C.1.8 AVERAGES

Algorithm ColoredMNIST RotatedMNIST VLCS PACS OfficeHome TerraIncognita DomainNet Avg
ERM 51.5 ± 0.1 98.0 ± 0.0 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 66.6
IRM 52.0 ± 0.1 97.7 ± 0.1 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 47.6 ± 0.8 33.9 ± 2.8 65.4
GroupDRO 52.1 ± 0.0 98.0 ± 0.0 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 43.2 ± 1.1 33.3 ± 0.2 64.8
Mixup 52.1 ± 0.2 98.0 ± 0.1 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 39.2 ± 0.1 66.7
MLDG 51.5 ± 0.1 97.9 ± 0.0 77.2 ± 0.4 84.9 ± 1.0 66.8 ± 0.6 47.7 ± 0.9 41.2 ± 0.1 66.7
CORAL 51.5 ± 0.1 98.0 ± 0.1 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 67.5
MMD 51.5 ± 0.2 97.9 ± 0.0 77.5 ± 0.9 84.6 ± 0.5 66.3 ± 0.1 42.2 ± 1.6 23.4 ± 9.5 63.3
DANN 51.5 ± 0.3 97.8 ± 0.1 78.6 ± 0.4 83.6 ± 0.4 65.9 ± 0.6 46.7 ± 0.5 38.3 ± 0.1 66.1
CDANN 51.7 ± 0.1 97.9 ± 0.1 77.5 ± 0.1 82.6 ± 0.9 65.8 ± 1.3 45.8 ± 1.6 38.3 ± 0.3 65.6
MTL 51.4 ± 0.1 97.9 ± 0.0 77.2 ± 0.4 84.6 ± 0.5 66.4 ± 0.5 45.6 ± 1.2 40.6 ± 0.1 66.2
SagNet 51.7 ± 0.0 98.0 ± 0.0 77.8 ± 0.5 86.3 ± 0.2 68.1 ± 0.1 48.6 ± 1.0 40.3 ± 0.1 67.2
ARM 56.2 ± 0.2 98.2 ± 0.1 77.6 ± 0.3 85.1 ± 0.4 64.8 ± 0.3 45.5 ± 0.3 35.5 ± 0.2 66.1
VREx 51.8 ± 0.1 97.9 ± 0.1 78.3 ± 0.2 84.9 ± 0.6 66.4 ± 0.6 46.4 ± 0.6 33.6 ± 2.9 65.6
RSC 51.7 ± 0.2 97.6 ± 0.1 77.1 ± 0.5 85.2 ± 0.9 65.5 ± 0.9 46.6 ± 1.0 38.9 ± 0.5 66.1

C.2 MODEL SELECTION: LEAVE-ONE-DOMAIN-OUT CROSS-VALIDATION

C.2.1 COLOREDMNIST

Algorithm +90% +80% -90% Avg
ERM 50.0 ± 0.2 50.1 ± 0.2 10.0 ± 0.0 36.7
IRM 46.7 ± 2.4 51.2 ± 0.3 23.1 ± 10.7 40.3
GroupDRO 50.1 ± 0.5 50.0 ± 0.5 10.2 ± 0.1 36.8
Mixup 36.6 ± 10.9 53.4 ± 5.9 10.2 ± 0.1 33.4
MLDG 50.1 ± 0.6 50.1 ± 0.3 10.0 ± 0.1 36.7
CORAL 49.5 ± 0.0 59.5 ± 8.2 10.2 ± 0.1 39.7
MMD 50.3 ± 0.2 50.0 ± 0.4 9.9 ± 0.2 36.8
DANN 49.9 ± 0.1 62.1 ± 7.0 10.0 ± 0.1 40.7
CDANN 63.2 ± 10.1 44.4 ± 4.5 9.9 ± 0.2 39.1
MTL 44.3 ± 4.9 50.7 ± 0.0 10.1 ± 0.1 35.0
SagNet 49.9 ± 0.4 49.7 ± 0.3 10.0 ± 0.1 36.5
ARM 50.0 ± 0.3 50.1 ± 0.3 10.2 ± 0.0 36.8
VREx 50.2 ± 0.4 50.5 ± 0.5 10.1 ± 0.0 36.9
RSC 49.6 ± 0.3 49.7 ± 0.4 10.1 ± 0.0 36.5
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C.2.2 ROTATEDMNIST

Algorithm 0 15 30 45 60 75 Avg
ERM 95.3 ± 0.2 98.9 ± 0.1 98.9 ± 0.1 98.8 ± 0.1 98.5 ± 0.1 96.2 ± 0.2 97.7
IRM 94.5 ± 0.5 98.2 ± 0.2 98.7 ± 0.1 96.6 ± 1.5 98.4 ± 0.1 95.8 ± 0.1 97.0
GroupDRO 95.7 ± 0.3 98.7 ± 0.1 98.9 ± 0.1 98.6 ± 0.2 98.6 ± 0.2 95.3 ± 0.9 97.6
Mixup 94.8 ± 0.4 98.8 ± 0.0 98.9 ± 0.1 99.0 ± 0.1 98.9 ± 0.0 96.4 ± 0.3 97.8
MLDG 94.3 ± 0.4 98.8 ± 0.1 99.0 ± 0.1 98.8 ± 0.1 98.8 ± 0.1 96.0 ± 0.3 97.6
CORAL 95.7 ± 0.5 98.5 ± 0.2 98.9 ± 0.2 98.6 ± 0.2 98.8 ± 0.1 96.3 ± 0.2 97.8
MMD 95.8 ± 0.2 98.7 ± 0.1 99.0 ± 0.0 98.8 ± 0.1 98.7 ± 0.1 96.1 ± 0.2 97.8
DANN 95.1 ± 0.5 98.3 ± 0.5 98.5 ± 0.1 99.0 ± 0.1 98.6 ± 0.1 96.1 ± 0.3 97.6
CDANN 94.3 ± 0.5 98.4 ± 0.3 98.9 ± 0.1 98.7 ± 0.1 98.9 ± 0.1 95.7 ± 0.4 97.5
MTL 95.5 ± 0.3 98.6 ± 0.3 98.8 ± 0.1 99.0 ± 0.1 99.0 ± 0.1 95.6 ± 0.3 97.8
SagNet 94.0 ± 1.6 98.7 ± 0.2 98.9 ± 0.1 99.1 ± 0.0 98.8 ± 0.1 74.2 ± 16.5 94.0
ARM 95.8 ± 0.1 99.0 ± 0.1 99.0 ± 0.0 98.9 ± 0.1 98.8 ± 0.1 96.9 ± 0.3 98.1
VREx 95.8 ± 0.2 98.7 ± 0.0 98.5 ± 0.1 98.9 ± 0.1 74.0 ± 20.1 95.5 ± 0.5 93.6
RSC 94.6 ± 0.0 98.4 ± 0.2 99.0 ± 0.1 98.9 ± 0.0 98.8 ± 0.1 95.9 ± 0.4 97.6

C.2.3 VLCS

Algorithm C L S V Avg
ERM 98.0 ± 0.4 62.6 ± 0.9 70.8 ± 1.9 77.5 ± 1.9 77.2
IRM 98.6 ± 0.3 66.0 ± 1.1 69.3 ± 0.9 71.5 ± 1.9 76.3
GroupDRO 98.1 ± 0.3 66.4 ± 0.9 71.0 ± 0.3 76.1 ± 1.4 77.9
Mixup 98.4 ± 0.3 63.4 ± 0.7 72.9 ± 0.8 76.1 ± 1.2 77.7
MLDG 98.5 ± 0.3 61.7 ± 1.2 73.6 ± 1.8 75.0 ± 0.8 77.2
CORAL 96.9 ± 0.9 65.7 ± 1.2 73.3 ± 0.7 78.7 ± 0.8 78.7
MMD 98.3 ± 0.1 65.6 ± 0.7 69.7 ± 1.0 75.7 ± 0.9 77.3
DANN 97.3 ± 1.3 63.7 ± 1.3 72.6 ± 1.4 74.2 ± 1.7 76.9
CDANN 97.6 ± 0.6 63.4 ± 0.8 70.5 ± 1.4 78.6 ± 0.5 77.5
MTL 97.6 ± 0.6 60.6 ± 1.3 71.0 ± 1.2 77.2 ± 0.7 76.6
SagNet 97.3 ± 0.4 61.6 ± 0.8 73.4 ± 1.9 77.6 ± 0.4 77.5
ARM 97.2 ± 0.5 62.7 ± 1.5 70.6 ± 0.6 75.8 ± 0.9 76.6
VREx 96.9 ± 0.3 64.8 ± 2.0 69.7 ± 1.8 75.5 ± 1.7 76.7
RSC 97.5 ± 0.6 63.1 ± 1.2 73.0 ± 1.3 76.2 ± 0.5 77.5

C.2.4 PACS

Algorithm A C P S Avg
ERM 83.2 ± 1.3 76.8 ± 1.7 97.2 ± 0.3 74.8 ± 1.3 83.0
IRM 81.7 ± 2.4 77.0 ± 1.3 96.3 ± 0.2 71.1 ± 2.2 81.5
GroupDRO 84.4 ± 0.7 77.3 ± 0.8 96.8 ± 0.8 75.6 ± 1.4 83.5
Mixup 85.2 ± 1.9 77.0 ± 1.7 96.8 ± 0.8 73.9 ± 1.6 83.2
MLDG 81.4 ± 3.6 77.9 ± 2.3 96.2 ± 0.3 76.1 ± 2.1 82.9
CORAL 80.5 ± 2.8 74.5 ± 0.4 96.8 ± 0.3 78.6 ± 1.4 82.6
MMD 84.9 ± 1.7 75.1 ± 2.0 96.1 ± 0.9 76.5 ± 1.5 83.2
DANN 84.3 ± 2.8 72.4 ± 2.8 96.5 ± 0.8 70.8 ± 1.3 81.0
CDANN 78.3 ± 2.8 73.8 ± 1.6 96.4 ± 0.5 66.8 ± 5.5 78.8
MTL 85.6 ± 1.5 78.9 ± 0.6 97.1 ± 0.3 73.1 ± 2.7 83.7
SagNet 81.1 ± 1.9 75.4 ± 1.3 95.7 ± 0.9 77.2 ± 0.6 82.3
ARM 85.9 ± 0.3 73.3 ± 1.9 95.6 ± 0.4 72.1 ± 2.4 81.7
VREx 81.6 ± 4.0 74.1 ± 0.3 96.9 ± 0.4 72.8 ± 2.1 81.3
RSC 83.7 ± 1.7 82.9 ± 1.1 95.6 ± 0.7 68.1 ± 1.5 82.6
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C.2.5 OFFICEHOME

Algorithm A C P R Avg
ERM 61.1 ± 0.9 50.7 ± 0.6 74.6 ± 0.3 76.4 ± 0.6 65.7
IRM 58.2 ± 1.2 51.6 ± 1.2 73.3 ± 2.2 74.1 ± 1.7 64.3
GroupDRO 59.9 ± 0.4 51.0 ± 0.4 73.7 ± 0.3 76.0 ± 0.2 65.2
Mixup 61.4 ± 0.5 53.0 ± 0.3 75.8 ± 0.2 77.7 ± 0.3 67.0
MLDG 60.5 ± 1.4 51.9 ± 0.2 74.4 ± 0.6 77.6 ± 0.4 66.1
CORAL 64.5 ± 0.8 54.8 ± 0.2 76.6 ± 0.3 78.1 ± 0.2 68.5
MMD 60.8 ± 0.7 53.7 ± 0.5 50.2 ± 19.9 76.0 ± 0.7 60.2
DANN 60.2 ± 1.3 52.2 ± 0.9 71.3 ± 2.0 76.0 ± 0.6 64.9
CDANN 58.7 ± 2.9 49.0 ± 2.1 73.6 ± 1.0 76.0 ± 1.1 64.3
MTL 59.1 ± 0.3 52.1 ± 1.2 74.7 ± 0.4 77.0 ± 0.6 65.7
SagNet 63.0 ± 0.8 54.0 ± 0.3 76.6 ± 0.3 76.8 ± 0.4 67.6
ARM 58.7 ± 0.8 49.8 ± 1.1 73.1 ± 0.5 75.9 ± 0.1 64.4
VREx 57.6 ± 3.4 51.3 ± 1.3 74.9 ± 0.2 75.8 ± 0.7 64.9
RSC 61.6 ± 1.0 51.1 ± 0.8 74.8 ± 1.1 75.7 ± 0.9 65.8

C.2.6 TERRAINCOGNITA

Algorithm L100 L38 L43 L46 Avg
ERM 34.4 ± 5.6 38.1 ± 4.0 55.7 ± 1.0 37.4 ± 1.1 41.4
IRM 46.7 ± 1.8 40.9 ± 2.1 52.2 ± 3.3 24.9 ± 10.0 41.2
GroupDRO 45.2 ± 6.2 40.1 ± 2.0 55.8 ± 1.4 38.3 ± 4.2 44.9
Mixup 59.7 ± 1.5 41.3 ± 2.1 55.9 ± 0.8 37.9 ± 1.5 48.7
MLDG 51.0 ± 1.9 39.2 ± 0.2 56.2 ± 1.1 38.3 ± 2.4 46.2
CORAL 52.4 ± 7.2 39.7 ± 1.5 56.1 ± 0.9 37.1 ± 2.2 46.3
MMD 49.1 ± 2.2 42.0 ± 1.6 55.3 ± 1.9 39.5 ± 2.0 46.5
DANN 46.9 ± 3.9 38.8 ± 1.1 55.5 ± 1.4 36.2 ± 1.1 44.4
CDANN 43.9 ± 7.3 32.5 ± 4.4 41.0 ± 7.8 42.4 ± 1.8 39.9
MTL 42.8 ± 4.6 43.9 ± 1.1 55.5 ± 0.8 37.5 ± 1.9 44.9
SagNet 48.1 ± 2.4 47.1 ± 0.8 54.4 ± 1.1 39.1 ± 1.8 47.2
ARM 48.9 ± 5.3 34.4 ± 3.5 51.9 ± 0.8 35.4 ± 2.3 42.6
VREx 46.4 ± 1.4 25.5 ± 5.8 39.6 ± 12.8 37.8 ± 3.6 37.3
RSC 40.0 ± 1.3 32.1 ± 2.5 53.9 ± 0.5 34.2 ± 0.2 40.0

C.2.7 DOMAINNET

Algorithm clip info paint quick real sketch Avg
ERM 58.1 ± 0.3 17.8 ± 0.3 47.0 ± 0.3 12.2 ± 0.4 59.2 ± 0.7 49.5 ± 0.6 40.6
IRM 47.5 ± 2.7 15.0 ± 1.5 37.3 ± 5.1 10.9 ± 0.5 48.0 ± 5.4 42.3 ± 3.1 33.5
GroupDRO 47.2 ± 0.5 17.0 ± 0.6 33.8 ± 0.5 9.2 ± 0.4 51.6 ± 0.4 39.2 ± 1.2 33.0
Mixup 54.4 ± 0.6 18.0 ± 0.4 44.5 ± 0.5 11.5 ± 0.2 55.8 ± 1.1 46.9 ± 0.2 38.5
MLDG 58.3 ± 0.7 19.3 ± 0.2 45.8 ± 0.7 13.2 ± 0.3 59.4 ± 0.2 49.8 ± 0.3 41.0
CORAL 59.2 ± 0.1 19.5 ± 0.3 46.2 ± 0.1 13.4 ± 0.4 59.1 ± 0.5 49.5 ± 0.8 41.1
MMD 32.2 ± 13.3 11.0 ± 4.6 26.8 ± 11.3 8.7 ± 2.1 32.7 ± 13.8 28.9 ± 11.9 23.4
DANN 52.7 ± 0.1 18.0 ± 0.3 44.2 ± 0.7 11.8 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.2
CDANN 53.1 ± 0.9 17.3 ± 0.1 43.7 ± 0.9 11.6 ± 0.6 56.2 ± 0.4 45.9 ± 0.5 38.0
MTL 57.3 ± 0.3 19.3 ± 0.2 45.7 ± 0.4 12.5 ± 0.1 59.3 ± 0.2 49.2 ± 0.1 40.6
SagNet 56.2 ± 0.3 18.9 ± 0.2 46.2 ± 0.5 12.6 ± 0.6 58.2 ± 0.6 49.1 ± 0.2 40.2
ARM 49.0 ± 0.7 15.8 ± 0.3 40.8 ± 1.1 9.4 ± 0.2 53.0 ± 0.4 43.4 ± 0.3 35.2
VREx 46.5 ± 4.1 15.6 ± 1.8 35.8 ± 4.6 10.9 ± 0.3 49.6 ± 4.9 42.0 ± 3.0 33.4
RSC 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.2 ± 0.2 55.7 ± 0.7 47.8 ± 0.9 38.9
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C.2.8 AVERAGES

Algorithm ColoredMNIST RotatedMNIST VLCS PACS OfficeHome TerraIncognita DomainNet Avg
ERM 36.7 ± 0.1 97.7 ± 0.0 77.2 ± 0.4 83.0 ± 0.7 65.7 ± 0.5 41.4 ± 1.4 40.6 ± 0.2 63.2
IRM 40.3 ± 4.2 97.0 ± 0.2 76.3 ± 0.6 81.5 ± 0.8 64.3 ± 1.5 41.2 ± 3.6 33.5 ± 3.0 62.0
GroupDRO 36.8 ± 0.1 97.6 ± 0.1 77.9 ± 0.5 83.5 ± 0.2 65.2 ± 0.2 44.9 ± 1.4 33.0 ± 0.3 62.7
Mixup 33.4 ± 4.7 97.8 ± 0.0 77.7 ± 0.6 83.2 ± 0.4 67.0 ± 0.2 48.7 ± 0.4 38.5 ± 0.3 63.8
MLDG 36.7 ± 0.2 97.6 ± 0.0 77.2 ± 0.9 82.9 ± 1.7 66.1 ± 0.5 46.2 ± 0.9 41.0 ± 0.2 64.0
CORAL 39.7 ± 2.8 97.8 ± 0.1 78.7 ± 0.4 82.6 ± 0.5 68.5 ± 0.2 46.3 ± 1.7 41.1 ± 0.1 65.0
MMD 36.8 ± 0.1 97.8 ± 0.1 77.3 ± 0.5 83.2 ± 0.2 60.2 ± 5.2 46.5 ± 1.5 23.4 ± 9.5 60.7
DANN 40.7 ± 2.3 97.6 ± 0.2 76.9 ± 0.4 81.0 ± 1.1 64.9 ± 1.2 44.4 ± 1.1 38.2 ± 0.2 63.4
CDANN 39.1 ± 4.4 97.5 ± 0.2 77.5 ± 0.2 78.8 ± 2.2 64.3 ± 1.7 39.9 ± 3.2 38.0 ± 0.1 62.2
MTL 35.0 ± 1.7 97.8 ± 0.1 76.6 ± 0.5 83.7 ± 0.4 65.7 ± 0.5 44.9 ± 1.2 40.6 ± 0.1 63.5
SagNet 36.5 ± 0.1 94.0 ± 3.0 77.5 ± 0.3 82.3 ± 0.1 67.6 ± 0.3 47.2 ± 0.9 40.2 ± 0.2 63.6
ARM 36.8 ± 0.0 98.1 ± 0.1 76.6 ± 0.5 81.7 ± 0.2 64.4 ± 0.2 42.6 ± 2.7 35.2 ± 0.1 62.2
VREx 36.9 ± 0.3 93.6 ± 3.4 76.7 ± 1.0 81.3 ± 0.9 64.9 ± 1.3 37.3 ± 3.0 33.4 ± 3.1 60.6
RSC 36.5 ± 0.2 97.6 ± 0.1 77.5 ± 0.5 82.6 ± 0.7 65.8 ± 0.7 40.0 ± 0.8 38.9 ± 0.5 62.7

C.3 MODEL SELECTION: TEST-DOMAIN VALIDATION SET (ORACLE)

C.3.1 COLOREDMNIST

Algorithm +90% +80% -90% Avg
ERM 71.8 ± 0.4 72.9 ± 0.1 28.7 ± 0.5 57.8
IRM 72.0 ± 0.1 72.5 ± 0.3 58.5 ± 3.3 67.7
GroupDRO 73.5 ± 0.3 73.0 ± 0.3 36.8 ± 2.8 61.1
Mixup 72.5 ± 0.2 73.9 ± 0.4 28.6 ± 0.2 58.4
MLDG 71.9 ± 0.3 73.5 ± 0.2 29.1 ± 0.9 58.2
CORAL 71.1 ± 0.2 73.4 ± 0.2 31.1 ± 1.6 58.6
MMD 69.0 ± 2.3 70.4 ± 1.6 50.6 ± 0.2 63.3
DANN 72.4 ± 0.5 73.9 ± 0.5 24.9 ± 2.7 57.0
CDANN 71.8 ± 0.5 72.9 ± 0.1 33.8 ± 6.4 59.5
MTL 71.2 ± 0.2 73.5 ± 0.2 28.0 ± 0.6 57.6
SagNet 72.1 ± 0.3 73.2 ± 0.3 29.4 ± 0.5 58.2
ARM 84.9 ± 0.9 76.8 ± 0.6 27.9 ± 2.1 63.2
VREx 72.8 ± 0.3 73.0 ± 0.3 55.2 ± 4.0 67.0
RSC 72.0 ± 0.1 73.2 ± 0.1 30.2 ± 1.6 58.5

C.3.2 ROTATEDMNIST

Algorithm 0 15 30 45 60 75 Avg
ERM 95.3 ± 0.2 98.7 ± 0.1 98.9 ± 0.1 98.7 ± 0.2 98.9 ± 0.0 96.2 ± 0.2 97.8
IRM 94.9 ± 0.6 98.7 ± 0.2 98.6 ± 0.1 98.6 ± 0.2 98.7 ± 0.1 95.2 ± 0.3 97.5
GroupDRO 95.9 ± 0.1 99.0 ± 0.1 98.9 ± 0.1 98.8 ± 0.1 98.6 ± 0.1 96.3 ± 0.4 97.9
Mixup 95.8 ± 0.3 98.7 ± 0.0 99.0 ± 0.1 98.8 ± 0.1 98.8 ± 0.1 96.6 ± 0.2 98.0
MLDG 95.7 ± 0.2 98.9 ± 0.1 98.8 ± 0.1 98.9 ± 0.1 98.6 ± 0.1 95.8 ± 0.4 97.8
CORAL 96.2 ± 0.2 98.8 ± 0.1 98.8 ± 0.1 98.8 ± 0.1 98.9 ± 0.1 96.4 ± 0.2 98.0
MMD 96.1 ± 0.2 98.9 ± 0.0 99.0 ± 0.0 98.8 ± 0.0 98.9 ± 0.0 96.4 ± 0.2 98.0
DANN 95.9 ± 0.1 98.9 ± 0.1 98.6 ± 0.2 98.7 ± 0.1 98.9 ± 0.0 96.3 ± 0.3 97.9
CDANN 95.9 ± 0.2 98.8 ± 0.0 98.7 ± 0.1 98.9 ± 0.1 98.8 ± 0.1 96.1 ± 0.3 97.9
MTL 96.1 ± 0.2 98.9 ± 0.0 99.0 ± 0.0 98.7 ± 0.1 99.0 ± 0.0 95.8 ± 0.3 97.9
SagNet 95.9 ± 0.1 99.0 ± 0.1 98.9 ± 0.1 98.6 ± 0.1 98.8 ± 0.1 96.3 ± 0.1 97.9
ARM 95.9 ± 0.4 99.0 ± 0.1 98.8 ± 0.1 98.9 ± 0.1 99.1 ± 0.1 96.7 ± 0.2 98.1
VREx 95.5 ± 0.2 99.0 ± 0.0 98.7 ± 0.2 98.8 ± 0.1 98.8 ± 0.0 96.4 ± 0.0 97.9
RSC 95.4 ± 0.1 98.6 ± 0.1 98.6 ± 0.1 98.9 ± 0.0 98.8 ± 0.1 95.4 ± 0.3 97.6
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C.3.3 VLCS

Algorithm C L S V Avg
ERM 97.6 ± 0.3 67.9 ± 0.7 70.9 ± 0.2 74.0 ± 0.6 77.6
IRM 97.3 ± 0.2 66.7 ± 0.1 71.0 ± 2.3 72.8 ± 0.4 76.9
GroupDRO 97.7 ± 0.2 65.9 ± 0.2 72.8 ± 0.8 73.4 ± 1.3 77.4
Mixup 97.8 ± 0.4 67.2 ± 0.4 71.5 ± 0.2 75.7 ± 0.6 78.1
MLDG 97.1 ± 0.5 66.6 ± 0.5 71.5 ± 0.1 75.0 ± 0.9 77.5
CORAL 97.3 ± 0.2 67.5 ± 0.6 71.6 ± 0.6 74.5 ± 0.0 77.7
MMD 98.8 ± 0.0 66.4 ± 0.4 70.8 ± 0.5 75.6 ± 0.4 77.9
DANN 99.0 ± 0.2 66.3 ± 1.2 73.4 ± 1.4 80.1 ± 0.5 79.7
CDANN 98.2 ± 0.1 68.8 ± 0.5 74.3 ± 0.6 78.1 ± 0.5 79.9
MTL 97.9 ± 0.7 66.1 ± 0.7 72.0 ± 0.4 74.9 ± 1.1 77.7
SagNet 97.4 ± 0.3 66.4 ± 0.4 71.6 ± 0.1 75.0 ± 0.8 77.6
ARM 97.6 ± 0.6 66.5 ± 0.3 72.7 ± 0.6 74.4 ± 0.7 77.8
VREx 98.4 ± 0.2 66.4 ± 0.7 72.8 ± 0.1 75.0 ± 1.4 78.1
RSC 98.0 ± 0.4 67.2 ± 0.3 70.3 ± 1.3 75.6 ± 0.4 77.8

C.3.4 PACS

Algorithm A C P S Avg
ERM 86.5 ± 1.0 81.3 ± 0.6 96.2 ± 0.3 82.7 ± 1.1 86.7
IRM 84.2 ± 0.9 79.7 ± 1.5 95.9 ± 0.4 78.3 ± 2.1 84.5
GroupDRO 87.5 ± 0.5 82.9 ± 0.6 97.1 ± 0.3 81.1 ± 1.2 87.1
Mixup 87.5 ± 0.4 81.6 ± 0.7 97.4 ± 0.2 80.8 ± 0.9 86.8
MLDG 87.0 ± 1.2 82.5 ± 0.9 96.7 ± 0.3 81.2 ± 0.6 86.8
CORAL 86.6 ± 0.8 81.8 ± 0.9 97.1 ± 0.5 82.7 ± 0.6 87.1
MMD 88.1 ± 0.8 82.6 ± 0.7 97.1 ± 0.5 81.2 ± 1.2 87.2
DANN 87.0 ± 0.4 80.3 ± 0.6 96.8 ± 0.3 76.9 ± 1.1 85.2
CDANN 87.7 ± 0.6 80.7 ± 1.2 97.3 ± 0.4 77.6 ± 1.5 85.8
MTL 87.0 ± 0.2 82.7 ± 0.8 96.5 ± 0.7 80.5 ± 0.8 86.7
SagNet 87.4 ± 0.5 81.2 ± 1.2 96.3 ± 0.8 80.7 ± 1.1 86.4
ARM 85.0 ± 1.2 81.4 ± 0.2 95.9 ± 0.3 80.9 ± 0.5 85.8
VREx 87.8 ± 1.2 81.8 ± 0.7 97.4 ± 0.2 82.1 ± 0.7 87.2
RSC 86.0 ± 0.7 81.8 ± 0.9 96.8 ± 0.7 80.4 ± 0.5 86.2

C.3.5 OFFICEHOME

Algorithm A C P R Avg
ERM 61.7 ± 0.7 53.4 ± 0.3 74.1 ± 0.4 76.2 ± 0.6 66.4
IRM 56.4 ± 3.2 51.2 ± 2.3 71.7 ± 2.7 72.7 ± 2.7 63.0
GroupDRO 60.5 ± 1.6 53.1 ± 0.3 75.5 ± 0.3 75.9 ± 0.7 66.2
Mixup 63.5 ± 0.2 54.6 ± 0.4 76.0 ± 0.3 78.0 ± 0.7 68.0
MLDG 60.5 ± 0.7 54.2 ± 0.5 75.0 ± 0.2 76.7 ± 0.5 66.6
CORAL 64.8 ± 0.8 54.1 ± 0.9 76.5 ± 0.4 78.2 ± 0.4 68.4
MMD 60.4 ± 1.0 53.4 ± 0.5 74.9 ± 0.1 76.1 ± 0.7 66.2
DANN 60.6 ± 1.4 51.8 ± 0.7 73.4 ± 0.5 75.5 ± 0.9 65.3
CDANN 57.9 ± 0.2 52.1 ± 1.2 74.9 ± 0.7 76.2 ± 0.2 65.3
MTL 60.7 ± 0.8 53.5 ± 1.3 75.2 ± 0.6 76.6 ± 0.6 66.5
SagNet 62.7 ± 0.5 53.6 ± 0.5 76.0 ± 0.3 77.8 ± 0.1 67.5
ARM 58.8 ± 0.5 51.8 ± 0.7 74.0 ± 0.1 74.4 ± 0.2 64.8
VREx 59.6 ± 1.0 53.3 ± 0.3 73.2 ± 0.5 76.6 ± 0.4 65.7
RSC 61.7 ± 0.8 53.0 ± 0.9 74.8 ± 0.8 76.3 ± 0.5 66.5

27



Published as a conference paper at ICLR 2021

C.3.6 TERRAINCOGNITA

Algorithm L100 L38 L43 L46 Avg
ERM 59.4 ± 0.9 49.3 ± 0.6 60.1 ± 1.1 43.2 ± 0.5 53.0
IRM 56.5 ± 2.5 49.8 ± 1.5 57.1 ± 2.2 38.6 ± 1.0 50.5
GroupDRO 60.4 ± 1.5 48.3 ± 0.4 58.6 ± 0.8 42.2 ± 0.8 52.4
Mixup 67.6 ± 1.8 51.0 ± 1.3 59.0 ± 0.0 40.0 ± 1.1 54.4
MLDG 59.2 ± 0.1 49.0 ± 0.9 58.4 ± 0.9 41.4 ± 1.0 52.0
CORAL 60.4 ± 0.9 47.2 ± 0.5 59.3 ± 0.4 44.4 ± 0.4 52.8
MMD 60.6 ± 1.1 45.9 ± 0.3 57.8 ± 0.5 43.8 ± 1.2 52.0
DANN 55.2 ± 1.9 47.0 ± 0.7 57.2 ± 0.9 42.9 ± 0.9 50.6
CDANN 56.3 ± 2.0 47.1 ± 0.9 57.2 ± 1.1 42.4 ± 0.8 50.8
MTL 58.4 ± 2.1 48.4 ± 0.8 58.9 ± 0.6 43.0 ± 1.3 52.2
SagNet 56.4 ± 1.9 50.5 ± 2.3 59.1 ± 0.5 44.1 ± 0.6 52.5
ARM 60.1 ± 1.5 48.3 ± 1.6 55.3 ± 0.6 40.9 ± 1.1 51.2
VREx 56.8 ± 1.7 46.5 ± 0.5 58.4 ± 0.3 43.8 ± 0.3 51.4
RSC 59.9 ± 1.4 46.7 ± 0.4 57.8 ± 0.5 44.3 ± 0.6 52.1

C.3.7 DOMAINNET

Algorithm clip info paint quick real sketch Avg
ERM 58.6 ± 0.3 19.2 ± 0.2 47.0 ± 0.3 13.2 ± 0.2 59.9 ± 0.3 49.8 ± 0.4 41.3
IRM 40.4 ± 6.6 12.1 ± 2.7 31.4 ± 5.7 9.8 ± 1.2 37.7 ± 9.0 36.7 ± 5.3 28.0
GroupDRO 47.2 ± 0.5 17.5 ± 0.4 34.2 ± 0.3 9.2 ± 0.4 51.9 ± 0.5 40.1 ± 0.6 33.4
Mixup 55.6 ± 0.1 18.7 ± 0.4 45.1 ± 0.5 12.8 ± 0.3 57.6 ± 0.5 48.2 ± 0.4 39.6
MLDG 59.3 ± 0.1 19.6 ± 0.2 46.8 ± 0.2 13.4 ± 0.2 60.1 ± 0.4 50.4 ± 0.3 41.6
CORAL 59.2 ± 0.1 19.9 ± 0.2 47.4 ± 0.2 14.0 ± 0.4 59.8 ± 0.2 50.4 ± 0.4 41.8
MMD 32.2 ± 13.3 11.2 ± 4.5 26.8 ± 11.3 8.8 ± 2.2 32.7 ± 13.8 29.0 ± 11.8 23.5
DANN 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.9 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3
CDANN 54.6 ± 0.4 17.3 ± 0.1 44.2 ± 0.7 12.8 ± 0.2 56.2 ± 0.4 45.9 ± 0.5 38.5
MTL 58.0 ± 0.4 19.2 ± 0.2 46.2 ± 0.1 12.7 ± 0.2 59.9 ± 0.1 49.0 ± 0.0 40.8
SagNet 57.7 ± 0.3 19.1 ± 0.1 46.3 ± 0.5 13.5 ± 0.4 58.9 ± 0.4 49.5 ± 0.2 40.8
ARM 49.6 ± 0.4 16.5 ± 0.3 41.5 ± 0.8 10.8 ± 0.1 53.5 ± 0.3 43.9 ± 0.4 36.0
VREx 43.3 ± 4.5 14.1 ± 1.8 32.5 ± 5.0 9.8 ± 1.1 43.5 ± 5.6 37.7 ± 4.5 30.1
RSC 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.5 ± 0.1 55.7 ± 0.7 47.8 ± 0.9 38.9

C.3.8 AVERAGES

Algorithm ColoredMNIST RotatedMNIST VLCS PACS OfficeHome TerraIncognita DomainNet Avg
ERM 57.8 ± 0.2 97.8 ± 0.1 77.6 ± 0.3 86.7 ± 0.3 66.4 ± 0.5 53.0 ± 0.3 41.3 ± 0.1 68.7
IRM 67.7 ± 1.2 97.5 ± 0.2 76.9 ± 0.6 84.5 ± 1.1 63.0 ± 2.7 50.5 ± 0.7 28.0 ± 5.1 66.9
GroupDRO 61.1 ± 0.9 97.9 ± 0.1 77.4 ± 0.5 87.1 ± 0.1 66.2 ± 0.6 52.4 ± 0.1 33.4 ± 0.3 67.9
Mixup 58.4 ± 0.2 98.0 ± 0.1 78.1 ± 0.3 86.8 ± 0.3 68.0 ± 0.2 54.4 ± 0.3 39.6 ± 0.1 69.0
MLDG 58.2 ± 0.4 97.8 ± 0.1 77.5 ± 0.1 86.8 ± 0.4 66.6 ± 0.3 52.0 ± 0.1 41.6 ± 0.1 68.7
CORAL 58.6 ± 0.5 98.0 ± 0.0 77.7 ± 0.2 87.1 ± 0.5 68.4 ± 0.2 52.8 ± 0.2 41.8 ± 0.1 69.2
MMD 63.3 ± 1.3 98.0 ± 0.1 77.9 ± 0.1 87.2 ± 0.1 66.2 ± 0.3 52.0 ± 0.4 23.5 ± 9.4 66.9
DANN 57.0 ± 1.0 97.9 ± 0.1 79.7 ± 0.5 85.2 ± 0.2 65.3 ± 0.8 50.6 ± 0.4 38.3 ± 0.1 67.7
CDANN 59.5 ± 2.0 97.9 ± 0.0 79.9 ± 0.2 85.8 ± 0.8 65.3 ± 0.5 50.8 ± 0.6 38.5 ± 0.2 68.2
MTL 57.6 ± 0.3 97.9 ± 0.1 77.7 ± 0.5 86.7 ± 0.2 66.5 ± 0.4 52.2 ± 0.4 40.8 ± 0.1 68.5
SagNet 58.2 ± 0.3 97.9 ± 0.0 77.6 ± 0.1 86.4 ± 0.4 67.5 ± 0.2 52.5 ± 0.4 40.8 ± 0.2 68.7
ARM 63.2 ± 0.7 98.1 ± 0.1 77.8 ± 0.3 85.8 ± 0.2 64.8 ± 0.4 51.2 ± 0.5 36.0 ± 0.2 68.1
VREx 67.0 ± 1.3 97.9 ± 0.1 78.1 ± 0.2 87.2 ± 0.6 65.7 ± 0.3 51.4 ± 0.5 30.1 ± 3.7 68.2
RSC 58.5 ± 0.5 97.6 ± 0.1 77.8 ± 0.6 86.2 ± 0.5 66.5 ± 0.6 52.1 ± 0.2 38.9 ± 0.6 68.2
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C.4 RESULTS OF A LARGER PACS SWEEP WITH 100 HYPERPARAMETER TRIALS

ERM, model selection: A C P S Avg
training-domain 86.6 ± 0.8 79.7 ± 0.6 96.6 ± 0.4 77.8 ± 0.8 85.2

leave-one-out-domain 86.4 ± 1.1 78.2 ± 1.0 96.8 ± 0.2 76.0 ± 2.1 84.4

test-domain (oracle) 89.3 ± 0.3 82.2 ± 0.5 97.6 ± 0.2 82.7 ± 1.1 88.0
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