

---

# ePC: FAST AND DEEP PREDICTIVE CODING FOR DIGITAL HARDWARE

000  
001  
002  
003  
004  
005 **Anonymous authors**  
006 Paper under double-blind review  
007  
008  
009  
010  
011  
012  
013

## ABSTRACT

014 Predictive Coding (PC) offers a bio-inspired alternative to backpropagation for  
015 neural network training, described as a physical system minimizing its internal  
016 energy. However, in practice, PC is predominantly *digitally simulated*, requiring  
017 excessive amounts of compute while struggling to scale to deeper architectures.  
018 This paper reformulates PC to overcome this hardware-algorithm mismatch. First,  
019 we uncover how the canonical state-based formulation of PC (sPC) is, by design,  
020 deeply inefficient in digital simulation, inevitably resulting in exponential signal  
021 decay that stalls the entire minimization process. Then, to overcome this funda-  
022 mental limitation, we introduce error-based PC (ePC), a novel reparameterization  
023 of PC which does not suffer from signal decay. Though no longer biologically  
024 plausible, ePC numerically computes exact PC weights gradients and runs or-  
025 ders of magnitude faster than sPC. Experiments across multiple architectures and  
026 datasets demonstrate that ePC matches backpropagation’s performance even for  
027 deeper models where sPC struggles. Besides practical improvements, our work  
028 provides theoretical insight into PC dynamics and establishes a foundation for  
029 scaling PC-based learning to deeper architectures on digital hardware and beyond.  
030  
031

## 1 INTRODUCTION

032  
033 Originally a neuroscience theory of cortical function (Friston and Kiebel, 2009), Predictive Coding  
034 (PC) has recently been reformulated as a general machine learning algorithm, offering a bio-inspired  
035 alternative to backpropagation with distinct learning dynamics (Bogacz, 2017; Whittington and Bo-  
036 gacz, 2017, 2019; Millidge et al., 2022b). Unlike backprop, PC produces weight gradients through a  
037 two-step process: first, infer the optimal state of neuron activations that should result from learning,  
038 and only then update the weights. This approach of “inferring activity before plasticity” (Song et  
039 al., 2024) has been found advantageous for learning: it improves the geometry of the loss landscape  
040 (Innocenti et al., 2024b) and reduces interference between competing training signals, leading to  
041 improved learning capabilities in online and continual learning settings (Song et al., 2024).

042 Our work focuses on PC’s critical first step, inferring the optimal activations, specified as an energy  
043 minimization. Concretely, each layer tries to predict the state of the next layer, continually adjusting  
044 its own state to reduce the local prediction loss (known as ‘energy’). Reminiscent of a physical  
045 process, PC would, in theory, be ideally suited for neuromorphic implementation, though no such  
046 hardware exists yet. Instead, current PC research relies on digital simulation with numerical solvers,  
047 requiring numerous iterations to reach state convergence. Due to this hardware-algorithm mismatch,  
048 PC incurs substantial overhead compared to backprop, which maps naturally to digital hardware.

049 Another scaling issue, observed by Pinchetti et al. (2025), is that, even in simple supervised settings,  
050 deeper PC-trained models often perform worse than shallower ones, in contrast to backpropagation.  
051 Recent efforts have explored this depth scaling failure from different angles. Several works observed  
052 a highly uneven energy distribution across the network (Ha et al., 2025; Pinchetti et al., 2025; Qi et  
053 al., 2025), leading to weaker weight gradients for deeper layers; however, the underlying mechanism  
remained unclear. Proposed solutions either modify PC’s weight gradient formulas (Qi et al., 2025)

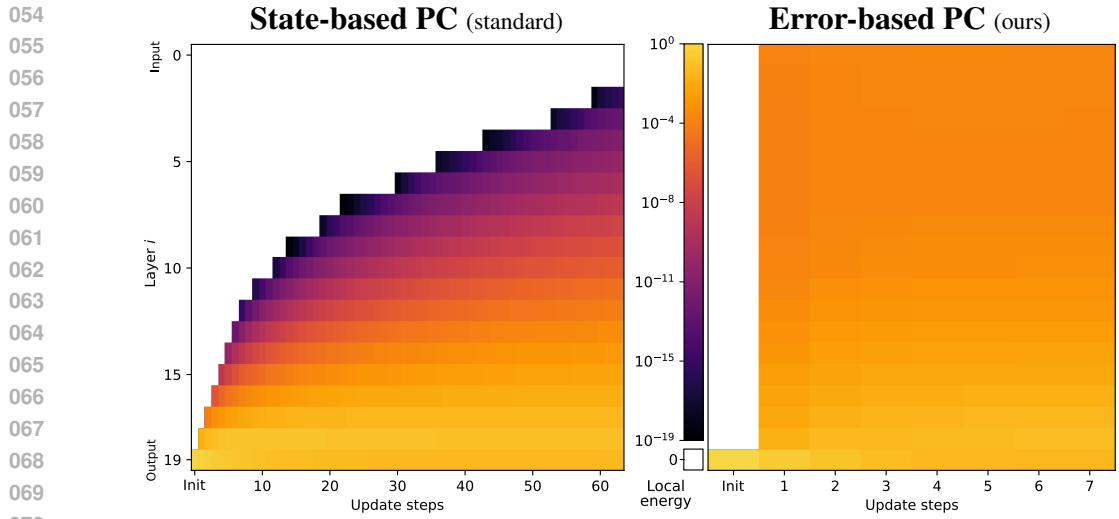


Figure 1: **Dynamics of layerwise energies during energy minimization.** Standard state-based PC struggles to propagate signals through the network, with progressively longer delays at deeper layers. By contrast, our error-based PC converges to equilibrium within just a few update steps, thanks to its global signal propagation. Results for an untrained 20-layer MLP on a random MNIST input.

or stay limited to densely-connected or residual architectures (Ha et al., 2025; Innocenti et al., 2025). A general solution for standard feedforward models using exact PC remains an open problem.

In this paper, we address the fundamental limitations of PC’s digital simulation—which currently represents nearly all practical PC research. Our work connects the seemingly disparate problems of depth scaling and computational efficiency in PC networks, uncovering a common underlying cause and providing a simple solution.

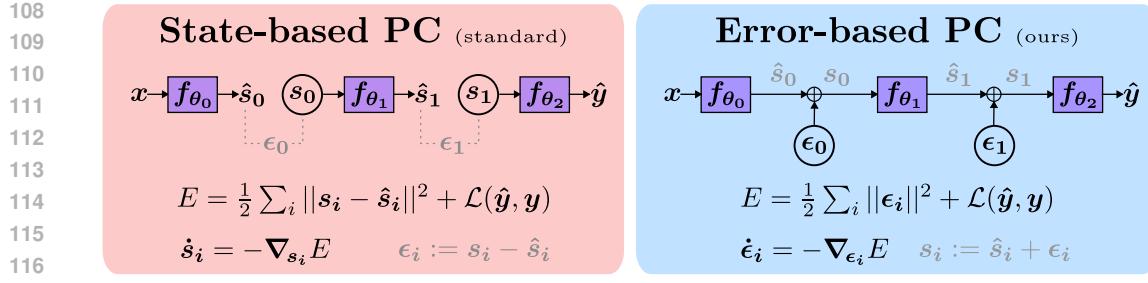
### Our contributions

- We identify a fundamental signal decay mechanism in traditional state-based PC (sPC), whereby signals attenuate exponentially as they propagate through the network (see Fig. 1), explaining both slow convergence and poor performance in deeper PC networks.
- We introduce error-based PC (ePC), a novel reparameterization of PC that eliminates signal decay by directly optimizing over prediction errors rather than faithfully simulating the physical process. Crucially, ePC provably computes the exact same state equilibrium as sPC.
- We empirically demonstrate that ePC converges up to three orders of magnitude faster than sPC on deep networks, resolving a major computational bottleneck in PC research.
- Through comprehensive experiments across architectures of varying depths, following the setup of Pinchetti et al. (2025), we demonstrate that ePC consistently achieves performance comparable to backpropagation, providing an effective solution to PC’s depth scaling issues.

**Algorithmic focus of this work** While PC originated as a neuroscience theory, our work focuses solely on its application as a machine learning algorithm. Strictly local interactions, though essential for biological systems, lead to slow convergence in digital simulations. By relaxing this constraint, ePC achieves dramatic speedups while computing the same weight gradients as sPC at equilibrium.

## 2 PREDICTIVE CODING AS AN ENERGY MINIMIZATION OVER STATES

To establish the groundwork for our contributions, we first present the canonical formulation of PC as an energy minimization over neural states. We will refer to this as *state-based PC* (sPC).



117 (a) State-based PC, the standard formulation of PC  
118 with a locally connected computational graph  
119  
120 (b) Error-based PC, our reparametrization of PC  
121 with a fully-connected (global) graph structure

Figure 2: Structural comparison of sPC (left) and ePC (right), highlighting functional equivalence

In sPC (and PC in general), each layer attempts to predict the state of the next layer. The main goal is to minimize  $E$ , the sum of all prediction errors, typically expressed as an energy function:

$$E(s, \theta) = \frac{1}{2} \sum_{i=0}^{L-1} \|s_i - \hat{s}_i\|^2 + \mathcal{L}(\hat{y}, y), \quad (1)$$

where  $s_i$  denotes the neural state at layer  $i$  and  $\hat{s}_i := f_{\theta_i}(s_{i-1})$  the parametrized prediction of  $s_i$  based on the preceding layer's state  $s_{i-1}$ , as illustrated in Fig. 2a. For ease of notation, we define  $s_{-1} := x$  (the input data) and  $\hat{y} := \hat{s}_L$  (output prediction of the target  $y$ ). The output loss  $\mathcal{L}$  may be chosen freely (Pinchetti et al., 2022), with squared error being the common choice in PC literature.

As a learning algorithm, PC's primary purpose is to produce informative gradients for training the parameters  $\theta$ . Contrary to backpropagation, sPC achieves this through purely local weight updates, relying on intermediaries (like the states) to spread the relevant learning signals across the network.

A single weight update step in sPC consists of a two-phased energy minimization of  $E(s, \theta)$ :

1. **State updates:** With the parameters  $\theta$  kept fixed, the states  $s$  evolve continuously to minimize  $E$ , until equilibrium is reached. The state dynamics for layer  $i$  follow:

$$\dot{s}_i := \frac{\partial s_i}{\partial t} = -\nabla_{s_i} E(s, \theta) = -\epsilon_i + \epsilon_{i+1} \frac{\partial f_{\theta_{i+1}}}{\partial s_i}(s_i), \quad (2)$$

where  $\epsilon_i := s_i - \hat{s}_i$  represents the layerwise prediction error.

2. **Weight update:** With  $s$  kept fixed, the parameters  $\theta$  are updated once, further minimizing  $E$ :

$$\Delta \theta_i \propto -\nabla_{\theta_i} E(s, \theta) = \epsilon_i \frac{\partial f_{\theta_i}}{\partial \theta_i}(s_{i-1}) \quad (3)$$

Full training involves repeating this procedure over numerous data batches, as in standard Deep Learning. The distinctive feature of sPC, however, is that both phases can be implemented efficiently in biological neural circuits with strictly local computation (Whittington and Bogacz, 2017, 2019).

**Finding the state equilibrium** Notice how Eq. (3) requires only the final equilibrium states, discarding the trajectory taken to reach them. The specific method used to find these states is irrelevant to PC's weight updates, allowing researchers to freely choose their preferred approach.

By far the most popular choice is to discretize Eq. (2) in time, reducing it to an SGD optimization

$$s_i \xleftarrow{\text{SGD}} s_i - \lambda \nabla_{s_i} E, \quad (\text{State update step})$$

with  $\lambda$  the state learning rate, commonly on the order of 0.01-0.1. Typically, in practice, the number of update steps  $T$  is kept constant (a hyperparameter), and convergence is simply assumed.

The PC community has also experimented with more advanced options. Some have looked into ODE solvers (Innocenti et al., 2024a) or momentum-based optimizers (Pinchetti et al., 2025). Others have explored approximate one-step regimes (Salvatori et al., 2024), sequential update orders (Alonso et al., 2024), or auxiliary networks for direct equilibrium prediction (Tschantz et al., 2023). Yet, despite these advances, substantial gaps remain in computational efficiency and overall understanding of PC.

---

162 **Feedforward state initialization** A common practice is to set the initial states  $s^{t=0}$  via a feedfor-  
163 ward pass of the input  $x$  through the network. At each layer, the prediction  $\hat{s}_i$  is copied onto  $s_i$ ,  
164 initializing the local prediction error  $\epsilon_i$  to exactly zero. Despite lacking theoretical justification, the  
165 technique is widely used due to its empirical success in accelerating the state optimization process.  
166

167 **3 THE PROBLEM OF EXPONENTIAL SIGNAL DECAY IN STATE-BASED PC**  
168

169 In this section, we uncover a previously unidentified mechanism in state-based PC networks: the  
170 exponential decay of training signal during energy minimization. This discovery represents a funda-  
171 mental limitation that affects the scalability of deep PC networks and helps explain the performance  
172 gap with backpropagation, which was observed to worsen for deeper models (Pinchetti et al., 2025).  
173

174 **3.1 SIGNAL PROPAGATION IN sPC: SMOOTH IN THEORY, SUPPRESSED IN PRACTICE**  
175

176 In sPC, after feedforward state initialization, all energies are set to zero except for the output loss  $\mathcal{L}$ .  
177 Next, during state updates, we expect a backward signal to travel continuously from output to input,  
178 advancing one layer per update step. The theory suggests a clear chain reaction: non-zero energy at  
179 any layer should induce changes in neighboring states, thereby continuously propagating the signal  
180 further down the network.  
181

182 However, our empirical observations contradict this expectation. Fig. 1 illustrates how, in practice,  
183 the signal travels discontinuously through the network, halting at deeper layers with progressively  
184 longer delays. Paradoxically, we observe that a non-zero energy at one layer fails to immediately  
185 propagate to adjacent layers, remaining dormant for multiple update steps before inducing detectable  
186 changes. Moreover, this behavior seems to scale logarithmically with time, requiring exponentially  
187 many update steps for signals to reach the bottom layers—an impractical computational requirement.  
188

189 **3.2 UNCOVERING A MECHANISM OF EXPONENTIAL SIGNAL DECAY**  
190

191 To gain some insight into the cause of this suppressed signal propagation, we can track the state  
192 dynamics at the start of sPC. Below, in Fig. 3, we present a step-by-step description of the initial  
193 waveform travelling backwards through the network. Our analysis uncovers a signal decay mech-  
194 anism: when an energy gradient propagates from one layer to the next, it is attenuated by the state  
195 learning rate  $\lambda$  (necessarily  $< 1$  for stability). With each subsequent layer traversal, this attenuation  
196 compounds multiplicatively, resulting in exponential decay with respect to network depth.  
197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

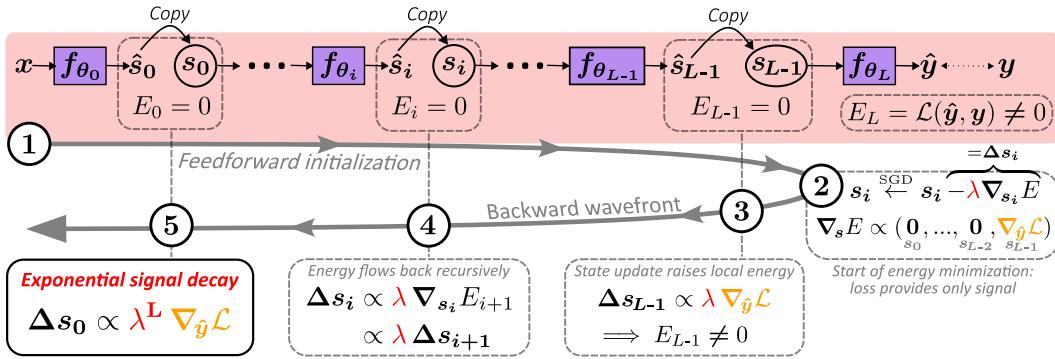
212

213

214

215

216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269



### Step-by-step dynamics of state-based Predictive Coding for input $x$ and target $y$

- Feedforward initialization:** Due to state copying, all internal energies  $E_0, \dots, E_{L-1}$  start at zero, with in general a non-zero output energy  $E_L$ .
- Start of energy minimization:** As gradient descent (with state learning rate  $\lambda$ ) begins, the output loss introduces the only non-zero gradient  $\nabla_y \mathcal{L}$ .
- Top-layer state update:** The top layer is updated first, raising its energy above zero.
- Recursive propagation:** A backward wavefront emerges: each non-zero energy induces a state change in the preceding layer, recursively propagating a diminishing signal.
- Exponential decay:** By the input layer, the signal has faded exponentially with depth  $L$ .

Figure 3: Step-by-step dynamics of sPC reveals an exponential signal decay in the backward path.

270 Specifically, for a network of depth  $L$ , the first non-zero signal to reach state  $s_i$  can be modelled as  
271

$$\Delta s_i \propto \lambda^{L-i} \nabla_{\hat{y}} \mathcal{L}, \quad (4)$$

273 with  $\nabla_{\hat{y}} \mathcal{L}$  the initial gradient provided by the loss, and the  $\propto$ -sign used to ignore layer effects,  
274 such as regular vanishing gradients, which would only exacerbate the issue. Crucially, architectural  
275 tweaks, like skip connections and normalization layers, cannot resolve this sPC-specific decay.

276 Moreover, for typical values of  $\lambda$  (0.01-0.1), signals attenuate below numerical precision bounds  
277 within just 4 to 8 update steps.<sup>1</sup> This explains why theoretically continuous propagation manifests as  
278 discrete, delayed jumps in practice, with increasingly pronounced effects at greater network depths.  
279

280 Crucially, the signal decay mechanism persists beyond the initial wavefront, plaguing the entire  
281 energy minimization process. Appendix B provides an approximate global analysis, hinting at a  
282 hardware-algorithm mismatch where *digital simulations* of sPC are problematic, not sPC itself.  
283 While physical realizations (like the brain) would handle local interactions efficiently, enforcing  
284 these constraints digitally leads to signal decay and potentially misleading conclusions on (s)PC.  
285

### 285 3.3 IMPLICATIONS FOR DEEP PC NETWORKS 286

287 This exponential signal decay has profound implications for the digital simulation of sPC networks.  
288 Critically, deeper layers may remain entirely untrained if optimization is terminated before any sig-  
289 nals have arrived, with these layers now effectively representing purely random input transformations.  
290 Such incomplete training would be hard to detect from state convergence metrics alone, which may  
291 incorrectly suggest equilibrium has been reached based on a lack of state changes, when in reality,  
292 these layers have yet to begin meaningful optimization.

293 A more nuanced implication emerges when considering which signals do successfully penetrate the  
294 network. Only hard-to-classify or mislabeled inputs could produce output gradients  $\nabla_{\hat{y}} \mathcal{L}$  that are  
295 large enough to overcome the exponential attenuation, potentially creating a systemic bias where  
296 different layers of the feedforward network train on different subsets of the data distribution.

297 Even when signals eventually reach deeper layers, the ensuing state modification will struggle to  
298 propagate back to upper layers. This creates a persistent misalignment where top layers, despite  
299 receiving strong output signals, cannot efficiently adapt to changes in deeper representations. While  
300 feedforward state initialization partially mitigates this issue, it cannot eliminate the intrinsic inter-  
301 dependencies that exist between states throughout optimization.

302 This signal propagation challenge represents a significant theoretical and practical limitation to scal-  
303 ing sPC networks to greater depths. Common remedies, like increased learning rates, higher numeri-  
304 cal precision, or alternative optimizers, address symptoms without resolving the core issue (Pinchetti  
305 et al., 2025), underscoring the need to identify a more suitable standard formulation of PC.  
306

## 307 4 SHIFTING FROM STATES TO ERRORS: PC WITHOUT SIGNAL DECAY 308

309 We introduce **error-based PC (ePC)**, a novel reparameterization of Predictive Coding that directly  
310 addresses the exponential signal decay problem identified in the previous section.

311 The key insight of ePC is to reformulate PC dynamics in terms of errors rather than states. By  
312 restructuring the computational graph from locally to globally connected, ePC enables signals to  
313 reach all layers simultaneously without attenuation. Though no longer biologically plausible, ePC  
314 provably computes the same state equilibrium as sPC, resulting in exact-PC weight gradients.  
315

### 316 4.1 MATHEMATICAL FORMULATION OF ERROR-BASED PC 317

318 ePC reparameterizes PC by making the local prediction errors  $\epsilon$  the primary variables to optimize,  
319 rather than the states  $s$ . The energy function remains the same, now formulated as:

$$E(\epsilon, \theta) = \frac{1}{2} \sum_{i=0}^{L-1} \|\epsilon_i\|^2 + \mathcal{L}(\hat{y}, y) \quad \text{with } \hat{y} = f_{\theta}(x, \epsilon) \quad (5)$$

320 321 322 323 <sup>1</sup>In float32, addition only works up to 8 orders of magnitude (e.g.,  $1+10^{-8} = 1$ ), a.k.a. "machine epsilon".

324

325

326

---

**Algorithm 1: State-based PC (standard)**

*State updates*

- 1: Initialize states  $\{s_i\} \leftarrow \text{ff\_init}(\mathbf{x})$
- 2: **for**  $t = 1$  to  $T$  **do**
- 3:    $s_{-1} \leftarrow \mathbf{x}$
- 4:   **for**  $i = 0$  to  $L - 1$  **do**       $\triangleright$  Parallel
- 5:      $\hat{s}_i \leftarrow f_{\theta_i}(s_{i-1})$
- 6:      $\epsilon_i \leftarrow s_i - \hat{s}_i$
- 7:      $\hat{y} \leftarrow f_{\theta_L}(s_{L-1})$
- 8:      $E \leftarrow \frac{1}{2} \sum_{i=0}^{L-1} \|s_i - \hat{s}_i\|^2 + \mathcal{L}(\hat{y}, \mathbf{y})$
- 9:      $\nabla_{s_j} E \leftarrow \epsilon_j - \frac{\partial \hat{s}_{j+1}}{\partial s_j}^T \epsilon_{j+1}$        $\triangleright$  Local
- 10:     $s_j \leftarrow s_j - \lambda \nabla_{s_j} E$  for all  $j$

*Weight update*

- 11:  $\nabla_{\theta_j} E \leftarrow -\frac{\partial \hat{s}_j}{\partial \theta_j}^T \epsilon_j$        $\triangleright$  Local
- 12:  $\theta_j \leftarrow \theta_j - \eta \nabla_{\theta_j} E$  for all  $j$

---

339

340

341

342

343

344

345

346

Figure 4: Algorithmic comparison of sPC vs. ePC, with structural differences highlighted in color. Loops over  $j$  are omitted for brevity. An extended version is provided in Appendix A.

347

348

349

The core dynamics remain unchanged: during training, errors  $\epsilon$  are iteratively updated to minimize  $E$ , followed by a gradient step to further minimize  $E$  with respect to  $\theta$  (exactly Eq. (3) again). Crucially, ePC remains a valid PC algorithm (as technically verified in Appendix C.1).

350

351

352

When needed, states can be derived from errors through the recursive relationship  $s_i := \hat{s}_i + \epsilon_i$ , where still  $\hat{s}_i := f_{\theta_i}(s_{i-1})$ . Conceptually, this amounts to a feedforward pass starting from the input  $\mathbf{x}$  with perturbations  $\epsilon_i$  applied at each layer, as graphically shown in Fig. 2b.

353

354

355

Fig. 4 demonstrates the close algorithmic parallels between sPC and ePC, with a more extensive comparison given in Fig. A.1. Such strong similarities should not be surprising, as both methods are valid parametrizations of PC; in fact, they are equivalent (see proof in Appendix C.2).

356

357

#### 4.2 COMPUTATIONAL ADVANTAGES: RESOLVING THE SIGNAL DECAY PROBLEM

358

359

360

361

362

The key difference between sPC and ePC lies in the structure of their computational graph, as shown in Fig. 2. Striving for biological plausibility, sPC intentionally breaks the graph to enforce local update information, inadvertently resulting in exponential signal decay when simulated on digital hardware, as explained in Section 3. To avoid this issue, ePC reconnects the entire network graph, thereby creating a direct relationship between all input variables and the predicted output:

363

364

365

$$(\text{ePC}) \quad \hat{y} = \text{func}(\mathbf{x}, \epsilon_0, \epsilon_1, \dots, \epsilon_{L-1})$$

$$\text{vs. (sPC)} \quad \hat{y} = \text{func}(s_{L-1})$$

366

367

This restructuring enables the main advantage of ePC: the use of backpropagation to transmit signals from the output loss  $\mathcal{L}(\hat{y}, \mathbf{y})$  directly to all errors  $\epsilon_i$  via  $\hat{y}$ , without intermediate attenuation.

368

369

370

371

372

373

A brief step-by-step analysis reveals how ePC successfully decouples stability from propagation speed, which were problematically intertwined in sPC. First, backpropagation computes gradients throughout the entire network, ensuring signals reach all layers unattenuated. Only thereafter, during the actual error update step, is the learning rate applied, affecting stability but not propagation reach. This separation allows signals to influence all network layers simultaneously, regardless of depth, thereby eliminating the exponential decay problem seen in sPC.

374

375

376

377

While ePC might appear to be a hybrid of PC and backprop, this characterization is misleading: ePC remains fundamentally a PC algorithm. Backpropagation serves only as a computational tool to efficiently reach state equilibrium on digital hardware, without influencing the weight updates, which stay temporally local following PC principles. Appendices C.3 and C.4 explore the nuanced relationship between ePC and backpropagation in greater detail.

---

**Algorithm 2: Error-based PC (ours)**

---

*Error updates*

- 1: Initialize errors  $\{\epsilon_i\} \leftarrow \text{zero\_init}$
- 2: **for**  $t = 1$  to  $T$  **do**
- 3:    $s_{-1} \leftarrow \mathbf{x}$
- 4:   **for**  $i = 0$  to  $L - 1$  **do**       $\triangleright$  Sequential
- 5:      $\hat{s}_i \leftarrow f_{\theta_i}(s_{i-1})$
- 6:      $\epsilon_i \leftarrow s_i - \hat{s}_i$
- 7:      $\hat{y} \leftarrow f_{\theta_L}(s_{L-1})$
- 8:      $E \leftarrow \frac{1}{2} \sum_{i=0}^{L-1} \|\epsilon_i\|^2 + \mathcal{L}(\hat{y}, \mathbf{y})$
- 9:      $\nabla_{\epsilon_j} E \leftarrow \epsilon_j + \frac{\partial \hat{s}_{j+1}}{\partial \epsilon_j}^T \epsilon_{j+1}$        $\triangleright$  Backprop
- 10:     $\epsilon_j \leftarrow \epsilon_j - \lambda \nabla_{\epsilon_j} E$  for all  $j$

*Weight update*

- 11:  $\nabla_{\theta_j} E \leftarrow -\frac{\partial \hat{s}_j}{\partial \theta_j}^T \epsilon_j$        $\triangleright$  Local
- 12:  $\theta_j \leftarrow \theta_j - \eta \nabla_{\theta_j} E$  for all  $j$

---

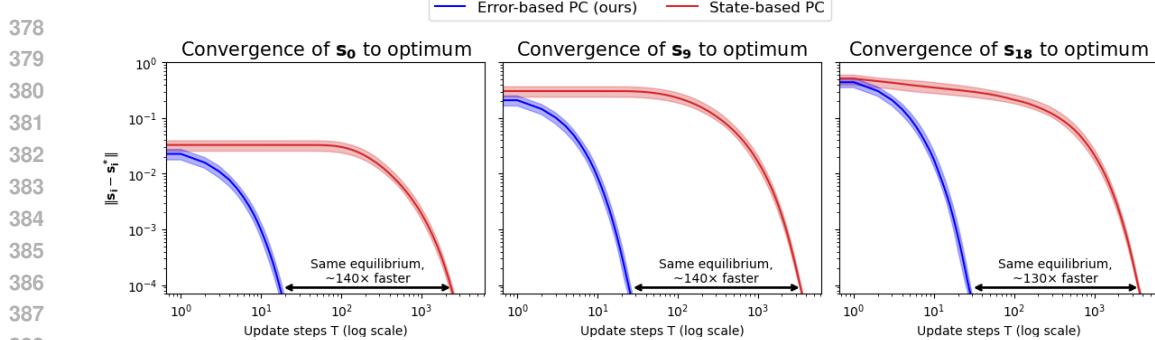


Figure 5: State convergence dynamics of bottom, middle, and top hidden layers in a 20-layer linear PC network trained on MNIST. Curves show batch medians ( $n=64$ ) of L2 distance to the analytical optimum, with interquartile shading. ePC converges over  $100\times$  faster than sPC for the same model.

#### 4.3 PROOF-OF-CONCEPT ON MNIST

To evaluate the practical advantages of ePC over sPC, we compared the two methods for a 20-layer linear PC network trained on MNIST. This architecture provides an ideal testbed as it offers a unique and analytically tractable equilibrium state. For an unbiased comparison, we used identical network weights for both approaches (obtained through backpropagation as neutral method), with hyperparameters optimized for convergence speed. Complete details are provided in Appendix D.1.

Fig. 5 illustrates how both sPC and ePC converge to the analytical optimum, reconfirming their theoretical equivalence. However, for the exact same model, ePC converges over  $100\times$  faster than sPC, a huge difference in speed that highlights ePC’s practical advantage for training deep PC networks.

The figure also provides further evidence for the discontinuous signal propagation issue identified in Section 3. In sPC, the signal takes roughly 30 steps to advance 9 layers and reach  $s_9$ , and nearly 100 steps to traverse the 20-layer network and reach  $s_0$ . In contrast, ePC has long converged by then, with its global connectivity enables all layers to optimize immediately and simultaneously.

Additional experiments with deep non-linear MLPs (see Appendix D.2) yielded similar results, with ePC consistently outperforming sPC in terms of convergence speed. Notably, sPC required an impractical number of update steps ( $>100,000$ ) to actually reach proper convergence, reinforcing the necessity of our ePC reformulation for scaling PC to deeper networks.

#### 4.4 IMPLICATIONS FOR DEEP PC NETWORKS

The benefits of ePC’s improved signal propagation extend beyond faster convergence, addressing several fundamental limitations of sPC. Most importantly, by providing signal to all layers from the first step, ePC completely resolves the issue of untrained deep layers. It enables all layers to begin optimization simultaneously, regardless of network depth.

Furthermore, ePC eliminates the potential systemic bias in sPC, where only inputs generating large output gradients could successfully influence deeper layers. With ePC, all inputs contribute equally to training at all depths, promoting uniform learning across the network.

Moreover, any change in deeper layers is efficiently communicated to the upper layers through the feedforward pass required for  $\hat{g}$ . This bidirectional efficiency explains why the widely-used feedforward state initialization heuristic in PC works so well: it essentially implements the first step of ePC. Our formulation thus provides theoretical backing for this empirical practice while extending its benefits throughout the optimization process.

By resolving these fundamental limitations, ePC establishes a solid foundation for scaling PC to deeper architectures. Our MNIST proof-of-concept demonstrates significant convergence improvements, validating this theoretical advancement and motivating large-scale empirical evaluation.

## 5 EXPERIMENTS

To evaluate ePC’s effectiveness in training deep networks and compare it against sPC, we conducted extensive experiments using backpropagation as gold standard. Our experimental design follows the benchmark established by Pinchetti et al. (2025), allowing direct comparison with their findings.

432 Table 1: Test accuracies (in %) of ePC, sPC and backprop for various models, losses, and datasets.  
 433 Bold indicates best results within confidence intervals (mean  $\pm$  1 std. dev.; taken over 5 seeds).

| 435<br>436<br>Training algorithm | 437<br>438<br>439<br>Mean Squared Error |                         |                         | 440<br>441<br>442<br>443<br>Cross-Entropy |                         |                         |
|----------------------------------|-----------------------------------------|-------------------------|-------------------------|-------------------------------------------|-------------------------|-------------------------|
|                                  | ePC                                     | sPC                     | Backprop                | ePC                                       | sPC                     | Backprop                |
| MLP (4 layers)                   |                                         |                         |                         |                                           |                         |                         |
| MNIST                            | <b>98.28</b> $\pm$ 0.09                 | <b>98.42</b> $\pm$ 0.08 | <b>98.30</b> $\pm$ 0.15 | <b>98.11</b> $\pm$ 0.08                   | <b>98.01</b> $\pm$ 0.15 | <b>98.13</b> $\pm$ 0.08 |
| FashionMNIST                     | 87.02 $\pm$ 0.24                        | 88.01 $\pm$ 0.09        | <b>88.79</b> $\pm$ 0.21 | 87.58 $\pm$ 0.13                          | 88.00 $\pm$ 0.24        | <b>88.87</b> $\pm$ 0.27 |
| VGG-5                            |                                         |                         |                         |                                           |                         |                         |
| CIFAR-10                         | <b>88.70</b> $\pm$ 0.12                 | 86.67 $\pm$ 0.20        | <b>88.58</b> $\pm$ 0.12 | <b>88.27</b> $\pm$ 0.18                   | 84.66 $\pm$ 0.33        | <b>87.95</b> $\pm$ 0.29 |
| CIFAR-100 (Top-1)                | 64.37 $\pm$ 0.17                        | 50.41 $\pm$ 1.45        | <b>64.80</b> $\pm$ 0.24 | 63.39 $\pm$ 0.25                          | 56.85 $\pm$ 0.69        | <b>63.83</b> $\pm$ 0.15 |
| CIFAR-100 (Top-5)                | 85.28 $\pm$ 0.38                        | 77.41 $\pm$ 1.21        | <b>85.80</b> $\pm$ 0.13 | <b>87.34</b> $\pm$ 0.14                   | 83.11 $\pm$ 0.19        | <b>87.43</b> $\pm$ 0.06 |
| VGG-7                            |                                         |                         |                         |                                           |                         |                         |
| CIFAR-10                         | <b>88.98</b> $\pm$ 0.19                 | 77.79 $\pm$ 0.34        | <b>88.94</b> $\pm$ 0.32 | 88.84 $\pm$ 0.31                          | 77.98 $\pm$ 0.40        | <b>89.60</b> $\pm$ 0.16 |
| CIFAR-100 (Top-1)                | <b>66.55</b> $\pm$ 0.45                 | 42.90 $\pm$ 0.43        | <b>66.23</b> $\pm$ 0.42 | 58.62 $\pm$ 0.20                          | 53.45 $\pm$ 0.38        | <b>65.14</b> $\pm$ 0.29 |
| CIFAR-100 (Top-5)                | <b>85.65</b> $\pm$ 0.12                 | 70.01 $\pm$ 0.52        | 84.10 $\pm$ 0.39        | 85.09 $\pm$ 0.14                          | 80.48 $\pm$ 0.38        | <b>88.60</b> $\pm$ 0.24 |
| VGG-9                            |                                         |                         |                         |                                           |                         |                         |
| CIFAR-10                         | 88.80 $\pm$ 0.71                        | 76.40 $\pm$ 0.20        | <b>90.04</b> $\pm$ 0.50 | 86.81 $\pm$ 0.09                          | 78.60 $\pm$ 0.30        | <b>89.76</b> $\pm$ 0.20 |
| CIFAR-100 (Top-1)                | 61.35 $\pm$ 0.76                        | 45.70 $\pm$ 0.14        | <b>66.28</b> $\pm$ 0.29 | <b>60.65</b> $\pm$ 0.25                   | 54.19 $\pm$ 0.41        | <b>61.11</b> $\pm$ 0.45 |
| CIFAR-100 (Top-5)                | <b>84.74</b> $\pm$ 0.40                 | 73.04 $\pm$ 0.46        | <b>84.96</b> $\pm$ 0.29 | <b>85.84</b> $\pm$ 0.15                   | 80.65 $\pm$ 0.41        | 85.14 $\pm$ 0.32        |
| ResNet-18                        |                                         |                         |                         |                                           |                         |                         |
| CIFAR-10                         | <b>92.17</b> $\pm$ 0.26                 | “53.74 $\pm$ 0.43”      | <b>92.36</b> $\pm$ 0.12 | <b>91.73</b> $\pm$ 0.21                   | “43.19 $\pm$ 0.61”      | <b>91.85</b> $\pm$ 0.24 |
| CIFAR-100 (Top-1)                | 68.52 $\pm$ 0.34                        | “22.83 $\pm$ 0.38”      | <b>69.94</b> $\pm$ 0.54 | 69.47 $\pm$ 0.32                          | “16.01 $\pm$ 0.42”      | <b>71.46</b> $\pm$ 0.32 |
| CIFAR-100 (Top-5)                | 86.86 $\pm$ 0.44                        | “50.18 $\pm$ 0.52”      | <b>87.76</b> $\pm$ 0.41 | 90.47 $\pm$ 0.12                          | “40.67 $\pm$ 0.70”      | <b>91.91</b> $\pm$ 0.23 |

455 “...”: ResNet-18 was unstable in our sPC experiments, so we copied the results from Pinchetti et al. (2025)

## 457 5.1 EXPERIMENTAL SETUP

458  
 459 We evaluated performance across four standard computer vision datasets: MNIST (LeCun, 1998;  
 460 Cohen et al., 2017), FashionMNIST (Xiao et al., 2017), and CIFAR-10/100 (Krizhevsky, 2009).  
 461 The architecture selection spanned an MLP, VGG-style convolutional networks of various depths  
 462 (Simonyan and Zisserman, 2014), and a deep residual network (He et al., 2016). The output loss  $\mathcal{L}$   
 463 is either Mean Squared Error (MSE) or Cross-Entropy (CE), again mirroring Pinchetti et al. (2025).

464 Complete implementation details, including hyperparameter settings, are provided in Appendix E.

465 An anonymized version of our codebase is available in the supplementary materials.

## 466 5.2 RESULTS AND ANALYSIS

467 Our results in Table 1 confirm the significant performance gap between sPC and backprop previously  
 468 reported by Pinchetti et al. (2025), while demonstrating that ePC substantially narrows this gap.

469 Several key findings emerge from our experiments:

- 470 • **Depth scaling:** ePC exhibits the expected performance improvement with increasing network  
 471 depth, similar to backpropagation, whereas sPC performance degraded in deeper networks.  
 472 This is most noticeable for ResNet-18, where ePC achieved competitive performance while  
 473 sPC suffered from instability issues in our implementation.
- 474 • **Performance parity:** ePC nearly matches backpropagation’s performance across most datasets  
 475 and architectures, with results falling within statistical confidence intervals in many cases.
- 476 • **Loss function effects:** Both Mean Squared Error (MSE) and Cross-Entropy (CE) loss functions  
 477 resulted in comparable performance across experimental settings, despite CE’s typically  
 478 superior gradient properties compared to MSE. However, we did observe greater sensitivity to  
 479 hyperparameter selection with CE loss in both ePC and sPC algorithms.

480 Overall, our experimental results validate ePC’s theoretical advantages. By resolving sPC’s signal  
 481 decay problem, ePC successfully scales PC to deeper architectures, unlocking its ability to handle  
 482 substantially more complex machine learning challenges than previously possible.

---

## 486 6 CONCLUSION AND FUTURE DIRECTIONS 487

488 This paper identifies and addresses a fundamental limitation in Predictive Coding networks: the  
489 exponential decay of signal propagation during state-based energy minimization. Our proposed  
490 error-based formulation overcomes this limitation by restructuring PC’s computational graph while  
491 preserving theoretical equivalence, achieving dramatic performance improvements that finally es-  
492 tablish PC as a competitive alternative to backpropagation for training deep neural networks.

### 493 6.1 REINTERPRETING PREDICTIVE CODING AS MINIMAL-NORM PERTURBATIONS 494

495 ePC provides a fresh perspective on PC’s energy minimization process. Essentially, (e)PC searches  
496 for minimal-norm layerwise perturbations that collectively produce optimal outputs. At each layer,  
497 these corrections are added to the feedforward pass, incrementally refining the final output predic-  
498 tion. From these targeted state modifications, local weight learning rules can then be derived.

499 This reframing connects naturally with the Least-Control Principle (Meulemans et al., 2022), in  
500 which an external controller tries to minimally steer network activities to produce the target output.  
501 In their Appendix S4, they briefly explore PC through the lens of control theory, identifying the  
502 errors as an optimal control. With their framework allowing arbitrary controller circuits, it may  
503 be possible to find a biologically plausible implementation of ePC that does not explicitly require  
504 backpropagation, thereby addressing what some may consider essential for a PC algorithm.  
505

### 506 6.2 PREDICTIVE CODING BEYOND THE HARDWARE LOTTERY 507

508 Algorithmic success is often dictated not by theoretical merit but by compatibility with prevailing  
509 hardware (Hooker, 2021). Serving as a prime example, PC has struggled to prove its worth despite  
510 theoretical soundness. To unlock its full potential, ePC reformulates PC in a way that aligns naturally  
511 with digital processors, relying on backpropagation to efficiently spread signals across deep net-  
512 works. Meanwhile, sPC remains highly relevant for neuromorphic implementations, where physical  
513 energy minimization would occur naturally and near-instantaneously, regardless of network depth.  
514

515 Despite their structural differences, both approaches still minimize the same energy function to reach  
516 identical equilibria. This functional equivalence creates a pragmatic research methodology: rather  
517 than being limited by sPC’s digital inefficiency, researchers can turn to ePC for rapid prototyping,  
518 generating insights that remain valid for understanding bio-plausible PC learning mechanisms.  
519

### 520 6.3 THE ROAD AHEAD FOR PREDICTIVE CODING 521

522 With PC’s viability as a learning algorithm now firmly established, research must shift from proof-  
523 of-concept to practical impact. We highlight two research directions with great potential:

- 524 1. **Unblocking neuromorphic hardware development:** Despite its theoretical suitability for ultra-  
525 energy-efficient neuromorphic implementation, hardware development for PC has been scarce.  
526 A key obstacle is our limited understanding of PC’s behavior at exact equilibrium—the regime to  
527 which any physical implementation would naturally settle. While a recent analysis of this setting  
528 identified improved learning capabilities (Innocenti et al., 2024b), our experiments consistently  
529 preferred hyperparameter configurations of approximate backpropagation, leaving little appeal  
530 to hardware developers. With ePC as an efficient tool to further study equilibrium dynamics,  
531 research can finally begin to address this critical barrier to neuromorphic advancement.
- 532 2. **Identifying PC’s distinctive advantages:** Rather than competing with backpropagation in its  
533 domains of strength, research should focus on areas where PC uniquely excels. As Song et al.  
534 (2024) demonstrated with online and continual learning, such domains exist but remain under-  
535 explored. Although ePC’s reliance on backpropagation puts an upper limit on PC’s computational  
536 efficiency (as noted before in Zahid et al., 2023), few-step ePC could offer a compromise that  
537 maintains PC’s unique properties while keeping training times practical.

538 With ePC effectively addressing PC’s computational limitations on digital hardware, the field must  
539 now face its true test: demonstrating that Predictive Coding offers substantive advantages in specific  
540 domains, sufficient to justify its adoption over established approaches.

541 A limitations section is provided at the start of the appendix.

---

## 540 REPRODUCIBILITY STATEMENT

## 541

542 We took great care to ensure reproducibility, listing architectural details, hyperparameter sweep  
543 intervals, final values and even pseudorandom seeds, which can all be found in Appendix E. On the  
544 algorithmic level, Appendix A provides an extensive description of both sPC and ePC. Finally, we  
545 attached an anonymous version of our codebase to the supplementary materials.

## 547 REFERENCES

## 548

549 Alonso, Nicholas, Jeffrey Krichmar, and Emre Neftci (2024). “Understanding and Improving Opti-  
550 mization in Predictive Coding Networks.” In: *Proceedings of the AAAI Conference on Artificial*  
551 *Intelligence* 38.10, pp. 10812–10820.

552 Bogacz, Rafal (2017). “A tutorial on the free-energy framework for modelling perception and learn-  
553 ing.” In: *Journal of Mathematical Psychology* 76, pp. 198–211.

554 Cohen, Gregory et al. (2017). “EMNIST: Extending MNIST to handwritten letters.” In: *2017 inter-  
555 national joint conference on neural networks (IJCNN)*. IEEE, pp. 2921–2926. DOI: 10.1109/  
556 IJCNN.2017.7966217.

557 Friston, Karl and Stefan Kiebel (2009). “Predictive coding under the free-energy principle.” In:  
558 *Philosophical transactions of the Royal Society B: Biological sciences* 364.1521, pp. 1211–1221.

559 Ha, Myoung Hoon et al. (2025). *Towards Stable Learning in Predictive Coding Networks*. URL:  
560 <https://openreview.net/forum?id=FwdN0KovFp>.

561 He, Kaiming et al. (2016). “Deep residual learning for image recognition.” In: *Proceedings of the*  
562 *IEEE conference on Computer Vision and Pattern Recognition*, pp. 770–778.

563 Hendrycks, Dan and Kevin Gimpel (2016). “Gaussian Error Linear Units (GELUs).” In: *arXiv*  
564 *preprint arXiv:1606.08415*.

565 Hooker, Sara (2021). “The Hardware Lottery.” In: *Communications of the ACM* 64.12, pp. 58–65.

566 Hu, Wei, Lechao Xiao, and Jeffrey Pennington (2020). “Provable Benefit of Orthogonal Initialization  
567 in Optimizing Deep Linear Networks.” In: *International Conference on Learning Representations*.  
568 URL: <https://openreview.net/forum?id=rkgqN1SYvr>.

569 Innocenti, Francesco, El Mehdi Achour, and Christopher Buckley (2025). “\$\mu\$PC: Scaling Pre-  
570 dictive Coding to 100+ Layer Networks.” In: *The Thirty-ninth Annual Conference on Neu-  
571 ral Information Processing Systems*. URL: <https://openreview.net/forum?id=1SLSzYuyfx>.

572 Innocenti, Francesco et al. (2024a). “JPC: Flexible Inference for Predictive Coding Networks in  
573 JAX.” In: *arXiv preprint arXiv:2412.03676*.

574 Innocenti, Francesco et al. (2024b). “Only Strict Saddles in the Energy Landscape of Predictive  
575 Coding Networks?” In: *The Thirty-eighth Annual Conference on Neural Information Processing*  
576 *Systems*. URL: <https://openreview.net/forum?id=eTu6kvrkSq>.

577 Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic optimization.” In: *arXiv*  
578 *preprint arXiv:1412.6980*.

579 Kingma, Diederik P. and Max Welling (2013). “Auto-encoding variational Bayes.” In: *arXiv preprint*  
580 *arXiv:1312.6114*.

581 Krizhevsky, Alex (2009). “Learning multiple layers of features from tiny images.” In.  
582 LeCun, Yann (1998). “The MNIST database of handwritten digits.” In: <http://yann. lecun. com/exdb/mnist/>.

583 Lee, Kwangjun, Cyriel M. A. Pennartz, and Jorge F. Mejias (Sept. 2025). “Cortical networks with  
584 multiple interneuron types generate oscillatory patterns during predictive coding.” In: *PLOS Com-  
585 putational Biology* 21.9, pp. 1–25.

586 Loshchilov, Ilya and Frank Hutter (2019). “Decoupled Weight Decay Regularization.” In: *Inter-  
587 national Conference on Learning Representations*. URL: <https://openreview.net/forum?id=Bkg6RiCqY7>.

588 Meulemans, Alexander et al. (2022). “The least-control principle for local learning at equilibrium.”  
589 In: *Advances in Neural Information Processing Systems* 35, pp. 33603–33617.

590 Millidge, Beren, Anil Seth, and Christopher L Buckley (2021). “Predictive coding: A theoretical and  
591 experimental review.” In: *arXiv:2107.12979*.

592 Millidge, Beren, Alexander Tschantz, and Christopher L Buckley (2022a). “Predictive coding  
593 approximates backprop along arbitrary computation graphs.” In: *Neural Computation* 34.6,  
pp. 1329–1368.

594 Millidge, Beren et al. (2022b). “Predictive Coding: Towards a Future of Deep Learning beyond  
595 Backpropagation?” In: *Proceedings of the Thirty-First International Joint Conference on Artificial*  
596 *Intelligence, IJCAI-22*. International Joint Conferences on Artificial Intelligence Organization,  
597 pp. 5538–5545.

598 Millidge, Beren et al. (Apr. 2024). “Predictive coding networks for temporal prediction.” In: *PLOS*  
599 *Computational Biology* 20.4, pp. 1–31.

600 Oliviers, Gaspard, Rafal Bogacz, and Alexander Meulemans (2024). “Learning probability distribu-  
601 tions of sensory inputs with Monte Carlo Predictive Coding.” In: *bioRxiv*, pp. 2024–02.

602 Pinchetti, Luca et al. (2022). “Predictive Coding Beyond Gaussian Distributions.” In: *36th Confer-  
603 ence on Neural Information Processing Systems*.

604 Pinchetti, Luca et al. (2025). “Benchmarking Predictive Coding Networks – Made Simple.” In:  
605 *The Thirteenth International Conference on Learning Representations*. URL: <https://openreview.net/forum?id=sahQq2sH5x>.

606 Qi, Chang, Thomas Lukasiewicz, and Tommaso Salvatori (2025). “Training Deep Predictive Coding  
607 Networks.” In: *New Frontiers in Associative Memories*. URL: <https://openreview.net/forum?id=s3E08R4AMK>.

608 Salvatori, Tommaso et al. (2024). “Incremental Predictive Coding: A parallel and fully automatic  
609 learning algorithm.” In: *International Conference on Learning Representations*.

610 Salvatori, Tommaso et al. (2026). “A survey on neuro-mimetic deep learning via predictive coding.”  
611 In: *Neural Networks* 195, p. 108161. ISSN: 0893-6080.

612 Simonyan, Karen and Andrew Zisserman (2014). “Very deep convolutional networks for large-scale  
613 image recognition.” In: *arXiv preprint arXiv:1409.1556*.

614 Song, Yuhang et al. (2020). “Can the Brain Do Backpropagation? — Exact Implementation of Back-  
615 propagation in Predictive Coding Networks.” In: *Advances in Neural Information Processing Sys-  
616 tems*. Vol. 33.

617 Song, Yuhang et al. (2024). “Inferring neural activity before plasticity as a foundation for learning  
618 beyond backpropagation.” In: *Nature Neuroscience*, pp. 1–11.

619 Tschantz, Alexander et al. (2023). “Hybrid predictive coding: Inferring, fast and slow.” In: *PLOS*  
620 *Computational Biology* 19.8, pp. 1–31.

621 Whittington, James C. R. and Rafal Bogacz (2017). “An approximation of the error backpropaga-  
622 tion algorithm in a predictive coding network with local Hebbian synaptic plasticity.” In: *Neural*  
623 *Computation* 29.5.

624 Whittington, James C. R. and Rafal Bogacz (2019). “Theories of error back-propagation in the  
625 brain.” In: *Trends in Cognitive Sciences*.

626 Xiao, Han, Kashif Rasul, and Roland Vollgraf (2017). “Fashion-MNIST: A Novel Image Dataset for  
627 Benchmarking Machine Learning Algorithms.” In: *arXiv preprint arXiv:1708.07747*.

628 Zahid, Umai, Qinghai Guo, and Zafeirios Fountas (2023). “Predictive coding as a neuromorphic  
629 alternative to backpropagation: a critical evaluation.” In: *Neural Computation* 35.12, pp. 1881–  
1909.

630 Zahid, Umai, Qinghai Guo, and Zafeirios Fountas (2024). “Sample as you Infer: Predictive Coding  
631 with Langevin Dynamics.” In: *Forty-first International Conference on Machine Learning*. URL:  
632 <https://openreview.net/forum?id=6VQXLUy4sQ>.

633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647

---

# 648 Appendix

# 649

## 650 LIMITATIONS

## 651

653 Our work demonstrates significant improvements in Predictive Coding efficiency and scalability.  
654 Nonetheless, certain limitations remain, which we discuss below.

655 **Different optimization trajectories:** Although ePC and sPC are mathematically equivalent at equi-  
656 librium, they follow distinct optimization trajectories. Therefore, ePC cannot be used for research  
657 on the intermediate state dynamics of sPC (e.g., Millidge et al., 2024; Lee et al., 2025). Furthermore,  
658 considering the abundance of local minima present in deep neural networks, it is, in theory, possible  
659 that ePC and sPC may converge to different equilibria, though we did not observe any evidence of  
660 this during our experiments, not even for very deep MLPs (see Appendix D.2).

661 **Experimental scope:** Following the established PC benchmark by Pinchetti et al. (2025), we tested  
662 exclusively on standard supervised learning tasks (MNIST, FashionMNIST, CIFAR) where back-  
663 prop is known to perform exceptionally well. The goal of our experiments was solely to demonstrate  
664 ePC’s superiority over sPC, not to prove PC superiority over backpropagation. It would be valuable  
665 to explore ePC in domains where PC might have advantages, such as online and continual learning  
666 (Song et al., 2024), to determine whether these benefits extend to deeper architectures (now possible  
667 with ePC) or were simply artifacts of sPC’s poor signal propagation.

## 668 CLARIFYING REMARKS

## 669

671 Certain aspects of our methodology may be misunderstood as limitations, but they instead reflect  
672 deliberate design choices and intrinsic advantages. For clarity, we highlight them here.

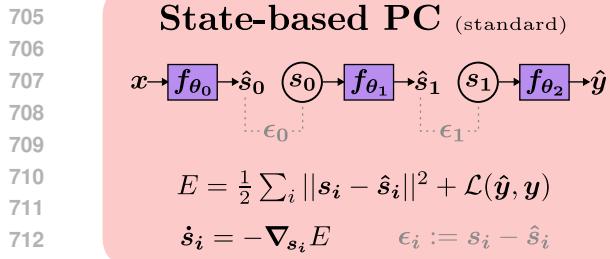
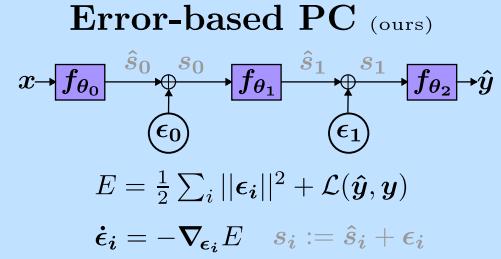
673 **Choice of baseline methods:** Our experiments compare ePC only against sPC and backpropagation  
674 (as neutral gold standard), rather than including a broader range of PC variants. This focused scope  
675 is intentional: Pinchetti et al. (2025) already extensively tested the most popular PC variants and  
676 found that none successfully scaled to deep networks (see their Table 1). Notably, our ResNet18 re-  
677 sults (where ePC matches BP while all other PC methods failed entirely) demonstrate substantially  
678 stronger performance than any existing alternative. This improvement is expected, since all previous  
679 PC variants rely on the state-based formulation that we identified as fundamentally flawed (see Sec-  
680 tion 3). Therefore, comparing against the base sPC implementation, which is the most established  
681 and widely used variant, was the most appropriate choice.

682 **Biological plausibility:** While ePC preserves PC’s core theoretical foundations and resulting weight  
683 updates, its use of backpropagation for the energy minimization process still makes it unsuitable for  
684 direct biological implementation. However, we’d like to emphasize that ePC was never intended as a  
685 biologically plausible algorithm. Instead, it serves as a computationally efficient tool for studying PC  
686 dynamics on digital hardware. Despite satisfying biological constraints, sPC proves impractical in  
687 digital simulations, as shown in Section 3. Biological and digital systems operate under fundamen-  
688 tally different constraints and mechanisms. By making PC practically viable on digital hardware,  
689 ePC actually enables more extensive research into PC dynamics, potentially offering greater value to  
690 computational neuroscience than the biologically constrained but computationally intractable sPC.

691 **Computational efficiency:** In a persistent misconception, sPC is often touted for its parallelization  
692 abilities (Millidge et al., 2022b; Pinchetti et al., 2022; Salvatori et al., 2024; Pinchetti et al., 2025).  
693 However, this alleged advantage is fundamentally flawed. Even with perfect parallelization, PC net-  
694 works with depth  $L$  require at least  $L$  sequential update steps because signals can only advance one  
695 layer per step due to local-only interactions (Zahid et al., 2023). In fact, our experiments demon-  
696 strate this to be a very loose lower bound: sPC requires *exponentially* many update steps to reach  
697 equilibrium, fully undoing any potential (linear) speed-up from parallelization. Moreover, it may  
698 prove difficult to actually parallelize layers with different dimensions, forcing sequential processing  
699 in practice (Pinchetti et al., 2025, Section 6.1). As a result, our PyTorch implementation of ePC takes  
700 only 5-20% longer per step compared to sPC, despite its strictly sequential nature. This minor cost  
701 is easily offset by ePC’s exponential reduction in required steps, representing a massive net gain in  
computational efficiency. Of course, these comparisons of digital implementations may ultimately  
be less relevant, as PC’s true advantage lies in its suitability for ultra-fast neuromorphic hardware.

---

## 702 A COMPARISON OF STATE-BASED VS. ERROR-BASED PREDICTIVE CODING




---

### 714 **Algorithm 3: State-based PC (standard)**

715 **Require:** Input  $x$ , target  $y$ , layers  $\{f_{\theta_i}\}_{i=0}^L$ ,  
716 optimization steps  $T$ , state learning rate  $\lambda$ ,  
717 weight learning rate  $\eta$ , output loss  $\mathcal{L}$

718

719 *Feedforward state initialization (ff\_init)*

720 1:  $s_{-1} \leftarrow x$

721 2: **for**  $i = 0$  to  $L - 1$  **do** ▷ Sequential

722 3:    $\hat{s}_i \leftarrow f_{\theta_i}(s_{i-1})$

723 4:    $s_i \leftarrow \hat{s}_i$

724

725 *State updates*

726 5: **for**  $t = 1$  to  $T$  **do**

727 6:   **for**  $i = 0$  to  $L - 1$  **do** ▷ Parallel

728 7:      $\hat{s}_i \leftarrow f_{\theta_i}(s_{i-1})$

729 8:      $\epsilon_i \leftarrow s_i - \hat{s}_i$

730 9:      $\hat{y} \leftarrow f_{\theta_L}(s_{L-1})$

731 10:    $E \leftarrow \frac{1}{2} \sum_{i=0}^{L-1} \|s_i - \hat{s}_i\|^2 + \mathcal{L}(\hat{y}, y)$

732

733

734 *Local energy gradients w.r.t. states*

735 11:  $\epsilon_L \leftarrow \nabla_{\hat{y}} \mathcal{L}$

736 12: **for**  $j = 0$  to  $L - 1$  **do** ▷ Parallel

737 13:    $\nabla_{s_j} E \leftarrow \epsilon_j - \frac{\partial \hat{s}_{j+1}}{\partial s_j}^T \epsilon_{j+1}$

738 14:    $s_j \leftarrow s_j - \lambda \nabla_{s_j} E$

739

740

741

742

743 *Local weight update*

744 15: **for**  $j = 0$  to  $L - 1$  **do** ▷ Parallel

745 16:    $\nabla_{\theta_j} E \leftarrow -\frac{\partial \hat{s}_j}{\partial \theta_j}^T \epsilon_j$

746 17:    $\theta_j \leftarrow \theta_j - \eta \nabla_{\theta_j} E$

747

---

### 748 **Algorithm 4: Error-based PC (ours)**

749 **Require:** Input  $x$ , target  $y$ , layers  $\{f_{\theta_i}\}_{i=0}^L$ ,  
750 optimization steps  $T$ , error learning rate  $\lambda$ ,  
751 weight learning rate  $\eta$ , output loss  $\mathcal{L}$

752

753 *Zero error initialization (zero\_init)*

754 1: **for**  $i = 0$  to  $L - 1$  **do** ▷ Parallel

755 2:    $\epsilon_i \leftarrow 0$

756

757 *Error updates*

758 3: **for**  $t = 1$  to  $T$  **do**

759 4:    $s_{-1} \leftarrow x$

760 5:   **for**  $i = 0$  to  $L - 1$  **do** ▷ Sequential

761 6:      $\hat{s}_i \leftarrow f_{\theta_i}(s_{i-1})$

762 7:      $s_i \leftarrow \hat{s}_i + \epsilon_i$

763 8:      $\hat{y} \leftarrow f_{\theta_L}(s_{L-1})$

764 9:      $E \leftarrow \frac{1}{2} \sum_{i=0}^{L-1} \|\epsilon_i\|^2 + \mathcal{L}(\hat{y}, y)$

765

766 *Global backprop of energy w.r.t. errors*

767 10:  $\epsilon_L \leftarrow \hat{y}$

768 11: **for**  $j = L - 1$  to  $0$  **do** ▷ Sequential

769 12:    $\nabla_{\epsilon_j} \mathcal{L} \leftarrow \frac{\partial \epsilon_{j+1}}{\partial \epsilon_j}^T \nabla_{\epsilon_{j+1}} \mathcal{L}$

770 13:   **for**  $j = 0$  to  $L - 1$  **do** ▷ Parallel

771 14:      $\nabla_{\epsilon_j} E \leftarrow \epsilon_j + \nabla_{\epsilon_j} \mathcal{L}$

772 15:      $\epsilon_j \leftarrow \epsilon_j - \lambda \nabla_{\epsilon_j} E$

773

774

775 *Local weight update*

776 16: **for**  $j = 0$  to  $L - 1$  **do** ▷ Parallel

777 17:    $\nabla_{\theta_j} E \leftarrow -\frac{\partial \hat{s}_j}{\partial \theta_j}^T \epsilon_j$

778 18:    $\theta_j \leftarrow \theta_j - \eta \nabla_{\theta_j} E$

779

780 Figure A.1: Full side-by-side comparison of state-based PC (left) and error-based PC (right)

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

```

756
757
758
759
760
761
762     def ff_init(x):
763         return [(x := f(x)) for f in layers[:-1]]
764
765     def get_E(s):
766         s_pred = [f(s) for f, s in zip(layers,
767         [x for f in layers, y_pred = s_pred[:-1], s_pred[-1]
768
769         E = 0.5 * sum(
770             L2norm(s_i - s_i_pred)**2
771             for s_i, s_i_pred in zip(s, s_pred)
772         )
773         E += loss(y_pred, y)
774
775     def get_final_state():
776         s = ff_init(x)
777         s_optim = SGD(s, lr=lambda)
778         for _ in range(T):
779             s_optim.zero_grad()
780             E = get_E(s)
781             E.backward()
782             s_optim.step()
783
784     def sPC_weight_update(w_optim):
785         s = get_final_state()
786         w_optim.zero_grad()
787         E = get_E(s)
788         E.backward()
789         w_optim.step()

```

(a) State-based Predictive Coding

```

def states_from_errors(x, e):
    return [
        (x := f(x) + e_i).detach() # no
        backpropf, e_i in zip(layers[:-1], e)
    ]
def zero_init():
    return [zeros(shape) for shape in shapes]
def y_pred(x):
    s_i = x
    for f, e_i in zip(layers, e + [0.0]):
        s_i = f(s_i) + e_i
    return s_i
def get_E_errors(e):
    E = 0.5 * sum(L2norm(e_i)**2 for e_i in
    e)
    E += loss(y_pred(x), y)
def get_final_errors():
    e = zero_init()
    e_optim = SGD(e, lr=lambda)
    for _ in range(T):
        e_optim.zero_grad()
        E = get_E_errors(e)
        E.backward()
        e_optim.step()
def ePC_weight_update(w_optim):
    e = get_final_errors()
    s = states_from_errors(x, e)
    w_optim.zero_grad()
    E = get_E(s)
    E.backward()
    w_optim.step()

```

(b) Error-based Predictive Coding

Figure A.2: PyTorch-style pseudocode comparison of sPC vs. ePC

## B TEMPORAL EVOLUTION OF STATES IN STATE-BASED PC

This appendix extends our analysis of the exponential signal decay phenomenon identified in Section 3. While the main paper demonstrated how signals attenuate during the initial backward wavefront, we here derive a complete characterization of network dynamics that reveals the underlying mathematical structure governing signal propagation throughout energy minimization.

Our analysis uncovers a striking similarity to a simple binomial model, providing both theoretical insights into the discrete-time nature of the problem and practical understanding of why physical continuous-time implementations of sPC (like the brain) would not suffer from the same limitations.

### B.1 SIMPLIFIED MODEL FOR ANALYTICAL TRACTABILITY

To enable rigorous mathematical analysis, we introduce a simplified model that captures the essential dynamics while remaining analytically tractable. Note that this setting provides only a coarse approximation to the true state dynamics of sPC, in contrast to our exact analysis of the initial backward wavefront in Section 3.

**Key Assumption for Appendix B** *After feedforward state initialization, all state predictions  $\hat{s}_i$  remain constant throughout energy minimization. This assumption implies that signal propagation occurs exclusively in the top-down direction, from output toward input layers.*

This simplification provides a reasonable approximation during early-stage optimization, where state dynamics are primarily driven by the output loss  $\mathcal{L}$  before significant bottom-up signals emerge. However, it breaks down as the system evolves and predictions begin to change.

---

810    **Simplified Backward Dynamics** As described in Section 2, the temporal dynamics of states in  
 811    sPC follow gradient descent on the energy function  $E$  with state learning rate  $\lambda$ :

$$\begin{aligned} s_i^{t+1} &= s_i^t - \lambda \nabla_{s_i} E^t \\ &= s_i^t - \lambda \epsilon_i^t + \lambda \epsilon_{i+1}^t \frac{\partial f_{\theta_{i+1}}}{\partial s_i}(s_i^t), \end{aligned}$$

816    where  $\epsilon_i := s_i - \hat{s}_i$  represents the layerwise prediction error. Given our key assumption above, this  
 817    is equivalent to the deviation of each layer's state from its fixed prediction.

818    To further simplify our analysis, we set  $\frac{\partial f_{\theta_{i+1}}}{\partial s_i}(s_i^t) \equiv I$ , reducing the dynamics to:

$$s_i^{t+1} = s_i^t - \lambda \epsilon_i^t + \lambda \epsilon_{i+1}^t$$

## 822    B.2 RECURSIVE STATE DYNAMICS BEYOND THE WAVEFRONT

824    Since state predictions  $\hat{s}_i$  remain fixed by assumption, the prediction errors  $\epsilon_i$  follow the same  
 825    temporal dynamics as the states themselves:

$$\begin{aligned} s_i^{t+1} &= s_i^t - \lambda \epsilon_i^t + \lambda \epsilon_{i+1}^t \\ \iff (s_i^{t+1} - \hat{s}_i) &= (s_i^t - \hat{s}_i) - \lambda \epsilon_i^t + \lambda \epsilon_{i+1}^t \\ \iff \epsilon_i^{t+1} &= \epsilon_i^t - \lambda \epsilon_i^t + \lambda \epsilon_{i+1}^t \\ \iff \epsilon_i^{t+1} &= (1 - \lambda) \epsilon_i^t + \lambda \epsilon_{i+1}^t \end{aligned}$$

832    For small errors and/or learning rates, we can approximate the magnitude of the right-hand side as  
 833    the sum of magnitudes, giving rise to recursive dynamics:

$$\|\epsilon_i^{t+1}\| \approx (1 - \lambda) \|\epsilon_i^t\| + \lambda \|\epsilon_{i+1}^t\|$$

837    This recursive formula, when traced through the first few time steps, generates a striking pattern.  
 838    Writing the magnitudes relative to the driving output gradient  $\nabla_{\hat{y}} \mathcal{L}$ :

| Time                                       | $t = 0$ | $t = 1$       | $t = 2$                    | $t = 3$                                 | $t = 0$ | $t = 1$         | $t = 2$                 | $t = 3$                   |
|--------------------------------------------|---------|---------------|----------------------------|-----------------------------------------|---------|-----------------|-------------------------|---------------------------|
| $\ \nabla_{\hat{y}} \mathcal{L}\  \propto$ | 1       | $1 - \lambda$ | $1 - 2\lambda + \lambda^2$ | $1 - 3\lambda + 3\lambda^2 - \lambda^3$ | 1       | $(1 - \lambda)$ | $(1 - \lambda)^2$       | $(1 - \lambda)^3$         |
| $\ \epsilon_{L-1}\  \propto$               | 0       | $\lambda$     | $2\lambda - 2\lambda^2$    | $3\lambda - 6\lambda^2 + 3\lambda^3$    | 0       | $\lambda$       | $2\lambda(1 - \lambda)$ | $3\lambda(1 - \lambda)^2$ |
| $\ \epsilon_{L-2}\  \propto$               | 0       | 0             | $\lambda^2$                | $3\lambda^2 - 3\lambda^3$               | 0       | 0               | $\lambda^2$             | $3\lambda^2(1 - \lambda)$ |
| $\ \epsilon_{L-3}\  \propto$               | 0       | 0             | 0                          | $\lambda^3$                             | 0       | 0               | 0                       | $\lambda^3$               |

845    The state at time  $t = 0$  follows from feedforward state initialization, where all internal errors begin  
 846    at zero. By construction, every entry in the table equals the sum of  $(1 - \lambda)$  times its left neighbor  
 847    (its previous value) and  $\lambda$  times its upper-left neighbor (influence from the layer above).

## 848    B.3 THE BINOMIAL FORMULA FOR SIGNAL PROPAGATION

850    Examining the coefficient patterns reveals a fundamental mathematical structure: Pascal's triangle.  
 851    We can formalize this behavior with the following binomial formula:

$$\|\epsilon_{L-i}^t\| \propto \binom{t}{i} \lambda^i (1 - \lambda)^{t-i}, \quad (6)$$

855    where  $L$  represents the total number of layers,  $i$  is the distance from the output layer, and  $t$  denotes  
 856    the update step. The binomial coefficient  $\binom{t}{i}$  encapsulates the number of possible paths through  
 857    which a signal from the output layer can reach layer  $L - i$  within exactly  $t$  update steps, given our  
 858    top-down propagation assumption.

859    Aside from the initial signal  $\nabla_{\hat{y}} \mathcal{L}$  at the output, the formula reveals three additional factors that  
 860    influence signal magnitude throughout the network:

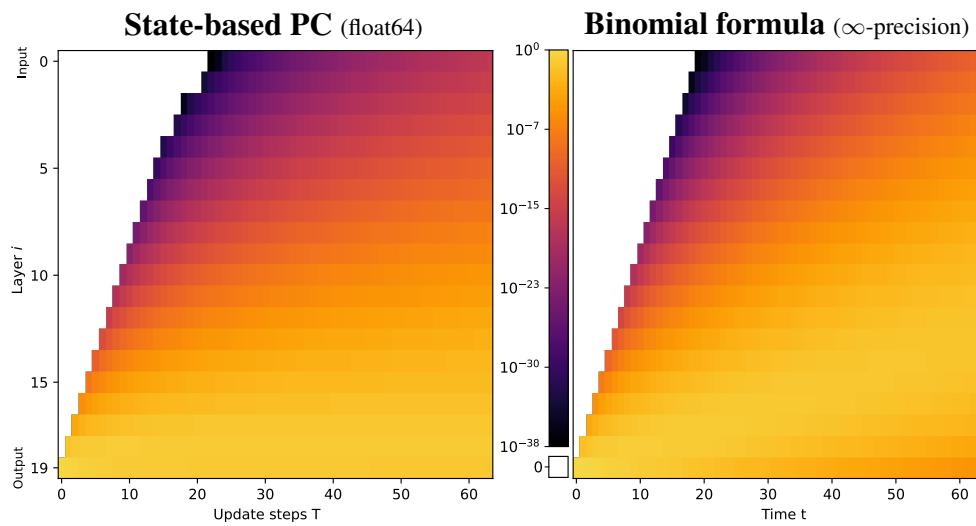
862    1. **Exponential depth decay**  $\lambda^i$ : confirms the exponential attenuation with network depth  
 863    identified in Section 3. This explains PC's exponential energy decay across layers, as first  
 864    observed by Pinchetti et al. (2025) and later reproduced by Qi et al. (2025).

864  
865  
866  
867  
868  
869  
870  
871

2. **Temporal decay**  $(1 - \lambda)^{t-i}$ : represents the gradual weakening of the original output signal over time, an artifact of our assumption that energy flows exclusively toward lower layers.
3. **Different propagation routes**  $\binom{t}{i}$ : accounts for the spatio-temporal variety of signal propagation pathways from output to the current layer.

#### 870 B.4 STATE-BASED PC WITH HIGH-PRECISION SIMULATION 871

872 The binomial formula of Eq. (6) serves as a powerful analytical tool to study sPC dynamics without  
873 the confounding effects of numerical precision limitations. By implementing this formula directly  
874 in logarithmic space using `scipy.special.gammaln`, we can achieve near-infinite precision  
875 and observe the theoretical behavior of signals in sPC unhindered by computational constraints.  
876



894 Figure B.1: Evolution of layerwise energies for sPC with float64 vs. near-infinite precision (simulated  
895 via Eq. (6)). Same setup as in Fig. 1, described in Appendix E.1.2.  
896

897 Fig. B.1 presents a direct comparison between our high-precision binomial model and a float64  
898 implementation of sPC for  $\lambda = 0.1$ . The striking similarity between these plots confirms that our  
899 mathematical characterization accurately captures the fundamental early-stage dynamics, despite  
900 simplifying assumptions. The orthogonal weight initialization used in our experiments certainly  
901 helps here, as it aligns well with our simplified backward dynamics assumption.

902 Comparing the float64 implementation in Fig. B.1 with the float32 version from Fig. 1 highlights  
903 both the importance and limitations of numerical precision in sPC. Even with enhanced double-  
904 precision floating-point arithmetic, the discontinuous signal propagation persists, though manifest-  
905 ing later and less pronounced.  
906

#### 907 B.5 CONTINUOUS VS. DISCRETE TIME: LIMITATIONS OF DIGITAL SIMULATIONS OF SPC 908

909 While it is clear that numerical precision is the cause of propagation issues in practice, the funda-  
910 mental source of the exponential signal decay still remains unknown. We hypothesize:  
911

912  
913 **The exponential signal decay identified in this paper is primarily an artifact of time**  
914 **discretization in digital implementations of sPC.**  
915

916 To analyze this claim rigorously, we examine our binomial formula (Eq. (6)) in the continuous-time  
917 limit, where  $\lambda \rightarrow 0$  (infinitesimal state learning rate) and  $t \rightarrow \infty$  (continuous updates), with a

918 constant total time  $\lambda t$ . Setting  $t = \tau/\lambda$ , we find:  
919

$$\begin{aligned}
920 \quad \lim_{\lambda \rightarrow 0} \|\Delta s_{L-i}^{t=\tau/\lambda}\| &\propto \lim_{\lambda \rightarrow 0} \binom{\tau/\lambda}{i} \lambda^i (1-\lambda)^{\tau/\lambda-i} \\
921 \quad &\approx \lim_{\lambda \rightarrow 0} \underbrace{\frac{(\tau/\lambda)^i}{i!}}_{(Stirling's\ approximation)} \lambda^i \underbrace{e^{-\tau}}_{(limit\ definition\ of\ e)} \\
922 \quad &= \frac{\tau^i}{i!} e^{-\tau} \\
923 \quad & \\
924 \quad & \\
925 \quad & \\
926 \quad & \\
927 \quad &
\end{aligned}$$

928 In the continuous-time limit, our binomial formula transforms into a Poisson distribution, representing  
929 the spatial profile of a diffusion process. In this regime, signals diffuse smoothly over time,  
930 rather than being subject to the stepwise attenuation seen in discrete updates.  
931

932 Digital implementations can approach continuous-time behavior with smaller time steps and more  
933 advanced ODE solvers, but this dramatically increases computational cost and reintroduces the origi-  
934 nal scalability problem. In contrast, physical substrates can effortlessly model a diffusion process,  
935 naturally operating at infinitesimal time constants, with countless update steps passing every second.  
936

937 This observation leads to a reassuring conclusion: neuromorphic implementations of sPC, like the  
938 brain, would not suffer from the exponential signal decay problem identified in our research. The  
939 issue is specific to the time discretization required for digital implementations, subject to both stabil-  
940 ity constraints and limited numerical precision. In digital systems, we cannot practically approach  
941 the continuous-time limit without incurring prohibitive computational costs.  
942

943 Therefore, the exponential decay with depth is not an inherent limitation of sPC as a theoretical  
944 framework but rather a consequence of its discretized formulation for digital hardware. For instance,  
945 biological neural systems, operating in continuous time with analog computation, would not struggle  
946 with the same fundamental barriers to depth scaling, although they may face other challenges, such  
947 as noise and non-idealities.  
948

## 949 B.6 TEMPORAL SCOPE AND LIMITATIONS

950 Our binomial model primarily captures early-stage dynamics but becomes progressively less accu-  
951 rate for extended optimization periods. For longer time horizons, especially with larger learning  
952 rates, our assumption of fixed predictions becomes increasingly unrealistic. The model dictates per-  
953 manent downward energy transmission, moving from output to input, due to a lack of bottom-up  
954 signals. In practical implementations, however, layerwise energies will settle across the network in  
955 an effort to minimize prediction errors globally. In particular, the output loss  $\mathcal{L}$  will generally remain  
956 relatively large, even at equilibrium.  
957

## 958 C ERROR-BASED PC AND CONNECTIONS TO OTHER ALGORITHMS

959 This section examines how ePC related to other established learning algorithms. More specifically,  
960 we show that:  
961

- 962 • Despite its lack of locality, ePC is still a valid PC algorithm, according to the definition by  
963 Salvatori et al. (2026). (Appendix C.1)
- 964 • ePC and sPC are essentially the same PC algorithm, but follow different optimization paths.  
965 (Appendix C.2)
- 966 • Under specific conditions, ePC can implement exact backpropagation, closely resembling  
967 *Zero-divergent Inference Learning* (Z-IL; Song et al., 2020). (Appendix C.3)
- 968 • In general, however, ePC generates weight gradients that are different from those in stan-  
969 dard backpropagation, matching those produced by full-equilibrium sPC. (Appendix C.4)
- 970 • When considering PC as a hierarchical probabilistic model, ePC simply implements the  
971 VAE reparametrization trick from Kingma and Welling (2013). (Appendix C.5)

---

972    C.1 EPC BROADENS THE DEFINITION OF PREDICTIVE CODING  
973

974    This appendix section analyzes the technical definition of PC by Salvatori et al. (2026) and demon-  
975    strates that ePC meets all criteria, thereby definitively establishing it as an exact PC algorithm.  
976    Moreover, we show that ePC broadens our understanding of what PC is, eliminating the condition  
977    of local-only interactions, commonly believed to be a core component of PC.

978  
979    **Informal definition of PC by Salvatori et al. (2026), adapted to our notation.** Let us assume  
980    that we have a hierarchical generative model  $g(\mathbf{x}, \mathbf{s})$ , inverted using an algorithm  $\mathcal{A}$ .  
981    Then,  $\mathcal{A}$  is a Predictive Coding algorithm if and only if:

982    1. it maximizes the model evidence  $\log p(\mathbf{s})$  by minimizing a variational free energy,  
983    2. the posterior distributions of the nodes of the hierarchical structure are factorized  
984    via a mean-field approximation, and  
985    3. each posterior distribution is approximated under the Laplace approximation  
986    (i.e., random effects are Gaussian).

987  
988    Note that the above definition does not say anything explicitly about prediction error or  
989    properties such as locality, which, as mentioned earlier, are commonly used to describe PC.  
990    [...] the above definition is quite general and does not impose any constraint on the exact  
991    computation of the posteriors as well as the optimization technique(s) used to minimize the  
992    variational free energy.

993    Let us go over each of the requirements of the definition:

994  
995    0. ePC employs the exact same hierarchical generative model  $g(\mathbf{x}, \mathbf{s})$  as sPC, as reflected by  
996    its identical energy function (see Appendix C.2). A reparametrization does not affect this  
997    property.

998    1. ePC minimizes sPC's variational free energy  $E$  and reaches the same state minima (see  
999    Appendix C.2). As in sPC, this energy minimum corresponds to a maximum-likelihood  
1000   estimation of the model evidence over the states.

1001   2. ePC imposes a mean-field approximation of the posterior distribution. Concretely, this  
1002   means that every state component  $s_{ij}$  can be set independently of any other state compo-  
1003   nent. Although ePC builds a global computational graph, thereby imposing a dependence  
1004   of  $s_i$  on all previous states  $s_{<i}$ , we can still set  $s_i$  to any arbitrary value by modifying  $\epsilon_i$ .

1005   3. ePC's 'random effects' are the errors  $\epsilon$ , which are implicitly modelled as Gaussians. More  
1006   specifically, the energy  $E$  (representing  $-\log g(\mathbf{x}, \mathbf{s})$ ) contains a  $\|\epsilon_i\|^2$  term that corre-  
1007   sponds to the negative log-likelihood of a standard Gaussian  $\mathcal{N}(0, 1)$ . This is entirely  
1008   analogous to the reparametrization trick in VAEs (Kingma and Welling, 2013), which for-  
1009   mulates any Gaussian as a transformation of a standard normal. We explore this connection  
1010   further in Appendix C.5.

1011

1012   Remarkably, requirement 2 does *not* imply the need for locality, despite Salvatori et al. (2026)  
1013   noting that "the mean field approximation enforces independence, and hence, results in locality in  
1014   the update rules". ePC proves that a non-local mean-field approximation exists, without violating  
1015   the assumptions of the hierarchical model.

1016   Technically speaking, one might argue that the final node in our model,  $\hat{y}$ , is not independent of the  
1017   other nodes. However, the loss  $\mathcal{L}$  still provides the necessary freedom to deviate from  $y$ , effectively  
1018   acting as an additional random effect. Along with the definition's assumption of Gaussian posterior  
1019   distributions, the loss  $\mathcal{L}$  becomes an MSE loss and may be equivalently modelled as an additional  
1020   error term  $\epsilon_L$ .

1021  
1022   C.2 THEORETICAL EQUIVALENCE BETWEEN SPC AND EPC  
1023

1024   Here, we provide a formal proof of the theoretical equivalence between the state- and error-based  
1025   formulations of PC. We demonstrate that despite their different parameterizations, both approaches  
converge to identical equilibrium points and represent the same underlying optimization problem.

---

1026 **Bijective Mapping** We first establish a bijective mapping between the optimization variables of  
 1027 sPC (the states  $s$ ) and ePC (the errors  $\epsilon$ ).

1028 **Theorem C.1** (Bijective Mapping). *For any fixed set of parameters  $\theta$  and input  $x$ , there exists  
 1029 a bijective mapping between any state configuration  $s = \{s_0, s_1, \dots, s_{L-1}\}$  in sPC and error  
 1030 configuration  $\epsilon = \{\epsilon_0, \epsilon_1, \dots, \epsilon_{L-1}\}$  in ePC.*

1032 *Proof.* Given states  $s = \{s_0, s_1, \dots, s_{L-1}\}$  in sPC, we can directly compute the corresponding  
 1033 errors:

$$1034 \quad \epsilon_i = s_i - \hat{s}_i = s_i - f_{\theta_i}(s_{i-1}) \quad \text{for } i \in \{0, 1, \dots, L-1\}$$

1036 where for  $i = 0$ , we define  $s_{-1} := x$  (the input data).

1037 Conversely, given errors  $\epsilon = \{\epsilon_0, \epsilon_1, \dots, \epsilon_{L-1}\}$  in ePC and input  $x$ , we can recursively compute  
 1038 the corresponding states:

$$1039 \quad s_0 = \hat{s}_0 + \epsilon_0 = f_{\theta_0}(x) + \epsilon_0$$

$$1040 \quad s_i = \hat{s}_i + \epsilon_i = f_{\theta_i}(s_{i-1}) + \epsilon_i \quad \text{for } i \in \{1, 2, \dots, L-1\}$$

1042 For a fixed set of parameters  $\theta$  and input  $x$ , this mapping is one-to-one and onto (i.e., bijective):  
 1043 for any given  $s$ , there is exactly one corresponding  $\epsilon$ , and for any given  $\epsilon$ , there is exactly one  
 1044 corresponding  $s$ .  $\square$

1046 **Energy Function Equivalence** Next, we prove that under this mapping, the energy functions of  
 1047 both formulations are equivalent.

1048 **Theorem C.2** (Energy Equivalence). *Under the bijective mapping between  $s$  and  $\epsilon$ , for any fixed  
 1049 parameter set  $\theta$  and input-output pair  $(x, y)$ , the energy functions  $E_{\text{sPC}}(s, \theta)$  and  $E_{\text{ePC}}(\epsilon, \theta)$  are  
 1050 identical when evaluated on corresponding configurations.*

1052 *Proof.* Let us first recall the energy functions for both formulations:

$$1053 \quad E_{\text{sPC}}(s, \theta) = \frac{1}{2} \sum_{i=0}^{L-1} \|s_i - \hat{s}_i\|^2 + \mathcal{L}(\hat{y}, y)$$

$$1054 \quad E_{\text{ePC}}(\epsilon, \theta) = \frac{1}{2} \sum_{i=0}^{L-1} \|\epsilon_i\|^2 + \mathcal{L}(\hat{y}, y)$$

1059 Starting with  $E_{\text{ePC}}$  and substituting the definition  $\epsilon_i = s_i - \hat{s}_i$ :

$$1060 \quad E_{\text{ePC}}(\epsilon, \theta) = \frac{1}{2} \sum_{i=0}^L \|\epsilon_i\|^2 + \mathcal{L}(\hat{y}, y)$$

$$1061 \quad = \frac{1}{2} \sum_{i=0}^L \|s_i - \hat{s}_i\|^2 + \mathcal{L}(\hat{y}, y)$$

$$1062 \quad = E_{\text{sPC}}(s, \theta)$$

1068 Therefore, the energy functions evaluate to the same value for corresponding configurations of states  
 1069 and errors.  $\square$

1071 **Jacobian of the Transformation** To analyze how gradients and critical points relate between the  
 1072 two formulations, we need the Jacobian matrix of the transformation from errors to states.

1074 **Lemma C.3** (Jacobian Structure). *The Jacobian matrix  $J = \frac{\partial s}{\partial \epsilon}$  representing how states change  
 1075 with respect to errors has a lower triangular structure with identity matrices on the diagonal.*

1076 *Proof.* From the recursive definition of states in terms of errors:

$$1077 \quad s_i = f_{\theta_i}(s_{i-1}) + \epsilon_i$$

1079 Taking partial derivatives with respect to  $\epsilon_j$ :

---

1080     1. If  $j > i$ :  $\frac{\partial s_i}{\partial \epsilon_j} = \mathbf{0}$ , since  $s_i$  doesn't depend on future errors.  
 1081  
 1082     2. If  $j = i$ :  $\frac{\partial s_i}{\partial \epsilon_i} = \mathbf{I}$ , the identity matrix.  
 1083  
 1084     3. If  $j < i$ :  $\frac{\partial s_i}{\partial \epsilon_j} = \frac{\partial f_{\theta_i}(s_{i-1})}{\partial s_{i-1}} \cdot \frac{\partial s_{i-1}}{\partial \epsilon_j}$

1085  
 1086     Let's denote  $\mathbf{J}_i = \frac{\partial f_{\theta_{i+1}}(s_i)}{\partial s_i}$  as the Jacobian of layer  $i + 1$  with respect to its input (state  $i$ ).  
 1087  
 1088

1089     Then we can write:

1090  
 1091  
 1092  
 1093

$$\frac{\partial s_i}{\partial \epsilon_j} = \begin{cases} \mathbf{0} & \text{if } j > i \\ \mathbf{I} & \text{if } j = i \\ \mathbf{J}_{i-1} \cdot \frac{\partial s_{i-1}}{\partial \epsilon_j} & \text{if } j < i \end{cases}$$

1094     This recursive structure leads to a lower triangular Jacobian matrix with identity matrices on the  
 1095     diagonal:  
 1096

1097  
 1098  
 1099  
 1100  
 1101

$$\mathbf{J} = \begin{bmatrix} \mathbf{I} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{J}_0 & \mathbf{I} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{J}_1 \mathbf{J}_0 & \mathbf{J}_1 & \mathbf{I} & \cdots & \mathbf{0} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \prod_{k=0}^{L-1} \mathbf{J}_k & \prod_{k=1}^{L-1} \mathbf{J}_k & \cdots & \mathbf{J}_{L-1} & \mathbf{I} \end{bmatrix}$$

1102     This structure has important implications:  $\mathbf{J}$  is invertible with determinant 1, since the determinant  
 1103     of a triangular matrix is the product of its diagonal entries, all of which are 1.  $\square$   
 1104

1105     **Gradient Equivalence and Critical Points** We now establish the relationship between gradients  
 1106     in both formulations and use it to prove that they share the same critical points.  
 1107

1108     **Theorem C.4** (Gradient Relationship). *The gradients of the energy functions in the sPC and ePC  
 1109     formulations are related by:*

1110      $\nabla_{\epsilon} E_{ePC} = \mathbf{J}^T \nabla_s E_{sPC}$

1111     where  $\mathbf{J} = \frac{\partial s}{\partial \epsilon}$  is the Jacobian matrix derived in Lemma C.3.

1112     *Proof.* By the chain rule of calculus:

1113  
 1114  
 1115  
 1116  
 1117  
 1118  
 1119  
 1120

$$\begin{aligned} \nabla_{\epsilon} E_{ePC} &= \nabla_{\epsilon} E_{sPC}(s(\epsilon), \theta) \\ &= \left( \frac{\partial s}{\partial \epsilon} \right)^T \nabla_s E_{sPC} \\ &= \mathbf{J}^T \nabla_s E_{sPC} \end{aligned}$$

1121      $\square$

1122     **Theorem C.5** (Critical Point Correspondence). *A configuration  $s^*$  is a critical point of  $E_{sPC}$  if and  
 1123     only if the corresponding configuration  $\epsilon^*$  is a critical point of  $E_{ePC}$ .*

1124     *Proof.* From Theorem C.4, we have:

1125      $\nabla_{\epsilon} E_{ePC} = \mathbf{J}^T \nabla_s E_{sPC}$

1126     Since  $\mathbf{J}$  is invertible (as shown in Lemma C.3), its transpose  $\mathbf{J}^T$  is also invertible. Therefore:

1127      $\nabla_{\epsilon} E_{ePC} = \mathbf{0} \iff \mathbf{J}^T \nabla_s E_{sPC} = \mathbf{0} \iff \nabla_s E_{sPC} = \mathbf{0}$

1128  
 1129  
 1130  
 1131  
 1132  
 1133

This establishes that  $s^*$  is a critical point of  $E_{sPC}$  if and only if the corresponding  $\epsilon^*$  is a critical  
 point of  $E_{ePC}$ .  $\square$

---

1134 **Local Structure of Critical Points** To complete our proof of optimization equivalence, we need  
 1135 to show that the local structure of critical points (minima, maxima, or saddle points) is preserved  
 1136 between formulations.

1137 **Theorem C.6** (Preservation of Local Structure). *A critical point  $s^*$  is a local minimum / maximum /  
 1138 saddle point of  $E_{sPC}$  if and only if the corresponding critical point  $\epsilon^*$  is a local minimum / maximum /  
 1139 saddle point of  $E_{ePC}$ .*

1140 *Proof.* The local structure of critical points is determined by the eigenvalues of the Hessian matrices:

$$\begin{aligned} \mathbf{H}_s &= \nabla_s^2 E_{sPC} \\ \mathbf{H}_\epsilon &= \nabla_\epsilon^2 E_{ePC} \end{aligned}$$

1141 To relate these Hessians, we differentiate the relationship in Theorem C.4:

$$\nabla_\epsilon E_{ePC} = \mathbf{J}^T \nabla_s E_{sPC}$$

1142 Taking another derivative with respect to  $\epsilon$ :

$$\begin{aligned} \nabla_\epsilon^2 E_{ePC} &= \frac{\partial}{\partial \epsilon} (\mathbf{J}^T \nabla_s E_{sPC}) \\ &= \frac{\partial \mathbf{J}^T}{\partial \epsilon} \nabla_s E_{sPC} + \mathbf{J}^T \frac{\partial \nabla_s E_{sPC}}{\partial \epsilon} \\ &= \frac{\partial \mathbf{J}^T}{\partial \epsilon} \nabla_s E_{sPC} + \mathbf{J}^T \nabla_s^2 E_{sPC} \frac{\partial s}{\partial \epsilon} \\ &= \frac{\partial \mathbf{J}^T}{\partial \epsilon} \nabla_s E_{sPC} + \mathbf{J}^T \mathbf{H}_s \mathbf{J} \end{aligned}$$

1143 At a critical point where  $\nabla_s E_{sPC} = \mathbf{0}$ , the first term vanishes, giving:

$$\mathbf{H}_\epsilon = \mathbf{J}^T \mathbf{H}_s \mathbf{J}$$

1144 This establishes that  $\mathbf{H}_\epsilon$  and  $\mathbf{H}_s$  are congruent matrices, considering  $\mathbf{J}$  is invertible.

1145 By Sylvester's law of inertia, congruent matrices have the same number of positive, negative, and  
 1146 zero eigenvalues. Therefore:

- $\mathbf{H}_s$  is positive definite (all eigenvalues positive) if and only if  $\mathbf{H}_\epsilon$  is positive definite
- $\mathbf{H}_s$  is negative definite (all eigenvalues negative) if and only if  $\mathbf{H}_\epsilon$  is negative definite
- $\mathbf{H}_s$  has mixed positive/negative eigenvalues (saddle point) if and only if  $\mathbf{H}_\epsilon$  has the same eigenvalue signature

1147 This preserves the classification of critical points as local minima, maxima, or saddle points between  
 1148 the two formulations.  $\square$

1149 **Dynamical Systems Analysis** While the energy functions and their critical points are identical,  
 1150 the optimization dynamics differ significantly due to the reparameterization.

1151 **Theorem C.7** (Dynamical Equivalence). *The continuous-time dynamics in  $sPC$  and  $ePC$  both converge to the same equilibrium points, but follow different trajectories in their respective spaces.*

1152 *Proof.* Under the notation  $\dot{x} := \frac{dx}{dt}$ , the continuous-time dynamics for both formulations are:

$$\begin{aligned} sPC: \quad \dot{s} &= -\nabla_s E_{sPC} \\ ePC: \quad \dot{\epsilon} &= -\nabla_\epsilon E_{ePC} \end{aligned}$$

1153 Using the relation  $\nabla_\epsilon E_{ePC} = \mathbf{J}^T \nabla_s E_{sPC}$ , the  $ePC$  dynamics can be rewritten as:

$$\dot{\epsilon} = -\mathbf{J}^T \nabla_s E_{sPC}$$

1188 To compare these dynamics in the same space, we need to transform  $\dot{\epsilon}$  to  $\dot{s}$ . Using the chain rule:  
1189

$$\begin{aligned} \dot{s} &= \frac{\partial s}{\partial \epsilon} \dot{\epsilon} \\ &= \mathbf{J} \dot{\epsilon} \\ &= -\mathbf{J} \mathbf{J}^T \nabla_s E_{\text{sPC}} \end{aligned}$$

1195 Comparing with the sPC dynamics:  
1196

$$\begin{aligned} \dot{s}_{\text{sPC}} &= -\nabla_s E_{\text{sPC}} \\ \dot{s}_{\text{ePC}} &= -\mathbf{J} \mathbf{J}^T \nabla_s E_{\text{sPC}} \end{aligned}$$

1200 The difference is the matrix  $\mathbf{J} \mathbf{J}^T$ , which acts as a preconditioner for the gradient descent. This  
1201 matrix is positive definite (since  $\mathbf{J}$  has full rank), meaning that the ePC dynamics will always move  
1202 in a descent direction for  $E_{\text{sPC}}$ , but with a different step size and direction than sPC.

1203 Both dynamical systems will converge to the same equilibrium points where  $\nabla_s E_{\text{sPC}} = \mathbf{0}$ , but will  
1204 follow different trajectories to get there. Whereas sPC suffers from an ill-conditioned optimization  
1205 landscape (Innocenti et al., 2025), explaining its slow convergence, ePC seems to solve this problem  
1206 through a cleverly constructed preconditioner.  $\square$

1207 **Global Connectivity and Signal Propagation** The key computational advantage of ePC over sPC  
1208 lies in its global connectivity structure. This difference affects how signals propagate through the  
1209 network.

1211 **Theorem C.8** (Signal Propagation). *In the sPC formulation, signals propagate sequentially through  
1212 the network layers, resulting in exponential decay with network depth. In contrast, ePC allows direct  
1213 signal propagation to all layers simultaneously, eliminating the signal decay problem.*

1214 *Proof.* In sPC, the state update equations are:  
1215

$$\begin{aligned} \dot{s}_i &= -\nabla_{s_i} E_{\text{sPC}} \\ &= -\epsilon_i + \epsilon_{i+1} \frac{\partial f_{\theta_{i+1}}}{\partial s_i}(s_i) \end{aligned}$$

1220 The crucial observation is that  $\dot{s}_i$  depends only on errors from adjacent layers ( $\epsilon_i$  and  $\epsilon_{i+1}$ ). This  
1221 local connectivity means that a signal from the output layer ( $\nabla_{\hat{y}} \mathcal{L}$ ) must propagate through all  
1222 intermediate layers to reach the input layer, attenuating at each step.

1223 In ePC, by contrast, the gradient is computed through the entire computational graph:  
1224

$$\begin{aligned} \dot{\epsilon}_i &= -\nabla_{\epsilon_i} E_{\text{ePC}} \\ &= -\epsilon_i - \frac{\partial \hat{y}}{\partial \epsilon_i}^T \nabla_{\hat{y}} \mathcal{L} \end{aligned}$$

$$\text{with } \frac{\partial \hat{y}}{\partial \epsilon_i} = \frac{\partial \hat{y}}{\partial \epsilon_{L-1}} \cdot \frac{\partial \epsilon_{L-1}}{\partial \epsilon_{L-2}} \cdot \dots \cdot \frac{\partial \epsilon_{i+1}}{\partial \epsilon_i}$$

1229 Hence,  $\dot{\epsilon}_i$  directly depends on all errors from layer  $i$  to  $L$ . This global connectivity allows signals  
1230 from the output layer to immediately affect all earlier layers, eliminating the signal decay problem.  
1231

1234 The mathematical consequence of this difference is that in sPC, the influence of the output error  
1235 on layer  $i$  decreases exponentially with the distance from the output (as explained extensively in  
1236 Section 3), while in ePC, this influence is direct and unattenuated.  $\square$

1238 **Limitations and Caveats** While the two formulations are theoretically equivalent in terms of  
1239 equilibrium points, several practical considerations affect their performance:  
1240

1. **Optimization Landscape:** The different parameterizations create different state trajectories that may encounter different local minima under stochastic optimization.

1242    2. **Numerical Stability:** The formulations may exhibit different numerical properties, partic-  
 1243    ularly with respect to hyperparameter sensitivity and discretization effects. For instance, in  
 1244    Section 3, the numerical issues of sPC are highlighted.  
 1245    3. **Implementation Efficiency:** The global connectivity of ePC imposes different computa-  
 1246    tional demands than the local connectivity of sPC, affecting implementation efficiency on  
 1247    different hardware architectures. On GPU, the backpropagation algorithm behind ePC is  
 1248    highly efficient, despite being sequential. However, the local and parallel nature of sPC  
 1249    enables a far more efficient neuromorphic implementation.  
 1250

1251    Despite these practical differences, our theoretical equivalence analysis confirms that ePC is a valid  
 1252    reparameterization of PC that preserves its fundamental principles while offering significant com-  
 1253    putational advantages for deep networks.  
 1254

### 1255    C.3 EXACT BACKPROPAGATION USING ERROR-BASED PREDICTIVE CODING

1257    Below, we explore an important theoretical property of ePC: under specific conditions, ePC can  
 1258    become mathematically equivalent to standard backpropagation. This relationship deserves careful  
 1259    examination, as it affects how researchers should implement and interpret ePC results.  
 1260

1261    Note that, in general and under more reasonable circumstances, ePC does *not* equal backpropagation,  
 1262    and produces notably different weight gradients, as demonstrated in Appendix C.4.  
 1263

#### 1263    C.3.1 WHEN EPC REDUCES TO BACKPROPAGATION

1265    The use of backpropagation within ePC’s computational structure naturally raises the question of  
 1266    when the two methods become mathematically equivalent. We demonstrate that ePC reduces to  
 1267    standard backpropagation under specific conditions. Importantly, these conditions do *not* make  
 1268    backprop a PC algorithm, which would require, at least in theory, for the errors to be at equilibrium.  
 1269

1270    **Theorem C.9.** *ePC becomes mathematically equivalent to backpropagation when either:*

- 1271    • *The number of update steps  $T$  is exactly 1.*
- 1272    • *The error learning rate  $\lambda$  is sufficiently small relative to  $1/T$ .*

1274    *Proof.* We consider each case separately, proving their equivalence to backpropagation.  
 1275

#### 1277    Case 1: Single Update Step ( $T = 1$ )

1278    With a single update step, the error variables are updated to:

$$1279 \quad \epsilon_i = -\lambda \nabla_{\epsilon_i} \mathcal{L}(\hat{y}, y)$$

1281    The subsequent parameter update becomes:

$$\begin{aligned} 1282 \quad \Delta \theta_i &\propto -\frac{\partial \hat{s}_i}{\partial \theta_i} \epsilon_i \\ 1283 \quad &= \lambda \frac{\partial \hat{s}_i}{\partial \theta_i} \underbrace{\frac{\partial s_i}{\partial \hat{s}_i}}_{=I} \underbrace{\frac{\partial \epsilon_i}{\partial s_i}}_{=I} \nabla_{\epsilon_i} \mathcal{L}(\hat{y}, y) \\ 1284 \quad &= \lambda \nabla_{\theta_i} \mathcal{L}(\hat{y}, y) \end{aligned}$$

1289    This is precisely the gradient from standard backpropagation, but scaled by the error learning rate  $\lambda$ .  
 1290    Note that the weight update itself would involve an additional scaling by the *weight* learning rate.  
 1291

1292    When  $\lambda = 1$ , we find that this setup exactly matches that of *Zero-divergent Inference Learning*  
 1293    (Z-IL; Song et al., 2020). Z-IL adds a “fixed prediction assumption” to sPC and only models a  
 1294    backward signal waveform, similar to that of Section 3, but with  $\lambda = 1$ . With these two constraints  
 1295    added to sPC, Z-IL effectively implements a 1-step version of ePC, which, as we outlined above,  
 indeed corresponds to exact backpropagation.

---

1296 **Case 2: Small Learning Rate ( $\lambda \ll 1/T$ )**

1297 For a small  $\lambda$ , after  $T$  update steps, the error can be approximated as a linear accumulation of  $T$   
1298 identical updates:

1299 
$$\epsilon_i \approx -\lambda T \nabla_{\epsilon_i} \mathcal{L}(\hat{y}, y)$$

1300 Following the same reasoning as for case 1, the resulting parameter update now becomes:

1301 
$$\Delta \theta_i \propto \lambda T \nabla_{\theta_i} \mathcal{L}(\hat{y}, y)$$

1302 This approximation holds when  $\lambda T$  remains sufficiently small, such that the error-perturbed output  
1303 prediction  $\hat{y}$  still closely approximates the unperturbed feedforward prediction  $\hat{y}$  of backprop. Note  
1304 that, when using larger learning rates and/or sufficient update steps, this is no longer the case, and  
1305 the output prediction  $\hat{y}$  differs sufficiently between ePC and backprop, with the natural consequence  
1306 being notably distinct gradients.  $\square$

1308 **C.3.2 EXPERIMENTAL CONSIDERATIONS**

1310 In our experiments, we found that smaller values of  $\lambda T$  generally performed best. However, we  
1311 deliberately maintained this value above the threshold that would cause ePC to reduce to regular  
1312 backpropagation. Complete experimental details are provided in Appendix E.

1313 **C.3.3 CONTRAST WITH SPC**

1315 This situation differs notably from sPC, which can also become equivalent to backpropagation under  
1316 certain conditions (Song et al., 2020; Millidge et al., 2022a). However, these conditions typically  
1317 involve specific algorithmic tweaks that rarely occur in practice, thereby protecting sPC implemen-  
1318 tations from accidentally reducing to backpropagation.

1319 ePC, by contrast, presents a more subtle boundary. During hyperparameter tuning, one might in-  
1320 advertently select learning rates and iteration counts that effectively transform ePC into standard  
1321 backpropagation. Researchers working with ePC should therefore carefully monitor these parame-  
1322 ters to ensure they are truly studying PC dynamics rather than rediscovering backprop in disguise.  
1323

1324 **C.4 WEIGHT GRADIENTS FROM (ERROR-BASED) PC ARE DISTINCT FROM BACKPROP**

1326 In Section 4.3, we analyzed the evolution of states to equilibrium for a 20-layer linear PC network  
1327 trained on MNIST. Here, we examine the evolution of the weight gradients themselves, which are  
1328 ultimately the quantities of interest for learning.

1329 While weight gradients in PC have no inherent dynamics (they are computed only after energy  
1330 minimization), we can track how they would evolve if optimization were stopped at intermediate  
1331 steps using their local formulas (Eq. (3)). The results are shown in Fig. C.1.

1332 The analysis reveals several key insights about the gradient behavior of the two PC variants. Both  
1333 ePC and sPC eventually converge to identical analytical PC weight gradients, reconfirming their  
1334 theoretical equivalence from Appendix C.2. Notably, these PC gradients are distinct from backpropo-  
1335 gation gradients across all layers, differing in both direction and magnitude.

1336 Nonetheless, the gradient dynamics differ dramatically between the two methods. At  $T = 1$ , ePC  
1337 starts at the backprop gradients (as shown in Appendix C.3) and rapidly transitions toward the PC  
1338 solution. By contrast, sPC appears to transition from exact-zero gradients directly to PC.<sup>2</sup>  
1339

1340 As expected, sPC suffers from severe signal propagation issues. Deeper layers stay at zero weight  
1341 gradients for a long time, while layer 18 (the only initially non-zero gradient) actually becomes  
1342 *more* aligned with backprop before slowly moving toward PC. This creates a significant risk, where  
1343 early (pre-equilibrium) termination of sPC surely implements something other than true PC, despite  
1344 achieving reasonable learning performance with extremely small yet informative gradients.

1345 **C.5 EPC IMPLEMENTS THE VAE REPARAMETRIZATION TRICK IN PC**

1347 Although PC has long been described as a variational Bayes algorithm (Friston and Kiebel, 2009;  
1348 Bogacz, 2017; Millidge et al., 2021), it is only recently that its probabilistic generative properties

1349 <sup>2</sup>The directional wandering is likely just an artifact from the cosine similarity with a near-zero vector.

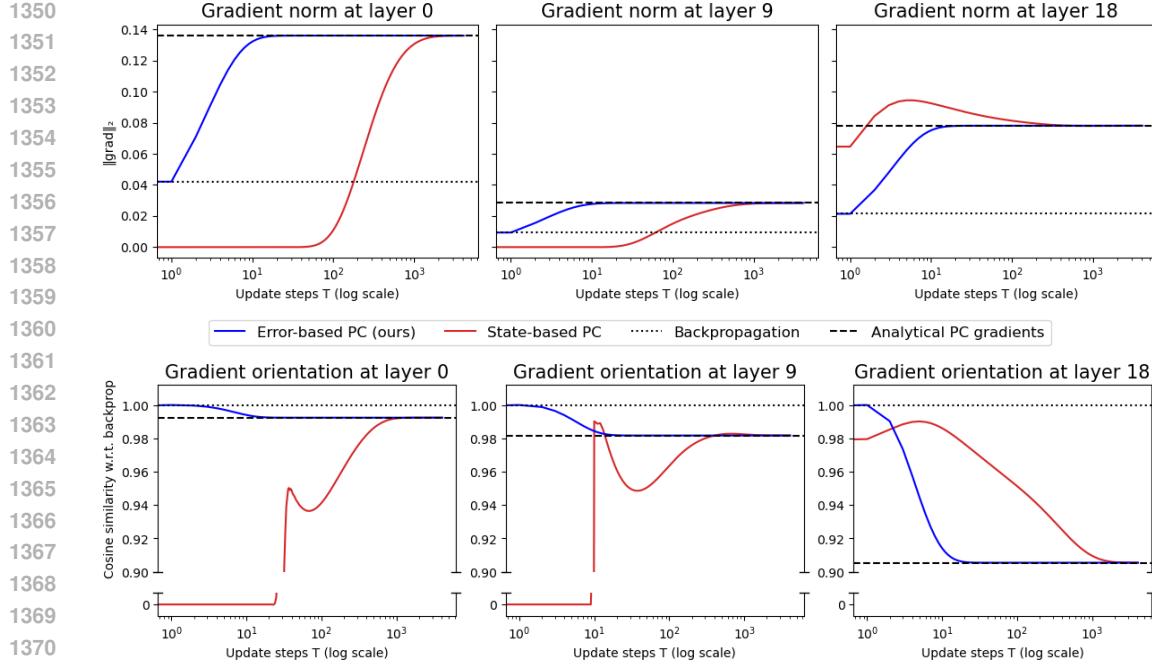


Figure C.1: Evolution of batch-averaged weight gradients of bottom, middle, and top hidden layers in a 20-layer linear PC network trained on MNIST (same setup as Fig. 5). **ePC** starts at backprop, while **sPC** starts mostly at zero. Both eventually reach the analytical PC gradients (notably distinct from backprop), with ePC converging roughly  $100\times$  faster than sPC.

have been explored (Oliviers et al., 2024; Zahid et al., 2024). In this context, PC is seen as a hierarchical Gaussian graphical model, where:

- Layer predictions  $\hat{s}_i$  represent the predicted means ( $\mu$ ) of Gaussian distributions (where negative log-likelihood corresponds to a squared error loss)
- Variance is typically fixed at  $\sigma = 1$  (or precision weights are introduced)
- The states  $s$  are sampled from the predicted Gaussians:  $s_i \sim \mathcal{N}(\hat{s}_i, 1)$
- Standard PC's "energy minimization" (as described in Section 2) corresponds to finding the maximum-likelihood states  $s$  instead of sampling from the full distribution

When ported to this setting, ePC becomes:  $s_i = \hat{s}_i + 1 \odot \epsilon_i$  (where 1 represents unit variance)

A common problem in probabilistic graphical models is that direct sampling breaks the computational graph, inhibiting the gradient flow needed for backpropagation. One ingenious and highly successful solution is the VAE reparameterization trick (Kingma and Welling, 2013), which transforms a standard normal into the predicted distribution:

$$z = \mu + \sigma \odot \epsilon, \quad \epsilon \sim \mathcal{N}(0, 1)$$

Notice the strong similarity with the earlier formulation of ePC when  $z \rightarrow s$ ,  $\mu \rightarrow \hat{s}_i$ ,  $\sigma \rightarrow 1$

Our description of ePC in Section 4.1 uses variational inference to find maximum-likelihood values for  $\epsilon_i$  rather than drawing samples. However, when ported to the probabilistic interpretation of PC, one could sample the error variables  $\epsilon_i$  from a standard normal distribution, making the connection to the VAE reparameterization trick more direct. The mathematical structure is entirely analogous: both methods reparameterize in terms of error/noise variables to enable efficient gradient flow.

---

1404            **D PROOF-OF-CONCEPT: DEEP PC NETWORKS TRAINED ON MNIST**  
1405

1406            This appendix describes the experimental setup from Section 4.3 and contains additional experiments  
1407            on deep non-linear networks. The results demonstrate that ePC’s convergence advantages  
1408            hold across both linear and non-linear architectures, at least in our proof-of-concept MNIST setting.  
1409

1410            **D.1 DETAILS OF DEEP LINEAR NETWORK TRAINED ON MNIST**  
1411

1412            Below, we briefly summarize the technical details needed to reproduce Fig. 5. Specifically, we used  
1413            the following architecture:  
1414

- 1415            • **Number of layers:** 20
  - 1416            – Specifically:  $x - s_0 - s_1 - \dots - s_8 - s_9 - s_{10} - \dots - s_{17} - s_{18} - y$   
1417            where ‘-’ represents a layer (20 layers in total, leading to 19 hidden states  $s_i$ )
- 1418            • **Hidden state dim:** 128
- 1419            • **Activation function:** None (not even at the output)
- 1420            • **Weight init:** orthogonal (linear gain) (Hu et al., 2020)
- 1421            • **Bias init:** zero
- 1422            • **State/error optimizer:** SGD
- 1423            • **Pretraining**
  - 1424            – **Weight optimizer:** Adam (Kingma and Ba, 2014)
  - 1425            – **Weight learning rate:** 0.001 (not tuned for this proof-of-concept)
  - 1426            – **Gradient algorithm:** Backpropagation (fast, stable, and neutral w.r.t. sPC & ePC)
  - 1427            – **Dataset:** EMNIST-MNIST (Cohen et al., 2017)
  - 1428            – **Batch size:** 64
  - 1429            – **Epochs:** 2
  - 1430            – **Final test accuracy:** 84.5%

1435            For a fair comparison between sPC and ePC, we tuned the internal learning rate for both, with the  
1436            objective of maximum convergence to the analytical optimum:  
1437

- 1438            • **ePC**
  - 1439            – **e\_lr sweep:** {0.001, 0.005, 0.01, 0.05, 0.1}
  - 1440            – **Optimal e\_lr:** 0.05
  - 1441            – **#iters:** 256
- 1442            • **sPC**
  - 1443            – **s\_lr sweep:** {0.05, 0.1, 0.3, 0.5}
  - 1444            – **Optimal s\_lr:** 0.3
  - 1445            – **#iters:** 4096

1448            The analytical solution was obtained via sparse matrix inversion using  
1449            `scipy.sparse.linalg.spsolve`.  
1450

1451            **Note:** Fig. 5 shows *state* dynamics for both sPC and ePC. To get states for the latter, we project from  
1452            errors to states at every time step.  
1453

1454            **D.2 STATE DYNAMICS IN DEEP NON-LINEAR MODELS TRAINED ON MNIST**  
1455

1456            Building on our analysis of linear models in Section 4.3, we extend our investigation to the more  
1457            practical scenario of non-linear networks. This extension allows us to evaluate whether the signal  
1458            propagation advantages of ePC generalize beyond the analytically tractable linear case.  
1459

1458  
1459

### D.2.1 EXPERIMENTAL SETUP

1460  
1461  
1462  
1463  
1464  
1465  
1466

We employed the 20-layer “Deep MLP” architecture detailed in Appendix E, pretrained on MNIST using one of two different loss functions: squared error and cross-entropy. Unlike the linear models, these non-linear networks achieve higher test accuracy (95% vs. 85%), representing a more realistic training scenario. However, this improved performance introduces an important methodological consideration: since analytical solutions are unavailable for non-linear models, we must turn to ePC’s convergence state as our reference equilibrium point. This choice inherently favors ePC and should be considered when interpreting results.

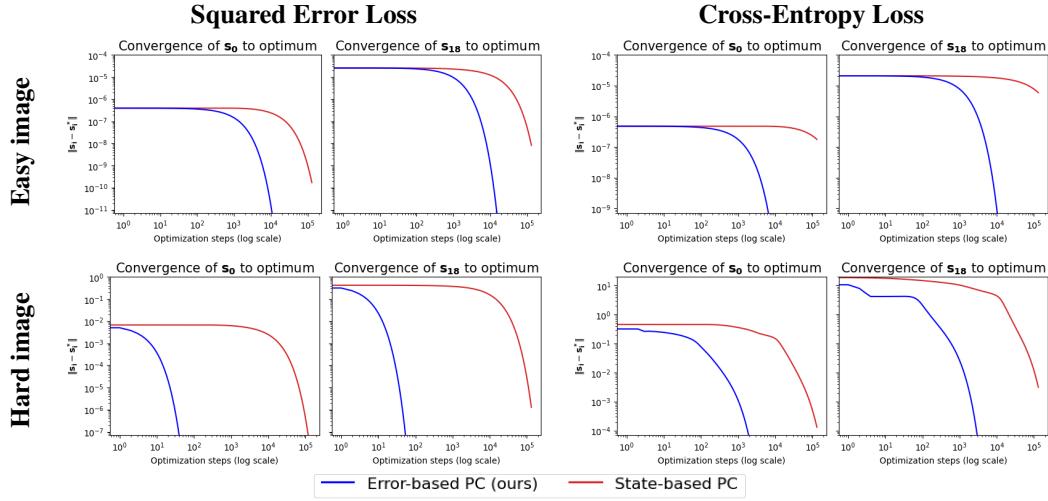
1467  
1468

### D.2.2 IMPACT OF LOSS FUNCTION AND INPUT DIFFICULTY

1469  
1470  
1471  
1472  
1473  
1474  
1475

As pointed out in Section 3, the signal decay problem of sPC depends critically on the output gradient  $\nabla_{\hat{y}}\mathcal{L}$ . In well-trained non-linear models, the loss—and hence its gradient—can become extremely small for easily classified examples, leading to even worse signal propagation issues. To investigate this effect systematically, we varied both the loss function (squared error vs. cross-entropy) and input difficulty (easy vs. hard-to-classify images). All experiments were implemented with float64 precision to ensure numerical stability and avoid precision-related confounders in the convergence analysis.

1476  
1477  
1478  
1479  
1480  
1481  
1482  
1483  
1484  
1485  
1486  
1487  
1488  
1489  
1490  
1491  
1492



1493  
1494  
1495  
1496  
1497

Figure D.1: Convergence dynamics in 20-layer PC-MLPs trained on MNIST with float64 precision. For easily-classified inputs (marked by near-zero loss), gradient signals become prohibitively small, hindering convergence. ePC consistently outperforms sPC by orders of magnitude across all conditions.

1498  
1499  
1500  
1501  
1502  
1503  
1504  
1505  
1506  
1507  
1508  
1509  
1510  
1511

Fig. D.1 presents the convergence dynamics for both sPC and ePC across these conditions. Several important observations emerge from these experiments:

1. **Performance across loss functions:** Cross-entropy loss appears to create a more challenging optimization landscape for both sPC and ePC, despite its generally more favorable gradient properties compared to squared error. However, the smaller gradient signals from squared error do lead to long propagation delays in sPC, requiring almost 1000 update steps to progress just a single layer and reach  $s_{18}$ .
2. **Input difficulty effects:** For highly accurate models, most inputs will be “easy” (classified with high confidence), thereby generating minimal loss gradients. This greatly hinders overall signal propagation, even for ePC in our float64 simulations. By contrast, “hard” inputs (resulting in larger gradients) greatly accelerate ePC, while modestly improving sPC’s convergence speed.
3. **Overall convergence speed:** ePC consistently converges orders of magnitude faster than sPC across all experimental conditions. This advantage is most pronounced with squared

1512 error loss on hard images (bottom left panel), where ePC converges approximately 10,000  
1513 times faster than sPC for the exact same model.

1514 4. **Identical equilibria:** Even in the non-linear case, sPC and ePC seem to head towards the  
1515 same equilibrium points, highlighting their equivalence as established in Appendix C.2.  
1516 Note that this is not necessarily true for all model architectures and datasets, as spurious  
1517 local minima may affect sPC and ePC in different ways.  
1518 5. **Practical implications:** Perhaps most critically, sPC requires an impractical number of  
1519 update steps ( $>100,000$ ) to reach convergence in these non-linear networks, underscoring  
1520 the practical importance of our ePC reformulation for deep PC architectures.  
1521

1522 These findings extend and reinforce the convergence analysis presented in Section 4.3. They confirm  
1523 that the advantages of ePC’s global connectivity structure generalize from the analytically tractable  
1524 linear case to practical non-linear networks with different loss functions.  
1525

## 1526 E OVERVIEW OF EXPERIMENTAL IMPLEMENTATION DETAILS 1527

1528 In this appendix, we provide all details necessary to reproduce our experimental results from Table 1.  
1529 Furthermore, we perform additional experiments on a 20-layer deep MLP architecture, which was  
1530 used for Figs. 1 and D.1.  
1531

1532 An anonymized version of our codebase is available in the supplementary materials.  
1533

### 1534 E.1 MLPs ON MNIST & FASHIONMNIST

#### 1535 Compute resources

1536

- 1537 • **CPU:** Intel Xeon E5-2620 v4
- 1538 • **RAM:** 32 GiB
- 1539 • **GPU:** NVIDIA GeForce GTX 1080 Ti
- 1540 • **Compute time per experiment:** (*without early stopping or failure*)
  - 1541 – **MNIST - MLP:**
    - 1543 \* **ePC:** 10min (#iters=4, 25 epochs) – 1h (#iters=256, 5 epochs)
    - 1544 \* **sPC:** 10min (#iters=4, 25 epochs) – 45min (#iters=256, 5 epochs)
    - 1545 \* **Backprop:** 2-7min
  - 1546 – **MNIST - Deep MLP:**
    - 1547 \* **ePC:** 12min (#iters=4, 25 epochs) – 3h (#iters=256, 5 epochs)
    - 1548 \* **sPC:** 25min (#iters=4, 25 epochs) – 3h (#iters=256, 5 epochs)
    - 1549 \* **Backprop:** 2-8min
  - 1550 – **FashionMNIST - MLP:**
    - 1551 \* **ePC:** 6min (#iters=4, 14 epochs) – 14min (#iters=64, 5 epochs)
    - 1552 \* **sPC:** 13min (#iters=16, 14 epochs) – 45min (#iters=256, 5 epochs)
    - 1553 \* **Backprop:** 3-7min
  - 1554 – **FashionMNIST - Deep MLP:**
    - 1555 \* **ePC:** 20min (#iters=4, 17 epochs) – 45min (#iters=64, 5 epochs)
    - 1556 \* **sPC:** 1h (#iters=64, 7 epochs) – 5h30 (#iters=256, 13 epochs)
    - 1557 \* **Backprop:** 4-7min
- 1559 • **Total compute time estimate:**
  - 1560 – **MNIST:**  $\pm 150$ h
  - 1561 – **FashionMNIST:**  $\pm 150$ h

#### 1562 Architecture

1563

- 1564 • **Number of layers:** 4 (MLP), 20 (Deep MLP; see below)
- 1565 • **Hidden state dim:** 128

- **Activation function:** GELU (Hendrycks and Gimpel, 2016) (+ Sigmoid for MSE loss)
- **Weight init:** orthogonal (with ReLU gain) (Hu et al., 2020)
- **Bias init:** zero
- **Pseudorandom seed:** 42 for hyperparameter sweep,  $\{0, 1, 2, 3, 4\}$  for final test accuracy over 5 seeds. We set the seed using `lightning.seed_everything(workers=True)` before any data or weight initialization.
- **State/error optimizer:** SGD
- **Weight optimizer:** Adam (Kingma and Ba, 2014)

### E.1.1 ADDITIONAL EXPERIMENTS ON DEEP MLPs

Table E.1: Additional test accuracies (in %) of ePC, sPC and backprop for a deep MLP architecture. Bold indicates best results within confidence intervals (mean  $\pm$  1 std. dev.; taken over 5 seeds).

| Loss $\mathcal{L}$<br>Training algorithm | Mean Squared Error                 |                  |                                    | Cross-Entropy    |                  |                                    |
|------------------------------------------|------------------------------------|------------------|------------------------------------|------------------|------------------|------------------------------------|
|                                          | ePC                                | sPC              | Backprop                           | ePC              | sPC              | Backprop                           |
| Deep MLP (20 layers)                     |                                    |                  |                                    |                  |                  |                                    |
| MNIST                                    | $97.11 \pm 0.39$                   | $96.89 \pm 0.33$ | <b><math>97.89 \pm 0.15</math></b> | $94.84 \pm 0.54$ | $95.23 \pm 1.24$ | <b><math>97.20 \pm 0.07</math></b> |
| FashionMNIST                             | <b><math>85.04 \pm 2.94</math></b> | $84.92 \pm 0.40$ | <b><math>87.91 \pm 0.45</math></b> | $81.37 \pm 0.40$ | $79.95 \pm 1.62$ | <b><math>87.78 \pm 0.18</math></b> |

As an addition to the benchmark of Pinchetti et al. (2025), we evaluated the performance for a 20-layer deep version of the MLP. As this architecture presents training challenges even with backpropagation, we turned to orthogonal weight initialization for enhanced stability (Hu et al., 2020). The results are stated in Table E.1.

Despite our expectation of a large performance gap, both ePC and sPC performed similarly. We hypothesize that orthogonal initialization may ease the signal decay problem by maintaining eigenvalues close to 1, thereby creating an unexpectedly strong baseline. This suggests that careful weight initialization can mitigate some of sPC’s inherent optimization challenges, in line with findings from Innocenti et al. (2025). However, this strategy is less applicable to non-residual convolutional architectures, where the performance difference between ePC and sPC remains substantial.

To avoid confusion, we decided to move these results to appendix, rather than state them in Section 5.

### E.1.2 DETAILS OF FIGURE 1

Below, we provide all details necessary to reproduce Fig. 1. Above all, our goal was to illustrate the problem of signal decay under realistic conditions.

The model is an untrained Deep MLP + Cross-Entropy, as detailed above. We track the layerwise energies throughout energy minimization for a single MNIST data pair  $(\mathbf{x}, \mathbf{y})$ . These are calculated using the energy functions corresponding to sPC and ePC (shown side-by-side in Fig. 2). We perform 64 update steps for sPC and 8 for ePC, both with a learning rate  $\lambda = 0.1$ .

### E.1.3 MNIST

**Data** We used EMNIST-MNIST (Cohen et al., 2017), which is a well-documented reproduction of the original MNIST dataset (LeCun, 1998). The images are first rescaled to the range  $[0, 1]$ , then they are normalized using the fixed values  $\text{mean}=0.5$  and  $\text{std}=0.5$  (same as Pinchetti et al., 2025). We set the batch size constant at 64. The validation set was 10% of the training data, split randomly but with a fixed seed. For final test performance, we don’t split a separate validation set, but simply train on the whole training set.

**ePC** First, we did a hyperparameter sweep over the inner optimization hyperparameters (error learning rate (`e_lr`) and number of update steps (`#iters`)), with the weight learning rate (`w_lr`) constant at  $3e-4$  (or  $3e-5$  for Deep MLP+CE). During these sweeps, we train for 5 epochs. Then, we fixed the

best inner optimization hyperparameters for each setting, and tuned  $w_{lr}$  and the number of epochs by means of early stopping, with a maximum of 25 epochs. See Table E.2 for more details of the sweep.

Table E.2: Hyperparameter sweep intervals and optimal values for ePC-MLPs on MNIST

| Hyperparams     | Sweep values                                                                       | MLP+MSE    | MLP+CE     | Deep MLP+MSE | Deep MLP+CE |
|-----------------|------------------------------------------------------------------------------------|------------|------------|--------------|-------------|
| e_lr<br>#iters  | {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}<br>{4, 16, 64, 256}                           | 0.05<br>4  | 0.001<br>4 | 0.001<br>4   | 0.001<br>4  |
| w_lr<br>#epochs | {1e-5, 3e-5, 5e-5, 1e-4, 3e-4, 5e-4, 1e-3}<br>Early Stopping(patience=3), up to 25 | 1e-4<br>25 | 1e-4<br>20 | 1e-4<br>14   | 1e-5<br>25  |

**sPC** First, we did a hyperparameter sweep over the inner optimization hyperparameters (state learning rate (still denoted as  $e_{lr}$  for implementation purposes) and number of update steps (#iters)), with the weight learning rate ( $w_{lr}$ ) constant at 1e-4 (the optimal rate for ePC). During these sweeps, we train for 5 epochs. Then, we fixed the best inner optimization hyperparameters for each setting, and tuned  $w_{lr}$  and the number of epochs by means of early stopping, with a maximum of 25 epochs. See Table E.3 for more details of the sweep.

Table E.3: Hyperparameter sweep intervals and optimal values for sPC-MLPs on MNIST

| Hyperparams     | Sweep values                                                                 | MLP+MSE    | MLP+CE     | Deep MLP+MSE | Deep MLP+CE |
|-----------------|------------------------------------------------------------------------------|------------|------------|--------------|-------------|
| e_lr<br>#iters  | {0.01, 0.03, 0.1, 0.3}<br>{4, 16, 64, 256}                                   | 0.01<br>16 | 0.03<br>4  | 0.3<br>64    | 0.3<br>64   |
| w_lr<br>#epochs | {3e-5, 5e-5, 1e-4, 3e-4, 5e-4, 1e-3}<br>Early Stopping(patience=3), up to 25 | 1e-4<br>25 | 1e-4<br>21 | 1e-4<br>12   | 5e-5<br>15  |

**Backprop** Since there is no inner optimization in backprop, we simply tuned  $w_{lr}$  and the number of epochs by means of early stopping, with a maximum of 25 epochs. See Table E.4 for all details.

Table E.4: Hyperparameter sweep intervals and optimal values for backprop-MLPs on MNIST

| Hyperparams     | Sweep values                                                                 | MLP+MSE    | MLP+CE     | Deep MLP+MSE | Deep MLP+CE |
|-----------------|------------------------------------------------------------------------------|------------|------------|--------------|-------------|
| w_lr<br>#epochs | {3e-5, 5e-5, 1e-4, 3e-4, 5e-4, 1e-3}<br>Early Stopping(patience=3), up to 25 | 3e-4<br>16 | 1e-4<br>20 | 3e-4<br>22   | 5e-5<br>18  |

#### E.1.4 FASHIONMNIST

**Data** We used the FashionMNIST dataset (Xiao et al., 2017). The images are first rescaled to the range [0, 1], then they are normalized using the fixed values mean=0.5 and std=0.5 (same as Pinchetti et al., 2025). We set the batch size constant at 64. The validation set was 10% of the training data, split randomly but with a fixed seed. For final test performance, we don't split a separate validation set, but simply train on the whole training set.

**ePC** First, we did a hyperparameter sweep over the inner optimization hyperparameters (error learning rate ( $e_{lr}$ ) and number of update steps (#iters)), with the weight learning rate ( $w_{lr}$ ) constant at 1e-4 (3e-5 for Deep MLP+CE). During these sweeps, we train for 5 epochs. Then, we fixed the best inner optimization hyperparameters for each setting, and tuned  $w_{lr}$  and the number of epochs by means of early stopping, with a maximum of 25 epochs. See Table E.5 for more details of the sweep.

Table E.5: Hyperparameter sweep intervals and optimal values for ePC-MLPs on FashionMNIST

| Hyperparams     | Sweep values                                                     | MLP+MSE    | MLP+CE     | Deep MLP+MSE | Deep MLP+CE |
|-----------------|------------------------------------------------------------------|------------|------------|--------------|-------------|
| e_lr<br>#iters  | {0.001, 0.003, 0.01, 0.03, 0.1}<br>{4, 16, 64}                   | 0.01<br>16 | 0.003<br>4 | 0.001<br>4   | 0.001<br>4  |
| w_lr<br>#epochs | {3e-5, 5e-5, 1e-4, 3e-4}<br>Early Stopping(patience=3), up to 25 | 5e-5<br>12 | 5e-5<br>14 | 3e-4<br>17   | 3e-5<br>2   |

**sPC** First, we did a hyperparameter sweep over the inner optimization hyperparameters (state learning rate (still denoted as  $e_{lr}$  for implementation purposes) and number of update steps (#iters)), with the weight learning rate ( $w_{lr}$ ) constant at 1e-4. During these sweeps, we train for 5 epochs. Then, we fixed the best inner optimization hyperparameters for each setting, and tuned  $w_{lr}$  and the

1674 number of epochs by means of early stopping, with a maximum of 25 epochs. See Table E.6 for  
 1675 more details of the sweep.

1676 Table E.6: Hyperparameter sweep intervals and optimal values for sPC-MLPs on FashionMNIST  
 1677

| Hyperparams | Sweep values                         | MLP+MSE | MLP+CE | Deep MLP+MSE | Deep MLP+CE |
|-------------|--------------------------------------|---------|--------|--------------|-------------|
| e_lr        | {0.01, 0.03, 0.1, 0.3}               | 0.03    | 0.01   | 0.3          | 0.1         |
| #iters      | {4, 16, 64, 256}                     | 64      | 16     | 64           | 256         |
| w_lr        | {3e-5, 5e-5, 1e-4, 3e-4}             | 1e-4    | 1e-4   | 5e-5         | 3e-5        |
| #epochhs    | Early Stopping(patience=3), up to 25 | 14      | 14     | 7            | /           |

1683 **Backprop** Since there is no inner optimization in backprop, we simply tuned w\_lr and the number  
 1684 of epochs by means of early stopping, with a maximum of 25 epochs. See Table E.7 for all details.  
 1685

1686 Table E.7: Hyperparameter sweep intervals and optimal values for BP-MLPs on FashionMNIST

| Hyperparams | Sweep values                         | MLP+MSE | MLP+CE | Deep MLP+MSE | Deep MLP+CE |
|-------------|--------------------------------------|---------|--------|--------------|-------------|
| w_lr        | {3e-5, 5e-5, 1e-4, 3e-4}             | 3e-4    | 1e-4   | 1e-4         | 3e-4        |
| #epochhs    | Early Stopping(patience=3), up to 25 | 15      | 25     | 17           | 10          |

## 1691 E.2 VGG-MODELS AND RESNET-18

1692 **Compute resources** We report the resources used for training and each model’s training time.  
 1693 The training times required for a model with MSE or CE loss are comparable. For hyperparameter  
 1694 tuning, we evaluate 200 distinct parameter configurations, making the total computational cost  
 1695 approximately 200 times greater than that of a single training run.

- 1697 • **CPU:** Intel Xeon w5-3423
- 1698 • **RAM:** 197 GiB
- 1699 • **GPU:** NVIDIA RTX A6000
- 1700 • **Compute time per experiment:** *(without early stopping or failure)*

| Dataset   | Model     | ePC   | sPC   | Backprop |
|-----------|-----------|-------|-------|----------|
| CIFAR-10  | VGG-5     | 6min  | 9min  | 2min     |
|           | VGG-7     | 7min  | 11min | 2min     |
|           | VGG-9     | 9min  | 17min | 3min     |
|           | ResNet-18 | 29min | –     | 6min     |
| CIFAR-100 | VGG-5     | 6min  | 9min  | 2min     |
|           | VGG-7     | 7min  | 12min | 2min     |
|           | VGG-9     | 9min  | 19min | 3min     |
|           | ResNet-18 | 29min | –     | 6min     |

- 1713 • **Total compute time estimate for tuning across model architecture and loss function:**
  - 1714 – **ePC:** ±680h
  - 1715 – **sPC:** ±510h
  - 1716 – **Backprop:** ±170h

1717 **Data** We used the CIFAR-10/100 datasets (Krizhevsky, 2009). The images are first rescaled to  
 1718 the range [0, 1], then they are normalized with the mean and standard deviation given in Table E.8  
 1719 (same as Pinchetti et al., 2025). We set the batch size constant at 256. The validation set was 5% of  
 1720 the training data, split randomly but with a fixed seed. For final test performance, we don’t split a  
 1721 separate validation set, but simply train on the whole training set.

1722 **VGG architecture** VGG models are deep convolutional neural networks (Simonyan and Zisser-  
 1723 man, 2014). Table E.9 provides a detailed summary of the model architectures used for the VGG-5,  
 1724 VGG-7 and VGG-9 models. After the convolutional layers, a single linear layer produces a class  
 1725 prediction. The activation function of the models was selected from among ReLU, Tanh, Leaky  
 1726 ReLU, and GELU (Hendrycks and Gimpel, 2016) during model tuning.

1728 Table E.8: Data normalization  
1729

---

|           | Mean ( $\mu$ )           | Std ( $\sigma$ )         |
|-----------|--------------------------|--------------------------|
| CIFAR-10  | [0.4914, 0.4822, 0.4465] | [0.2023, 0.1994, 0.2010] |
| CIFAR-100 | [0.5071, 0.4867, 0.4408] | [0.2675, 0.2565, 0.2761] |

1734 Table E.9: Detailed architectures of VGG models. The locations of the pooling layers correspond to  
1735 the indices of the convolutional layers after which the max-pooling operations are applied.  
1736

---

|               | VGG-5                | VGG-7                          | VGG-9                                    |
|---------------|----------------------|--------------------------------|------------------------------------------|
| Channel Sizes | [128, 256, 512, 512] | [128, 128, 256, 256, 512, 512] | [128, 128, 256, 256, 512, 512, 512, 512] |
| Kernel Sizes  | [3, 3, 3, 3]         | [3, 3, 3, 3, 3, 3]             | [3, 3, 3, 3, 3, 3, 3, 3]                 |
| Strides       | [1, 1, 1, 1]         | [1, 1, 1, 1, 1, 1]             | [1, 1, 1, 1, 1, 1, 1, 1]                 |
| Paddings      | [1, 1, 1, 1]         | [1, 1, 1, 0, 1, 0]             | [1, 1, 1, 1, 1, 1, 1, 1]                 |
| Pool location | [0, 1, 2, 3]         | [0, 2, 4]                      | [0, 2, 4, 6]                             |
| Pool window   | $2 \times 2$         | $2 \times 2$                   | $2 \times 2$                             |
| Pool stride   | 2                    | 2                              | 2                                        |

1744  
1745  
1746 **ResNet-18 architecture** The ResNet-18 model is a convolutional neural network with skip  
1747 connections (He et al., 2016). Our implementation follows the standard ResNet-18 architecture with  
1748 modifications tailored for CIFAR-10/100. It is composed of an initial convolutional stem followed  
1749 by four residual stages, each consisting of two residual blocks. Each residual block comprises two  
1750 3 $\times$ 3 convolutional layers with batch normalization and ReLU activation, followed by an identity  
1751 shortcut connection. Spatial downsampling is performed via stride-2 convolutions at the beginning  
1752 of each stage beyond the first. Table E.10 details the layer configuration.1753 Table E.10: ResNet-18 architecture adapted for CIFAR-10/100 image classification. The feature  
1754 shape describes the image height and width after each stage. The residual configuration gives the  
1755 dimension of the convolution mask, the number of channels and the stride used for the residual  
1756 stream. All the convolutional layers used a padding of one, and each convolution was followed by a  
1757 batch normalisation layer. Stages one to four include skip connections for every residual.  
1758

---

| Stage     | Feature shape  | Residual configuration                                                                                                             |
|-----------|----------------|------------------------------------------------------------------------------------------------------------------------------------|
| Conv Stem | $32 \times 32$ | Conv3x3, 64, stride = 1                                                                                                            |
| Stage 1   | $32 \times 32$ | $\left[ \begin{smallmatrix} \text{Conv3x3, 64, stride = 1} \\ \text{Conv3x3, 64, stride = 1} \end{smallmatrix} \right] \times 2$   |
| Stage 2   | $16 \times 16$ | $\left[ \begin{smallmatrix} \text{Conv3x3, 128, stride = 2} \\ \text{Conv3x3, 128, stride = 1} \end{smallmatrix} \right] \times 2$ |
| Stage 3   | $8 \times 8$   | $\left[ \begin{smallmatrix} \text{Conv3x3, 256, stride = 2} \\ \text{Conv3x3, 256, stride = 1} \end{smallmatrix} \right] \times 2$ |
| Stage 4   | $4 \times 4$   | $\left[ \begin{smallmatrix} \text{Conv3x3, 512, stride = 2} \\ \text{Conv3x3, 512, stride = 1} \end{smallmatrix} \right] \times 2$ |
| Head      | $1 \times 1$   | Global AvgPool + Linear classifier                                                                                                 |

1775 **Learning rate schedule** The following learning rate schedule was used to help stabilize training:  
17761777 1. For the first 10% of training, the learning rate increases linearly from  $w_{lr}$  up to  $1.1 \times w_{lr}$ .  
1778 2. After the warmup phase, a cosine decay is applied. The learning rate smoothly decreases  
1779 to  $0.1 \times w_{lr}$ , following a cosine curve, for the remaining training steps.1780 **Weight initialization** We used the default PyTorch weight initialization, which amounts to a ran-  
1781 dom uniform weight and bias initialization. For pseudorandom seeds, we use 42 for the hyperpa-

---

1782 ramenter sweeps, and  $\{0, 1, 2, 3, 42\}$  for the final test accuracy over 5 seeds. We set the seed using  
1783 `lightning.seed_everything(workers=True)` before any data or weight initialization.  
1784

1785 Table E.11: Summary of hyperparameter tuning and training settings for convolutional models  
1786

| Method   | Tuned hyperparameter range                                                                                                                     | Optimizer                                                       | Optim steps (T)                       | Epochs (sweep/final)             |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------|----------------------------------|
| ePC      | e_lr: fixed at 0.001<br>e_momentum: fixed at 0.0<br>w_lr: log-uniform [1e-5, 1e-2]<br>w_decay: log-uniform [1e-6, 1e-3]                        | SGD (error)<br>Adam (weights)<br>(Kingma and Ba, 2014)          | 5 (all models)                        | 25/25 (VGG)<br>25/50 (ResNet-18) |
| sPC      | s_lr: log-uniform [1e-3, 5e-1]<br>s_momentum: {0, 0.25, 0.5, 0.75, 0.9}<br>w_lr: log-uniform [1e-5, 1e-2]<br>w_decay: log-uniform [1e-6, 1e-3] | SGD (state)<br>AdamW (weights)<br>(Loshchilov and Hutter, 2019) | 8 (VGG-5)<br>10 (VGG-7)<br>12 (VGG-9) | 25/25 (VGG)                      |
| Backprop | w_lr: log-uniform [1e-5, 1e-2]<br>w_decay: log-uniform [1e-6, 1e-3]                                                                            | Adam (weights)                                                  | —                                     | 25/25 (VGG)<br>25/50 (ResNet-18) |

1795 **Glossary:** w\_lr: base weight learning rate (see learning rate schedule below), w\_decay: weight decay,  
1796 {e,s}\_lr: error / state learning rate, {e,s}\_momentum: error / state momentum, T: nr. of update steps  
1797

1798 **Hyperparameter tuning** We performed hyperparameter tuning using Hyperband Bayesian op-  
1799 timization provided by Weights and Biases. The search was conducted over the hyperparameter  
1800 spaces specified in Table E.11 across different model architectures, datasets, and loss functions.  
1801 All tuning was guided by top-1 validation accuracy as the primary objective. Final top-5 accuracy  
1802 metrics reported in Table 1 are for the models that achieved the highest top-1 accuracy. The best  
1803 hyperparameters for each model identified through the sweep are provided in Table E.12, as well as  
1804 in the "configs\_results/" folder of the codebase. The "configs\_sweeps/" folder contains all the sweep  
1805 configs.  
1806  
1807  
1808  
1809  
1810  
1811  
1812  
1813  
1814  
1815  
1816  
1817  
1818  
1819  
1820  
1821  
1822  
1823  
1824  
1825  
1826  
1827  
1828  
1829  
1830  
1831  
1832  
1833  
1834  
1835

Table E.12: Overview of optimal hyperparameter configurations, used in our experiments

| Data      | Loss          | Algo | Architecture | s/e_lr  | s/e_momentum | w_lr    | w_decay | act_fn |
|-----------|---------------|------|--------------|---------|--------------|---------|---------|--------|
| CIFAR-10  | Squared Error | sPC  | VGG-5        | 2.66e-2 | 0            | 4.21e-4 | 2.68e-6 | gelu   |
|           |               |      | VGG-7        | 2.28e-3 | 0.05         | 2.07e-3 | 3.10e-6 | gelu   |
|           |               |      | VGG-9        | 1.73e-2 | 0.5          | 5.77e-5 | 6.49e-4 | tanh   |
|           |               | ePC  | VGG-5        | 0.001   | 0            | 4.71e-4 | 1.48e-5 | gelu   |
|           |               |      | VGG-7        | 0.001   | 0            | 4.26e-4 | 2.16e-6 | gelu   |
|           |               |      | VGG-9        | 0.001   | 0            | 6.61e-4 | 4.01e-5 | gelu   |
|           |               |      | ResNet-18    | 0.001   | 0            | 7.65e-4 | 1.82e-4 | —      |
|           |               | BP   | VGG-5        | —       | —            | 6.30e-4 | 1.09e-6 | gelu   |
|           |               |      | VGG-7        | —       | —            | 5.45e-4 | 1.37e-6 | gelu   |
|           |               |      | VGG-9        | —       | —            | 5.24e-4 | 1.27e-6 | gelu   |
|           |               |      | ResNet-18    | —       | —            | 3.00e-4 | 9.04e-4 | —      |
|           | Cross-Entropy | sPC  | VGG-5        | 1.47e-2 | 0.05         | 2.64e-4 | 1.21e-5 | gelu   |
|           |               |      | VGG-7        | 1.59e-3 | 0            | 1.76e-3 | 1.03e-5 | gelu   |
|           |               |      | VGG-9        | 5.80e-2 | 0            | 8.09e-5 | 4.18e-5 | tanh   |
|           |               | ePC  | VGG-5        | 0.001   | 0            | 7.79e-4 | 1.72e-4 | gelu   |
|           |               |      | VGG-7        | 0.001   | 0            | 1.56e-3 | 5.46e-4 | gelu   |
|           |               |      | VGG-9        | 0.001   | 0            | 5.36e-4 | 6.88e-4 | tanh   |
|           |               |      | ResNet-18    | 0.001   | 0            | 3.39e-3 | 1.51e-6 | —      |
|           |               | BP   | VGG-5        | —       | —            | 1.66e-3 | 4.55e-4 | gelu   |
|           |               |      | VGG-7        | —       | —            | 1.10e-3 | 4.51e-5 | gelu   |
|           |               |      | VGG-9        | —       | —            | 6.21e-4 | 3.58e-5 | gelu   |
|           |               |      | ResNet-18    | —       | —            | 1.67e-3 | 1.49e-4 | —      |
| CIFAR-100 | Squared Error | sPC  | VGG-5        | 3.73e-3 | 0.75         | 9.80e-4 | 2.14e-6 | gelu   |
|           |               |      | VGG-7        | 1.44e-2 | 0            | 1.88e-4 | 9.38e-5 | tanh   |
|           |               |      | VGG-9        | 4.78e-2 | 0.25         | 7.07e-5 | 7.79e-5 | tanh   |
|           |               | ePC  | VGG-5        | 0.001   | 0            | 8.05e-4 | 2.33e-6 | gelu   |
|           |               |      | VGG-7        | 0.001   | 0            | 4.02e-4 | 1.47e-5 | gelu   |
|           |               |      | VGG-9        | 0.001   | 0            | 2.01e-4 | 2.62e-6 | gelu   |
|           |               |      | ResNet-18    | 0.001   | 0            | 3.67e-4 | 7.30e-4 | —      |
|           |               | BP   | VGG-5        | —       | —            | 4.57e-4 | 1.27e-5 | gelu   |
|           |               |      | VGG-7        | —       | —            | 4.47e-4 | 6.71e-6 | gelu   |
|           |               |      | VGG-9        | —       | —            | 4.70e-4 | 4.34e-6 | gelu   |
|           |               |      | ResNet-18    | —       | —            | 3.95e-4 | 5.45e-4 | —      |
|           | Cross-Entropy | sPC  | VGG-5        | 2.13e-2 | 0            | 8.61e-4 | 1.48e-6 | tanh   |
|           |               |      | VGG-7        | 1.04e-1 | 0.5          | 3.00e-4 | 6.69e-5 | tanh   |
|           |               |      | VGG-9        | 1.25e-2 | 0.75         | 4.69e-4 | 3.45e-4 | tanh   |
|           |               | ePC  | VGG-5        | 0.001   | 0            | 8.27e-4 | 8.22e-4 | tanh   |
|           |               |      | VGG-7        | 0.001   | 0            | 3.13e-4 | 7.99e-4 | tanh   |
|           |               |      | VGG-9        | 0.001   | 0            | 3.23e-4 | 4.03e-4 | tanh   |
|           |               |      | ResNet-18    | 0.001   | 0            | 3.03e-3 | 1.20e-5 | —      |
|           |               | BP   | VGG-5        | —       | —            | 1.04e-3 | 7.69e-4 | gelu   |
|           |               |      | VGG-7        | —       | —            | 1.38e-3 | 4.13e-4 | gelu   |
|           |               |      | VGG-9        | —       | —            | 8.24e-4 | 1.62e-6 | gelu   |
|           |               |      | ResNet-18    | —       | —            | 1.33e-3 | 1.96e-4 | —      |

---

1890  
1891

## F DISCLOSURE OF LLM USAGE

1892  
1893

Large language models (LLMs) were used in this research for the following purposes:

1894  
1895  
1896  
1897

- **Writing assistance:** Improving text clarity, flow, and conciseness throughout the paper
- **Theoretical contribution:** Proposing the preconditioner idea in Appendix C.2 and contributing to the theoretical analysis in that section

1898 All other research ideas, methodological contributions, experimental design, and conclusions presented in this paper were conceived and developed by the authors. The creation of figures and  
1899 1900 implementation of code involved minimal LLM assistance.

1901  
1902

Naturally, this section itself also benefited from LLM editing.

1903  
1904  
1905  
1906  
1907  
1908  
1909  
1910  
1911  
1912  
1913  
1914  
1915  
1916  
1917  
1918  
1919  
1920  
1921  
1922  
1923  
1924  
1925  
1926  
1927  
1928  
1929  
1930  
1931  
1932  
1933  
1934  
1935  
1936  
1937  
1938  
1939  
1940  
1941  
1942  
1943