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ABSTRACT

Predictive Coding (PC) offers a bio-inspired alternative to backpropagation for
neural network training, described as a physical system minimizing its internal
energy. However, in practice, PC is predominantly digitally simulated, requiring
excessive amounts of compute while struggling to scale to deeper architectures.
This paper reformulates PC to overcome this hardware-algorithm mismatch. First,
we uncover how the canonical state-based formulation of PC (sPC) is, by design,
deeply inefficient in digital simulation, inevitably resulting in exponential signal
decay that stalls the entire minimization process. Then, to overcome this funda-
mental limitation, we introduce error-based PC (ePC), a novel reparameterization
of PC which does not suffer from signal decay. Though no longer biologically
plausible, ePC numerically computes exact PC weights gradients and runs or-
ders of magnitude faster than sPC. Experiments across multiple architectures and
datasets demonstrate that ePC matches backpropagation’s performance even for
deeper models where sPC struggles. Besides practical improvements, our work
provides theoretical insight into PC dynamics and establishes a foundation for
scaling PC-based learning to deeper architectures on digital hardware and beyond.

1 INTRODUCTION

Originally a neuroscience theory of cortical function (Friston and Kiebel, [2009), Predictive Coding
(PC) has recently been reformulated as a general machine learning algorithm, offering a bio-inspired
alternative to backpropagation with distinct learning dynamics (Bogacz,|2017; Whittington and Bo-
gacz,[2017,2019; Millidge et al.,2022b). Unlike backprop, PC produces weight gradients through a
two-step process: first, infer the optimal state of neuron activations that should result from learning,
and only then update the weights. This approach of “inferring activity before plasticity” (Song et
al.,|2024) has been found advantageous for learning: it improves the geometry of the loss landscape
(Innocenti et al., 2024b) and reduces interference between competing training signals, leading to
improved learning capabilities in online and continual learning settings (Song et al.,[2024).

Our work focuses on PC’s critical first step, inferring the optimal activations, specified as an energy
minimization. Concretely, each layer tries to predict the state of the next layer, continually adjusting
its own state to reduce the local prediction loss (known as ‘energy’). Reminiscent of a physical
process, PC would, in theory, be ideally suited for neuromorphic implementation, though no such
hardware exists yet. Instead, current PC research relies on digital simulation with numerical solvers,
requiring numerous iterations to reach state convergence. Due to this hardware-algorithm mismatch,
PC incurs substantial overhead compared to backprop, which maps naturally to digital hardware.

Another scaling issue, observed by Pinchetti et al. (2025)), is that, even in simple supervised settings,
deeper PC-trained models often perform worse than shallower ones, in contrast to backpropagation.
Recent efforts have explored this depth scaling failure from different angles. Several works observed
a highly uneven energy distribution across the network (Ha et al., 2025} Pinchetti et al.,[2025; Qi et
al.,|2025), leading to weaker weight gradients for deeper layers; however, the underlying mechanism
remained unclear. Proposed solutions either modify PC’s weight gradient formulas (Qi et al., 2025))
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Figure 1: Dynamics of layerwise energies during energy minimization. Standard state-based PC
struggles to propagate signals through the network, with progressively longer delays at deeper layers.
By contrast, our error-based PC converges to equilibrium within just a few update steps, thanks to
its global signal propagation. Results for an untrained 20-layer MLP on a random MNIST input.

or stay limited to densely-connected or residual architectures (Ha et al.,[2025} Innocenti et al.,[2025).
A general solution for standard feedforward models using exact PC remains an open problem.

In this paper, we address the fundamental limitations of PC’s digital simulation—which currently
represents nearly all practical PC research. Our work connects the seemingly disparate problems of
depth scaling and computational efficiency in PC networks, uncovering a common underlying cause
and providing a simple solution.

Our contributions

* We identify a fundamental signal decay mechanism in traditional state-based PC (sPC),
whereby signals attenuate exponentially as they propagate through the network (see Fig. [T)),
explaining both slow convergence and poor performance in deeper PC networks.

* We introduce error-based PC (ePC), a novel reparameterization of PC that eliminates sig-
nal decay by directly optimizing over prediction errors rather than faithfully simulating the
physical process. Crucially, ePC provably computes the exact same state equilibrium as sPC.

* We empirically demonstrate that ePC converges up to three orders of magnitude faster than
sPC on deep networks, resolving a major computational bottleneck in PC research.

* Through comprehensive experiments across architectures of varying depths, following the
setup of Pinchetti et al. (2025)), we demonstrate that ePC consistently achieves performance
comparable to backpropagation, providing an effective solution to PC’s depth scaling issues.

Algorithmic focus of this work While PC originated as a neuroscience theory, our work focuses
solely on its application as a machine learning algorithm. Strictly local interactions, though essential
for biological systems, lead to slow convergence in digital simulations. By relaxing this constraint,
ePC achieves dramatic speedups while computing the same weight gradients as sPC at equilibrium.

2 PREDICTIVE CODING AS AN ENERGY MINIMIZATION OVER STATES

To establish the groundwork for our contributions, we first present the canonical formulation of PC
as an energy minimization over neural states. We will refer to this as state-based PC (sPC).
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Figure 2: Structural comparison of sPC (left) and ePC (right), highlighting functional equivalence

In sPC (and PC in general), each layer attempts to predict the state of the next layer. The main goal
is to minimize F, the sum of all prediction errors, typically expressed as an energy function:
=
B(s.0) =5 3 llsi =l + £5w) M
i=

where s; denotes the neural state at layer ¢ and §; := fg,(s;—1) the parametrized prediction of s;
based on the preceding layer’s state s;_1, as illustrated in Fig. For ease of notation, we define
s_1:=  (the input data) and ¢y := 8, (output prediction of the target y). The output loss £ may be
chosen freely (Pinchetti et al.,[2022)), with squared error being the common choice in PC literature.

As a learning algorithm, PC’s primary purpose is to produce informative gradients for training the
parameters 6. Contrary to backpropagation, sPC achieves this through purely local weight updates,
relying on intermediaries (like the states) to spread the relevant learning signals across the network.

A single weight update step in sPC consists of a two-phased energy minimization of E(s, 0):

1. State updates: With the parameters 8 kept fixed, the states s evolve continuously to minimize
E, until equilibrium is reached. The state dynamics for layer ¢ follow:

i aSi a.f97;+1
o 6t 3si

where €; := s; — §; represents the layerwise prediction error.

=—-V,,E(5,0)=—€; + €11

(Si)a (2)

2. Weight update: With s kept fixed, the parameters @ are updated once, further minimizing E:

Ofe, “(8i—1) 3)

AO; x —V.E(5,0) = ¢
0; x —Vg,E(s,0) 680

Full training involves repeating this procedure over numerous data batches, as in standard Deep
Learning. The distinctive feature of sPC, however, is that both phases can be implemented efficiently
in biological neural circuits with strictly local computation (Whittington and Bogacz, 2017, 2019).

Finding the state equilibrium Notice how Eq. (3) requires only the final equilibrium states, dis-
carding the trajectory taken to reach them. The specific method used to find these states is irrelevant
to PC’s weight updates, allowing researchers to freely choose their preferred approach.

By far the most popular choice is to discretize Eq. (Z) in time, reducing it to an SGD optimization

8; — & s;i — AV, E, (State update step)

with ) the state learning rate, commonly on the order of 0.01-0.1. Typically, in practice, the number
of update steps T’ is kept constant (a hyperparameter), and convergence is simply assumed.

The PC community has also experimented with more advanced options. Some have looked into ODE
solvers (Innocenti et al.,|2024a) or momentum-based optimizers (Pinchetti et al.,[2025)). Others have
explored approximate one-step regimes (Salvatori et al.,2024), sequential update orders (Alonso et
al.,2024), or auxiliary networks for direct equilibrium prediction (Tschantz et al.,2023). Yet, despite
these advances, substantial gaps remain in computational efficiency and overall understanding of PC.



Feedforward state initialization A common practice is to set the initial states s'=° via a feedfor-

ward pass of the input @ through the network. At each layer, the prediction §; is copied onto s;,
initializing the local prediction error €; to exactly zero. Despite lacking theoretical justification, the
technique is widely used due to its empirical success in accelerating the state optimization process.

3 THE PROBLEM OF EXPONENTIAL SIGNAL DECAY IN STATE-BASED PC

In this section, we uncover a previously unidentified mechanism in state-based PC networks: the
exponential decay of training signal during energy minimization. This discovery represents a funda-
mental limitation that affects the scalability of deep PC networks and helps explain the performance
gap with backpropagation, which was observed to worsen for deeper models (Pinchetti et al.,[2025).

3.1 SIGNAL PROPAGATION IN SPC: SMOOTH IN THEORY, SUPPRESSED IN PRACTICE

In sPC, after feedforward state initialization, all energies are set to zero except for the output loss L.
Next, during state updates, we expect a backward signal to travel continuously from output to input,
advancing one layer per update step. The theory suggests a clear chain reaction: non-zero energy at
any layer should induce changes in neighboring states, thereby continuously propagating the signal
further down the network.

However, our empirical observations contradict this expectation. Fig.[T]illustrates how, in practice,
the signal travels discontinuously through the network, halting at deeper layers with progressively
longer delays. Paradoxically, we observe that a non-zero energy at one layer fails to immediately
propagate to adjacent layers, remaining dormant for multiple update steps before inducing detectable
changes. Moreover, this behavior seems to scale logarithmically with time, requiring exponentially
many update steps for signals to reach the bottom layers—an impractical computational requirement.

3.2 UNCOVERING A MECHANISM OF EXPONENTIAL SIGNAL DECAY

To gain some insight into the cause of this suppressed signal propagation, we can track the state
dynamics at the start of sPC. Below, in Fig. [3] we present a step-by-step description of the initial
wavefront travelling backwards through the network. Our analysis uncovers a signal decay mech-
anism: when an energy gradient propagates from one layer to the next, it is attenuated by the state
learning rate A (necessarily < 1 for stability). With each subsequent layer traversal, this attenuation
compounds multiplicatively, resulting in exponential decay with respect to network depth.
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Step-by-step dynamics of state-based Predictive Coding for input « and target y

(1) Feedforward initialization: Due to state copying, all internal energies Eo, ..., Ep_;
start at zero, with in general a non-zero output energy E.

(2) Start of energy minimization: As gradient descent (with state learning rate \) begins,
the output loss introduces the only non-zero gradient

@ Top-layer state update: The top layer is updated first, raising its energy above zero.

(4) Recursive propagation: A backward wavefront emerges: each non-zero energy induces
a state change in the preceding layer, recursively propagating a diminishing signal.

@ Exponential decay: By the input layer, the signal has faded exponentially with depth L.

Figure 3: Step-by-step dynamics of sPC reveals an exponential signal decay in the backward path.



Specifically, for a network of depth L, the first non-zero signal to reach state s; can be modelled as
As; < ATV, 4)

with VL the initial gradient provided by the loss, and the oc-sign used to ignore layer effects,
such as regular vanishing gradients, which would only exacerbate the issue. Crucially, architectural
tweaks, like skip connections and normalization layers, cannot resolve this sPC-specific decay.

Moreover, for typical values of A (0.01-0.1), signals attenuate below numerical precision bounds
within just 4 to 8 update stepsE] This explains why theoretically continuous propagation manifests as
discrete, delayed jumps in practice, with increasingly pronounced effects at greater network depths.

Crucially, the signal decay mechanism persists beyond the initial wavefront, plaguing the entire
energy minimization process. Appendix [B] provides an approximate global analysis, hinting at a
hardware-algorithm mismatch where digital simulations of sPC are problematic, not sPC itself.
While physical realizations (like the brain) would handle local interactions efficiently, enforcing
these constraints digitally leads to signal decay and potentially misleading conclusions on (s)PC.

3.3 IMPLICATIONS FOR DEEP PC NETWORKS

This exponential signal decay has profound implications for the digital simulation of sPC networks.
Critically, deeper layers may remain entirely untrained if optimization is terminated before any sig-
nal has arrived, with these layers now effectively representing purely random input transformations.
Such incomplete training would be hard to detect from state convergence metrics alone, which may
incorrectly suggest equilibrium has been reached based on a lack of state changes, when in reality,
these layers have yet to begin meaningful optimization.

A more nuanced implication emerges when considering which signals do successfully penetrate the
network. Only hard-to-classify or mislabeled inputs could produce output gradients V£ that are
large enough to overcome the exponential attenuation, potentially creating a systemic bias where
different layers of the feedforward network train on different subsets of the data distribution.

Even when signals eventually reach deeper layers, the ensuing state modification will struggle to
propagate back to upper layers. This creates a persistent misalignment where top layers, despite
receiving strong output signals, cannot efficiently adapt to changes in deeper representations. While
feedforward state initialization partially mitigates this issue, it cannot eliminate the intrinsic inter-
dependencies that exist between states throughout optimization.

This signal propagation challenge represents a significant theoretical and practical limitation to scal-
ing sPC networks to greater depths. Common remedies, like increased learning rates, higher numeri-
cal precision, or alternative optimizers, address symptoms without resolving the core issue (Pinchetti
et al., 20235)), underscoring the need to identify a more suitable standard formulation of PC.

4  SHIFTING FROM STATES TO ERRORS: PC WITHOUT SIGNAL DECAY

We introduce error-based PC (ePC), a novel reparameterization of Predictive Coding that directly
addresses the exponential signal decay problem identified in the previous section.

The key insight of ePC is to reformulate PC dynamics in terms of errors rather than states. By
restructuring the computational graph from locally to globally connected, ePC enables signals to
reach all layers simultaneously without attenuation. Though no longer biologically plausible, ePC
provably computes the same state equilibrium as sPC, resulting in exact-PC weight gradients.

4.1 MATHEMATICAL FORMULATION OF ERROR-BASED PC

ePC reparameterizes PC by making the local prediction errors € the primary variables to optimize,
rather than the states s. The energy function remains the same, now formulated as:

L—-1

1
B(e,0) =5 el +£(g,y)  with §= fo(x,e) (5)
=0

'In float32, addition only works up to 8 orders of magnitude (e.g., 1+-10~% = 1), a.k.a. "machine epsilon".



Algorithm 1: State-based PC (standard) Algorithm 2: Error-based PC (ours)
State updates Error updates

1: Initialize states {s;} <— £f_init(x) 1: Initialize errors {€;} < zero_init
2: fort =1toT do 2: fort =1toT do
3: S_14+ T 3: S_14+x
4: fori =0to L — 1do > Parallel  4: fori =0to L —1do > Sequential
5: 3; < fo,(85i—1) 5: 3; < fo,(55—1)
6: € < S; — S; 6: S; < 8; +€;
7: Y fgL(SL_l) 7: Y < fo, (SL—l)
L-1 A . -1 "
8 B+ 53505 llsi =&l + L(9,y) 8 B+ 535 lel*+ L5y
98 . T ~ T
9: Vs, B+ € — d;‘gl €j+1 > Local 9: Ve, B < €5 + g%j VgL > Backprop
10: 8 < 85 — AV, Eforall j 10: €j < € — AV, E forall j
Weight update Weight update
11: V, Ee—%Te >Local 11: V, Eef%Te > Local
© Vo 90; ©J © VO o8; I
12: Oj — 0_7' - T]ngE for all j 12: Oj — Oj — UVQjE for all 5

Figure 4: Algorithmic comparison of sPC vs. ePC, with structural differences highlighted in color.
Loops over j are omitted for brevity. An extended version is provided in Appendix @

The core dynamics remain unchanged: during training, errors € are iteratively updated to minimize
E, followed by a gradient step to further minimize F with respect to 8 (exactly Eq. again).
Crucially, ePC remains a valid PC algorithm (as technically verified in Appendix [C.I)).

When needed, states can be derived from errors through the recursive relationship s; := §; + €;,
where still §; := fp,(s;—1). Conceptually, this amounts to a feedforward pass starting from the
input  with perturbations €; applied at each layer, as graphically shown in Fig. 2b]

Fig. 4] demonstrates the close algorithmic parallels between sPC and ePC, with a more extensive
comparison given in Fig. Such strong similarities should not be surprising, as both methods are
valid parametrizations of PC; in fact, they are equivalent (see proof in Appendix [C.2).

4.2 COMPUTATIONAL ADVANTAGES: RESOLVING THE SIGNAL DECAY PROBLEM

The key difference between sPC and ePC lies in the structure of their computational graph, as shown
in Fig. [2] Striving for biological plausibility, sPC intentionally breaks the graph to enforce local
update information, inadvertently resulting in exponential signal decay when simulated on digital
hardware, as explained in Section E} To avoid this issue, ePC reconnects the entire network graph,
thereby creating a direct relationship between all input variables and the predicted output:

(ePC) y = func(x,e€g,€1,...,€L-1)
vs. (sSPC) ¢ = func(sp—1)

This restructuring enables the main advantage of ePC: the use of backpropagation to transmit signals
from the output loss £(g, y) directly to all errors €; via g, without intermediate attenuation.

A brief step-by-step analysis reveals how ePC successfully decouples stability from propagation
speed, which were problematically intertwined in sPC. First, backpropagation computes gradients
throughout the entire network, ensuring signals reach all layers unattenuated. Only thereafter, during
the actual error update step, is the learning rate applied, affecting stability but not propagation reach.
This separation allows signals to influence all network layers simultaneously, regardless of depth,
thereby eliminating the exponential decay problem seen in sPC.

While ePC might appear to be a hybrid of PC and backprop, this characterization is misleading:
ePC remains fundamentally a PC algorithm. Backpropagation serves only as a computational tool
to efficiently reach state equilibrium on digital hardware, without influencing the weight updates,
which stay temporally local following PC principles. Appendices [C.3]and [C.4]explore the nuanced
relationship between ePC and backpropagation in greater detail.
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Figure 5: State convergence dynamics of bottom, middle, and top hidden layers in a 20-layer linear
PC network trained on MNIST. Curves show batch medians (n=64) of L2 distance to the analytical
optimum, with interquartile shading. ePC converges over 100 x faster than sPC for the same model.

4.3 PROOF-OF-CONCEPT ON MNIST

To evaluate the practical advantages of ePC over sPC, we compared the two methods for a 20-
layer linear PC network trained on MNIST. This architecture provides an ideal testbed as it offers a
unique and analytically tractable equilibrium state. For an unbiased comparison, we used identical
network weights for both approaches (obtained through backpropagation as neutral method), with
hyperparameters optimized for convergence speed. Complete details are provided in Appendix [D.1]

Fig. [§]illustrates how both sPC and ePC converge to the analytical optimum, reconfirming their the-
oretical equivalence. However, for the exact same model, ePC converges over 100 x faster than sPC,
a huge difference in speed that highlights ePC’s practical advantage for training deep PC networks.

The figure also provides further evidence for the discontinuous signal propagation issue identified in
Section[3] In sPC, the signal takes roughly 30 steps to advance 9 layers and reach sg, and nearly 100
steps to traverse the 20-layer network and reach sg. In contrast, ePC has long converged by then,
with its global connectivity enables all layers to optimize immediately and simultaneously.

Additional experiments with deep non-linear MLPs (see Appendix[D.2)) yielded similar results, with
ePC consistently outperforming sPC in terms of convergence speed. Notably, sPC required an im-
practical number of update steps (>100,000) to actually reach proper convergence, reinforcing the
necessity of our ePC reformulation for scaling PC to deeper networks.

4.4 IMPLICATIONS FOR DEEP PC NETWORKS

The benefits of ePC’s improved signal propagation extend beyond faster convergence, addressing
several fundamental limitations of sPC. Most importantly, by providing signal to all layers from the
first step, ePC completely resolves the issue of untrained deep layers. It enables all layers to begin
optimization simultaneously, regardless of network depth.

Furthermore, ePC eliminates the potential systemic bias in sPC, where only inputs generating large
output gradients could successfully influence deeper layers. With ePC, all inputs contribute equally
to training at all depths, promoting uniform learning across the network.

Moreover, any change in deeper layers is efficiently communicated to the upper layers through
the feedforward pass required for ¢. This bidirectional efficiency explains why the widely-used
feedforward state initialization heuristic in PC works so well: it essentially implements the first step
of ePC. Our formulation thus provides theoretical backing for this empirical practice while extending
its benefits throughout the optimization process.

By resolving these fundamental limitations, ePC establishes a solid foundation for scaling PC to
deeper architectures. Our MNIST proof-of-concept demonstrates significant convergence improve-
ments, validating this theoretical advancement and motivating large-scale empirical evaluation.

5 EXPERIMENTS

To evaluate ePC’s effectiveness in training deep networks and compare it against sPC, we conducted
extensive experiments using backpropagation as gold standard. Our experimental design follows the
benchmark established by Pinchetti et al. (2025])), allowing direct comparison with their findings.



Table 1: Test accuracies (in %) of ePC, sPC and backprop for various models, losses, and datasets.
Bold indicates best results within confidence intervals (mean = 1 std. dev.; taken over 5 seeds).

Loss £ Mean Squared Error Cross-Entropy

Training algorithm ePC sPC Backprop ePC sPC Backprop
MLP (4 layers)

MNIST 98.28+0.09 98 42+0.08 9gg 3(0+0.15 | g8 11+0.08 gg 1+015 9g 13+0.08
FashionMNIST 87.02%0-24 88 01009 8§ 79+0-21 | g7 58£0.13  gg 0024 g8 .87+0-27
VGG-5

CIFAR-10 88.70%0-12  gp.67F020  88.58+F012 | g8 27+0-18 g4 (6+0-33 g7 .95+0.29

CIFAR-100 (Top-1) | 64.37%0-17 5041145  64.80%0-24 | 63.39%0-25 5685069 §3.83+0-15
CIFAR-100 (Top-5) | 85.28%0:3%  77.41%121 85 80%013 | 87.3410-14 g3 11+0-19 g7 43+0.06

VGG-7
CIFAR-10 88.98+0.19  77.79+0.34  gg 94+0.32 | gg gq+0.31 77 gg+0.40  gg O+0-16
CIFAR-100 (Top-1) | 66.55%045 42 90043 §6.23+042 | 58 62+0-20 53 45+0-38 g5 14+0-29
CIFAR-100 (Top-5) | 85.6510-12  70.01%0-52  84.10%0-39 | 85.091914  80.48+0:38  88.6010-24

VGG-9
CIFAR-10 88.80%0-71  76.40%020  90.04%0-50 | 86.81+0-09 78601030 89 76%0-20
CIFAR-100 (Top-1) | 61.35%076  4570%0-14  66.28+0-29 | 60.65%0-25 54.19%041  61.11+045
CIFAR-100 (Top-5) | 84.74%040 73 04046 84 96+0-29 | 85 844015 80 g5+041 85 14+0:32

ResNet-18
CIFAR-10 92.17%0:26 «53 74+0.43> g9 36+0.12 | 9] 734021 «43 19+061» g1 g5+0.24
CIFAR-100 (Top-1) | 68.52%0:34  «09 g3+0.38» g9 gq+0.54 | 69 47+0-32 <16 (1+0-42» 771 46+0-32
CIFAR-100 (Top-5) | 86.86%0-44 «50.18%0-52» g7.76+0-41 | 90.47%0-12 <40 g7+0-70” 91,91+0-23

“...”: ResNet-18 was unstable in our sPC experiments, so we copied the results from Pinchetti et al. (2025)

5.1 EXPERIMENTAL SETUP

We evaluated performance across four standard computer vision datasets: MNIST (LeCun, [1998;
Cohen et al., 2017), FashionMNIST (Xiao et al., [2017)), and CIFAR-10/100 (Krizhevsky, [2009).
The architecture selection spanned an MLP, VGG-style convolutional networks of various depths
(Simonyan and Zisserman, [2014), and a deep residual network (He et al.,[2016). The output loss £
is either Mean Squared Error (MSE) or Cross-Entropy (CE), again mirroring Pinchetti et al. (2025).

Complete implementation details, including hyperparameter settings, are provided in Appendix

An anonymized version of our codebase is available in the supplementary materials.

5.2 RESULTS AND ANALYSIS

Our results in Table[T|confirm the significant performance gap between sPC and backprop previously
reported by Pinchetti et al. (2025)), while demonstrating that ePC substantially narrows this gap.

Several key findings emerge from our experiments:

* Depth scaling: ePC exhibits the expected performance improvement with increasing network
depth, similar to backpropagation, whereas sPC performance degraded in deeper networks.
This is most noticeable for ResNet-18, where ePC achieved competitive performance while
sPC suffered from instability issues in our implementation.

* Performance parity: ePC nearly matches backpropagation’s performance across most datasets
and architectures, with results falling within statistical confidence intervals in many cases.

* Loss function effects: Both Mean Squared Error (MSE) and Cross-Entropy (CE) loss func-
tions resulted in comparable performance across experimental settings, despite CE’s typically
superior gradient properties compared to MSE. However, we did observe greater sensitivity to
hyperparameter selection with CE loss in both ePC and sPC algorithms.

Overall, our experimental results validate ePC’s theoretical advantages. By resolving sPC’s signal
decay problem, ePC successfully scales PC to deeper architectures, unlocking its ability to handle
substantially more complex machine learning challenges than previously possible.



6 CONCLUSION AND FUTURE DIRECTIONS

This paper identifies and addresses a fundamental limitation in Predictive Coding networks: the
exponential decay of signal propagation during state-based energy minimization. Our proposed
error-based formulation overcomes this limitation by restructuring PC’s computational graph while
preserving theoretical equivalence, achieving dramatic performance improvements that finally es-
tablish PC as a competitive alternative to backpropagation for training deep neural networks.

6.1 REINTERPRETING PREDICTIVE CODING AS MINIMAL-NORM PERTURBATIONS

ePC provides a fresh perspective on PC’s energy minimization process. Essentially, (e)PC searches
for minimal-norm layerwise perturbations that collectively produce optimal outputs. At each layer,
these corrections are added to the feedforward pass, incrementally refining the final output predic-
tion. From these targeted state modifications, local weight learning rules can then be derived.

This reframing connects naturally with the Least-Control Principle (Meulemans et al., 2022)), in
which an external controller tries to minimally steer network activities to produce the target output.
In their Appendix S4, they briefly explore PC through the lens of control theory, identifying the
errors as an optimal control. With their framework allowing arbitrary controller circuits, it may
be possible to find a biologically plausible implementation of ePC that does not explicitly require
backpropagation, thereby addressing what some may consider essential for a PC algorithm.

6.2 PREDICTIVE CODING BEYOND THE HARDWARE LOTTERY

Algorithmic success is often dictated not by theoretical merit but by compatibility with prevailing
hardware (Hooker, 2021). Serving as a prime example, PC has struggled to prove its worth despite
theoretical soundness. To unlock its full potential, ePC reformulates PC in a way that aligns naturally
with digital processors, relying on backpropagation to efficiently spread signals across deep net-
works. Meanwhile, sPC remains highly relevant for neuromorphic implementations, where physical
energy minimization would occur naturally and near-instantaneously, regardless of network depth.

Despite their structural differences, both approaches still minimize the same energy function to reach
identical equilibria. This functional equivalence creates a pragmatic research methodology: rather
than being limited by sPC’s digital inefficiency, researchers can turn to ePC for rapid prototyping,
generating insights that remain valid for understanding bio-plausible PC learning mechanisms.

6.3 THE ROAD AHEAD FOR PREDICTIVE CODING

With PC’s viability as a learning algorithm now firmly established, research must shift from proof-
of-concept to practical impact. We highlight two research directions with great potential:

1. Unblocking neuromorphic hardware development: Despite its theoretical suitability for ultra-
energy-efficient neuromorphic implementation, hardware development for PC has been scarce.
A key obstacle is our limited understanding of PC’s behavior at exact equilibrium—the regime to
which any physical implementation would naturally settle. While a recent analysis of this setting
identified improved learning capabilities (Innocenti et al., [2024b)), our experiments consistently
preferred hyperparameter configurations of approximate backpropagation, leaving little appeal
to hardware developers. With ePC as an efficient tool to further study equilibrium dynamics,
research can finally begin to address this critical barrier to neuromorphic advancement.

2. Identifying PC’s distinctive advantages: Rather than competing with backpropagation in its
domains of strength, research should focus on areas where PC uniquely excels. As Song et al.
(2024) demonstrated with online and continual learning, such domains exist but remain under-
explored. Although ePC’s reliance on backpropagation puts an upper limit on PC’s computational
efficiency (as noted before in Zahid et al., [2023)), few-step ePC could offer a compromise that
maintains PC’s unique properties while keeping training times practical.

With ePC effectively addressing PC’s computational limitations on digital hardware, the field must
now face its true test: demonstrating that Predictive Coding offers substantive advantages in specific
domains, sufficient to justify its adoption over established approaches.

A limitations section is provided at the start of the appendix.
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REPRODUCIBILITY STATEMENT

We took great care to ensure reproducibility, listing architectural details, hyperparameter sweep
intervals, final values and even pseudorandom seeds, which can all be found in Appendix [E] On the
algorithmic level, Appendix [A] provides an extensive description of both sPC and ePC. Finally, we
attached an anonymous version of our codebase to the supplementary materials.
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Appendix

LIMITATIONS

Our work demonstrates significant improvements in Predictive Coding efficiency and scalability.
Nonetheless, certain limitations remain, which we discuss below.

Different optimization trajectories: Although ePC and sPC are mathematically equivalent at equi-
librium, they follow distinct optimization trajectories. Therefore, ePC cannot be used for research
on the intermediate state dynamics of sPC (e.g., Millidge et al.,[2024; Lee et al.,[2025). Furthermore,
considering the abundance of local minima present in deep neural networks, it is, in theory, possible
that ePC and sPC may converge to different equilibria, though we did not observe any evidence of
this during our experiments, not even for very deep MLPs (see Appendix [D.2).

Experimental scope: Following the established PC benchmark by Pinchetti et al. (2025), we tested
exclusively on standard supervised learning tasks (MNIST, FashionMNIST, CIFAR) where back-
prop is known to perform exceptionally well. The goal of our experiments was solely to demonstrate
ePC’s superiority over sPC, not to prove PC superiority over backpropagation. It would be valuable
to explore ePC in domains where PC might have advantages, such as online and continual learning
(Song et al.,[2024), to determine whether these benefits extend to deeper architectures (now possible
with ePC) or were simply artifacts of sPC’s poor signal propagation.

CLARIFYING REMARKS

Certain aspects of our methodology may be misunderstood as limitations, but they instead reflect
deliberate design choices and intrinsic advantages. For clarity, we highlight them here.

Choice of baseline methods: Our experiments compare ePC only against sPC and backpropagation
(as neutral gold standard), rather than including a broader range of PC variants. This focused scope
is intentional: Pinchetti et al. (2025)) already extensively tested the most popular PC variants and
found that none successfully scaled to deep networks (see their Table 1). Notably, our ResNet18 re-
sults (where ePC matches BP while all other PC methods failed entirely) demonstrate substantially
stronger performance than any existing alternative. This improvement is expected, since all previous
PC variants rely on the state-based formulation that we identified as fundamentally flawed (see Sec-
tion [3). Therefore, comparing against the base sPC implementation, which is the most established
and widely used variant, was the most appropriate choice.

Biological plausibility: While ePC preserves PC’s core theoretical foundations and resulting weight
updates, its use of backpropagation for the energy minimization process still makes it unsuitable for
direct biological implementation. However, we’d like to emphasize that ePC was never intended as a
biologically plausible algorithm. Instead, it serves as a computationally efficient tool for studying PC
dynamics on digital hardware. Despite satisfying biological constraints, SPC proves impractical in
digital simulations, as shown in Section [3] Biological and digital systems operate under fundamen-
tally different constraints and mechanisms. By making PC practically viable on digital hardware,
ePC actually enables more extensive research into PC dynamics, potentially offering greater value to
computational neuroscience than the biologically constrained but computationally intractable sPC.

Computational efficiency: In a persistent misconception, sPC is often touted for its parallelization
abilities (Millidge et al., 2022b; Pinchetti et al., 2022} Salvatori et al.,[2024; Pinchetti et al., [2025).
However, this alleged advantage is fundamentally flawed. Even with perfect parallelization, PC net-
works with depth L require at least L sequential update steps because signals can only advance one
layer per step due to local-only interactions (Zahid et al., [2023). In fact, our experiments demon-
strate this to be a very loose lower bound: sPC requires exponentially many update steps to reach
equilibrium, fully undoing any potential (linear) speed-up from parallelization. Moreover, it may
prove difficult to actually parallelize layers with different dimensions, forcing sequential processing
in practice (Pinchetti et al.,2025| Section 6.1). As a result, our PyTorch implementation of ePC takes
only 5-20% longer per step compared to sPC, despite its strictly sequential nature. This minor cost
is easily offset by ePC’s exponential reduction in required steps, representing a massive net gain in
computational efficiency. Of course, these comparisons of digital implementations may ultimately
be less relevant, as PC’s true advantage lies in its suitability for ultra-fast neuromorphic hardware.
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A COMPARISON OF STATE-BASED VS. ERROR-BASED PREDICTIVE CODING
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Figure A.1: Full side-by-side comparison of state-based PC (left) and error-based PC (right)
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def states_from_errors(x, e):
return [
(x := f(x) + e_i).detach()
foopf, e_i in zip(layers[:-1], e)

[ ] ]

def ff_init(x): def zero_init():
return [(x := f(x)) for f in layers[:-1]] return [zeros(shape) for shape in shapes]

def get_E(s) def y_pred(x):
s_pred = [f(s) for f,s in zip(layers, s_i=x
[x§+phéd, y_pred = s_pred[:-1], s_pred[-1] for f, e_i in zip(layers, e + [0.0]):
s_i=f(s_1) + e_1
E = 0.5 * sum( return s_1i
L2norm(s_1i-s_1i_pred)**2

for s_i, s_i_pred in zip(s, s_pred) def get E_errors(e)

E = 0.5 * sum(L2norm(e_1)**2 for e_i in
+= loss(y_pred, y) e)E += loss(y_pred(x), y)
def get_final_errors():
e = zero_init()
e_optim = SGD(e, lr=lambda)
for _ in range(T):

get_final_state():
= ff_init(x)
_optim = SGD(s, lr=lambda)
for _ in range(T): e_optim.zero_grad()
s_optim.zero_grad() E = get_E_errors(e)
E = get_E(s) E.backward()
E.backward() e_optim.step()
s_optim.step()
def ePC_weight_update(w_optim):
def sPC_weight_update(w_optim): e = get_final_errors()
s = get_final_state() s = states_from_errors(x, e)
w_optim.zero_grad() w_optim.zero_grad()
E = get_E(s) E = get_E(s)
E.backward() E.backward()
w_optim.step() w_optim.step()

(a) State-based Predictive Coding (b) Error-based Predictive Coding

Figure A.2: PyTorch-style pseudocode comparison of sPC vs. ePC

B TEMPORAL EVOLUTION OF STATES IN STATE-BASED PC

This appendix extends our analysis of the exponential signal decay phenomenon identified in Sec-
tion[3] While the main paper demonstrated how signals attenuate during the initial backward wave-
front, we here derive a complete characterization of network dynamics that reveals the underlying
mathematical structure governing signal propagation throughout energy minimization.

Our analysis uncovers a striking similarity to a simple binomial model, providing both theoretical
insights into the discrete-time nature of the problem and practical understanding of why physical
continuous-time implementations of sPC (like the brain) would not suffer from the same limitations.

B.1 SIMPLIFIED MODEL FOR ANALYTICAL TRACTABILITY

To enable rigorous mathematical analysis, we introduce a simplified model that captures the essen-
tial dynamics while remaining analytically tractable. Note that this setting provides only a coarse
approximation to the true state dynamics of sPC, in contrast to our exact analysis of the initial back-
ward wavefront in Section 3l

Key Assumption for Appendix After feedforward state initialization, all state predictions §;
remain constant throughout energy minimization. This assumption implies that signal propagation
occurs exclusively in the top-down direction, from output toward input layers.

This simplification provides a reasonable approximation during early-stage optimization, where
state dynamics are primarily driven by the output loss £ before significant bottom-up signals emerge.
However, it breaks down as the system evolves and predictions begin to change.
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Simplified Backward Dynamics As described in Section [2] the temporal dynamics of states in
sPC follow gradient descent on the energy function E with state learning rate A:

sttt = st — AV, Ef

O fe,
P (o),
8si

where €; := s; — §; represents the layerwise prediction error. Given our key assumption above, this
is equivalent to the deviation of each layer’s state from its fixed prediction.

= s; — Xej + Nej g

. . . 0o, . .
To further simplify our analysis, we set %(sﬁ) = I, reducing the dynamics to:

sﬁ“ = sk — \el + )‘624-1
B.2 RECURSIVE STATE DYNAMICS BEYOND THE WAVEFRONT

Since state predictions §; remain fixed by assumption, the prediction errors €; follow the same
temporal dynamics as the states themselves:

32+1 = s — el + )\eﬁ_,_l

—8;) = (s§ — 8i) — \ej + Aefyy

t

L — et — \et

— :
< 161 ] i

t
} /\€'i+1
— et =(1- el + Nelyy
For small errors and/or learning rates, we can approximate the magnitude of the right-hand side as
the sum of magnitudes, giving rise to recursive dynamics:
1)) A t t
lleg™ Il = (1= A)lleg]| + All€z1q ]

This recursive formula, when traced through the first few time steps, generates a striking pattern.
Writing the magnitudes relative to the driving output gradient Vy L:

Time | t=0 t=1 t=2 t=3 t=0 t=1 t=2 t=3
[[Wgllloc] 1 1—-X 1—=2X+X2 1-3A+3X2-)3 1 (1= (1-X2 (@1-=-x3
llep—1]] x| 0 A 20-2X2  3A—6A2+3) = 0 A 2X(1—2) 3A(1— )2
llen—2|| x| 0 0 A2 3AZ —3)3 0 0 A2 3A2(1-N)
lleL—s||oc| O 0 0 A3 0 0 0 A3

The state at time ¢t = 0 follows from feedforward state initialization, where all internal errors begin
at zero. By construction, every entry in the table equals the sum of (1 — X) times its left neighbor
(its previous value) and A times its upper-left neighbor (influence from the layer above).

B.3 THE BINOMIAL FORMULA FOR SIGNAL PROPAGATION

Examining the coefficient patterns reveals a fundamental mathematical structure: Pascal’s triangle.
We can formalize this behavior with the following binomial formula:

£\ .
lepallo (§)x -0 ©

where L represents the total number of layers, 7 is the distance from the output layer, and ¢ denotes
the update step. The binomial coefficient (f) encapsulates the number of possible paths through
which a signal from the output layer can reach layer L — ¢ within exactly ¢ update steps, given our
top-down propagation assumption.

Aside from the initial signal V£ at the output, the formula reveals three additional factors that
influence signal magnitude throughout the network:

1. Exponential depth decay \’: confirms the exponential attenuation with network depth
identified in Section[3] This explains PC’s exponential energy decay across layers, as first
observed by Pinchetti et al. (2025) and later reproduced by Qi et al. (2025)).
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2. Temporal decay (1—\)!~%: represents the gradual weakening of the original output signal
over time, an artifact of our assumption that energy flows exclusively toward lower layers.

3. Different propagation routes (Z) accounts for the spatio-temporal variety of signal prop-
agation pathways from output to the current layer.

B.4 STATE-BASED PC WITH HIGH-PRECISION SIMULATION

The binomial formula of Eq. (6) serves as a powerful analytical tool to study sPC dynamics without
the confounding effects of numerical precision limitations. By implementing this formula directly
in logarithmic space using scipy.special.gammaln, we can achieve near-infinite precision
and observe the theoretical behavior of signals in sSPC unhindered by computational constraints.

State-based PC (float64) Binomial formula (co-precision)
g o 10°
1077
s
1071
5
7107 1023
1073
151
5 10f38
£191 0 |
° 0 10 20 30 40 50 60 0 10 20 30 40 50 60

Update steps T Time t

Figure B.1: Evolution of layerwise energies for sPC with float64 vs. near-infinite precision (simu-
lated via Eq. (6)). Same setup as in Fig. [T} described in Appendix[E.T.2]

Fig. [B.I] presents a direct comparison between our high-precision binomial model and a float64
implementation of sPC for A = 0.1. The striking similarity between these plots confirms that our
mathematical characterization accurately captures the fundamental early-stage dynamics, despite
simplifying assumptions. The orthogonal weight initialization used in our experiments certainly
helps here, as it aligns well with our simplified backward dynamics assumption.

Comparing the float64 implementation in Fig. [B.I] with the float32 version from Fig. [T] highlights
both the importance and limitations of numerical precision in sPC. Even with enhanced double-
precision floating-point arithmetic, the discontinuous signal propagation persists, though manifest-
ing later and less pronounced.

B.5 CONTINUOUS VS. DISCRETE TIME: LIMITATIONS OF DIGITAL SIMULATIONS OF SPC

While it is clear that numerical precision is the cause of propagation issues in practice, the funda-
mental source of the exponential signal decay still remains unknown. We hypothesize:

The exponential signal decay identified in this paper is primarily an artifact of time
discretization in digital implementations of sPC.

To analyze this claim rigorously, we examine our binomial formula (Eq. (6)) in the continuous-time
limit, where A\ — 0 (infinitesimal state learning rate) and ¢ — oo (continuous updates), with a
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constant total time A¢. Setting ¢ = 7/, we find:

. ) A\ i
lim || As%/*|| & lim (T/ )xa — AT/
A—0 A—0

¢ 1

[

. T i _
~ lim ( - ) Al e "

A—=0 7! ~~

N—— (limit definition of e)
(Stirling’s approximation)

%
_ T

i!

In the continuous-time limit, our binomial formula transforms into a Poisson distribution, represent-
ing the spatial profile of a diffusion process. In this regime, signals diffuse smoothly over time,
rather than being subject to the stepwise attenuation seen in discrete updates.

Digital implementations can approach continuous-time behavior with smaller time steps and more
advanced ODE solvers, but this dramatically increases computational cost and reintroduces the orig-
inal scalability problem. In contrast, physical substrates can effortlessly model a diffusion process,
naturally operating at infinitesimal time constants, with countless update steps passing every second.

This observation leads to a reassuring conclusion: neuromorphic implementations of sPC, like the
brain, would not suffer from the exponential signal decay problem identified in our research. The
issue is specific to the time discretization required for digital implementations, subject to both stabil-
ity constraints and limited numerical precision. In digital systems, we cannot practically approach
the continuous-time limit without incurring prohibitive computational costs.

Therefore, the exponential decay with depth is not an inherent limitation of sPC as a theoretical
framework but rather a consequence of its discretized formulation for digital hardware. For instance,
biological neural systems, operating in continuous time with analog computation, would not struggle
with the same fundamental barriers to depth scaling, although they may face other challenges, such
as noise and non-idealities.

B.6 TEMPORAL SCOPE AND LIMITATIONS

Our binomial model primarily captures early-stage dynamics but becomes progressively less accu-
rate for extended optimization periods. For longer time horizons, especially with larger learning
rates, our assumption of fixed predictions becomes increasingly unrealistic. The model dictates per-
manent downward energy transmission, moving from output to input, due to a lack of bottom-up
signals. In practical implementations, however, layerwise energies will settle across the network in
an effort to minimize prediction errors globally. In particular, the output loss £ will generally remain
relatively large, even at equilibrium.

C ERROR-BASED PC AND CONNECTIONS TO OTHER ALGORITHMS

This section examines how ePC related to other established learning algorithms. More specifically,
we show that:

* Despite its lack of locality, ePC is still a valid PC algorithm, according to the definition by
Salvatori et al. (2026). (Appendix [C.I))

» ePC and sPC are essentially the same PC algorithm, but follow different optimization paths.
(Appendix [C.2)

*» Under specific conditions, ePC can implement exact backpropagation, closely resembling
Zero-divergent Inference Learning (Z-IL; Song et al.,[2020). (Appendix [C.3)

* In general, however, ePC generates weight gradients that are different from those in stan-
dard backpropagation, matching those produced by full-equilibrium sPC. (Appendix [C.4)

* When considering PC as a hierarchical probabilistic model, ePC simply implements the
VAE reparametrization trick from Kingma and Welling (2013)). (Appendix
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C.1 EPC BROADENS THE DEFINITION OF PREDICTIVE CODING

This appendix section analyzes the technical definition of PC by Salvatori et al. (2026) and demon-
strates that ePC meets all criteria, thereby definitively establishing it as an exact PC algorithm.
Moreover, we show that ePC broadens our understanding of what PC is, eliminating the condition
of local-only interactions, commonly believed to be a core component of PC.

Informal definition of PC by Salvatori et al. (2026), adapted to our notation. Let us assume
that we have a hierarchical generative model g(x, s), inverted using an algorithm A.
Then, A is a Predictive Coding algorithm if and only if:

1. it maximizes the model evidence log p(s) by minimizing a variational free energy,

2. the posterior distributions of the nodes of the hierarchical structure are factorized
via a mean-field approximation, and

3. each posterior distribution is approximated under the Laplace approximation
(i.e., random effects are Gaussian).

Note that the above definition does not say anything explicitly about prediction error or
properties such as locality, which, as mentioned earlier, are commonly used to describe PC.
[...] the above definition is quite general and does not impose any constraint on the exact
computation of the posteriors as well as the optimization technique(s) used to minimize the
variational free energy.

Let us go over each of the requirements of the definition:

0. ePC employs the exact same hierarchical generative model g(x, s) as sPC, as reflected by
its identical energy function (see Appendix [C.2). A reparametrization does not affect this
property.

1. ePC minimizes sPC’s variational free energy F and reaches the same state minima (see

Appendix [C.2). As in sPC, this energy minimum corresponds to a maximum-likelihood
estimation of the model evidence over the states.

2. ePC imposes a mean-field approximation of the posterior distribution. Concretely, this
means that every state component s;; can be set independently of any other state compo-
nent. Although ePC builds a global computational graph, thereby imposing a dependence
of s; on all previous states s;, we can still set s; to any arbitrary value by modifying €;.

3. ePC’s ‘random effects’ are the errors €, which are implicitly modelled as Gaussians. More
specifically, the energy E (representing — log g(x, s)) contains a ||€;||? term that corre-
sponds to the negative log-likelihood of a standard Gaussian N'(0,1). This is entirely
analogous to the reparametrization trick in VAEs (Kingma and Welling, |2013)), which for-
mulates any Gaussian as a transformation of a standard normal. We explore this connection
further in Appendix [C.5]

Remarkably, requirement 2 does not imply the need for locality, despite Salvatori et al. (2026)
noting that "the mean field approximation enforces independence, and hence, results in locality in
the update rules”. ePC proves that a non-local mean-field approximation exists, without violating
the assumptions of the hierarchical model.

Technically speaking, one might argue that the final node in our model, ¥, is not independent of the
other nodes. However, the loss L still provides the necessary freedom to deviate from y, effectively
acting as an additional random effect. Along with the definition’s assumption of Gaussian posterior
distributions, the loss £ becomes an MSE loss and may be equivalently modelled as an additional
error term €y, .

C.2 THEORETICAL EQUIVALENCE BETWEEN SPC AND EPC
Here, we provide a formal proof of the theoretical equivalence between the state- and error-based

formulations of PC. We demonstrate that despite their different parameterizations, both approaches
converge to identical equilibrium points and represent the same underlying optimization problem.
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Bijective Mapping We first establish a bijective mapping between the optimization variables of
sPC (the states s) and ePC (the errors €).

Theorem C.1 (Bijective Mapping). For any fixed set of parameters 0 and input x, there exists

a bijective mapping between any state configuration s = {so, 81,...,8L—1} in sPC and error
configuration € = {€g, €1,...,€r_1} in ePC.

Proof. Given states s = {sg,81,...,8r—1} in sPC, we can directly compute the corresponding
errors:

€ =8; — 8 :si—fgi(si_l) for ¢ € {0,1,...,L— 1}
where for ¢ = 0, we define s_; := « (the input data).
Conversely, given errors € = {€o, €1,...,€r—1} in ePC and input x, we can recursively compute
the corresponding states:

80 = 80 + €0 = fo,(T) + €0

S;i =8; +€ = fgi(si_l) +€; for i€ {172,...7L— 1}

For a fixed set of parameters 8 and input x, this mapping is one-to-one and onto (i.e., bijective):
for any given s, there is exactly one corresponding €, and for any given €, there is exactly one
corresponding s. [

Energy Function Equivalence Next, we prove that under this mapping, the energy functions of
both formulations are equivalent.

Theorem C.2 (Energy Equivalence). Under the bijective mapping between s and €, for any fixed
parameter set 8 and input-output pair (x,y), the energy functions Epc(s,0) and E.pc(€,0) are
identical when evaluated on corresponding configurations.

Proof. Let us first recall the energy functions for both formulations:
L—1

1 A .
Egpc(s,0) = By Z l8s — &l1* + L(g, )
i=0
=
Fac(e,0) = 3 3 llell* + £(5,)
i=0

Starting with E.pc and substituting the definition €; = s; — §;:

L
1 N
Eepc(€,0) = 3 Z leill* + L(9,y)
=0

N —

o

L
> lisi = &P + L(3,v)
i=0
sPC(Sve)

Therefore, the energy functions evaluate to the same value for corresponding configurations of states
and errors. O

Jacobian of the Transformation To analyze how gradients and critical points relate between the
two formulations, we need the Jacobian matrix of the transformation from errors to states.

Lemma C.3 (Jacobian Structure). The Jacobian matrix J = g—: representing how states change

with respect to errors has a lower triangular structure with identity matrices on the diagonal.

Proof. From the recursive definition of states in terms of errors:

si = fo,(si—1) + €

Taking partial derivatives with respect to €;:
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1. If j > 4 ng = 0, since s; doesn’t depend on future errors.
J
2. If j = i: 9% =1, the identity matrix.
. ., 0s; __ afgi(si—l) 08i—1
3. Ifj <1 E = 9s; 1 . de;
O0fe, ,(si . . . . .
Let’s denote J; = 91571.() as the Jacobian of layer ¢ 4+ 1 with respect to its input (state 7).

Then we can write:
if j >4
881‘ . j .

ifj=1
86j

~ = O

0851  .p - .
i1 "ae, if j <14

This recursive structure leads to a lower triangular Jacobian matrix with identity matrices on the
diagonal:

I 0 0 --- 0
Jo I 0 --- 0
j- | 3iJo J, I -~ 0
o de Tt de - I 1

This structure has important implications: J is invertible with determinant 1, since the determinant
of a triangular matrix is the product of its diagonal entries, all of which are 1. O

Gradient Equivalence and Critical Points We now establish the relationship between gradients
in both formulations and use it to prove that they share the same critical points.

Theorem C.4 (Gradient Relationship). The gradients of the energy functions in the sPC and ePC
Sformulations are related by:

Vé EgPC = JTVs ESPC

where J = %ﬁ is the Jacobian matrix derived in Lemma

Proof. By the chain rule of calculus:

VeEewc = VeEpc(s(€),0)

a T
— (;) V., Ewc

= JTVS Egpc
O

Theorem C.5 (Critical Point Correspondence). A configuration s* is a critical point of Espc if and
only if the corresponding configuration €* is a critical point of E,.pc.

Proof. From Theorem[C.4] we have:
VeEpc = IV Epc

Since J is invertible (as shown in Lemma[C.3), its transpose J7 is also invertible. Therefore:

VEEepC =0 <— JTVSESPC =0 <— VsEsPC =0

This establishes that s* is a critical point of Epc if and only if the corresponding €* is a critical
point of Eepc. L]
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Local Structure of Critical Points To complete our proof of optimization equivalence, we need
to show that the local structure of critical points (minima, maxima, or saddle points) is preserved
between formulations.

Theorem C.6 (Preservation of Local Structure). A critical point s* is a local minimum / maximum /
saddle point of Espc if and only if the corresponding critical point €* is a local minimum / maximum
/ saddle point of E,pc.

Proof. The local structure of critical points is determined by the eigenvalues of the Hessian matrices:
2
Hs =V Epc
He = VzEwePC

To relate these Hessians, we differentiate the relationship in Theorem [C.4}

Ve EePC = JTVS ESPC

Taking another derivative with respect to €:

0
VzEePC - E (JTVSESPC)

oJT OV E,

= o Valipe + 37 =55
oJT Os

= @VSESPC + JTViEspca
JT

- 866 Vs-EsPC + JTHSJ

At a critical point where V g Egpc = 0, the first term vanishes, giving:

H.=JTH,J

This establishes that H, and H, are congruent matrices, considering J is invertible.
By Sylvester’s law of inertia, congruent matrices have the same number of positive, negative, and
zero eigenvalues. Therefore:

* H, is positive definite (all eigenvalues positive) if and only if H is positive definite

* H, is negative definite (all eigenvalues negative) if and only if H is negative definite

* H. has mixed positive/negative eigenvalues (saddle point) if and only if H, has the same
eigenvalue signature

This preserves the classification of critical points as local minima, maxima, or saddle points between
the two formulations. ]

Dynamical Systems Analysis While the energy functions and their critical points are identical,
the optimization dynamics differ significantly due to the reparameterization.

Theorem C.7 (Dynamical Equivalence). The continuous-time dynamics in sPC and ePC both con-
verge to the same equilibrium points, but follow different trajectories in their respective spaces.

Proof. Under the notation & := ‘fj—f, the continuous-time dynamics for both formulations are:
sPC: s = -V Egpc

ePC: € = —V_ Eepc

Using the relation V¢ Eepe = J TV ¢ Egpc, the ePC dynamics can be rewritten as:

€= _JTVS Egpc
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To compare these dynamics in the same space, we need to transform € to §. Using the chain rule:

. 0Os,
§=_—€
Oe
=Jé
=3IV, Egc
Comparing with the sPC dynamics:
sspc = —VsEgpc

SEPC = 7JJTVS Egpc

The difference is the matrix JJ7, which acts as a preconditioner for the gradient descent. This
matrix is positive definite (since J has full rank), meaning that the ePC dynamics will always move
in a descent direction for Egpc, but with a different step size and direction than sPC.

Both dynamical systems will converge to the same equilibrium points where V 3 Epc = 0, but will
follow different trajectories to get there. Whereas sPC suffers from an ill-conditioned optimization
landscape (Innocenti et al.,|[2025)), explaining its slow convergence, ePC seems to solve this problem
through a cleverly constructed preconditioner. O

Global Connectivity and Signal Propagation The key computational advantage of ePC over sPC
lies in its global connectivity structure. This difference affects how signals propagate through the
network.

Theorem C.8 (Signal Propagation). In the sPC formulation, signals propagate sequentially through
the network layers, resulting in exponential decay with network depth. In contrast, ePC allows direct
signal propagation to all layers simultaneously, eliminating the signal decay problem.

Proof. In sPC, the state update equations are:
511 = _Vsi ESPC

af91'+1
3si

(83)

=—€ 1t €41

The crucial observation is that s; depends only on errors from adjacent layers (e; and €;41). This
local connectivity means that a signal from the output layer (V ;L) must propagate through all
intermediate layers to reach the input layer, attenuating at each step.

In ePC, by contrast, the gradient is computed through the entire computational graph:

€ = _VeiEePC
oy "
= —€; — ‘C
€ de, Vy
wih W _ 99 Oer—a Ot
8€i 6eL_1 8eL_2 8ei

Hence, €; directly depends on all errors from layer ¢ to L. This global connectivity allows signals
from the output layer to immediately affect all earlier layers, eliminating the signal decay problem.

The mathematical consequence of this difference is that in sPC, the influence of the output error
on layer ¢ decreases exponentially with the distance from the output (as explained extensively in
Section , while in ePC, this influence is direct and unattenuated. O

Limitations and Caveats While the two formulations are theoretically equivalent in terms of
equilibrium points, several practical considerations affect their performance:

1. Optimization Landscape: The different parameterizations create different state trajecto-
ries that may encounter different local minima under stochastic optimization.
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2. Numerical Stability: The formulations may exhibit different numerical properties, partic-
ularly with respect to hyperparameter sensitivity and discretization effects. For instance, in
Section 3] the numerical issues of sPC are highlighted.

3. Implementation Efficiency: The global connectivity of ePC imposes different computa-
tional demands than the local connectivity of sPC, affecting implementation efficiency on
different hardware architectures. On GPU, the backpropagation algorithm behind ePC is
highly efficient, despite being sequential. However, the local and parallel nature of sPC
enables a far more efficient neuromorphic implementation.

Despite these practical differences, our theoretical equivalence analysis confirms that ePC is a valid
reparameterization of PC that preserves its fundamental principles while offering significant com-
putational advantages for deep networks.

C.3 EXACT BACKPROPAGATION USING ERROR-BASED PREDICTIVE CODING

Below, we explore an important theoretical property of ePC: under specific conditions, ePC can
become mathematically equivalent to standard backpropagation. This relationship deserves careful
examination, as it affects how researchers should implement and interpret ePC results.

Note that, in general and under more reasonable circumstances, ePC does not equal backpropagation,
and produces notably different weight gradients, as demonstrated in Appendix [C.4]

C.3.1 WHEN EPC REDUCES TO BACKPROPAGATION

The use of backpropagation within ePC’s computational structure naturally raises the question of
when the two methods become mathematically equivalent. We demonstrate that ePC reduces to
standard backpropagation under specific conditions. Importantly, these conditions do not make
backprop a PC algorithm, which would require, at least in theory, for the errors to be at equilibrium.

Theorem C.9. ePC becomes mathematically equivalent to backpropagation when either:

o The number of update steps T is exactly 1.
* The error learning rate X is sufficiently small relative to 1/T.

Proof. We consider each case separately, proving their equivalence to backpropagation.

Case 1: Single Update Step (7' = 1)
With a single update step, the error variables are updated to:

€; = *)\V&‘C(ga y)
The subsequent parameter update becomes:

05; "
o 8§,-T 8siT 8€iT
- 86¢ aéi 8si
S~
=1 =TI

Ve.L(Y,y)

This is precisely the gradient from standard backpropagation, but scaled by the error learning rate A.
Note that the weight update itself would involve an additional scaling by the weight learning rate.

When A = 1, we find that this setup exactly matches that of Zero-divergent Inference Learning
(Z-IL; Song et al., [2020). Z-IL adds a "fixed prediction assumption" to sPC and only models a
backward signal wavefront, similar to that of Section but with A = 1. With these two constraints
added to sPC, Z-IL effectively implements a 1-step version of ePC, which, as we outlined above,
indeed corresponds to exact backpropagation.
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Case 2: Small Learning Rate (A < 1/7)
For a small )\, after 7" update steps, the error can be approximated as a linear accumulation of T’
identical updates:
€~ -V, L(y,y)
Following the same reasoning as for case 1, the resulting parameter update now becomes:
AO; x X\T'V g, L(Y,y)

This approximation holds when A7 remains sufficiently small, such that the error-perturbed output
prediction y still closely approximates the unperturbed feedforward prediction ¢ of backprop. Note
that, when using larger learning rates and/or sufficient update steps, this is no longer the case, and
the output prediction g differs sufficiently between ePC and backprop, with the natural consequence
being notably distinct gradients. O

C.3.2 EXPERIMENTAL CONSIDERATIONS

In our experiments, we found that smaller values of AT generally performed best. However, we
deliberately maintained this value above the threshold that would cause ePC to reduce to regular
backpropagation. Complete experimental details are provided in Appendix

C.3.3 CONTRAST WITH SPC

This situation differs notably from sPC, which can also become equivalent to backpropagation under
certain conditions (Song et al., 2020; Millidge et al., 2022a). However, these conditions typically
involve specific algorithmic tweaks that rarely occur in practice, thereby protecting sPC implemen-
tations from accidentally reducing to backpropagation.

ePC, by contrast, presents a more subtle boundary. During hyperparameter tuning, one might in-
advertently select learning rates and iteration counts that effectively transform ePC into standard
backpropagation. Researchers working with ePC should therefore carefully monitor these parame-
ters to ensure they are truly studying PC dynamics rather than rediscovering backprop in disguise.

C.4 WEIGHT GRADIENTS FROM (ERROR-BASED) PC ARE DISTINCT FROM BACKPROP

In Section we analyzed the evolution of states to equilibrium for a 20-layer linear PC network
trained on MNIST. Here, we examine the evolution of the weight gradients themselves, which are
ultimately the quantities of interest for learning.

While weight gradients in PC have no inherent dynamics (they are computed only after energy
minimization), we can track how they would evolve if optimization were stopped at intermediate
steps using their local formulas (Eq. (3))). The results are shown in Fig.[C.1]

The analysis reveals several key insights about the gradient behavior of the two PC variants. Both
ePC and sPC eventually converge to identical analytical PC weight gradients, reconfirming their
theoretical equivalence from Appendix|C.2] Notably, these PC gradients are distinct from backprop-
agation gradients across all layers, differing in both direction and magnitude.

Nonetheless, the gradient dynamics differ dramatically between the two methods. At T = 1, ePC
starts at the backprop gradients (as shown in Appendix [C.3) and rapidly transitions toward the PC
solution. By contrast, sPC appears to transition from exact-zero gradients directly to PCE]

As expected, sPC suffers from severe signal propagation issues. Deeper layers stay at zero weight
gradients for a long time, while layer 18 (the only initially non-zero gradient) actually becomes
more aligned with backprop before slowly moving toward PC. This creates a significant risk, where
early (pre-equilibrium) termination of sPC surely implements something other than true PC, despite
achieving reasonable learning performance with extremely small yet informative gradients.

C.5 EPC IMPLEMENTS THE VAE REPARAMETRIZATION TRICK IN PC

Although PC has long been described as a variational Bayes algorithm (Friston and Kiebel, 2009
Bogacz, 2017; Millidge et al., 2021), it is only recently that its probabilistic generative properties

’The directional wandering is likely just an artifact from the cosine similarity with a near-zero vector.
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Figure C.1: Evolution of batch-averaged weight gradients of bottom, middle, and top hidden layers
in a 20-layer linear PC network trained on MNIST (same setup as Fig.[5). ePC starts at backprop,
while sPC starts mostly at zero. Both eventually reach the analytical PC gradients (notably distinct
from backprop), with ePC converging roughly 100x faster than sPC.

have been explored (Oliviers et al., [2024; Zahid et al., [2024). In this context, PC is seen as a
hierarchical Gaussian graphical model, where:

» Layer predictions §; represent the predicted means (1) of Gaussian distributions (where
negative log-likelihood corresponds to a squared error loss)

* Variance is typically fixed at o = 1 (or precision weights are introduced)

¢ The states s are sampled from the predicted Gaussians: s; ~ N (8;,1)

Standard PC’s "energy minimization” (as described in Section[2)) corresponds to finding the
maximum-likelihood states s instead of sampling from the full distribution

When ported to this setting, ePC becomes: s; =3; +1©®¢€; (where 1 represents unit variance)

A common problem in probabilistic graphical models is that direct sampling breaks the computa-
tional graph, inhibiting the gradient flow needed for backpropagation. One ingenious and highly
successful solution is the VAE reparameterization trick (Kingma and Welling, |2013), which trans-
forms a standard normal into the predicted distribution:

z=p+o00e €e~N(0,1)

Notice the strong similarity with the earlier formulation of ePC when z — s, u—§;, o —1

Our description of ePC in Section[d.T|uses variational inference to find maximum-likelihood values
for €; rather than drawing samples. However, when ported to the probabilistic interpretation of PC,
one could sample the error variables ¢; from a standard normal distribution, making the connection
to the VAE reparameterization trick more direct. The mathematical structure is entirely analogous:
both methods reparameterize in terms of error/noise variables to enable efficient gradient flow.
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D PROOF-OF-CONCEPT: DEEP PC NETWORKS TRAINED ON MNIST

This appendix describes the experimental setup from Section and contains additional experi-
ments on deep non-linear networks. The results demonstrate that ePC’s convergence advantages
hold across both linear and non-linear architectures, at least in our proof-of-concept MNIST setting.

D.1 DETAILS OF DEEP LINEAR NETWORK TRAINED ON MNIST

Below, we briefly summarize the technical details needed to reproduce Fig.[5} Specifically, we used
the following architecture:

* Number of layers: 20

— Specifically: € —s9g — 81 — - —8Sg —S9g —S10— - — S17 — S18 — Y
where ’—’ represents a layer (20 layers in total, leading to 19 hidden states s;)

* Hidden state dim: 128

 Activation function: None (not even at the output)

* Weight init: orthogonal (linear gain) (Hu et al.,[2020)
* Bias init: zero

 State/error optimizer: SGD

¢ Pretraining

Weight optimizer: Adam (Kingma and Ba,2014)

Weight learning rate: 0.001 (not tuned for this proof-of-concept)

Gradient algorithm: Backpropagation (fast, stable, and neutral w.r.t. sSPC & ePC)
Dataset: EMNIST-MNIST (Cohen et al.,[2017)

Batch size: 64

Epochs: 2

Final test accuracy: 84.5%

For a fair comparison between sPC and ePC, we tuned the internal learning rate for both, with the
objective of maximum convergence to the analytical optimum:
e ePC

— e_lr sweep: {0.001, 0.005, 0.01, 0.05, 0.1}
— Optimal e_Ir: 0.05
— #iters: 256
e sPC
— s_Ir sweep: {0.05, 0.1, 0.3,0.5}
— Optimal s_Ir: 0.3
— #iters: 4096

The analytical solution was obtained via sparse matrix inversion  using
scipy.sparse.linalg.spsolve.

Note: Fig.[5|shows state dynamics for both sPC and ePC. To get states for the latter, we project from
errors to states at every time step.

D.2  STATE DYNAMICS IN DEEP NON-LINEAR MODELS TRAINED ON MNIST
Building on our analysis of linear models in Section [d.3] we extend our investigation to the more

practical scenario of non-linear networks. This extension allows us to evaluate whether the signal
propagation advantages of ePC generalize beyond the analytically tractable linear case.
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D.2.1 EXPERIMENTAL SETUP

We employed the 20-layer “Deep MLP” architecture detailed in Appendix [E] pretrained on MNIST
using one of two different loss functions: squared error and cross-entropy. Unlike the linear models,
these non-linear networks achieve higher test accuracy (95% vs. 85%), representing a more realistic
training scenario. However, this improved performance introduces an important methodological
consideration: since analytical solutions are unavailable for non-linear models, we must turn to
ePC’s convergence state as our reference equilibrium point. This choice inherently favors ePC and
should be considered when interpreting results.

D.2.2 IMPACT OF LOSS FUNCTION AND INPUT DIFFICULTY

As pointed out in Section [3] the signal decay problem of sPC depends critically on the output gra-
dient V4 L. In well-trained non-linear models, the loss—and hence its gradient—can become ex-
tremely small for easily classified examples, leading to even worse signal propagation issues. To
investigate this effect systematically, we varied both the loss function (squared error vs. cross-
entropy) and input difficulty (easy vs. hard-to-classify images). All experiments were implemented
with float64 precision to ensure numerical stability and avoid precision-related confounders in the
convergence analysis.
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Figure D.1: Convergence dynamics in 20-layer PC-MLPs trained on MNIST with float64 precision.
For easily-classified inputs (marked by near-zero loss), gradient signals become prohibitively small,
hindering convergence. ePC consistently outperforms sPC by orders of magnitude across all condi-
tions.

Fig.[D.1|presents the convergence dynamics for both sPC and ePC across these conditions. Several
important observations emerge from these experiments:

1. Performance across loss functions: Cross-entropy loss appears to create a more chal-
lenging optimization landscape for both sPC and ePC, despite its generally more favorable
gradient properties compared to squared error. However, the smaller gradient signals from
squared error do lead to long propagation delays in sPC, requiring almost 1000 update steps
to progress just a single layer and reach sis.

2. Input difficulty effects: For highly accurate models, most inputs will be “easy” (classi-
fied with high confidence), thereby generating minimal loss gradients. This greatly hinders
overall signal propagation, even for ePC in our float64 simulations. By contrast, “hard” in-
puts (resulting in larger gradients) greatly accelerate ePC, while modestly improving sPC’s
convergence speed.

3. Overall convergence speed: ePC consistently converges orders of magnitude faster than
sPC across all experimental conditions. This advantage is most pronounced with squared
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error loss on hard images (bottom left panel), where ePC converges approximately 10,000
times faster than sPC for the exact same model.

4. Identical equilibria: Even in the non-linear case, sSPC and ePC seem to head towards the
same equilibrium points, highlighting their equivalence as established in Appendix [C.2]
Note that this is not necessarily true for all model architectures and datasets, as spurious
local minima may affect sPC and ePC in different ways.

5. Practical implications: Perhaps most critically, sPC requires an impractical number of
update steps (>100,000) to reach convergence in these non-linear networks, underscoring
the practical importance of our ePC reformulation for deep PC architectures.

These findings extend and reinforce the convergence analysis presented in Sectionf.3] They confirm
that the advantages of ePC’s global connectivity structure generalize from the analytically tractable
linear case to practical non-linear networks with different loss functions.

E OVERVIEW OF EXPERIMENTAL IMPLEMENTATION DETAILS

In this appendix, we provide all details necessary to reproduce our experimental results from Table[T]
Furthermore, we perform additional experiments on a 20-layer deep MLP architecture, which was

used for Figs.[T]and

An anonymized version of our codebase is available in the supplementary materials.

E.1 MLPs ON MNIST & FASHIONMNIST
Compute resources

¢ CPU: Intel Xeon E5-2620 v4
« RAM: 32 GiB
¢ GPU: NVIDIA GeForce GTX 1080 Ti
¢ Compute time per experiment: (without early stopping or failure)
MNIST - MLP:
+ ePC: 10min (#iters=4, 25 epochs) — 1h (#iters=256, 5 epochs)
* SPC: 10min (#iters=4, 25 epochs) — 45min (#iters=256, 5 epochs)
+ Backprop: 2-7min
MNIST - Deep MLP:
# ePC: 12min (#iters=4, 25 epochs) — 3h (#iters=256, 5 epochs)
x sPC: 25min (#iters=4, 25 epochs) — 3h (#iters=256, 5 epochs)
+ Backprop: 2-8min
FashionMNIST - MLP:
+ ePC: 6min (#iters=4, 14 epochs) — 14min (#iters=64, 5 epochs)
% SPC: 13min (#iters=16, 14 epochs) — 45min (#iters=256, 5 epochs)
* Backprop: 3-7min
FashionMNIST - Deep MLP:
% ePC: 20min (#iters=4, 17 epochs) — 45min (#iters=64, 5 epochs)
# SPC: 1h (#iters=64, 7 epochs) — 5h30 (#iters=256, 13 epochs)
* Backprop: 4-7min

* Total compute time estimate:

— MNIST: £150h
— FashionMNIST: +150h

Architecture

* Number of layers: 4 (MLP), 20 (Deep MLP; see below)
¢ Hidden state dim: 128
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* Activation function: GELU (Hendrycks and Gimpel, 2016)) (+ Sigmoid for MSE loss)
* Weight init: orthogonal (with ReLU gain) (Hu et al., 2020)

¢ Bias init: zero

¢ Pseudorandom seed: 42 for hyperparameter sweep, {0, 1, 2, 3,
4} for final test accuracy over 5 seeds. We set the seed using
lightning.seed_everything (workers=True) before any data or weight
initialization.

 State/error optimizer: SGD
* Weight optimizer: Adam (Kingma and Ba,[2014)

E.1.1 ADDITIONAL EXPERIMENTS ON DEEP MLPs

Table E.1: Additional test accuracies (in %) of ePC, sPC and backprop for a deep MLP architecture.
Bold indicates best results within confidence intervals (mean + 1 std. dev.; taken over 5 seeds).

Loss £ Mean Squared Error Cross-Entropy

Training algorithm ePC sPC Backprop ePC sPC Backprop
Deep MLP (20 layers)

MNIST 9711039 96.89+0-33 97 89+0-15 | g4 g4+0-54 g5 23+1.24 g7 20+0.07
FashionMNIST 85.0452:94 84.92+040 g7 914045 | g1 374040 79 g5+1.62 g7 78+0.18

As an addition to the benchmark of Pinchetti et al. (2025), we evaluated the performance for a
20-layer deep version of the MLP. As this architecture presents training challenges even with back-
propagation, we turned to orthogonal weight initialization for enhanced stability (Hu et al., 2020).
The results are stated in Table [E.Tl

Despite our expectation of a large performance gap, both ePC and sPC performed similarly. We
hypothesize that orthogonal initialization may ease the signal decay problem by maintaining eigen-
values close to 1, thereby creating an unexpectedly strong baseline. This suggests that careful weight
initialization can mitigate some of sPC’s inherent optimization challenges, in line with findings from
Innocenti et al. (2025). However, this strategy is less applicable to non-residual convolutional archi-
tectures, where the performance difference between ePC and sPC remains substantial.

To avoid confusion, we decided to move these results to appendix, rather than state them in Section[3]

E.1.2 DETAILS OF FIGURE 1

Below, we provide all details necessary to reproduce Fig.[I] Above all, our goal was to illustrate the
problem of signal decay under realistic conditions.

The model is an untrained Deep MLP + Cross-Entropy, as detailed above. We track the layerwise
energies throughout energy minimization for a single MNIST data pair (x,y). These are calcu-
lated using the energy functions corresponding to sPC and ePC (shown side-by-side in Fig. ). We
perform 64 update steps for sPC and 8 for ePC, both with a learning rate A = 0.1.

E.1.3 MNIST

Data We used EMNIST-MNIST (Cohen et al., 2017), which is a well-documented reproduction
of the original MNIST dataset (LeCun, [1998)). The images are first rescaled to the range [0, 1], then
they are normalized using the fixed values mean=0.5 and std=0.5 (same as Pinchetti et al., [2025).
We set the batch size constant at 64. The validation set was 10% of the training data, split randomly
but with a fixed seed. For final test performance, we don’t split a separate validation set, but simply
train on the whole training set.

ePC First, we did a hyperparameter sweep over the inner optimization hyperparameters (error
learning rate (e_lr) and number of update steps (#iters)), with the weight learning rate (w_Ir) constant
at 3e-4 (or 3e-5 for Deep MLP+CE). During these sweeps, we train for 5 epochs. Then, we fixed the
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best inner optimization hyperparameters for each setting, and tuned w_Ir and the number of epochs
by means of early stopping, with a maximum of 25 epochs. See Table [E.2] for more details of the
sweep.

Table E.2: Hyperparameter sweep intervals and optimal values for ePC-MLPs on MNIST

Hyperparams ‘ Sweep values ‘ MLP+MSE MLP+CE Deep MLP+MSE Deep MLP+CE
e_lIr {0.001, 0.005, 0.01, 0.05, 0.1, 0.5} 0.05 0.001 0.001 0.001
#iters {4, 16, 64, 256} 4 4 4 4
w_Ir {1e-5, 3e-5, 5e-5, le-4, 3e-4, 5¢-4, le-3} le-4 le-4 le-4 le-5
#epochs Early Stopping(patience=3), up to 25 25 20 14 25

sPC First, we did a hyperparameter sweep over the inner optimization hyperparameters (state
learning rate (still denoted as e_lr for implementation purposes) and number of update steps (#iters)),
with the weight learning rate (w_lIr) constant at 1e-4 (the optimal rate for ePC). During these sweeps,
we train for 5 epochs. Then, we fixed the best inner optimization hyperparameters for each setting,
and tuned w_Ir and the number of epochs by means of early stopping, with a maximum of 25 epochs.
See Table [E.3|for more details of the sweep.

Table E.3: Hyperparameter sweep intervals and optimal values for sPC-MLPs on MNIST

Hyperparams | Sweep values | MLP+MSE MLP+CE  Deep MLP+MSE  Deep MLP+CE
e_lr {0.01, 0.03, 0.1, 0.3} 0.01 0.03 0.3 0.3
#iters {4, 16, 64, 256} 16 4 64 64
w_Ir {3e-5, 5e-5, le-4, 3e-4, 5e-4, 1e-3} le-4 le-4 le-4 5e-5
#epochs Early Stopping(patience=3), up to 25 25 21 12 15

Backprop Since there is no inner optimization in backprop, we simply tuned w_Ir and the number
of epochs by means of early stopping, with a maximum of 25 epochs. See Table [E.4]for all details.
Table E.4: Hyperparameter sweep intervals and optimal values for backprop-MLPs on MNIST

Hyperparams | Sweep values | MLP+MSE MLP+CE  Deep MLP+MSE  Deep MLP+CE
w_Ir {3e-5, 5e-5, le-4, 3e-4, Se-4, 1e-3} 3e-4 le-4 3e-4 5e-5
#epochs Early Stopping(patience=3), up to 25 16 20 22 18

E.1.4 FASHIONMNIST

Data We used the FashionMNIST dataset (Xiao et al., 2017). The images are first rescaled to the
range [0, 1], then they are normalized using the fixed values mean=0.5 and std=0.5 (same as Pinchetti
et al., [2025)). We set the batch size constant at 64. The validation set was 10% of the training data,
split randomly but with a fixed seed. For final test performance, we don’t split a separate validation
set, but simply train on the whole training set.

ePC First, we did a hyperparameter sweep over the inner optimization hyperparameters (error
learning rate (e_Ir) and number of update steps (#iters)), with the weight learning rate (w_lIr) constant
at le-4 (3e-5 for Deep MLP+CE). During these sweeps, we train for 5 epochs. Then, we fixed the
best inner optimization hyperparameters for each setting, and tuned w_Ir and the number of epochs
by means of early stopping, with a maximum of 25 epochs. See Table [E.5| for more details of the
sweep.

Table E.5: Hyperparameter sweep intervals and optimal values for ePC-MLPs on FashionMNIST

Hyperparams | Sweep values | MLP+MSE MLP+CE Deep MLP+MSE  Deep MLP+CE
e_lIr {0.001, 0.003, 0.01, 0.03, 0.1} 0.01 0.003 0.001 0.001
#iters {4, 16, 64} 16 4 4 4
w_Ir {3e-5, Se-5, le-4, 3e-4} 5e-5 5e-5 3e-4 3e-5
#epochs Early Stopping(patience=3), up to 25 12 14 17 2

sPC First, we did a hyperparameter sweep over the inner optimization hyperparameters (state
learning rate (still denoted as e_lr for implementation purposes) and number of update steps (#iters)),
with the weight learning rate (w_Ir) constant at 1e-4. During these sweeps, we train for 5 epochs.
Then, we fixed the best inner optimization hyperparameters for each setting, and tuned w_Ir and the
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number of epochs by means of early stopping, with a maximum of 25 epochs. See Table [E.6| for
more details of the sweep.
Table E.6: Hyperparameter sweep intervals and optimal values for sPC-MLPs on FashionMNIST

Hyperparams | Sweep values | MLP+MSE MLP+CE  Deep MLP+MSE  Deep MLP+CE
e_Ir {0.01, 0.03, 0.1, 0.3} 0.03 0.01 0.3 0.1
#iters {4, 16, 64, 256} 64 16 64 256
w_lIr {3e-5, S5e-5, le-4, 3e-4} le-4 le-4 5e-5 3e-5
#epochs Early Stopping(patience=3), up to 25 14 14 7 /

Backprop Since there is no inner optimization in backprop, we simply tuned w_Ir and the number
of epochs by means of early stopping, with a maximum of 25 epochs. See Table [E.7|for all details.
Table E.7: Hyperparameter sweep intervals and optimal values for BP-MLPs on FashionMNIST

Hyperparams | Sweep values | MLP+MSE MLP+CE Deep MLP+MSE  Deep MLP+CE
w_Ir {3e-5, Se-5, le-4, 3e-4} 3e-4 le-4 le-4 3e-4
#epochs Early Stopping(patience=3), up to 25 15 25 17 10

E.2 VGG-MODELS AND RESNET-18

Compute resources We report the resources used for training and each model’s training time.
The training times required for a model with MSE or CE loss are comparable. For hyperparame-
ter tuning, we evaluate 200 distinct parameter configurations, making the total computational cost
approximately 200 times greater than that of a single training run.

CPU: Intel Xeon w5-3423

RAM: 197 GiB

GPU: NVIDIA RTX A6000

e Compute time per experiment: (without early stopping or failure)

Dataset Model ePC sPC  Backprop
VGG-5 6min 9min 2min
VGG-7 7min  11min 2min

CIFAR-10 VGG-9 9min  17min 3min
ResNet-18  29min - 6min
VGG-5 6min 9min 2min
VGG-7 7min  12min 2min

CIFAR-100 " y5G9  Omin  19min  3min
ResNet-18  29min - 6min

* Total compute time estimate for tuning across model architecture and loss function:

— ePC: £680h
— sPC: £510h
— Backprop: +170h

Data We used the CIFAR-10/100 datasets (Krizhevsky, |2009). The images are first rescaled to
the range [0, 1], then they are normalized with the mean and standard deviation given in Table @]
(same as Pinchetti et al.,|[2025)). We set the batch size constant at 256. The validation set was 5% of
the training data, split randomly but with a fixed seed. For final test performance, we don’t split a
separate validation set, but simply train on the whole training set.

VGG architecture VGG models are deep convolutional neural networks (Simonyan and Zisser-
man, 2014). Table provides a detailed summary of the model architectures used for the VGG-3,
VGG-7 and VGG-9 models. After the convolutional layers, a single linear layer produces a class
prediction. The activation function of the models was selected from among ReLU, Tanh, Leaky
ReLU, and GELU (Hendrycks and Gimpel, 2016) during model tuning.
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Table E.8: Data normalization

Mean (1) Std (o)

CIFAR-10  [0.4914, 0.4822, 0.4465] [0.2023, 0.1994, 0.2010]
CIFAR-100 [0.5071, 0.4867, 0.4408] [0.2675, 0.2565, 0.2761]

Table E.9: Detailed architectures of VGG models. The locations of the pooling layers correspond to
the indices of the convolutional layers after which the max-pooling operations are applied.

VGG-5 VGG-7 VGG-9
Channel Sizes [128, 256, 512, 512] [128, 128, 256,256,512, 512] [128, 128, 256, 256, 512, 512, 512, 512]
Kernel Sizes [3, 3,3, 3] [3,3,3,3,3,3] [3,3,3,3,3,3,3,3]
Strides [1,1,1,1] [1,1,1,1,1,1] [1,1,1,1,1,1,1, 1]

Paddings [1,1,1,1] [1,1,1,0,1,0] [1,1,1,1,1,1,1, 1]
Pool location [0, 1,2, 3] [0, 2, 4] [0, 2, 4, 6]
Pool window 2x2 2x2 2x2

Pool stride 2 2 2

ResNet-18 architecture The ResNet-18 model is a convolutional neural network with skip con-
nections (He et al., 2016). Our implementation follows the standard ResNet-18 architecture with
modifications tailored for CIFAR-10/100. It is composed of an initial convolutional stem followed
by four residual stages, each consisting of two residual blocks. Each residual block comprises two
3x3 convolutional layers with batch normalization and ReL.U activation, followed by an identity
shortcut connection. Spatial downsampling is performed via stride-2 convolutions at the beginning
of each stage beyond the first. Table [E.T0]details the layer configuration.

Table E.10: ResNet-18 architecture adapted for CIFAR-10/100 image classification. The feature
shape describes the image height and width after each stage. The residual configuration gives the
dimension of the convolution mask, the number of channels and the stride used for the residual
stream. All the convolutional layers used a padding of one, and each convolution was followed by a
batch normalisation layer. Stages one to four include skip connections for every residual.

Stage Feature shape Residual configuration
Conv Stem 32 x 32 Conv3x3, 64, stride = 1
Conv3x3, 64, stride = 1
Stage 1 32 x 32 Conv3x3, 64, stride = 1| % 2
[Conv3x3, 128, stride = 2]
Stage 2 16 x 16 Conv3x3, 128 stride — 1| < 2
[Conv3x3, 256, stride = 2]
Stage 3 8x8 Conv3x3, 256, stride — 1| < 2
[Conv3x3, 512, stride = 2]
Stage 4 4x4 |Conv3x3,512, stride = 1] * 2
Head 1x1 Global AvgPool + Linear classifier

Learning rate schedule The following learning rate schedule was used to help stabilize training:
1. For the first 10% of training, the learning rate increases linearly from w_Ir up to 1.1 xw_Ir.

2. After the warmup phase, a cosine decay is applied. The learning rate smoothly decreases
to 0.1 xw_lIr, following a cosine curve, for the remaining training steps.

Weight initialization We used the default PyTorch weight initialization, which amounts to a ran-
dom uniform weight and bias initialization. For pseudorandom seeds, we use 42 for the hyperpa-
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rameter sweeps, and {0, 1, 2, 3, 42} for the final test accuracy over 5 seeds. We set the seed using
lightning.seed_everything (workers=True) before any data or weight initialization.

Table E.11: Summary of hyperparameter tuning and training settings for convolutional models

Method Tuned hyperparameter range Optimizer Optim steps (T) | Epochs (sweep/final)

e_Ir: fixed at 0.001 SGD
pC ¢_momentum: fixed at 0.0 33D femwon) S @llmodelsy | 2323 (VGG)

e w_lr: log-uniform [le-5, le-2] fadam i:!%tgzéf4~ all mode’s 25/50 (ResNet-18)
w_decay: log-uniform [le-6, le-3] ¢ —
s_Ir: log-uniform [1e-3, Se-1] SGD (state) 8 (VGG-5)

wo | (0.02505075091 |G S| W0NGSD | asmscvce)
w_lr: log-u I > (Loshchilov and Hutter,2019] | 12 (VGG-9)
w_decay: log-uniform [le-6, le-3]
w_lr: log-uniform [le-5, le-2] L 25725 (VGG)

Backprop | " jccay: log-uniform [1e-6, le-3] Adam (weights) - 25/50 (ResNet-18)

Glossary: w_Ir: base weight learning rate (see learning rate schedule below), w_decay: weight decay,
{e,s}_Ir: error / state learning rate, {e,s}_momentum: error / state momentum, T: nr. of update steps

Hyperparameter tuning We performed hyperparameter tuning using Hyperband Bayesian op-
timization provided by Weights and Biases. The search was conducted over the hyperparameter
spaces specified in Table across different model architectures, datasets, and loss functions.
All tuning was guided by top-1 validation accuracy as the primary objective. Final top-5 accuracy
metrics reported in Table |I| are for the models that achieved the highest top-1 accuracy. The best
hyperparameters for each model identified through the sweep are provided in Table[E.12] as well as
in the "configs_results/" folder of the codebase. The "configs_sweeps/" folder contains all the sweep
configs.
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Table E.12: Overview of optimal hyperparameter configurations, used in our experiments

Data | Loss | Algo Architecture s/e_Ir s/e_momentum w_Ir w_decay act_fn
VGG-5 2.66e-2 0 421e-4  2.68e-6 gelu
sPC  VGG-7 2.28e-3 0.05 2.07e-3  3.10e-6 gelu
VGG-9 1.73e-2 0.5 5.77e-5 6.49e-4 tanh
g VGG-5 0.001 0 4.71e-4  1.48e-5 gelu
;E ePC VGG-7 0.001 0 4.26e-4  2.16e-6 gelu
3 VGG-9 0.001 0 6.6le-4 4.0le-5 gelu
g ResNet-18 0.001 0 7.65e-4  1.82e-4 —
3 VGG-5 — — 6.30e-4  1.09e-6 gelu
BP VGG-7 — — 5.45e-4  1.37e-6 gelu
S VGG-9 — — 5.24e-4  1.27e-6 gelu
~ ResNet-18 — — 3.00e-4  9.04e-4 —
ﬁ VGG-5 1.47¢e-2 0.05 2.64e-4 1.21e-5 gelu
O sPC  VGG-7 1.59¢-3 0 1.76e-3  1.03e-5 gelu
VGG-9 5.80e-2 0 8.09¢e-5 4.18e-5 tanh
§ VGG-5 0.001 0 779e-4 1.72¢-4  gelu
= ePC VGG-7 0.001 0 1.56e-3  5.46e-4 gelu
o VGG-9 0.001 0 5.36e-4  6.88e-4 tanh
2 ResNet-18 0.001 0 3.39%-3 1.51e-6 —
3 VGG-5 — — 1.66e-3  4.55e-4 gelu
BP VGG-7 — — 1.10e-3  4.51e-5 gelu
VGG-9 — — 6.21e-4  3.58e-5 gelu
ResNet-18 — — 1.67e-3  1.49¢-4 —
VGG-5 3.73e-3 0.75 9.80e-4  2.14e-6 gelu
sPC  VGG-7 1.44e-2 0 1.88e-4  9.38e-5 tanh
VGG-9 4.78e-2 0.25 7.07e-5  7.79e-5 tanh
g VGG-5 0.001 0 8.05e-4  2.33e-6 gelu
;5 ePC VGG-7 0.001 0 4.02e-4  1.47e-5 gelu
3 VGG-9 0.001 0 2.0le-4  2.62e-6 gelu
§ ResNet-18 0.001 0 3.67e-4  7.30e-4 —
3 VGG-5 — — 4.57e-4 1.27e-5 gelu
- BP VGG-7 — 4.47e-4  6.71e-6 gelu
S VGG-9 — — 4.70e-4  4.34e-6 gelu
D ResNet-18 — — 3.95e-4 5454 = —
é VGG-5 2.13e-2 0 8.6le-4  1.48e-6 tanh
3} sPC  VGG-7 1.04e-1 0.5 3.00e-4  6.69e-5 tanh
VGG-9 1.25e-2 0.75 4.69e-4  3.45e-4 tanh
§ VGG-5 0.001 0 8.27e-4  8.22e-4 tanh
= ePC VGG-7 0.001 0 3.13e-4  7.99e-4 tanh
m VGG-9 0.001 0 3.23e-4  4.03e-4 tanh
§ ResNet-18 0.001 0 3.03e-3  1.20e-5 —
) VGG-5 — — 1.04e-3  7.69e-4 gelu
BP VGG-7 — — 1.38e-3  4.13e-4 gelu
VGG-9 — — 8.24e-4  1.62e-6 gelu
ResNet-18 — — 1.33e-3  1.96e-4 —
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F DISCLOSURE OF LLM USAGE
Large language models (LLMs) were used in this research for the following purposes:

* Writing assistance: Improving text clarity, flow, and conciseness throughout the paper
* Theoretical contribution: Proposing the preconditioner idea in Appendix [C.2] and con-
tributing to the theoretical analysis in that section

All other research ideas, methodological contributions, experimental design, and conclusions pre-
sented in this paper were conceived and developed by the authors. The creation of figures and
implementation of code involved minimal LLM assistance.

Naturally, this section itself also benefited from LLM editing.
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