
Under review as a conference paper at ICLR 2024

DIFFERENTIAL MODEL SCALING USING DIFFEREN-
TIAL TOPK

Anonymous authors
Paper under double-blind review

ABSTRACT

Over the past few years, as large language models have ushered in an era of in-
telligence emergence, there has been an intensified focus on scaling networks.
Currently, many network architectures are designed manually, often resulting in
sub-optimal configurations. Although Neural Architecture Search (NAS) meth-
ods have been proposed to automate this process, they suffer from low search ef-
ficiency. This study introduces Differential Model Scaling (DMS), increasing the
efficiency for searching optimal width and depth in networks. DMS can model
both width and depth in a direct and fully differentiable way, making it easy to
optimize. We have evaluated our DMS across diverse tasks, ranging from vision
tasks to NLP tasks and various network architectures, including CNNs and Trans-
formers. Results consistently indicate that our DMS can find improved structures
and outperforms state-of-the-art NAS methods. Specifically, for image classifica-
tion on ImageNet, our DMS improves the top-1 accuracy of EfficientNet-B0 and
Deit-Tiny by 1.4% and 0.6%, respectively, and outperforms the state-of-the-art
zero-shot NAS method, ZiCo, by 0.7% while requiring only 0.4 GPU days for
searching. For object detection on COCO, DMS improves the mAP of Yolo-v8-
n by 2.0%. For language modeling, our pruned Llama-7B outperforms the prior
method with lower perplexity and higher zero-shot classification accuracy.

1 INTRODUCTION

In recent years, large models such as GPTs (Radford et al., 2018) and ViTs (Dosovitskiy et al., 2020)
have showcased outstanding performance. Notably, the emergent intelligence of GPT4 (OpenAI,
2023) has underscored the importance of scaling networks as a critical pathway toward achieving
artificial general intelligence (AGI). To support this scaling process, we introduce a straightforward
and potent method to determine the optimal width and depth of a network during its scaling.

Currently, the structure design of most networks still relies on human expertise. It typically demands
significant resources to tune structural hyperparameters, making it challenging to pinpoint the op-
timal structure. Meanwhile, Neural Architecture Search (NAS) methods have been introduced to
automate network structure design. We classify NAS methods into two categories based on their
search strategies: stochastic search methods (Xie et al., 2022; Liu et al., 2022; Tan & Le, 2019)
and gradient-based methods (Liu et al., 2018a; Wan et al., 2020; Guo et al., 2021a). The stochastic
search methods involve sampling numerous sub-networks to compare performance. However, these
methods are limited to low search efficiency due to the sample-evaluate cycle, leading to reduced
performance and increased costs.

Unlike stochastic search methods, gradient-based methods employ gradient descent to optimize
structural parameters, enhancing their efficiency and making them more adept at balancing search
costs with ultimate performance. However, a significant challenge persists: how to model structural
hyperparameters in a direct and differentiable manner. Prior methods have struggled to meet this
challenge, resulting in diminished performance and increased costs. Specifically, we group prior
methods into three categories based on their modeling strategies: multiple element selection, single
number selection, and gradient estimate topk. Specifically, when searching for the number of chan-
nels in a convolutional layer, multiple element selection methods (Li et al.; Guo et al., 2021b) model
the channel number as multiple selections of channels, as shown in Figure 1 (a.1). They introduce
a much larger search space of element combinations. Single number selection methods (Wan et al.,

1

Under review as a conference paper at ICLR 2024

2020) model the channel number as a single selection from multiple numbers, as shown in Figure
1 (a.2). It ignores the order relationship among these numbers. Gradient estimate topk approaches
(Guo et al., 2021a; Gao et al., 2022; Ning et al., 2020) attempt to model width and depth directly,
as shown in Figure 1 (a.3). However, they are not differentiable, necessitating the development of
different gradient estimation methods. As a result, these methods lack stability and are difficult to
optimize.

Regrettably, all the above strategies fall short of modeling structural hyperparameters in a clear-cut
and fully differentiable fashion. To address the aforementioned challenge, we introduce a fully dif-
ferentiable topk operator, which can seamlessly model depths and widths in a direct and differential
manner. Notably, each differential topk operator has a single learnable parameter, representing either
a depth or width structural hyperparameter. It can be optimized based on guidance from both task
loss and resource constraint loss. Our method stands out in terms of high optimization efficiency
when contrasted with existing gradient-based approaches.

Based on our differential topk, we develop a Differential Model Scaling (DMS) algorithm to search
for networks’ optimal width and depth. To validate the efficacy and efficiency of our approach,
we rigorously tested it across various tasks, including vision tasks and NLP tasks, and different
architectures, including CNNs and Transformers.

Overall, our contributions are as follows:

• We introduce a differential topk operator, which is easy to optimize as it can model struc-
tural hyperparameters in a direct and differentiable manner.

• We develop a Differential Model Scaling (DMS) algorithm based on our differential topk
to search for networks’ optimal width and depth.

• We evaluate our DMS across various tasks and architectures. For example, DMS improves
EfficientNet-B0 and Deit-Tiny by 1.4% and 0.6% on ImageNet, respectively, and outper-
forms the state-of-the-art zero-shot NAS method, ZiCo, by 0.7% while requiring only 0.4
GPU days for searching. For object detection on COCO, DMS improves the mAP of Yolo-
v8-n by 2.0%. For language modeling, our pruned Llama-7B outperforms the prior method
with lower perplexity and higher zero-shot classification accuracy.

2 RELATED WORK

The width and depth of networks are critical aspects of model architecture design. A multitude of
methodologies have been proposed to automate this process, notably Neural Architecture Search
(NAS) (Zoph & Le, 2016; Liu et al., 2018a) and model structure pruning (Li et al., 2020; Li et al.).
NAS algorithms typically aim to design models automatically from scratch, while model structure
pruning approaches focus on compressing pretrained models to enhance their efficiency. Despite
their contrasting methodologies, both approaches contribute to the search for model structure.

These search methods can generally be categorized into two groups based on their search strategies:
stochastic search methods (Zoph & Le, 2016; Xie et al., 2022; Liu et al., 2022) and gradient-based
methods (Liu et al., 2018a; Guo et al., 2021a). In the following sections, we will introduce these
methods and compare them with ours.

2.1 STOCHASTIC SEARCH METHODS

Stochastic search methods usually operate through a cyclical process of sampling and evaluation.
At each step, they sample models with different structures and then evaluate them. This strategy is
versatile as it can handle both contiguous and discrete search spaces. However, a significant down-
side is its low search efficiency, leading to high resource consumption and suboptimal performance.
Specifically, stochastic search-based methods can be divided into three groups: multi-shot NAS,
one-shot NAS, and zero-shot NAS. Multi-shot NAS (Tan & Le, 2019; Liu et al., 2022) requires the
training of multiple models, which is time-consuming. For instance, EfficientNet (Tan & Le, 2019)
uses over 1714 TPU days for searching. One-shot NAS (Xie et al., 2022; Cai et al., 2019) requires
training a large supernet, which is also resource-intensive. For example, ScaleNet (Xie et al., 2022)
uses 379 GPU days for training a supernet. Zero-shot NAS (Li et al., 2023; Lin et al., 2021) reduces

2

Under review as a conference paper at ICLR 2024

Figure 1: Different Gradient-based Modeling Strategies for Width and Depth. For all strategies,
they use learnable parameters to generate an element mask to select width elements or depth ele-
ments. SubFigure (a) illustrates four methods to generate the element mask, while (b) shows how
the mask is used to search width and depth. (a.1) Multiple Element Selections: The element count is
transformed into a multiple-element selection. (a.2) Single Number Selections: The element count
is transformed into a selection from multiple numbers. (a.3) Gradient Estimate Topk: The element
count is directly modeled yet non-differentiable. (a.4) Our Differential Topk: The element count is
directly modeled and is fully differentiable. “Direct” means that the learnable parameters directly
model the structural hyperparameters, while “Differentiable” means that the gradient of the learn-
able parameters can be computed in a fully differentiable manner.

the cost by eliminating the need to train any model. However, its performance has not yet met the
desired standard.

2.2 GRADIENT-BASED METHODS

Gradient-based structure search methods (Liu et al., 2018a; Guo et al., 2021a) employ gradient de-
scent to explore the structure of models. Generally, these methods are more efficient than their
stochastic search counterparts. The critical aspect of gradient-based methods is how to use learnable
parameters to model structural hyperparameters and compute their gradients. Ideally, the learnable
parameters should directly model structural hyperparameters, and their gradients should be com-
puted in a fully differentiable manner. However, prior methods have struggled to meet these two
criteria in modeling the width and depth of networks. We group them into three categories: multi-
ple element selection, single number selection, and gradient estimate topk. The first two categories
model structural hyperparameters indirectly, while the third category is not differentiable and re-
quires gradient estimation.

Multiple element selection methods (Li et al.) model the number of elements as multiple selections
from elements (e.g., channel selection), as shown in Figure 1 (a.1). They introduce a much larger

3

Under review as a conference paper at ICLR 2024

search space of element combinations. Similarly, Single number selection methods (Wan et al.,
2020) model element quantity as a single choice from multiple numbers, as shown in Figure 1
(a.2). It ignores the order relationship among these numbers. These methods model structural
hyperparameters in indirect and inaccurate ways, causing a gap between learnable parameters and
corresponding structural hyperparameters. Naturally, They result in low performance.

Gradient estimate topk approaches (Guo et al., 2021a; Gao et al., 2022; Ning et al., 2020) attempt
to model width and depth directly, as shown in Figure 1 (a.3). However, they are not differentiable,
necessitating the development of different gradient estimation methods. As a result, these methods
lack stability and are difficult to optimize.

To improve the optimization efficiency for structure search, we introduce a new differential topk that
can model width and depth directly and is fully differentiable. Compared with previous methods,
our approach reduces search costs and improves performance, demonstrating high adaptability.

3 METHOD

In this section, we will detail our Differential Model Scaling (DMS) in two steps. First, we intro-
duce our differential topk, which models structural hyperparameters directly in a fully differentiable
manner. Second, we explain how to use our differential topk to construct our DMS algorithm.

3.1 DIFFERENTIAL TOP-K

Suppose there is a structural hyperparameter denoted by k, representing the number of elements,
such as k channels in a convolutional layer or k residual blocks in a network stage. k has a maximal
value of N . We use c ∈ RN to represent the importance of elements, where a larger value indicates
a higher importance. The objective of our differential topk is to output a soft mask m ∈ [0, 1]N to
indicate the selected elements with top k importance scores.

Our topk operator uses a learnable parameter a as a threshold to select elements whose importance
values are larger than a. a is able to model number of elements k directly, as k can be seen as a
function of a, where k = sumN

i=11[ci > a]. 1[A] is an indicator function, which equals 1 if the A is
true and 0 otherwise. We use ci to represent the importance of the i-th element. We denote our topk
as a function f as follows:

mi = f(a) ≈
{
1 if ci > a

0 otherwise
(1)

In prior methods, f is usually a piecewise function, which is not smooth and differentiable, and
the gradient of a is computed by estimation. We argue the biggest challenge to employing a fully
differentiable f with respect to a is that the channel importance is distributed unevenly. Specifically,
uneven distribution causes the importance difference between two neighboring elements, ordered by
importance value, to vary significantly. Supposed a is updated by a fixed value in each iteration,
when the difference is large, a lot of steps are needed for a to go across these two elements. When
the difference is small, a can cross many elements in one step. Therefore, optimizing a in a fully
differentiable manner is too hard when element importance is uneven.

To address this challenge, we employ an importance normalization process to forcefully convert the
unevenly distributed importance to evenly distributed values, making the topk function smooth and
easy to optimize in a differentiable way. To sum up, our differential topk has two steps: importance
normalization and soft mask generation.

3.1.1 IMPORTANCE NORMALIZATION

We normalize all element importance by mapping them to evenly distributed values from 0 to 1,
based on the following:

4

Under review as a conference paper at ICLR 2024

c′i =
1

N

N∑
j=1

1[ci > cj]. (2)

The normalized element importance is denoted by c′. 1[A] is the same indicator function as above.
Any two elements in c are supposed to be different, which is usually the case in practice. Notably,
although c′ is evenly distributed from 0 to 1, c can follow any distribution.

Intuitively, c′i indicates the portion of c values smaller than ci. Besides, the learnable threshold
a also becomes meaningful, representing the pruning ratio of elements. k can be computed by
k = ⌊(1 − a)N⌉, where ⌊ ⌉ is a round function. a is limited to the range of [0, 1], where a = 0
indicates no pruning and a = 1 indicates pruning all elements.

3.1.2 SOFT MASK GENERATION

After the normalization, it’s easy to generate the soft mask m using a smooth and differentiable
function based on the relative size of pruning ratio a and normalized element importance c′.

mi = f(a) = Sigmoid(λ(c′i − a)) =
1

1 + e−λ(c′
i−a)

. (3)

We add a hyperparameter λ to control the degree of approximation from Equation 3 to a hard mask
generation function. When λ tends to infinity, Equation (3) approaches a hard mask generation
function. We usually set λ to N . Because when c′i > a+ 3/N or c′i < a− 3/N , |(mi − ⌊mi⌉)| <
0.05. It means that except for the six elements whose importance values are around the pruning
ratio, the masks of other elements are close to 0 or 1, where the approximation error is less than
0.05. Therefore, λ = N is sufficient to approximate a hard mask generation function for our topk.

The forward and backward graph of Equation 3 are shown in Figure 2 (a) and Figure 2 (b), re-
spectively. It can be observed that 1) Our topk models the number of elements k directly using the
learnable pruning ratio a, and it generates a polarized soft mask m to simulate the pruned model
perfectly during forward. 2) Our differential topk is fully differentiable and is able to be optimized
stably. The gradient of a with respect to mi is −λ(1 − mi)mi. Our topk intuitively detects the
gradient of the mask in the fuzzy area with 0.05 < mi < 0.95. Note Figure 2 illustrates the gradient
of a with respect to mi, not respect to the task loss. The gradient of a with respect to the task loss is∑N

i=1
∂task loss

∂mi

∂mi

∂a .

3.1.3 ELEMENT EVALUATION

As we do not limit the distribution of element importance, element importance can be quantified
through various methods, such as L1-norm (Li et al., 2016), among others. In our approach, we
implement Taylor importance (Molchanov et al., 2019) in a moving average manner as follows:

ct+1
i = cti × decay + (mt

i × gi)
2 × (1− decay). (4)

Here, t represents the training step. gi is the gradient of mi with respect to training loss. Decay
refers to the decay rate. The initial value of c0i is set to zero, and the decay rate is set to 0.99.
Note that the importance of elements is not updated by gradient descent but by moving average. By
leveraging Taylor importance, we can efficiently and stably estimate the importance of elements.

3.2 DIFFERENTIAL MODEL SCALING

Relying on our differential topk, we developed Differential Model Scaling (DMS) to optimize the
width and depth of networks. Our DMS follows a pipeline similar to training-based model prun-
ing. Specifically, we begin by randomly initializing a supernet and then optimizing (or pruning) its

5

Under review as a conference paper at ICLR 2024

(a) Forward (b) Backward

Figure 2: Forwad and Backward Graph of Our Differential Top-k. We set maximal element number
N = λ = 100, pruning ratio a ∈ {0.25, 0.5, 0.75}. The x-axis represents the normalized element
importance c′i. (a) demonstrates the forward process, where the y-axis represents the soft mask mi.
(b) illustrates the backward process, where the y-axis represents the gradient of a with respect to
mi.

width and depth under a specific resource constraint. After this, the searched (or pruned) model is re-
trained. Compared with training-based pruning, our method eliminates the need for time-consuming
pretraining since we think searching from scratch is more efficient than from a pretrained model, ac-
cording to our ablation study, detailed in Section 5.

As shown in Figure 1 (b), our search space encompasses both the width and depth of networks, which
are the most critical structural hyperparameters for model scaling. To represent these dimensions,
we use our differential topk. The width in networks typically covers the channel dimension in con-
volutional layers, the feature dimension in fully connected layers, and so on. Regarding depth, we
focus on networks with residual connections and search the number of contiguous residual blocks in
each stage. Specifically, We incorporate the soft masks of differential topk into residual connections,
allowing each block to be represented as xi+1 = xi + f(xi)×mi.

To ensure that a network adheres to specific resource constraints, we incorporate an additional com-
ponent into the optimization process, termed the “resource constraint loss”. Consequently, the ag-
gregate loss function is:

loss = losstask + λresource × lossresource. (5)

Here, losstask denotes the task loss. lossresource represents the additional resource constraint loss,
and the term λresource acts as its weighting factor. The resource constraint loss is further defined as:

lossresource =

{
log(rcrt) if rc > rt
0 otherwise

. (6)

In this definition, rc symbolizes the current level of resource consumption, and rt denotes the tar-
geted level of resource consumption. rc is calculated based on the learnable parameters of differ-
ential topk operators, while rt is user-specified. As our topk is fully differentiable, the learnable
structural parameters can be optimized under the guidance of both task loss and resource constraint
loss.

More details about our search space and resource constraint loss are provided in Appendix A.1.

6

Under review as a conference paper at ICLR 2024

Model NAS Type Top-1 MACs Params Search Cost

JointPruning (Guo et al., 2021a) Gradient 77.3 0.34G / 0 + 8
DMS-EN-350 (ours) Gradient 78.0 0.35G 5.6M 0 + 3.2

EfficientNet-B0 (Tan & Le, 2019) MultiShot 77.1 0.39G 5.3M 1714 + 0
DMS-EN-B0 (ours) Gradient 78.5 0.39G 6.2M 0 + 3.2

ZiCo‡ (Li et al., 2023) ZeroShot 78.1 0.45G / 0 + 0.4
DMS*-EN-450 (ours) Gradient 78.8 0.45G 6.5M 0 + 0.4

EfficientNet-B1 (Tan & Le, 2019) MultiShot 79.1 0.69G 7.8M 1714 + 0
ScaleNet-EN-B1 (Xie et al., 2022) OneShot 79.2 0.79G 8.3M 379 + 3.7

ModelAmplification-EN-B1 (Liu et al., 2022) MultiShot 79.9 0.68G 8.8M 124 + 131
DMS-EN-B1 (ours) Gradient 80.0 0.68G 8.9M 0 + 5.8

EfficientNet-B2 (Tan & Le, 2019) MultiShot 80.1 1.0G 9.2M 1714 + 0
ScaleNet-EN-B2 (Xie et al., 2022) OneShot 80.8 1.6G 11.8M 379 + 7.8

ModelAmplification-EN-B2 (Liu et al., 2022) MultiShot 80.9 1.0G 9.3M 124 + 192
DMS-EN-B2 (ours) Gradient 81.1 1.1G 9.6M 0 + 7.0

Table 1: Experiments on EfficientNet. We compare our DMS with other NAS methods on Efficient-
Net variants. DMS* denotes that we limit our search cost to 0.4 GPU days to compare with the
zero-shot NAS method, ZiCo. The search cost associated with a model is divided into two distinct
components: the public cost, like supernet training, and the private cost to search the model itself.
The total search cost is represented as public cost+private cost. The unit of search cost is TPU days
for EfficientNet and GPU days for other models. How to obtain these search costs is detailed in Ap-
pendix A.7. Besides, we provide more comparisons with NAS methods in Appendix A.2. ‡ means
the model is trained with much stronger training settings than ours, such as distillation and mix-up.
Note our method doesn’t load pretrained weights in this table.

4 EXPERIMENT

We applied our method to rigorous evaluations across various tasks, including vision and NLP tasks,
and architectures, including CNNs and Transformers. Notably, our method consistently outperforms
both baseline models and prior NAS methods, highlighting its superior performance and adaptability.

4.1 EXPERIMENTS ON VISION TASKS

First, we conducted experiments on vision tasks, including image classification on ImageNet (Deng
et al., 2009) and object detection on COCO (Lin et al., 2014).

4.1.1 IMAGE CLASSIFICATION EXPERIMENTS ON IMAGENET

We chose a range of vision models as baselines and searched for optimal configurations in terms of
their width and depth.

EfficientNet (Tan & Le, 2019) is a widely accepted baseline for NAS research. In our study, we
revisited three variants of EfficientNet: EfficientNet-B0, B1, and B2. The performance of these
searched models and their search costs are presented in Table 1.

Compared with EfficientNet, our searched models, DMS-EN-B0, B1, and B2, have improved per-
formance by 1.4%, 0.9%, and 1.0%, respectively. Remarkably, DMS also achieves over 100 times
cost savings in the search process. The searched structure of DMS-EN-B0 and EfficientNet-B0 is
compared in Appendix A.8, revealing that our method applied substantial structural modifications
to achieve enhanced performance.

In comparison with the multi-shot NAS method ModelAmplification (Liu et al., 2022), our method
betters its performance by 0.1% and 0.2% on the B1 and B2 variants, respectively. This highlights
the efficiency of our method in searching for high-performance models. ScaleNet (Xie et al., 2022),
a one-shot NAS method, yields 0.7% and 0.3% lower accuracy on B1 and B2 variants despite its
models being larger.

7

Under review as a conference paper at ICLR 2024

Model MACs Params mAP

Yolo-v8-n (Jocher et al., 2023) 4.4G 3.2M 37.4
DMS-Yolo-v8-n (ours) 4.2G 2.7M 39.4

Table 2: Object Detection Experiments on COCO. Note our method doesn’t load pretrained weights
in this table.

Model Params Wikitext2 ↓ Pth ↓ BoolQ ↑ WinoGrande ↑ ARC-e ↑ ARC-c ↑
Llama-7B (Touvron et al., 2023) 6.74B 12.62 22.14 76.5 67.01 72.8 41.38

LLM-Pruner-Llama-7B (Ma et al., 2023) 5.47B 17.39 30.2 66.79 64.96 64.06 37.88
DMS-Llama-7B (ours) 5.47B 17.13 27.98 75.23 65.35 71.46 39.59

Table 3: Experiment on Llama-7B. We pruned Llama-7B using DMS and compared it with LLM-
Pruner. We evaluate the pruned model using perplexity on Wikitext2 and Pth datasets and zero-shot
classification accuracy on BoolQ, WinoGrande, ARC-e, and ARC-c datasets. In our results, the
symbol “↑” denotes that a larger value is better, while “↓” signifies that a smaller value is preferable.
Note our method loads pretrained weight as we cannot train Llama from scratch due to resource
constraints.

In comparison with both multi-shot and one-shot NAS methodologies, our approach significantly
reduces the search cost. This efficiency is attributed to the flexibility of our method, allowing us to
conduct model searches on a case-by-case basis without incurring a high public search cost, such as
training a supernet.

ZiCo (Li et al., 2023) is an impressive zero-shot NAS method. It requires only 0.4 GPU days of
search cost to achieve 78.1% top-1 accuracy with 450M MACs. In comparison, when we limit our
search cost to the same 0.4 GPU days, denoted as “DMS*”, our method achieves a top-1 accuracy
of 78.8%, outperforming ZiCo by 0.7%.

Furthermore, aside from stochastic search methods, our DMS also excels over gradient-based meth-
ods. As exemplified by JointPruning (Guo et al., 2021a), which utilizes gradient estimation, our
model, DMS-EN-350, surpasses its counterpart by a margin of 0.7% but does so with two-fifths of
the search cost.

Other Architectures: Except for EfficientNet, we also applied our method to other architectures,
encompassing ResNet (He et al., 2016), MobileNetV2 (Sandler et al., 2018), Deit (Touvron et al.,
2021) and Swin (Liu et al., 2021b). The results are detailed in Appendix A.3.

4.1.2 OBJECT DETECTION EXPERIMENTS ON COCO

Since the complete end-to-end searching of our differential topk, DMS is a general search method
that can be applied to various tasks. We also evaluated DMS for object detection on COCO. We
chose Yolo-v8-n (Jocher et al., 2023) as the baseline model and searched for the optimal structure
of it. Our searched version betters the original model by 2.0% in box AP, as shown in Table 2.

4.2 EXPERIMENTS ON LLM

Beyond vision tasks, we extended our method to evaluate its applicability on a large language model
(LLM) called Llama (Touvron et al., 2023), as shown in Table 3. Due to resource constraints, we
were unable to train an LLM from scratch. Instead, we adopted a “prune and finetune” strategy
using the alpaca dataset (Taori et al., 2023). To mitigate overfitting to the alpaca dataset, we used
the original model to distill the pruned model both during pruning and the subsequent finetuning
process. In alignment with LLMPruner (Ma et al., 2023), we limited our pruning to the heads of
self-attentions and the hidden dimensions of the feed-forward networks (FFN) within Llama. After
pruning 20% of the parameters from Llama-7B and comparing it with LLMPruner, our method
demonstrated superior performance across various benchmarks. Specifically, we observed reduced
perplexity on WikiText2 (Merity et al., 2016) and Pth (Marcus et al., 1993), and higher zero-shot

8

Under review as a conference paper at ICLR 2024

Supernet Iinitalsearch Iinitalretrain Costpretrain Costsearch Costtotal Top-1

ResNet-50 Random Random 0 41 41 72.6
ResNet-50 Pretrain Random 410 41 451 72.5
ResNet-50 Random Searched 0 41 41 73.1
ResNet-50 Pretrain Searched 410 41 451 73.8

ResNet-34 Random Searched 0 37 37 69.4
ResNet-101 Random Searched 0 79 79 74.2
ResNet-152 Random Searched 0 116 116 74.6

Table 4: Ablation Study on Initialization and Structure (Supernet Size). We search for 1G models
in these experiments. Iinitalsearch is the initialization scheme for the search stage, Iinitalretrain
is the initialization scheme for the retrain stage, Costpretrain is the cost of pretraining a supernet,
Costsearch is the cost of searching a model, Costtotal is the total cost of pretraining and searching
a model. The unit of cost is GMACs× epochs.

classification accuracy on BoolQ (Clark et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC-e
(Clark et al., 2018), and ARC-c (Clark et al., 2018).

In summary, our method consistently identifies high-performance model width and depth configura-
tions compared with baseline models, outperforming prior NAS methods. It shows high performance
and adaptability to various tasks and architectures. Experiment implementation details are provided
in Appendix A.6. Besides, we also evaluate our method as a pure channel pruning method, which
also outperforms SOTA pruning methods, detailed in Appendix A.4.

5 DISCUSS: STRUCTURE VS INITIALIZATION

We assessed the impact of structure and initialization on the performance of models pruned by
DMS. Structure and initialization are primary determinants influencing a pruned model’s perfor-
mance within the research domain. However, the predominant factor among them remains unclear
(Liu et al., 2018b; Frankle & Carbin, 2018). Understanding this dynamic is crucial, as it offers
insights into pruning methodologies and guides future research.

Regarding initialization, we evaluated the performance of pruned models across various initializa-
tion settings, as illustrated in Table 4 (from row 1 to row 4). We employed either random initial-
ization or pretrained initialization during the search/pruning stage and used random initialization or
searched initialization during the retraining stage. For all cases, we pruned a ResNet-50 model to 1G
MACs. Notably, when pretrained initialization was loaded, we used a lower learning rate to search
and retrain to avoid destroying the pretrained weights. The results confirm that superior initializa-
tion significantly enhances the performance of pruned models. Both loading pretrained initialization
during search and loading searched initialization when retraining can improve the performance.

Concerning structure, we derived 1G ResNet models from supernets ranging from 3.7G to 11.6
G. The corresponding results can be found in Table 4 (from row 5 to row 7). A discernible trend
emerges: a larger supernet size leads to better final performance. This improvement is attributed to
the broader search space available for pruned models.

In conclusion, our results indicate that both structure and initialization play a role in enhancing the
performance of pruned models. However, exploring a structure with a bigger supernet is more effec-
tive and efficient than pretraining a supernet. Specifically, a model pruned from a randomly initial-
ized ResNet-152 achieves a top-1 accuracy of 74.62%, whereas a model derived from a pretrained-
initialized ResNet-50 reaches only 73.8%. Besides, the former approach involves training an 11.6G
model for 10 epochs, while the latter requires training a 4.1G model for a total of 110 epochs (100
epochs for pretraining and 10 epochs for searching), nearly quadrupling the time needed. This is
why DMS adheres to the pruning pipeline but omits the pretraining phase.

Besides, more ablation study about search time is detailed in Appendix A.5.

9

Under review as a conference paper at ICLR 2024

6 CONCLUSION

In this paper, we introduce a novel model scaling method termed Differential Model Scaling (DMS).
Utilizing an optimization-centric differential topk, the DMS methodically searches for the optimal
width and depth of models. Compared with prior NAS methods, our DMS has three advantages.
1) DMS can identify high-performance structures, surpassing previous NAS methods. 2) DMS is
cost-effective in terms of search expenses and is flexible enough to adapt to various search cost
constraints. 3) DMS is universal and is compatible with a wide range of tasks and architectures.

REFERENCES

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

Boyu Chen, Peixia Li, Baopu Li, Chen Lin, Chuming Li, Ming Sun, Junjie Yan, and Wanli Ouyang.
Bn-nas: Neural architecture search with batch normalization. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 307–316, 2021a.

Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin Ling. Autoformer: Searching transformers
for visual recognition. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 12270–12280, 2021b.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

MMPreTrain Contributors. Openmmlab’s pre-training toolbox and benchmark. https://
github.com/open-mmlab/mmpretrain, 2023.

MMRazor Contributors. Openmmlab model compression toolbox and benchmark. https://
github.com/open-mmlab/mmrazor, 2021.

MMYOLO Contributors. MMYOLO: OpenMMLab YOLO series toolbox and benchmark. https:
//github.com/open-mmlab/mmyolo, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16091–16101, 2023.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Shangqian Gao, Feihu Huang, Yanfu Zhang, and Heng Huang. Disentangled differentiable network
pruning. In European Conference on Computer Vision, pp. 328–345. Springer, 2022.

Jinyang Guo, Jiaheng Liu, and Dong Xu. Jointpruning: Pruning networks along multiple dimen-
sions for efficient point cloud processing. IEEE Transactions on Circuits and Systems for Video
Technology, 32(6):3659–3672, 2021a.

10

https://github.com/open-mmlab/mmpretrain
https://github.com/open-mmlab/mmpretrain
https://github.com/open-mmlab/mmrazor
https://github.com/open-mmlab/mmrazor
https://github.com/open-mmlab/mmyolo
https://github.com/open-mmlab/mmyolo

Under review as a conference paper at ICLR 2024

Yi Guo, Huan Yuan, Jianchao Tan, Zhangyang Wang, Sen Yang, and Ji Liu. Gdp: Stabilized neural
network pruning via gates with differentiable polarization. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 5239–5250, 2021b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Hanwang Zhang, and Yi Yang. Learning filter prun-
ing criteria for deep convolutional neural networks acceleration. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 2009–2018, 2020.

Glenn Jocher, Ayush Chaurasia, and Jing Qiu. YOLO by Ultralytics, January 2023. URL https:
//github.com/ultralytics/ultralytics.

Bailin Li, Bowen Wu, Jiang Su, and Guangrun Wang. Eagleeye: Fast sub-net evaluation for efficient
neural network pruning. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part II 16, pp. 639–654. Springer, 2020.

Guihong Li, Yuedong Yang, Kartikeya Bhardwaj, and Radu Marculescu. Zico: Zero-shot nas via
inverse coefficient of variation on gradients. arXiv preprint arXiv:2301.11300, 2023.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Yanyu Li, Pu Zhao, Geng Yuan, Xue Lin, Yanzhi Wang, and Xin Chen. Pruning-as-search: Efficient
neural architecture search via channel pruning and structural reparameterization.

Yuchao Li, Shaohui Lin, Jianzhuang Liu, Qixiang Ye, Mengdi Wang, Fei Chao, Fan Yang, Jincheng
Ma, Qi Tian, and Rongrong Ji. Towards compact cnns via collaborative compression. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6438–6447,
2021.

Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu Sun, Qi Qian, Hao Li, and Rong
Jin. Zen-nas: A zero-shot nas for high-performance image recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 347–356, 2021.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740–755. Springer, 2014.

Chuanjian Liu, Kai Han, An Xiao, Ying Nie, Wei Zhang, and Yunhe Wang. Network amplification
with efficient macs allocation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 1933–1942, 2022.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018a.

Liyang Liu, Shilong Zhang, Zhanghui Kuang, Aojun Zhou, Jing-Hao Xue, Xinjiang Wang, Yimin
Chen, Wenming Yang, Qingmin Liao, and Wayne Zhang. Group fisher pruning for practical
network compression. In International Conference on Machine Learning, pp. 7021–7032. PMLR,
2021a.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021b.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270, 2018b.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. arXiv preprint arXiv:2305.11627, 2023.

11

https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics

Under review as a conference paper at ICLR 2024

Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of english: The penn treebank. 1993.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
for neural network pruning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11264–11272, 2019.

Bert Moons, Parham Noorzad, Andrii Skliar, Giovanni Mariani, Dushyant Mehta, Chris Lott, and
Tijmen Blankevoort. Distilling optimal neural networks: Rapid search in diverse spaces. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12229–12238,
2021.

Xuefei Ning, Tianchen Zhao, Wenshuo Li, Peng Lei, Yu Wang, and Huazhong Yang. Dsa: More
efficient budgeted pruning via differentiable sparsity allocation. In European Conference on Com-
puter Vision, pp. 592–607. Springer, 2020.

OpenAI. Gpt-4 technical report, 2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International conference on machine learning, pp. 6105–6114. PMLR, 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 2820–2828, 2019.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pp. 10347–10357. PMLR, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Saining Xie, Bichen Wu,
Matthew Yu, Tao Xu, Kan Chen, et al. Fbnetv2: Differentiable neural architecture search for
spatial and channel dimensions. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 12965–12974, 2020.

Huan Wang and Yun Fu. Trainability preserving neural structured pruning. arXiv preprint
arXiv:2207.12534, 2022.

Huan Wang, Can Qin, Yulun Zhang, and Yun Fu. Neural pruning via growing regularization. arXiv
preprint arXiv:2012.09243, 2020.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

12

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Under review as a conference paper at ICLR 2024

Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training
procedure in timm. arXiv preprint arXiv:2110.00476, 2021.

Jiyang Xie, Xiu Su, Shan You, Zhanyu Ma, Fei Wang, and Chen Qian. Scalenet: Searching for the
model to scale. In European Conference on Computer Vision, pp. 104–120. Springer, 2022.

Shan You, Tao Huang, Mingmin Yang, Fei Wang, Chen Qian, and Changshui Zhang. Greedynas:
Towards fast one-shot nas with greedy supernet. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 1999–2008, 2020.

Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng, Kai Shuang, and Xiang Li. Neuron-
level structured pruning using polarization regularizer. Advances in neural information processing
systems, 33:9865–9877, 2020.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

A APPENDIX

A.1 MORE DETAILS ABOUT DMS

A.1.1 SEARCH SPACE

Our search space encompasses both the width and depth of networks, which are the most critical
structural hyperparameters for model scaling.

The width in networks typically covers the channel dimension in convolutional layers, the feature
dimension in fully connected layers, qkv dimension and the number of heads in attention mecha-
nisms, among others. For convolutional and fully connected layers, we use two distinct differential
topk operators to model their respective input and output widths, treating each channel or feature as
an individual element. For multi-head attention, we employ a single differential topk to represent
the number of heads, treating each head as a separate element.

Specifically, We apply our differential topk to different layers by multiplying masks, output by
differential topk operators, with inputs to layers. For convolutional layers, suppose the input is
X ∈ RB×C×H×W , and the mask is reshaped as m ∈ R1×C×1×1, X ×m works as the new input
to the layer. For an attention layer, we search the head dims of qkv and the number of heads.
Suppose our supernet has H heads and D dims in each head. We have a mask for qk head dim
with mqk ∈ R1×1×1×D, a mask for v head dim with mv ∈ R1×1×1×D, and a mask for number
of heads mhead ∈ R1×H×1×1. Suppose the sequence length is L, and the qkv for self-attention
is Q,K, V ∈ RB×H×L×D. We compute the output of the self-attention by softmax(Q

′K′T
√
D

)V ′,
where Q′ = Q×mqk ×mhead,K

′ = K ×mqk ×mhead, V
′ = V ×mv ×mhead

It is crucial to highlight that there can be channel or feature dependencies within models (Liu et al.,
2021a; Fang et al., 2023). Interdependent Layers are treated as one group and share the same dif-
ferential topk. We implemented this using an open-source model compression toolkit MMRazor
(Contributors, 2021), which is able to build element dependencies automatically.

Regarding depth, we focus on networks with residual connections. In this context, a residual block
can be defined as xi+1 = xi + f(xi), and contiguous residual blocks are viewed as a network
stage. The depth in our approach mainly comprises the number of blocks in each stage. We use a
single differential topk for a network stage, with each block functioning as a distinct element. We
incorporate the soft masks of differential topk into residual connections, allowing each block to be
represented as xi+1 = xi + f(xi) × mi. In the context of Transformers, an attention mechanism
combined with a feed-forward network (FFN) is considered as one block sharing the same soft mask.

The depth and width structure hyperparameters are trained jointly in our approach. For example, we
have a layer and an input x; we use mLi

∈ [0, 1] to denote the depth mask and mC ∈ [0, 1]N for
the width mask. The forward process is as follows: y = mC × x +mLi

× layer(mC × x). After
searching, we will prune depth and width according to the depth mask and width mask, respectively.

13

Under review as a conference paper at ICLR 2024

Besides, as some maximal numbers of elements are small from several to tens, like the number of
blocks and attention heads, we increase the λ in the differential topk operators from N to 4N to
approximate a hard mask generation function better.

A.1.2 RESOURCE CONSTRAIT

Our resource constraint loss is defined as:

lossresource =

{
log(rcrt) if rc > rt
0 otherwise

. (7)

(8)

In this definition, rc symbolizes the current level of resource consumption, and rt denotes the tar-
geted level of resource consumption. If rc exceeds rt, a non-zero lossresource is used to compress
the model. The value of rc is calculated based on the learnable parameters of differential topk op-
erators. For example, the parameter count of a fully connected layer can be computed using the
formula fin × ain × fout × aout, where fin and fout represent the number of input and output
features, respectively. ain and aout are the learnable parameters of differential topk operators for
that layer. The value of rt is user-specified.

To enhance stability during training, we gradually reduce rt to the final target value rfinalt through-
out the training process. For an epoch-based training procedure, rt is determined by an exponential
decay function as shown below:

rt = (
rfinalt

rsupernet
)

e
emax × rsupernet, where

rfinalt

rsupernet
< 1. (9)

Here, e denotes the current epoch out of total epochs emax. rsupernet is a constant representing the
resource demand of the supernet.

Furthermore, since resource consumption can fluctuate significantly with respect to depth, we intro-
duce extra epochs dedicated to optimizing width while maintaining depth constant. By adopting the
strategies outlined above, Differential Model Scaling ensures that models adhere to specific resource
constraints.

A.2 COMPARISON WITH MORE NAS METHODS

We additionally compare our method with more NAS methods, as shown in Table 5. Note this is
a rough comparison. As some methods did not release their search costs, we simply use ”High” or
”Low” to represent their search costs for different NAS types. Besides, the comparison is unfair
because some methods trained their models with much stronger training settings than ours. Even so,
our method still outperforms these NAS methods.

Additionally, we draw Table 5 as an accuracy vs MACs plot, as shown in Figure 3. It can be
observed that our method achieves comparable or better performance than other NAS methods with
a low search cost level. We do not draw zero-shot NAS methods in Figure 3, as they use stronger
training settings than ours, which is unfair to compare.

A.3 IMAGE CLASSIFICATION EXPERIMENTS ON MORE ARCHITECTURES

To validate the universality of our method across various model architectures, we applied it to dif-
ferent architectures, as shown in Table 6.

Classic CNNs: We validated our method on ResNet (He et al., 2016) and MobileNetV2 (Sandler
et al., 2018). Our searched ResNet surpasses ResNet-50 by 1.1%. Furthermore, when the searched
ResNet is trained using an enhanced training setting (referred to as rsb-a1 (Wightman et al., 2021)),
it also exceeds the corresponding model by 0.9%. Although MobileNetV2 is a lightweight model,
our searched version outperforms the original model by a margin of 1.0%.

14

Under review as a conference paper at ICLR 2024

Model NAS Type Top-1 MACs Params Cost

MnasNet-A2 (Tan et al., 2019) MultiShot 75.6 0.34G 4.8M High
GreedyNAS-A (You et al., 2020) OneShot 77.1 0.37G 6.5M High
FBNetV2-L1 (Wan et al., 2020) Gradient 77.2 0.33G / Low
JointPruning (Guo et al., 2021a) Gradient 77.3 0.34G / Low

DMS-EN-350 (ours) Gradient 78.0 0.35G 5.6M Low

MnasNet-A3 (Tan et al., 2019) MultiShot 76.7 0.40G 5.2M High
EfficientNet-B0 (Tan & Le, 2019) MultiShot 77.1 0.39G 5.3M High

OFA (Cai et al., 2019) OneShot 77.7 0.41G / High
Zen-score‡ (Lin et al., 2021) ZeroShot 78.0 0.41G 5.7M Low

DMS-EN-B0 (ours) Gradient 78.5 0.39G 6.2M Low

BN-NAS (Chen et al., 2021a) MultiShot 75.7 0.47G / High
DONNA (Moons et al., 2021) OneShot 78.0 0.50G / High

ZiCo‡ (Li et al., 2023) ZeroShot 78.1 0.45G / Low
DMS*-EN-450 (ours) Gradient 78.8 0.45G 6.5M Low

EfficientNet-B1 (Tan & Le, 2019) MultiShot 79.1 0.69G 7.8M High
Zen-score‡ (Lin et al., 2021) ZeroShot 79.1 0.60G 7.1M Low

ScaleNet-EN-B1 (Xie et al., 2022) OneShot 79.2 0.79G 8.3M High
ModelAmplification-EN-B1 (Liu et al., 2022) MultiShot 79.9 0.68G 8.8M High

DMS-EN-B1 (ours) Gradient 80.0 0.68G 8.9M Low

EfficientNet-B2 (Tan & Le, 2019) MultiShot 80.1 1.0G 9.2M High
ZiCo‡ (Li et al., 2023) ZeroShot 80.5 1.0G / Low

ScaleNet-EN-B2 (Xie et al., 2022) OneShot 80.8 1.6G 11.8M High
Zen-score‡ (Lin et al., 2021) ZeroShot 80.8 0.9G 19.4M Low

ModelAmplification-EN-B2 (Liu et al., 2022) MultiShot 80.9 1.0G 9.3M High
BigNAS-XL (Liu et al., 2022) OneShot 80.9 1.0G 9.5M High

DMS-EN-B2 (ours) Gradient 81.1 1.1G 9.6M Low

Table 5: Rough Comparison with more NAS methods. As some methods did not report their search
cost, we simply use ”High” and ”Low” to represent the search cost of NAS methods, while ”High”
for multi-shot NAS methods and one-shot NAS methods, ”Low” for gradient-based NAS methods
and zero-shot NAS methods. ‡ means the model is trained with much stronger training settings than
ours, such as distillation and mix-up. Note our method does not load pretrained weights in this table.

Figure 3: Accuracy vs MACs Plot. We draw this plot based on Table 5. We use two dot sizes to
represent the ”High” and ”Low” search cost levels. Our method achieves comparable or even better
accuracy with a low search cost level compared with other methods with a high search cost level.

15

Under review as a conference paper at ICLR 2024

Model Top-1 MACs Params

ResNet-50 (He et al., 2016) 76.5 4.1G 25.6M
DMS-ResNet 77.6 4.0G 28.4M

ResNet-50-rsb-a1 (He et al., 2016) 80.1 4.1G 25.6M
DMS-ResNet-rsb-a1 81.0 4.0G 28.4M

MobileNetV2 (Sandler et al., 2018) 72.0 0.3G 3.4M
DMS-MobileNetV2 73.0 0.3G 5.3M

Deit-T (Touvron et al., 2021) 74.5 1.3G 5.7M
DMS-Deit-T 75.1 1.3G 6.2M

Swin-T (Liu et al., 2021b) 81.3 4.5G 29M
DMS-Swin-T 81.6 4.6G 44.6M

Table 6: Experiments on ImageNet with Various Architectures. We searched the models’ width
and depth and compared them with the original models. Note our method doesn’t load pretrained
weights in this table.

Method MACs Top-1

ResNet-50 4.1G 76.5

LFPC (He et al., 2020) 1.6G 74.46
GReg2 (Wang et al., 2020) 1.6G 74.93

CC (Li et al., 2021) 1.5G 74.54
TPP (Wang & Fu, 2022) 1.6G 75.12

DMS(ours) 1.6G 75.53

Table 7: Comparison with SOTA Pruning Methods. We prune ResNet-50 with pretrained initializa-
tion and compare our method with SOTA pruning methods. Our method loads pretrained weights as
other pruning methods.

Transformers: We additionally applied our method to Transformers, encompassing Deit (Touvron
et al., 2021) and Swin (Liu et al., 2021b). Deit is a one-stage Transformer, while Swin is a four-
stage Transformer. Although they have different architectures, our searched models outperform the
original models by 0.6% and 0.3%, respectively.

A.4 COMPARISON WITH SOTA PRUNING METHODS

We compared our method with SOTA pruning methods in Table 7. Following structure pruning
methods, we only pruned channels in ResNet-50 with the pretrained initialization and then finetuned
the pruned model with the same training setting as TPP (Wang & Fu, 2022).

Compared with SOTA pruning methods, our DMS achieves the best performance even though we
do not employ complicated channel importance evaluation methods like others. This is because of
the strong ability of our DMS to search for the optimal structure of models.

A.5 MORE ABLATION STUDY

In this section, we conduct more ablation studies to help readers better understand our method. We
use ResNet-50 as our supernet and search models with 1G MACs by default.

A.5.1 ABLATION STUDY OF SEARCH TIME

We assessed the relationship between search time and final performance, as detailed in Table 8.
The results indicate that extended search durations typically yield superior structures and better
performance. Besides, even though the search time is only 3 epochs, the performance of the searched
model is still better than ResNet-18.

16

Under review as a conference paper at ICLR 2024

Search Time MACs Top-1

ResNet-18 1.8G 69.9

3 epochs 1G 71.6
5 epochs 1G 72.9

10 epochs 1G 73.1
20 epochs 1G 72.8

Table 8: Ablation Study on Search Time. We compare the performance of models with different
search time. We do not load pretrained weights in this table.

Method Search Space Top-1 Search Cost

Autoformer-T (Chen et al., 2021b) Autoformer 74.7 > 25 GPU days
DMS (ours) Autoformer 75.2 2 GPU days

Table 9: Ablation Study on Search Space. We compare the performance with Autoformer with the
exact same search space. We do not load pretrained weights in this table.

A.5.2 ABLATION STUDY OF SEARCH SPACE

Due to the high search efficiency of our method, our method can deal with a much fine-grained
search space, while stochastic search methods usually use a course-grained search space due to their
low search efficiency. Specifically, for a structure hyperparameter x, we directly search it in the
range of [1, xmax] with step 1, while stochastic search methods usually search it in the range of
[xmin, xmax] with step larger than 1, such as 32 and 64. Therefore, our search space is much larger
and easier to design than stochastic search methods.

To compare stochastic search methods fairly, we search a transformer model with the exact same
search space as Autoformer (Chen et al., 2021b), a robust stochastic search method. The results are
shown in Table 9. Our method achieves better performance than Autoformer with the exact same
search space. Besides, our method only takes 2 GPU days to search, while Autoformer takes more
than 25 GPU days.

A.5.3 ABLATION STUDY OF ELEMENT IMPORTANCE METRIC

Here, we provide an ablation study of the element importance metric. We design a basic element
importance metric, index metric. The index metric statically assigns importance values according to
the index of elements. Specifically, we set a smaller importance value for an element with a smaller
index, while the width elements on the left have a smaller index than that on the right, and the depth
elements closer to the input of the model have a larger index than those closer to the output of the
model. As we use Taylor importance (Molchanov et al., 2019) as our default metric, we also provide
a comparison of Taylor importance with and without a moving average.

The results are shown in Table 10. Taylor importance is better than the index metric as it’s able to
assign importance value dynamically. Besides, the moving average can improve performance by
smoothing the update of importance values.

Element Importance Top-1

Index metric 72.3
Taylor importance, without moving average 72.5

Taylor importance, with moving average 73.1

Table 10: Ablation Study on Element Importance Metric. Index metric assigns importance values
statically according to the index of elements. We do not load pretrained weights in this table.

17

Under review as a conference paper at ICLR 2024

λresource

lrstructure 5e-2 5e-3 5e-4 5e-5

0.1 / / / /
1 73.0 73.1 72.9 /

10 72.5 72.2 72.6 70.9

Table 11: Ablation Study on Unfixed Hyperparameters. ”/” denotes the model is not able to reach
our resource target. We do not load pretrained weights in this table.

A.5.4 ABLATION STUDY OF HYPERPARAMETERS OF OUR METHOD

We divide the hyperparameters of our method into two categories: fixed hyperparameters and un-
fixed hyperparameters. Fixed hyperparameters are hyperparameters that are fixed for all models,
while unfixed hyperparameters are hyperparameters that are turned for different models.

The fixed hyperparameters include the decay rate for Taylor importance and the temperature λ for
our differential topk operator.

Taylor importance (Molchanov et al., 2019) is a well-known method to measure the importance
of elements, and the decay of moving average is also widely used in the literature. Therefore, we
directly use the decay rate of 0.99 regarding prior works.

Temperature λ of our diffenretial topk. The temperature is used to polarize (Zhuang et al., 2020)
the mask of elements. Directly selecting a value that can polarize the mask of elements is enough.
Thanks to our importance normalization, the temperature can be directly computed by closed-form,
detailed in Section 3.1.2. The temperature λ is set to N for width elements and 4N for depth
elements and the number of heads in attention mechanisms. N is the number of elements in the
corresponding dimension. They work well for all models.

Therefore, we do not conduct an ablation study on these fixed hyperparameters.

The unfixed hyperparameters include the weight of resource constraint loss λresource and the learn-
ing rate for structure parameters lrstructure. They are used to control the update of the structure pa-
rameters. The update value of a structure parameter is computed by lrstrucutre×(gtask+λresource×
gresource), where gtask and gresource is the gradient of structure parameters with respect to the task
loss and resource constraint loss, Table 11 shows the ablation study results.

Obviously, 1) Smaller λresource is better, as far as the model can reach the target resource con-
straint. Smaller λresource means that the task loss takes more control of the update of the structure
parameter. 2) When λresource is small, the model is not sensitive to the change of lrstructure. When
λresource is large, a relatively large lrstructure is better. This is because reaching the target resource
constraint can reduce the influence of the resource constraint loss, as resource constraint loss is zero
when the model reaches the target resource constraint.

Therefore, the setting of λresource and lrstructure is not difficult. We first fix lrstructure and turn
λresource to a small value and ensure the model can reach the target resource constraint. Then,
we turn lrstructure to a relatively large value, which makes the model reach the target resource
constraint in the first hundreds of iterations. Only observing the resource decrease in the first epoch
is enough to set these two hyperparameters.

Compared with other NAS methods, our method uses fewer hyperparameters. For example, Mod-
elAmplification (Liu et al., 2022) must turn at least five hyperparameters for different tasks and
models.

A.6 DETAIL OF EXPERIMENT SETTING

In general, given a baseline model and a training setting, we enlarge the baseline model as our
supernet and decrease the number of epochs of the training setting as our pruning setting. We list
details of our experiment setting as shown below.

18

Under review as a conference paper at ICLR 2024

EfficientNet: For all DMS-ES variants, we pruned the supernets over a span of 30 epochs. For those
DMS-ES variants with MACs fewer than 0.5G, the pruning was conducted from EfficientNet-B4,
using an input size of 224. Meanwhile, for DMS-EN-B1 and B2, the pruning was initiated from
EfficientNet-B7. The input sizes for DMS-EN-B1 and B2 were 256 and 288, respectively. Subse-
quently, the DMS-EN variants were retrained using the corresponding training scripts of EfficientNet
available in the Timm library (Wightman, 2019).

ResNet: We pruned the ResNet over ten epochs, starting from the ResNet-152 model. After prun-
ing, the ResNet was retrained utilizing the MMPretrain (Contributors, 2023) training settings. This
encompasses the foundational setting with a step learning scheduler and the rsb-a1 configuration.

MobileNetV2: To search for the ideal structure for MobileNet, we commenced by enlarging Mo-
bileNetV2 before pruning. Specifically, all channel numbers were expanded by 1.5 times, and the
number of blocks in each stage was doubled. The pruning process for MobileNetV2 spans 30
epochs. Subsequent to this, the architecture was retrained employing the MMPretrain training set-
tings.

Deit: We enhanced the depth of the Deit-small model, moving from 12 to 16, to serve as the supernet.
The pruning for Deit was conducted with 30 epochs, including 20 epochs as a warmup phase and
the model was fixed. After pruning, we retrained the model using MMPretrain combined with the
Swin training setting.

Swin Transformer: To form our supernet, we augmented the Swin-Tiny by doubling the blocks in
each stage and boosting the embedding dimension from 96 to 128. The pruning is executed over
30 epochs, including 20 epochs as a warmup phase. Once pruned, the model was subsequently
retrained using MMPretrain.

Yolo-v8 We used Yolo-v8 with deepen factor of 0.5 and widen factor of 0.5 as our supernet, while
the original Yolo-v8-n has deepen factor of 0.33 and widen factor of 0.26. We used the training
setting of Yolo-v8-n to train the supernet and pruned it over 30 epochs. The experiment of Yolo-v8
was conducted based on MMYolo (Contributors, 2022).

A.7 DETAIL OF SEARCH COST ESTIMATION

In this section, we delve into the specifics of how we estimate the search costs for other NAS methods
as outlined in Table 1. The search cost of a searched model is divided into two parts: the public part
and the private part. The public part is conducted for all sub-models, while the private part pertains
to a specific sub-model.

EfficientNet: EfficientNet searches for common scaling strategies across all variants, thus incurring
no private search cost. The public search cost estimate for EfficientNet is sourced directly from the
ScaleNet paper (Xie et al., 2022).

ScaleNet (Xie et al., 2022): The ScaleNet paper explicitly presented their search cost, which in-
cludes a public cost of 379 GPU days and a private cost of 106 GPU days for several sub-models,
totaling 21G MACs. We compute the private search cost for a sub-model based on the ratio of its
MACs to the overall 21G MACs.

ModelAmplification (Liu et al., 2022): As a multi-shot NAS method, ModelAmplification requires
training multiple models. For all sub-models, it utilizes a public proxy dataset and a proxy training
script. Approximately 2007 epochs are expended to examine the proxy dataset, and an additional
2963 epochs are used for the proxy training script, leading to a total of 4970 epochs. During the
model search phase, for a variant with 390M MACs, ModelAmplification trains about 390 models
per iteration. Assuming a ten-fold iteration search per model, this results in roughly 3000 epochs. By
benchmarking the training time of EfficientNet-B0 on A100, we determine that 100 epochs require
about 2.5 GPU days. As a result, the public search cost for ModelAmplification is at least 144 GPU
days, while the private cost for the 390M MACs variant is 75 GPU days. We linearly scale the search
costs of different variants based on their MACs.

JointPruning (Guo et al., 2021a): As a gradient-based pruning method, JointPruning presumably
employs a supernet and training script analogous to ours. We deduce its search cost based on the
number of pruning epochs. JointPruning paper indicates that a quarter of the total training epochs

19

Under review as a conference paper at ICLR 2024

is earmarked for model searching. In contrast, we utilize at most a tenth of the total epochs for this
purpose. Hence, the search cost for JointPruning is 2.5 times that of ours.

A.8 VISUALIZATION OF SEARCHED MODEL STRUCTURE

In Figure 4, a visualization is provided to delineate the structural intricacies of our searched DMS-
EN-B0 in comparison to EfficientNet-B0. A distinct observation that stands out is the depth of
our DMS-EN-B0. It possesses 8 more inverted residual blocks than its EfficientNet counterpart.
Furthermore, when we delve deeper into the channel distribution across different stages, it becomes
evident that our DMS-EN-B0 has undergone significant structural modifications, veering away from
the traditional blueprint of EfficientNet-B0. Such distinct differences underscore the fine-grained
adaptability of our method, emphasizing its capability to recalibrate and refine models in a way that
they are acutely tailored to the task.

20

Under review as a conference paper at ICLR 2024

Figure 4: Visualization of Our Searched Structure. The x-axis represents the layers’ width (chan-
nels/features), while the y-axis represents the layers. As DMS-EN-B0 has more layers than
EfficientNet-B0, the width of extra layers for EfficientNet-B0 are seen as 0.

21

	Introduction
	Related Work
	Stochastic Search Methods
	Gradient-based Methods

	Method
	Differential Top-k
	Importance Normalization
	Soft Mask Generation
	Element Evaluation

	Differential Model Scaling

	Experiment
	Experiments on Vision Tasks
	Image Classification Experiments on ImageNet
	Object Detection Experiments on COCO

	Experiments on LLM

	Discuss: Structure vs Initialization
	Conclusion
	Appendix
	More Details about DMS
	Search Space
	Resource Constrait

	Comparison with More NAS Methods
	Image Classification Experiments on More Architectures
	Comparison with SOTA pruning methods
	More Ablation Study
	Ablation Study of Search Time
	Ablation Study of Search Space
	Ablation Study of Element Importance Metric
	Ablation Study of Hyperparameters of our Method

	Detail of Experiment Setting
	Detail of Search Cost Estimation
	Visualization of Searched Model Structure

