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ABSTRACT

Generative models are not immune to spurious correlations. The spuriousness in
generative models is defined by their ability to compose attributes faithfully, often
referred to as compositionality in generative models. To compose attributes suc-
cessfully, a model should learn to accurately capture the statistical independence
between attributes. This paper shows that standard conditional diffusion models
violate this assumption, even when all attribute compositions are observed dur-
ing training. And, this violation is significantly more severe when only a subset
of the compositions is observed. We propose COIND to address this problem.
It explicitly enforces statistical independence between the conditional marginal
distributions by minimizing Fisher’s divergence between the joint and marginal
distributions. The theoretical advantages of COIND are reflected in both qualita-
tive and quantitative experiments, demonstrating a significantly more faithful and
precise controlled generation of samples for arbitrary compositions of attributes.

1 INTRODUCTION
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Figure 1: COIND enables compositionality. (a) The task of generating unseen compositions
of smiling male celebrities from only observing three other gender and smile combinations. (c)
Diffusion models - Composed GLIDE and LACE - often struggle to accurately compose smile and
gender, as they tend to leak gender attributes like hair while controlling for smile, due to their asso-
ciation in the observational data. In contrast, COIND successfully controls for smile by removing
any attribute dependencies, as demonstrated in (b).

Many applications of generative models, such as image editing, require explicit and independent
control over statistically independent attributes (Brooks et al., 2022). However, failing to learn the
conditional independence between attributes results in spurious dependencies, leading to harmful
generated content—including stereotypes (Dehdashtian et al., 2025) and biases (Luccioni et al.,
2024). To investigate the implicit biases learned by generative models, we examine whether one
attribute can be varied independently of others, mathematically put, Do conditional diffusion models
implicitly learn conditional independence?

Consider the illustrative example in Fig. 1, which involves generating realistic samples of novel smil-
ing male celebrities while retaining explicit control over smile and gender attributes. To generate
samples with such compositions, Liu et al.; Du et al.; Nie et al. compose the conditional marginal
distributions p(image | gender = male), p(image | smile = true), refereed as compositional-
generation. These marginals are derived either by training separate energy-based models for in-
dividual attributes (LACE (Du et al., 2020; Nie et al., 2021)) or by factorizing the joint attribute
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distribution (Composed GLIDE (Liu et al., 2023)). Both approaches rely on the critical assump-
tion that the conditional marginal distributions are statistically independent. However, as demon-
strated in Fig. 1c, both methods inadvertently increase hair length—a feature associated with female
celebrities—when controlling for smile. This failure under partial attribute support aligns with ob-
servations in Du et al. (2020). These observations naturally raise the following research questions
that this paper seeks to answer:

– (RQ1) Why do standard classifier-free diffusion models fail to generate data with arbitrary com-
positions of attributes? We hypothesize that violating the conditional independence assumption, will
result in poor image quality, diminished control over the generated image attributes, and, ultimately,
failure to adhere to the desired composition. We verify our hypothesis through a case study in § 3.

– (RQ2) How can we explicitly enable diffusion models to generate data with arbitrary compositions
of attributes? We adopt the principle of independent causal mechanisms (Peters et al., 2017) to
express the conditional data likelihood in terms of the constituent conditional marginal distributions
to ensure that the model does not learn non-existent statistical dependencies from the training data.
This framework leads to our proposed objective, COIND, which combines distribution matching
(black arrows in Fig. 1b) with causal independence constraints, breaking any spurious dependency
(red line in Fig. 1b), enables independent control over smile and gender attributes, depicted in Fig. 1c

Strong inductive biases, in the form of the conditional independence relations in COIND, enable
compositionality in diffusion models with fine-grained control over conditioned attributes and di-
versity for unconditioned attributes. COIND achieves these goals while being monolithic and is
scalable with the number of attributes, and can be incorporated with just few lines of code.

2 COMPOSITIONALITY IN DIFFUSION MODELS

We study the model of learning compositional functions from limited data. As compositionality
is a property of data generating process (Wiedemer et al., 2024). We consider the case, where
the samples are generated by independently varying factors, and have access to the labels of these
factors. In this section, we formally define the assumption in the data generation process. Notations.
We use bold lowercase and uppercase characters to denote vectors (e.g., a) and matrices (e.g., A)
respectively. Random variables are denoted by uppercase Latin characters (e.g., X). With a slight
abuse of notation, we refer to pθ(X | Ci) as marginal, and joint as pθ(X | C).

C1 C2 . . . Cn

X

Guid
an

ce

Unobserved Confounding

(a) True underly-
ing causal model

C1 C2 . . . Cn

X

Unobserved Confounding

(b) Causal model
during training

Figure 2: (a) C1, C2, . . . , Cn vary
freely and independently in the un-
derlying causal graph. (b) How-
ever, they become dependent dur-
ing training due to unknown and
unobserved confounding factors.

Data Generation Process. The data generation process con-
sists of observed data X (e.g., images) and its attribute vari-
ables C1, C2, . . . , Cn. To have explicit control over these at-
tributes during generation, they should vary independently of
each other (Mathieu et al., 2016). Note that the attributes that
we wish to control in practice may be causally related to each
other. But, we limit our work to only those causal graphs
where they are not causally related to each other as shown in
Fig. 2a. Each Ci assumes values from a set Ci and the joint set
C = C1 × · · · × Cn is referred to as the attribute space. These
attributes generate, X according to the causal graph described
in Fig. 2a. Functionally, X = f(C1, . . . , Cn,UX) where f
is the function that generates X , UX collectively denotes the
unobserved exogenous variables that affect X . Outside of the
graphical assumptions in Fig. 2a, we also assume that f is in-
vertible w.r.t. the attributes such that it is possible to estimate C1, . . . , Cn from X . As a result,
C1, . . . , Cn are mutually independent given X .

The attribute space in our problem statement has the following properties. (1) The attribute space
observed during training Ctrain covers C in the following sense:

Definition 1 (Support Cover). Let C = C1 × · · · × Cn be the Cartesian product of n finite sets
C1, . . . , Cn. Consider a subset Ctrain ⊂ C. Let Ctrain = {(c1j , . . . , cnj) : cij ∈ Ci, 1 ≤ i ≤ n, 1 ≤
j ≤ m} and C̃i = {cij : 1 ≤ j ≤ m} for 1 ≤ i ≤ n. The Cartesian product of these sets is
C̃train = C̃1 × · · · × C̃n. We say Ctrain covers C iff C = C̃train.
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Informally, this assumption implies that (1) Every possible value that Ci can assume is present in
the training set, and open-set attribute compositions do not fall under this definition. (2) For every
ordered tuple c ∈ Ctrain, there is another c′ ∈ Ctrain such that c and c′ differ on only one attribute.

Preliminaries on Score-based Models In this work, we train conditional score-based mod-
els (Song et al., 2021) using classifier-free guidance (Ho & Salimans, 2022) to generate data cor-
responding by composing attributes. Score-based models learn the score of the observed data dis-
tributions ptrain(X) and ptrain(X | C) through score matching (Hyvärinen & Dayan, 2005). Once
the score of a distribution is learned, samples can be generated using Langevin dynamics. Liu et al.
(2023) proposed the following modifications during sampling to enable compositionality, assuming
that the model learns the conditional independence relations from the data-generation process. Refer
to App. A for more details on score-based models, including exact formulation.

Compositional Sampling: C1 = c1 ∧ C2 = c2 generates data where attributes C1 and C2 takes
values c1 and c2 respectively. Since, pθ(C1 ∧ C2 | X) = pθ(C1 | X)pθ(C2 | X) samples are
generated for the composition C1 ∧ C2 by sampling from the following score:

∇X log pθ(X | C1 ∧ C2) = ∇X log pθ(X | C1) +∇X log pθ(X | C2)−∇X log pθ(X) (1)

This formulation gives can me modified for additional flexibility of controlling for attributes, where
γ controls the strength of attribute C1 w.r.t C2, ∇X log pθ(X | C1 ∧ C2) can be written as:

γ∇X log pθ(X | C1) +∇X log pθ(X | C2)− γ∇X log pθ(X) (2)

3 WHY DO DIFFUSION MODELS FAIL TO GENERATE NOVEL COMPOSITIONS?

To study (RQ1), we consider the task of generating synthetic images from the Colored MNIST
dataset with explicit and independent control over the composition of color and digit. We systemat-
ically investigate dependencies learned by the model with varying observational support.

(1) Uniform support, all attribute compositions are equally likely to be observed. Although the
attributes can vary independently, sometimes they may not do so in the training dataset due to unob-
served confounding such as sample selection bias (Storkey, 2008), leading to an attribute shift. In
such cases, the underlying causal model during training modifies as shown in Fig. 2b. In practice,
all attribute compositions may be observed with unequal probabilities. We refer to this scenario as
(2) non-uniform support. In more severe cases, this dependence could lead to the training samples
consisting of only a subset of all attribute compositions, i.e., Ctrain ⊂ C. We refer to this scenario as
(3) partial support. To quantify the dependence in the observational data we measure Mutual Infor-
mation (MI) between attributes. Refer to App. D.4 for visual representation and exact formulation.

To evaluate the generation of the models, we first infer attributes (ĉ1, . . . , ĉn) from the generated
images X̂ using attribute-specific classifiers ϕCi

and compare them against the expected attributes
from the input composition (c1, . . . , cn). We refer to this accuracy as conformity score (CS) and
is given by CS(g) = Ep(C)p(U) [

∏n
i 1(Ci, ϕCi

(g(C,U)))] where 1(·, ·), g, and U are the indica-
tor function, diffusion model, and the stochastic noise in the generation process respectively. We
provide more details about conformity score in App. A.2.

Diffusion models learn the dependence in the underlying distribution.

Support ( MI ) JSD ↓ CS↑
Uniform ( 0.00 ) 0.16 97.40
Non Uniform ( 0.33 ) 0.33 82.60
Partial ( 1.70 ) 2.76 17.90

Table 1: JSD and CS of diffusion models
under various support settings for the Col-
ored MNIST dataset.

While the underlying causal structure in Fig. 2a as-
sumes independence, diffusion models trained on
varying support settings fail to achieve ideal con-
formity score (high CS). Performance (CS) degrades
progressively: models maintain strong results under
uniform support (all attribute combinations equally
likely), decline under non-uniform support (biased
correlations), and worsen significantly under partial
support (missing combinations). These findings Tab. 1
demonstrate diffusion models lack inherent composi-
tional bias, instead propagate dependencies as present
in their training data.
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Diffusion models violate conditional independence assumption.

We measure CI violation as the disparity between the conditional joint distribution pθ(C | X) and
the product of conditional marginal distributions

∏n
i pθ(Ci | X) learned by the implicit classifier

of diffusion model using Jensen-Shannon divergence (JSD) as,

JSD = EC,X∼pdata

[
DJS

(
pθ(C | X) ||

n∏
i

pθ(Ci | X)

)]
(3)

where DJS is the Jensen-Shannon divergence and pθ is obtained by following (Li et al., 2023) and
evaluating the implicit classifier learned by the diffusion model. Note that JSD, measure conditional
independence, whereas MI measure independence between attributes. More details in App. A.1.

Positive JSD values indicate violations of the conditional independence (CI) relation in diffusion
models. As quantified in Tab. 1, CI violations worsen from uniform to non-uniform support and
become severe under partial support. This degradation strongly correlates with the mutual informa-
tion (MI) between attributes in training data Pearson’s r = 0.993, p < 0.01. Our analysis confirms
diffusion models directly inherit and magnify spurious correlations from their training distribution
rather than learning conditional independence between attributes.

Violation in conditional independence originates from the standard training objective of diffusion
models that maximize the likelihood of conditional generation. Under perfect loss, for every ob-
served composition (C ∈ Ctrain), the model accurately learns ptrain(X | C), i.e., pθ(X | C) ≈
ptrain(X | C) = p(X | C), However, learn incorrect marginals, pθ(X | Ci) ≈ ptrain(X | Ci) ̸=
p(X | Ci). Refer to App. B.1 for complete proof. Informally, ptrain(X | C1 = 1), consists of
only smiling females. While, the underlying p(X | C1 = 1) contains smiling male, and female
celebrities. These incorrect marginals lead to violation in CI.

Based on these observations, we propose COIND to train diffusion models that explicitly enforce
the conditional independence dictated by the underlying causal data-generation process to encourage
the model to learn accurate marginal distributions of the attributes.

4 COIND: ENFORCING CONDITIONAL INDEPENDENCE ENABLES
COMPOSITIONALITY

In the previous section, we observed that diffusion models violate conditional independence (CI)
by learning incorrect marginals. To remedy this, COIND uses a training objective that explicitly
enforces the causal factorization to ensure that the trained diffusion models obey CI. Applying the
assumption of C1 ⊥⊥ . . . ⊥⊥ Cn | X mentioned in § 2, we have p(X | C) = p(X)

p(C)

∏n
i

p(X|Ci)p(Ci)
p(X) .

Note that the invariant p(X | C) is now expressed as the product of marginals employed for sam-
pling. Therefore, training the diffusion model by maximizing this conditional likelihood is naturally
more suited for learning accurate marginals for the attributes. We minimize the distance between
the true conditional likelihood and the learned conditional likelihood as,

Lcomp = W2

(
p(X | C),

pθ(X)

pθ(C)

∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)

)
(4)

By applying the triangle inequality and leveraging the Wasserstein distance upper bound via Fisher
divergence (Kwon et al., 2022), we derive the following inequality:

Lcomp ≤ K1

√
Lscore +K2

√
LCI (5)

for constants K1,K2 > 0. A complete derivation of this bound is provided in App. B.2.

Distribution matching:
Lscore = Ep(X,C)∥∇X log pθ(X | C)−∇X log p(X | C)∥22 (6)

Conditional Independence:

LCI = E∥∇X log pθ(X | C)−∇X log pθ(X)−
∑
i

[∇X log pθ(X | Ci)−∇X log pθ(X)] ∥22 (7)
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Practical Implementation. A computational burden presented by LCI in Eq. (7) is that the re-
quired number of model evaluations increases linearly with the number of attributes. To mitigate
this burden, we approximate the mutual conditional independence with pairwise conditional inde-
pendence (Hammond & Sun, 2006). Thus, the modified LCI becomes,

LCI = Ep(X,C)Ej,k∥∇X log pθ(X | Cj , Ck)−∇X log pθ(X | Cj)−∇X log pθ(X | Ck) +∇X log pθ(X)∥22
The weighted sum of the square of the terms in Eq. (5) has shown stability. Therefore, COIND’s
training objective:

Lfinal = Lscore + λLCI (8)

where λ is the hyper-parameter that controls the strength of conditional independence. The reduction
to the practical version of the upper bound (Eq. (5)) is discussed in extensively in App. C. For
guidance on selecting hyper-parameters in a principled manner, please refer to App. C.3. Finally,
our proposed approach can be implemented with just a few lines of code, as outlined in Algorithm 1.

5 EXPERIMENTS: LEARNING INDEPENDENT MARGINALS ENABLES
COMPOSITIONALITY

COIND encourages diffusion models to learn conditionally independent marginals of attributes, and
thereby improve their compositionality. In this section, we design experiments to evaluate COIND
on two questions: (1) does COIND effectively train diffusion models that obey the underlying causal
model?, and (2) does COIND improve the compositionality of these models?

Datasets. We use the following image datasets with labeled attributes for our experiments: (1)
Colored MNIST, (2) Shapes3d dataset (Burgess & Kim, 2018), with six attributes to demonstrate
scalability of COIND. (3) CelebA. Refer to App. D.5 for details.

Observed training distributions. We evaluate COIND on four scenarios where we observe differ-
ent distributions of attribute compositions during training: (1) Uniform (Fig. 7a). (2) Non-uniform
(Fig. 7b). (3) Diagonal partial (Fig. 7c), (4) Orthogonal partial support (Fig. 7d). Refer to App. D.4.

Metrics. We measure the JSD of the trained models to answer the first question. To answer the
second question, we measure the confirmity score (CS) described in § 3, following the compositional
sampling described in Eq. (1). In addition to the CS we measure R2 for datasets containing unique
ground truth images corresponding to the input composition. For uniform and non-uniform support,
we evaluate the generations on the input compositions that span the attribute space C. In other cases,
the generations only span unseen compositional support, i.e., C \ Ctrain.

Baselines. LACE (Nie et al., 2021) trains distinct energy-based models (EBMs) for each attribute
and combines them following the compositional sampling described in § 2. A similar approach was
proposed by (Du et al., 2020). However, in our experimental evaluation for LACE, we train distinct
score-based models instead of EBMs. In contrast, Composed GLIDE samples from score-based
models by factorizing the joint distribution into marginals, assuming these models had implicitly
learned conditional independence. Additional details about the baselines are delegated to App. D.3.

Support Method JSD ↓ CS ↑

Uniform

LACE - 99.04
Composed GLIDE 0.16 97.40
COIND (λ = 0.2) 0.14 99.50
COIND (λ = 1.0) 0.11 99.86

Non-uniform
LACE - 51.70
Composed GLIDE 0.33 82.60
COIND (λ = 1.0) 0.11 99.84

Partial
LACE - 22.94
Composed GLIDE 2.76 17.90
COIND (λ = 1.0) 1.07 55.16

(a) Results on Colored MNIST Dataset

10−1 100

JSD

20

40

60
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100

C
S

(∧
)

(b) JSD vs CS
Colored MNIST

Support Method JSD ↓ Composition

R2 ↑ CS ↑

Uniform
LACE - 0.97 91.19
Composed GLIDE 0.302 0.94 83.75
COIND (λ = 1.0) 0.215 0.98 95.31

Orthogonal
LACE - 0.88 62.07
Composed GLIDE 0.503 0.86 51.56
COIND (λ = 1.0) 0.287 0.97 91.10

(c) Results on Colored MNIST Dataset

Figure 3: Results on Colored MNIST, Shapes3d dataset. (a,c) COIND reduces JSD, and improved
CS on Colored MNIST, Shapes3d datasets across supports. (b) Plotting CS against JSD in the
log scale of the models trained under different settings reveals a negative correlation. Showcasing
reducing CI, will result in faithful generation.
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Method JSD ↓ Composition

CS ↑ FID ↓
LACE - 47.65 73.33
Composed GLIDE 0.394 19.53 98.70
COIND (λ = 100) 0.165 30.40 39.58

(a) Results on CelebA Dataset

Methods
Composed GLIDE LACE CoInD
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(b) FID with ↑ γ

2 4 6
γ

20

40
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80

C
S

(c) CS with ↑ γ

Figure 4: COIND provides fine-grained control over attributes on CelebA (a) COIND generates
faithful (CS) and high fidelity (FID) samples while composing “smile”,“male”. (b,c) The effect of
γ parameter variation for controlling smile. COIND demonstrates stable image quality (FID) while
improving smile attributes, making it easier for the smile classifier to detect, resulting in improved
CS, also evident from samples generated Fig. 1c

– COIND reduces CI violations (↓ JSD) and enhances faithful generation (↑ CS). As observed
in § 3 and illustrated in Fig. 3b, there exists a negative correlation between JSD and CS across
various methods and observed support settings. This correlation strongly suggests that violations of
CI significantly impair the compositionality of standard diffusion models. Consequently, COIND,
which minimizes the Fisher divergence of these violations, effectively breaks spurious dependencies
and improves compositionality on Colored MNIST, Shapes 3d, CelebA across supports.

Method Entropy
LACE 1.46
C GLIDE 2.38
COIND 3.26

Table 2: Entropy of uncon-
trolled attribute in genera-
tion

– COIND generates diverse samples. It is desirable for gener-
ated samples to exhibit diverse values for attributes that are not ex-
plicitly controlled; otherwise, the model may reinforce undesirable
stereotypes. Therefore, when conditioning on digit, COIND gen-
erates diverse colors of samples, as quantified by the Shannon en-
tropy Tab. 2. Unlike methods that explicitly optimize for diversity,
COIND achieves this as a complementary benefit by breaking depen-
dencies induced by unknown confounders (see App. D.7 for details).

– COIND is scalable with attributes. Results on the Shapes3D (Ta-
ble 3c) demonstrate that COIND successfully composes even 6 attributes, showcasing strong com-
positional ability compared to baselines, specifically huge improvements on orthogonal support.

6 RELATED WORK

Our work concerns compositional generalization in generative models, where the goal is to generate
data with unseen attribute compositions. One class of approaches seek to achieve compositionality
by combining distinct models trained for each attribute (Du et al., 2020; Liu et al., 2021; Nie et al.,
2021; Du et al., 2023), which is expensive and scaling linearly with the number of attributes also
suffer from incorrect marginals. In contrast, we are interested in monolithic compositional diffusion
models that learn compositionality. Liu et al. (2023) studied compositionality broadly and proposed
methods to represent compositions in terms of marginal probabilities obtained through factorization
of the joint distribution. However, these factorized sampling methods fail since the underlying
generative model learns inaccurate marginals.

7 CONCLUSION

In this work, we study spurious correlation in generative models, formulating it as a compositionality
problem. We demonstrate that diffusion models capture spurious dependencies between attributes,
propagating biases from observational data. This leads to unfaithful sample generation and feature
leakage. To address this, we propose COIND to enforce conditional independence, breaking spuri-
ous dependencies and enabling faithful generation of controlled attributes and diverse unconditional
attributes.

6
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A PRELIMINARIES OF SCORE-BASED MODELS

Score-based models Score-based models (Song et al., 2021) learn the score of the observed data
distribution, Ptrain(X) through score matching (Hyvärinen & Dayan, 2005). The score function
sθ(x) = ∇x log pθ(x) is learned by a neural network parameterized by θ.

Lscore = Ex∼ptrain

[
∥sθ(x)−∇x log ptrain(x)∥22

]
(9)

During inference, sampling is performed using Langevin dynamics:

xt = xt−1 +
η

2
∇x log pθ(xt−1) +

√
ηϵt, ϵt ∼ N (0, 1) (10)

where η > 0 is the step size. As η → 0 and T → ∞, the samples xt converge to pθ(X) under
certain regularity conditions (Welling & Teh, 2011).

Diffusion models Song & Ermon (2019) proposed a scalable variant that involves adding noise
to the data Ho et al. (2020) has shown its equivalence to Diffusion models. Diffusion models are
trained by adding noise to the image x according to a noise schedule, and then neural network, ϵθ is
used to predict the noise from the noisy image, xt. The training objective of the diffusion models is
given by:

Lscore = Ex∼ptrainEt∼[0,T ] ∥ϵ− ϵθ (xt, t)∥2 (11)

Here, the perturbed data xt is expressed as: xt =
√
ᾱtx +

√
1− ᾱtϵ where ᾱt =

∏T
i=1 αi, for a

pre-specified noise schedule αt. The score can be obtained using,

sθ(xt, t) ≈ − ϵθ(xt, t)√
1− ᾱt

(12)

Langevin dynamics can be used to sample from the sθ(xt, t) to generate samples from p(X). The
conditional score (Dhariwal & Nichol, 2021) is used to obtain samples from the conditional distri-
bution pθ(X | C) as:

∇Xt
log p(Xt | C) = ∇Xt

log pθ(Xt)︸ ︷︷ ︸
Unconditional score

+γ∇Xt
log pθ(C | Xt)︸ ︷︷ ︸

noisy classifier

where γ is the classifier strength. Instead of training a separate noisy classifier, Ho & Salimans have
extended to conditional generation by training ∇Xt

log pθ(Xt | C) = sθ(Xt, t, C). The sampling
can be performed using the following equation:

∇Xt log p(Xt | C) = (1− γ)∇Xt log pθ(Xt) + γ∇Xt log pθ(Xt | C) (13)

However, the sampling needs access to unconditional scores as well. Instead of modelling
∇Xt log pθ(Xt), ∇Xt log pθ(Xt|C) as two different models Ho & Salimans have amortize train-
ing a separate classifier training a conditional model sθ(xt, t, c) jointly with unconditional model
trained by setting c = ∅.

In the general case of classifier-free guidance, a single model can be effectively trained to accom-
modate all subsets of attribute distributions. During the training phase, each attribute ci is randomly
set to ∅ with a probability puncond. This approach ensures that the model learns to match all possible
subsets of attribute distributions. Essentially, through this formulation, we use the same network to
model all the possible subsets of conditional probability.

Once trained, the model can generate samples conditioned on specific attributes, such as ci
and cj , by setting all other conditions to ∅. The conditional score is then computed as,
∇Xt log pθ(Xt|ci, cj) = sθ(xt, c

i,j), where ci,j represents the condition vector with all values
other than i and j set to ∅. This method allows for flexible and efficient sampling across various
attribute combinations.

Estimating Guidance Once the diffusion model is trained, we investigate the implicit classifier,
pθ(C|X), learned by the model. This will give us insights into the learning process of the diffusion
models. (Li et al., 2023) have shown a way to calculate pθ(Ci = ci | X = x), borrowing equation
(5), (6) from (Li et al., 2023).

pθ(Ci = ci | x) =
p(ci) pθ(x | ci)∑
k p(ck) pθ(x | ck)

10
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pθ(Ci = ci | x) =
exp{−Et,ϵ[∥ϵ− ϵθ(xt, t, c

i)∥2]}
ECi

[exp{−Et,ϵ[∥ϵ− ϵθ(xt, t, ci)∥2]}]
(14)

Likewise, we can extend it to joint distribution by

pθ(Ci = ci, Cj = cj | x) =
exp{−Et,ϵ[∥ϵ− ϵθ(xt, t, c

i,j)∥2]}
ECi,Cj

[exp{−Et,ϵ[∥ϵ− ϵθ(xt, t, ci,j)∥2]}]
(15)

Practical Implementation The authors Li et al.. have showed many axproximations to compute
Et,ϵ. However, we use a different approximation inspired by Kynkäänniemi et al. (2024), where we
sample 5 time-steps between [300,600] instead of these time-steps spread over the [0, T].

A.1 COMPUTING JSD

We are interested in understanding the causal structure learned by diffusion models. Specifically,
we aim to determine whether the learned model captures the conditional independence between
attributes, allowing them to vary independently. This raises the question: Do diffusion models learn
the conditional independence between attributes? The conditional independence is defined by:

pθ(Ci, Cj | X) = pθ(Ci | X)pθ(Cj | X) (16)

We aim to measure the violation of this equality using the Jensen-Shannon divergence (JSD) to
quantify the divergence between two probability distributions:

JSD = Epdata [DJS (pθ(C | X) || pθ(Ci | X)pθ(Cj | X))] (17)

The joint distribution, pθ(Ci, Cj | X), and the marginal distributions, pθ(Ci | X) and pθ(Cj | X),
are evaluated at all possible values that Ci and Cj can take to obtain the probability mass function
(pmf). The probability for each value is calculated using Equation Eq. (15) for the joint distribution
and Equation Eq. (14) for the marginals.

Practical Implementation For the diffusion model with multiple attributes, the violation in con-
ditional mutual independence should be calculated using all subset distributions. However, we focus
on pairwise independence. We further approximate this in our experiments by computing JSD be-
tween the first two attributes, C1 and C2. We have observed that computing JSD between any
attribute pair does not change our examples’ conclusion.

A.2 CONFORMITY SCORE (CS)

To measure the CS, we first infer attributes (ĉ1, . . . , ĉn) from the generated images X̂ using
attribute-specific classifiers ϕCi

and compare them against the expected attributes from the input
composition (c1, . . . , cn). We refer to this accuracy as conformity score (CS) and is given by

CS(g) = Ep(C)p(U)

[
n∏
i

1(Ci, ϕCi
(g(C,U)))

]
(18)

where 1(·, ·), g, and U are the indicator function, diffusion model, and the stochastic noise in the
generation process respectively

To obtain a attribute-specific classifier, we train a single ResNet-18 (He et al., 2016) classifier with
multiple classification heads, one corresponding to each attribute, and trained on the full support.
The effectiveness of the classifier in predicting the attributes is reported in App. D.6

B PROOFS FOR CLAIMS

In this section, we detail the mathematical derivations for violation of conditional independence in
diffusion models in App. B.1, and then derive the final loss function of COIND in App. B.2.

11
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B.1 STANDARD DIFFUSION MODEL OBJECTIVE IS NOT SUITABLE FOR COMPOSITIONALITY

This section proves that the violation in conditional independence in diffusion models is due to
learning incorrect marginals, ptrain(X | Ci) under Ci ⊥̸⊥ Cj . We leverage the causal invariance
property: ptrain(X | C) = ptrue(X | C), where ptrain is the training distribution and ptrue is the true
underlying distribution.

Consider the training objective of the score-based models in classifier free formulation Eq. (9). For
the classifier-free guidance, a single model sθ(x, C) is effectively trained to match the score of all
subsets of attribute distributions. Therefore, the effective formulation for classifier-free guidance
can be written as,

Lscore = Ex∼ptrainES

[
∥∇x log pθ(x | cS)−∇x log ptrain(x | cS)∥22

]
(19)

where S is the power set of attributes.

From the properties of Fisher divergence, Lscore = 0 iff pθ(X | cS) = ptrain(X | cS), ∀S. In the
case of marginals, pθ(X | Ci) i.e. S = {Ci} for some 1 ≤ i ≤ n,

pθ(X | Ci) = ptrain(X | Ci)

=
∑
C−i

ptrain(X | Ci, C−i)ptrain(C−i | Ci)

=
∑
C−i

ptrue(X | Ci, C−i)ptrain(C−i | Ci)

̸=
∑
C−i

ptrue(X | Ci, C−i)ptrue(C−i) = ptrue(X | Ci)

=⇒ pθ(X | Ci) ̸= ptrue(X | Ci) (20)

Where C−i =
∏n

j=1
j ̸=i

Cj , which is every attribute except Ci. Therefore, the objective of the score-

based models is to maximize the likelihood of the marginals of training data and not the true marginal
distribution, which is different from the training distribution when Ci ⊥̸⊥ Cj .

B.2 STEP-BY-STEP DERIVATION OF COIND IN § 4

The objective is to train the model by explicitly modeling the joint likelihood following the causal
factorization. The minimization for this objective can be written as,

Lcomp = W2

(
p(X | C),

pθ(X)

pθ(C)

∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)

)
(21)

where W2 is 2-Wasserstein distance. Applying the triangle inequality to Eq. (21) we have,

Lcomp ≤ W2 (p(X | C), pθ(X | C))︸ ︷︷ ︸
Distribution matching

+W2

(
pθ(X | C),

pθ(X)

pθ(C)

n∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)

)
︸ ︷︷ ︸

Conditional Independence

(22)

(Kwon et al., 2022) showed that under some conditions, the Wasserstein distance between
p0(X), q0(X) is upper bounded by the square root of the score-matching objective. Rewriting
Equation 16 from (Kwon et al., 2022)

W2 (p0(X), q0(X)) ≤ K
√
Ep0(X) [||∇X log p0(X)−∇X log q0(X)||22] (23)

Distribution matching Following Eq. (23) result, the first term in Eq. (22), replacing p0 as p and
q0 as pθ will result in

W2 (p(X | C), pθ(X | C)) ≤ K1

√
Ep0(X) [||∇X log p(X | C)−∇X log pθ(X)||22]

= K1

√
Lscore (24)

12
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Conditional Independence Following Eq. (23) result, the second term in Eq. (22), replacing p0
as pθ and q0(X) as pθ(X)

pθ(C)

∏n
i

pθ(X|Ci)pθ(Ci)
pθ(X)

W2

(
pθ(X | C),

pθ(X)

pθ(C)

n∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)

)

≤

√√√√E∥∇X log pθ(X | C)−∇X log
pθ(X)

pθ(C)

n∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)
∥22

Further simplifying and incorporating ∇X log pθ(Ci) = 0 and ∇X log pθ(C) = 0 will result in

W2

(
pθ(X | C),

pθ(X)

pθ(C)

n∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)

)

≤ K2

√√√√√E∥∇X log pθ(X | C)−∇X log pθ(X)−
∑
i

[∇X log pθ(X | Ci)−∇X log pθ(X)] ∥22︸ ︷︷ ︸
LCI

= K2

√
LCI (25)

Substituting Eq. (24), Eq. (25) in Eq. (22) will result in our final learning objective

Lcomp ≤ K1

√
Lscore +K2

√
LCI (26)

where K1,K2 are positive constants, i.e., the conditional independence objective LCI is incorporated
alongside the existing score-matching loss Lscore.

Note that Eq. (25) is the Fisher divergence between the joint pθ(X | C) and the causal factorization
pθ(X)
pθ(C)

∏
i
pθ(X|Ci)pθ(Ci)

pθ(X) . From the properties of Fisher divergence (Sánchez-Moreno et al., 2012),

LCI = 0 iff pθ(X | C) = pθ(X)
pθ(C)

∏n
i

pθ(X|Ci)pθ(Ci)
pθ(X) and further implying,

∏
i pθ(Ci | X) =

ptrain(C | X)

When Lcomp = 0: Pθ(X | C) = Ptrain(X | C) = P (X | C), and
∏

i pθ(Ci | X) = ptrain(C |
X). This implies that the learned marginals obey the causal independence relations from the data-
generation process, leading to more accurate marginals.

B.3 CONNECTION TO COMPOSITIONAL GENERATION FROM FIRST PRINCIPLES

Compositional generation from first principles Wiedemer et al. (2024) have shown that restricting
the function to a certain compositional form will perform better than a single large model. In this
section, we show that, by enforcing conditional independence, we restrict the function to encourage
compositionality.

Let c1, c2, . . . , cn be independent components such that c1, c2, . . . , cn ∈ R. Consider an injective
function f : Rn → Rd defined by f(c) = x. If the components, c are conditionally independent
given x the cumulative functions, F must satisfy the following constraint:

FCi,Cj ,...,Cn|X=x(ci, cj , . . . , cn) =
∏
i

FCi|X=x(ci) (27)

F−1
Ci,Cj ,...,Cn|X=x(x) = inf{ci, cj , . . . , cn | F (ci, cj , . . . , cn) ≥ x}, where F−1

ci,cj ,...,Cn|X=x is a
generalized inverse distribution function.

f(ci, cj , . . . , cn) = (f ◦ F−1
ci,cj ,...,Cn|X=x)(

∏
i

FCi|X=x(ci))

= (f ◦ F−1
ci,cj ,...,Cn|X=x ◦ e)(

∑
i

logFCi|X=x(ci))

= g(
∑
i

ϕi(ci))

13
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Therefore, we are restricting f to take a certain functional form. However, it is difficult to show
that the data generating process, f , meets the rank condition on the Jacobian for the sufficient sup-
port assumption Wiedemer et al. (2024), which is also the limitation discussed in their approach.
Therefore, we cannot provide guarantees. However, this section provides a functional perspective of
COIND.

C PRACTICAL CONSIDERATIONS

To facilitate scalability and numerical stability for optimization, we introduce two approximations
to the upper bound of our objective function Eq. (5).

C.1 SCALABILITY OF LCI

A key computational challenge posed by Eq. (7) is that the number of model evaluations grows
linearly with the number of attributes. The Eq. (7) is derived from conditional independence formu-
lation as follows:

pθ(C | X) =
∏
i

pθ(Ci | X). (28)

By applying Bayes’ theorem to all terms, we obtain,

pθ(X | C)pθ(C)

pθ(X)
=
∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)
(29)

Note that this formulation is equal to the causal factorization. From this, by applying logarithm and
differentiating w.r.t. X , we derive the score formulation.

∇X log pθ(X | C) = ∇X log
∑
i

pθ(X | Ci)−∇X log pθ(X) (30)

The L2 norm of the difference between LHS and RHS of the objective in Eq. (30) is given by, which
forms our LCI objective.

LCI = ∥∇X log pθ(X | C)−
(
∇X log

∑
i

pθ(X | Ci)−∇X log pθ(X)

)
∥22 (31)

Due to the
∑

i, in the equation, the number of model evaluations grows linearly with the number
of attributes (n). This O(n) computational complexity hinders the approach’s applicability at scale.
To address this, we leverage the results of (Hammond & Sun, 2006), which shows conditional in-
dependence is equivalent to pairwise independence under large n to reduce the complexity to O(1)
in expectation. This allows for a significant improvement in scalability while maintaining computa-
tional efficiency. Using this result, we modify Eq. (28) to:

pθ(Ci, Cj | X) = pθ(Ci | X)pθ(Cj | X). ∀i, j

Accordingly, we can simplify the loss function for conditional independence as follows:

LCI = Ep(X,C)Ej,k∥∇X [log pθ(X|Cj , Ck)− log pθ(X|Cj)− log pθ(X|Ck) + log pθ(X)]∥22.
(32)

In score-based models, which are typically neural networks, the final objective is given as:

LCI = Ep(X,C)Ej,k∥sθ(X, Cj , Ck)− sθ(X, Cj)− sθ(X, Ck) + sθ(X,∅)∥22 (33)

where sθ(·) := ∇X log pθ(·) is the score of the distribution modeled by the neural network. We
leverage classifier-free guidance to train the conditional score sθ(X, Ci) by setting Ck = ∅ for all
k ̸= i, and likewise for sθ(X, Ci, Cj), we set Ck = ∅ for all k ̸∈ {i, j}.

14
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C.2 SIMPLIFICATION OF THEORETICAL LOSS

In Eq. (5), we showed that the 2-Wassertein distance between the true joint distribution p(X | C)
and the causal factorization in terms of the marginals p(X | Ci) is upper bounded by the weighted
sum of the square roots of Lscore and LCI as Lcomp ≤ K1

√Lscore + K2

√LCI. In practice, how-
ever, we minimized a simple weighted sum of Lscore and LCI, given by Lfinal = Lscore + λLCI as
shown in Eq. (8) instead of Eq. (5). We used Eq. (8) to avoid the instability caused by larger gra-
dient magnitudes (due to the square root). Eq. (8) also provided the following practical advantages:
(1) the simplicity of the loss function that made hyperparameter tuning easier, and (2) the similarity
of Eq. (8) to the loss functions of pre-trained diffusion models allowing us to reuse existing hyper-
parameter settings from these models. We did not observe any significant difference in conclusion
between the models trained on Eq. (5) and Eq. (8) as shown in Tabs. 3 and 4. Both approaches
significantly outperformed the baselines.

Support Method JSD ↓ ∧ (CS) ↑
LACE - 99.04
Composed GLIDE 0.16 97.40

Uniform Theoretical Eq. (5) 0.12 98.44
COIND (λ = 0.2) 0.14 99.50
COIND (λ = 1.0) 0.11 99.86

LACE - 51.70
Composed GLIDE 0.33 82.60

Non-uniform Theoretical Eq. (5) 0.17 96.88
COIND (λ = 1.0) 0.11 99.84

LACE - 22.94
Composed GLIDE 2.76 17.90

Partial Theoretical Eq. (5) 1.11 23.44
COIND (λ = 1.0) 1.07 55.16

Table 3: Results on Colored MNIST (K1 =
1,K2 = 0.1)

Support Method JSD ↓ R2 ↑
LACE - 0.97
Composed GLIDE 0.302 0.94

Uniform Theoretical Eq. (5) 0.270 0.98
COIND (λ = 1.0) 0.215 0.98

LACE - 0.88
Composed GLIDE 0.503 0.86

Partial Theoretical Eq. (5) 0.450 0.93
COIND (λ = 1.0) 0.287 0.97

Table 4: Results on Shapes3D (K1 = 1,K2 = 0.1)

C.3 CHOICE OF HYPERPARAMETER λ

Effect of λ on the Learned Conditional Independence.

COIND enforces conditional independence between the marginals of the attributes learned by the
model by minimizing LCI defined in Eq. (33). Here, we investigate the effect of LCI on the effective-
ness of compositionality by varying its strength through λ in Eq. (8). Figure 5 plots JSD and CS as
functions of λ for models trained on the Colored MNIST dataset under the diagonal partial support
setting.

0 2
λ

0.20

1.09

1.99

2.88

JS
D

16.04

29.70

43.36

57.02

C
S

(∧
)

Figure 5: Effect of λ on com-
positionality under diagonal
partial support on the Colored
MNIST dataset.

When λ = 0, training relies solely on the score matching loss, re-
sulting in higher conditional dependence between Ci | X . As λ
increases, CS improves since ensuring conditional independence
between the marginals also encourages more accurate learning of
the true marginals. However, when λ takes large values, the model
learns truly independent conditional distribution C | X but effec-
tively ignores the input compositions and generates samples based
solely on the prior distribution pθ(X). As a result, CS drops.

The value for the hyperparameter λ is chosen such that the gradi-
ents from the score-matching objective Lscore and the conditional
independence objective LCI are balanced in magnitude. One way
to choose λ is by training a vanilla diffusion model and setting λ =
Lscore

LCI
. As a rule of thumb, we recommend the simplified setting:

λ = Lscore × 4000. We used two values for λ in our experiments and noticed that they gave similar
results, indicating that the approach was stable for various values of λ.
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D EXPERIMENT DETAILS

D.1 COIND ALGORITHM

Algorithm 1 COIND Training
1: repeat
2: (c,x0) ∼ ptrain(c, x)

3: ck ← ∅ with probability puncond ▷ Set element of index,k i.e, ck to ∅ with puncond∀k ∈ [0, N ]

probability
4: i ∼ Uniform({0, . . . , N}), j ∼ Uniform({0, . . . , N} \ {i}) ▷ Select two random attribute indices
5: t ∼ Uniform({1, . . . , T})
6: ϵ ∼ N (0, I)
7: xt =

√
ᾱtx0 +

√
1− ᾱtϵ

8: ci, cj , ci,j ← c

9: ci ← {ck = ∅ | k ̸= i}, cj ← {ck = ∅ | k ̸= j}, ci,j ← {ck = ∅ | k ̸∈ {i, j}}, c∅ ← ∅

10: LCI = ||ϵθ(xt, t, c
i) + ϵθ(xt, t, c

j)− ϵθ(xt, t, c
i,j)− ϵθ(xt, t, c

∅)||22
11: Take gradient descent step one

∇θ[∥ϵ− ϵθ(xt, t, c)∥2 +λLCI ]
12: until converged

To compute pairwise independence in a scalable fashion, we randomly select two attributes, i and j,
for a sample in the batch and enforce independence between them. As the score in Eq. (12) is given
by ϵθ(xt,t)√

1−ᾱt
. The final equation for enforcing LCI will be:

LCI =
1

1− ᾱt

∥∥ϵθ(xt, t, c
i) + ϵθ(xt, t, c

j)− ϵθ(xt, t, c
i,j)− ϵθ(xt, t, c

∅)
∥∥2
2

We follow Ho et al. (2020) to weight the term by 1 − ᾱt. This results in an algorithm for COIND,
requiring only a few modifications of lines from (Ho & Salimans, 2022), highlighted below. Prac-
tical Implementation In our experiments, we have used puncond = 0.3 and for Shapes3D instead
of enforcing Ci ⊥⊥ Cj | X , for all i, j enforcing Ci ⊥⊥ C−i | X for all i have led to slightly better
results.

D.2 DETAILS OF COMPOSITIONALITY TASK

Composition Sampling To evaluate the composition, we apply compose all the attributes to gen-
erate a respective image.

Figure 6: Image from
Shapes3d with attributes
c = [6, 8, 4, 6, 2, 11]

Consider an image from the Shapes3D dataset. The image is generated
by some function, f , with the input c = [ 6 8 4 6 2 11 ]. The
following image can be queried using the expression C1 = 6∧. . .∧C6 =
11. We follow Equation Eq. (1) to sample from the above composition.
To reiterate, for the ∧ composition task on Shapes3D, the sampling equa-
tion is given by ∇Xpθ(X | C1 = 6 ∧ . . . ∧ C6 = 11):

∇X log pθ(X) +
∑
i

[∇X log pθ(X | Ci)−∇X log pθ(X)] (34)

Similarly, to evaluate the composition for the Colored MNIST dataset.

Evaluations are strictly restricted to unseen compositions under orthog-
onal partial support for Shapes3D and under diagonal partial support for
Colored MNIST. This approach allows us to explore how effectively the
model handles unseen image generation. Additionally, we evaluate com-
positions observed during training with less frequency under non-uniform support.
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D.3 TRAINING DETAILS, ARCHITECTURE, AND SAMPLING

Training Composed GLIDE & COIND We train the diffusion model using the DDPM noise
scheduler. The model architecture and hyperparameters used for all experiments are detailed in
Tab. 5.

Training LACE The LACE method involves training multiple energy-based models for each at-
tribute and sampling according to compositional equations. However, we use score-based models
instead. We follow the architecture outlined in Tab. 5 for each attribute to train multiple score-
based models. For Colored MNIST, which has two attributes, we create two models—one for each
attribute—using the same architecture as other methods, effectively doubling the model size. Simi-
larly, for Shapes3D with six attributes, we develop six models. We reduce the Block Out Channels
for each attribute model to fit these into memory while keeping all other hyperparameters consis-
tent. Since we train a single model per attribute, we do not match the joint distribution, preventing
us from evaluating it and measuring the JSD.

Sampling To generate samples for a given composition, we sample from equations from App. D.2
using DDIM (Song et al., 2020) with 150 steps.

Hyperparameter Colored MNIST Shapes3D

COIND & Composed GLIDE LACE COIND & Composed GLIDE LACE

Optimizer AdamW AdamW AdamW AdamW
Learning Rate 2.0× 10−4 2.0× 10−4 2.0× 10−4 2.0× 10−4

Num Training Steps 50000 100000 100000 100000
Train Noise Scheduler DDPM DDPM DDPM DDPM
Train Noise Schedule Linear Linear Linear Linear
Train Noise Steps 1000 1000 1000 1000
Sampling Noise Schedule DDIM DDIM DDIM DDIM
Sampling Steps 150 150 150 150
Model U-Net U-Net U-Net U-Net
Layers per block 2 2 2 2
Beta Schedule Linear Linear Linear Linear
Sample Size 28x3x3 28x3x3 64x3x3 64x3x3
Block Out Channels [56,112,168] [56,112,168] [56,112,168,224] [56,112,168]
Dropout Rate 0.1 0.1 0.1 0.1
Attention Head Dimension 8 8 8 8
Norm Num Groups 8 8 8 8
Number of Parameters 8.2M 8.2M × 2 17.2M 8.2M × 6

Table 5: Hyperparameters for Colored MNIST and Shapes3D used by COIND, Composed GLIDE,
and LACE

CelebA To generate CelebA images, we scale the image size to 128 × 128. We use the latent
encoder of Stable Diffusion 3 (SD3) to encode the images to a latent space and perform diffusion in
the latent space. The architecture is similar to the Colored MNIST and Shapes3D, except that Block
out Channels are scaled as [224, 448, 672, 896]. We use a learning rate of 1.0× 10−4 and train the
model for 500,000 steps on one A6000 GPU.

FID Measure To evaluate both the generation quality and how well the generated samples align
with the natural distribution of ’smiling male celebrities’, we use the FID metric (Seitzer, 2020).
Notably, we calculate the FID score specifically on the subset of ’smiling male celebrities,’ as our
primary objective is to assess the model’s ability to generate these unseen compositions. We generate
3000 samples to evaluate FID.

D.4 ANALYTICAL FORMS OF SUPPORT SETTINGS

Below are the analytical expressions for the densities under the various support settings that we
considered in the paper. Let ni be the number of categories for the attribute Ci. For non-uniform
and diagonal partial support settings, we assume that ni = nj = n, ∀i, j, i ̸= j.

• Uniform setting: p(Ci = c1) =
1
ni

and p(Ci = c1, Cj = c2) = p(Ci = c1)p(Cj = c2) =
1

ninj
.
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Figure 7: Generative Modeling of compositions under various supports.

• Orthogonal support setting: p(Ci = c1, Cj = c2) =

{
1

ni+nj−1 , c1 = 0 or c2 = 0

0, otherwise

• Non-uniform setting: p(Ci = c1, Cj = c2) =

{
a, c2 ≤ c1 ≤ c2 + 1

b, otherwise
, where 1

n2 ≤ b < a ≤
1

2n−1 .

• Diagonal partial support setting: p(Ci = c1, Cj = c2) =

{
1

2n−1 , c2 ≤ c1 ≤ c2 + 1

0, otherwise
.

Computing mutual information between attributes for all supports.

D.5 DATASETS

Colored MNIST Dataset In Section § 1, we introduced the Colored MNIST dataset. Here, we
will detail the dataset generation process. We selected 10 visually distinct colors 1, taking the value
C2 ∈ [0, 9]. The dataset is constructed by coloring the grayscale images from MNIST by converting
them into three channels and applying one of the ten colors to non-zero grayscale values.

The training data is composed of three types of support:

• Uniform Support: A digit and a color are randomly selected to create an image.

• Diagonal Partial Support: A digit is selected, and during training, it is only assigned one
of two colors, C2 ∈ {d, d + 1}, except for 9, which only takes one color. This creates a
dataset where compositions observed during training are along the diagonal of the C space,
meaning each digit is seen only with its corresponding colors.

• Non-uniform Support: All compositions are observed, but combining a digit and its cor-
responding colors occurs with a higher probability (0.5). The remaining color space is
distributed evenly among other colors, resulting in approximately a 0.25 probability for
each corresponding color and a 0.0625 probability for each remaining color.

Shapes3D Full support for Shapes3D consists of all samples from the dataset. For orthogonal
support, we use the composition split of Shapes3D as described by Schott et al.., whose code is
publicly available 2.

D.6 ACCURACY OF CLASSIFIERS FOR CONFORMITY SCORE (CS)

The effectiveness of the ResNet-18 classifier in predicting the attributes is reported in Table 8 below.

1https://mokole.com/palette.html
2https://github.com/bethgelab/InDomainGeneralizationBenchmark
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Feature Attributes Possible Values Accuracy

C1 Digit 0-9 98.93
C2 color 10 values 100

(a) Colored MNIST Dataset

Feature Attributes Possible Values Accuracy

C1 Gender {0,1} 98.2
C2 Smile {0,1} 92.1

(b) CelebA Dataset

Feature Attributes Possible Values Accuracy

C1 floor hue 10 values in [0, 1] 100
C2 wall hue 10 values in [0, 1] 100
C3 object hue 10 values in [0, 1] 100
C4 scale 8 values in [0, 1] 100
C5 shape 4 values in [0-3] 100
C6 orientation 15 values in [-30, 30] 100

(c) Shapes3D Dataset

Figure 8: Independent attribute, their possible values, and the classifier accuracy in estimating them
for different datasets

D.7 MEASURING DIVERSITY IN ATTRIBUTES

To achieve explicit control over certain attributes during the generation process, these attributes must
vary independently. Therefore, an ideal generative model must be able to produce samples where all
except the controlled attributes take diverse values. This diversity can be measured by the entropy of
the uncontrolled attributes in the generated samples, where higher entropy suggests greater diversity.
Therefore, the accurate generation of controlled and diverse uncontrolled attributes indicates that the
model has successfully learned the correct marginal likelihood of the controlled attributes.

For example, consider the generation of colored MNIST digits. In this case, controllability means
that the model has learned that digit and color attributes are independent. When prompted to generate
a specific digit (controlled attribute), the model should generate this digit in all possible colors
(uncontrolled attribute) with equal likelihood, implying maximum entropy for the color attribute
and diverse generation. We measure this entropy by generating samples xi ∼ pθ(X | c1 = 4) and
passing them through a near-perfect classifier to obtain the color predictions p(Ĉ2) = p(ϕ2(x

i)).
The diversity is then quantified as: H = Eĉ2∼p(Ĉ2)

[log2 p(ĉ2)]

Ensuring diversity through explicit control has applications in bias detection and mitigation in gen-
erative models. For example, a biased model may generate images of predominantly male doctors
when asked to generate images of “doctors”. Ensuring diversity in uncontrolled attributes like gen-
der or race can limit such biases.

E COIND FOR FACE IMAGE GENERATION

In § 5, we demonstrated that COIND outperforms baseline methods on the unseen compositionality
task using synthetic datasets. In App. E.1, we showcase the success of COIND in generating face
images from the CelebA dataset (Liu et al., 2015), where COIND demonstrates superior control over
attributes compared to the baseline. COIND also allows us to adjust the strength of various attributes
and thus provides more fine-grained control over the compositional attributes, as shown in App. E.2.

Problem Setup We choose the CelebA dataset to evaluate COIND’s ability to generate real-world
images. We choose the binary attributes “smiling” and “gender” as the attributes we wish to control.
During training, all combinations of these attributes except gender = “male” and smiling = “true” are
observed, similar to the orthogonal support shown in Fig. 7d. During inference, the model is tasked
to generate images with the attribute combination gender = “male” and smiling = “true”, which was
not observed during training.

Metrics Similar to the experiments on the synthetic image datasets in § 5, we assess the accuracy
of the generation w.r.t. the input desired attribute combination CS (conformity score). We also
measure the violation of the learned conditional independence using JSD. In addition to CS, we
compute FID (Fréchet inception distance) between the generated images and the real samples in
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the CelebA dataset where gender = “male” and smiling = “true”. A lower FID implies that the
distribution of generated samples is closer to the real distribution of the images in the validation
dataset.

E.1 COIND CAN SUCCESSFULLY GENERATE REAL-WORLD FACE IMAGES

Fig. 4a shows the quantitative results of COIND and Composed GLIDE trained from scratch in the
tasks of joint sampling and ∧ composition. Similar to our observations from previous experiments,
COIND achieves better CS in both tasks by learning accurate marginals as demonstrated by lower
JSD. When sampled from the joint likelihood, COIND achieves a nearly 4× improvement in CS over
the baseline, while it achieves > 10% improvement in CS over the baseline, for ∧ compositionality.

E.2 COIND PROVIDES FINE-GRAINED CONTROL OVER ATTRIBUTES

γ
=
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=
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γ
=
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γ
=
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Figure 9: By adjusting γ, COIND allows us to the vary the amount of “smile” in the generated
images. However, Composed GLIDE associates the smile attribute with the gender attribute due to
their association in the training data. Hence, the images generated by Composed GLIDE contain
gender-specific attributes such as long hair and earrings.

So far, we studied the capabilities of COIND to dictate the presence and absence of attributes in the
task of controllable image generation. However, there are applications where we desire fine-grained
control over the attributes. Specifically, we may want to control the amount of each attribute in
the generated sample. We can mathematically formulate this task by revisiting the formulation of
expressions of attributes in terms of the score functions of marginal likelihood. As an example, the
∧ operation can be written as,

∇X log pθ(X | C1 ∧ C2) = ∇X log pθ(X | C1) +∇X log pθ(X | C2)−∇X log pθ(X)

Here, to adjust the amount of attribute added to the generated sample, we can weigh the score
functions using some scalar γ, as follows,

∇X log pθ(X | C1) + γ∇X log pθ(X | C2)− γ∇X log pθ(X) (35)

where γ controls for the amount of C2 attribute.

Fig. 9 shows the effect of increasing γ to adjust the amount of smiling in the generated image. Ide-
ally, we expect increasing γ to increase the amount of smiling without affecting the gender attribute.
When γ = 0 (top row), both COIND and Composed GLIDE generate images of men who are not
smiling. As γ increases, we notice that the samples generated by COIND show an increase in the
amount of smiling, going from a short smile to a wider smile to one where teeth are visible. Note
that the training dataset did not include any images of smiling men or fine-grained annotations for
the amount of smiling in each image. This conclusion is strengthened by Fig. 10b that shows an
increase in CS when γ increases. CS increases when it is easier for the smile classifier to detect the
smile. COIND provides this fine-grained control over the smiling attribute without any effect on the
realism of the images, as shown by the minimal changes in FID in Fig. 10a.

In contrast, the images generated by Composed GLIDE show an increase in the amount of smiling
while adding gender-specific attributes such as long hair and makeup. We conclude that, by strictly
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Figure 10: Effect of γ on FID and CS: Varying the amount of smile in a generated image through
γ does not affect the FID of COIND. However, the smiles in the generated images become more
apparent, leading to easier detection by the smile classifier and improved CS.

enforcing a conditional independence loss between the attributes, COIND provides fine-grained
control over the attributes, allowing us to adjust the intensity of the attribute in the image without
additional training. As shown in Fig. 4a, COIND outperforms the baselines for generating unseen
compositions. Tuning γ further improves the generation.

F 2D GAUSSIAN: WORKINGS OF COIND IN CLOSED FORM
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Figure 11: COIND respects underlying independence conditions thereby generating true data distri-
bution (d).

The underlying data is generated by two independent attributes, C1 and C2. The observed variable
X is defined as:

X = f(C1) + f(C2) (36)

where f(ci) = ci + σϵ, and ϵ ∼ N (0, I) represents Gaussian noise. For simplicity, C1 and C2 are
binary variables taking values in {−1,+1}. The function f(C1) results in a mixture of Gaussians
with means [−1 0] and [+1 0]. These are represented along the x-axis in Figure 11a. Similarly,
f(C2) produces a mixture of Gaussians with means:[0 −1] and [0 +1]. These are displayed
along the y-axis in Figure 11a. The combination of C1 and C2 independently generates as Eq. (36)
This results in a two-dimensional Gaussian mixture, as illustrated in Figure 11. We consider orthog-
onal support, where attribute combinations of (C1, C2) ∈ {(−1,−1), (−1,+1), (+1,−1)}, and the
model is tasked to generate unseen combination of (+1,+1). Also as a reminder that assumptions
mentioned in § 2 are satisfied. (1) C1, C2 independently generate X , and (2) all possibles values for
every attribute are present at-least observed during training. Let score is given by s+1,+1 represents
∇X log p(X | C1 = 1, C2 = 1) and likewise s1,∅ represents ∇X log p(X | C1) To sample for the
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unseen compositions of (1,1) we use Eq. (1) to

s1,1(x) = s1,∅(x) + s∅,1(x)− s∅,∅(x) (37)

Training diffusion model (score) objective involves computing score functions from the training
data, which will give us the following terms in closed form. For example s1,∅(x) is training using
only +1,−1 combinations present during training. which is nothing but a gaussian at +1,−1 and
the score of the gaussian is given in closed form.

s1,∅(x) =
µ1,−1 − x

σ2

s∅,1(x) =
µ1,−1 − x

σ2

s∅,∅(x) is a mixture of gaussian with means around 3 Gaussians present during training. The score
of the mixture gaussian as:

s∅,∅(x) =

∑
i N (x;µi, σ

2I)
[
µi−x
σ2

]∑
i N (x;µi, σ2I)

Now leveraging Langevin dynamics Eq. (10) will generate the Fig. 11c as the distribution of
P (X | C1 = +1, C2 = +1) is incorrect ( strong red blob between the (+1,−1), (−1,+1)
instead of gaussian at (+1,+1)). This is due to incorect modelling of the distributions
s1,∅(x), s∅,1(x), s∅,∅(x). However, COIND does not explicitly model s1,∅, instead learn joint
s−1,−1(x), s+1,−1(x), s−1,+1(x) as Gaussians and then combine them using pairwise conditional
independence conditions given as:

s−1,−1(x) = s+1,∅(x) + s∅,+1(x)− s∅,∅(x)

s+1,−1(x) = s+1,∅(x) + s∅,−1(x)− s∅,∅(x)

s−1,+1(x) = s−1,∅(x) + s∅,+1(x)− s∅,∅(x)

s+1,1(x) = s+1,∅(x) + s∅,+1(x)− s∅,∅(x)

= s+1,−1(x) + s−1,+1(x)− s−1,−1(x)

=
[µ+1,−1 + µ+1,−1 − µ−1,−1]− x

σ2

This shows the workings of COIND and also demonstrates that conditional independence constraints
are necessary to learn the underlying distribution and alos with these constraints, diffusion models
generate incorrect interpolation for unseen data distributions as shown in Fig. 11c.

G EXTENSION TO GAUSSIAN SOURCE FLOW MODELS

Diffusion models can be viewed as a specific case of flow-based models where: (1) the source dis-
tribution is Gaussian, and (2) the forward process follows a predetermined noise schedule.(Lipman
et al., 2024). Can we reformulate COIND in terms of velocity rather than score, thereby generaliz-
ing it to accommodate arbitrary source distributions and schedules? When the source distribution
is gaussian, score and velocity are related by affine transformation as detailed in Tab. 1 of (Lipman
et al., 2024).

stθ(x,C1, C2) = atx+ btu
t
θ(x,C1, C2) (38)

replacing stθ(·) into Eq. (33)

LCI = Ep(X,C),t∼U [0,1]Ej,k∥stθ(x,Cj , Ck)− stθ(x,Cj)− stθ(x,Ck) + stθ(x)∥22
= Ep(X,C),t∼U [0,1]Ej,k

[
b2t∥ut

θ(x,Cj , Ck)− stθ(x,Cj)− ut
θ(x,Ck) + ut

θ(x)∥22
]

However we can ignore b2t , weighting for the time step t.

LCI = Ep(X,C),t∼U [0,1]Ej,k

[
∥ut

θ(x,Cj , Ck)− ut
θ(x,Cj)− ut

θ(x,Ck) + ut
θ(x)∥22

]
(39)

Therefore, if the source distribution is gaussian and for any arbitrary noise schedule, constraint in
score translates directly to velocity constraint as given as Eq. (39).

22
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