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Abstract
Models prone to spurious correlations in training
data often produce brittle predictions and intro-
duce unintended biases. Addressing this chal-
lenge typically involves methods relying on prior
knowledge and group annotation to remove spuri-
ous correlations, which may not be readily avail-
able in many applications. In this paper, we
establish a novel connection between unsuper-
vised object-centric learning and mitigation of
spurious correlations. Instead of directly infer-
ring subgroups with varying correlations with la-
bels, our approach focuses on discovering con-
cepts: discrete ideas that are shared across in-
put samples. Leveraging existing object-centric
representation learning, we introduce CoBalT: a
concept balancing technique that effectively miti-
gates spurious correlations without requiring hu-
man labeling of subgroups. Evaluation across
the benchmark datasets for sub-population shifts
demonstrate superior or competitive performance
compared state-of-the-art baselines, without the
need for group annotation. Code is available at
https://github.com/rarefin/CoBalT

1. Introduction
A critical concern with deep learning models arises from
their well-known tendency to base their predictions on cor-
relations present in the training data rather than robustly
informative features (Arjovsky et al., 2019; Sagawa et al.,
2020). For instance, in image classification, translating an
image by a few pixels (Azulay & Weiss, 2019) or modifying
the background (Beery et al., 2018) can drastically change
the predictions of the model. Often viewed as resulting from
the so-called ‘simplicity bias’ of deep neural networks in the
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literature (Shah et al., 2020), this phenomenon pervades the
landscape of deep learning models (Geirhos et al., 2020).

While models relying on spurious correlations may perform
well on average across i.i.d. test data, they often struggle
on specific subgroups where these correlations do not hold.
Common approaches involve partitioning the training data
based on prior knowledge of spurious information and ad-
justing the training process to ensure consistency across
these groups (Sagawa et al., 2020; Kirichenko et al., 2023;
Arjovsky et al., 2019). However, most real-world datasets
lack explicit annotations highlighting spurious information.
Manual annotation is expensive and can be ill-defined, as
the appropriate groupings may not be immediately apparent.

On the other hand, self-supervised learning (Chen et al.,
2020; Caron et al., 2020; 2021; Grill et al., 2020; He et al.,
2020) has produced powerful representation learners. Sev-
eral methods (Cho et al., 2021; Wen et al., 2022) aim to learn
high-level concepts by semantic grouping of areas within an
input image into object-centric instances. Wen et al. (2022),
for instance, leverage slot attention (Locatello et al., 2020)
to decompose complex scenes into constituent objects via
contrastive learning alone. While their original aim was
downstream task representation learning, we posit that such
decomposition can help mitigating spurious correlations. By
treating semantic groupings as concept sources discovered
by the model, they can serve as data-driven proxies of sub-
group labels. This differs from existing work in spurious
correlation, which typically directly infers subgroups (see
related work in Section 2). Our approach models concepts
that do not necessarily correspond directly to subgroups;
typically, we use a significantly larger number of concepts
than annotated subgroups in the dataset.

This paper demonstrates the use of object-centric represen-
tation learning approaches to design classifiers robust to
spurious correlations without the need for human-labeled
subgroup annotations. We introduce CoBalT, a method
combining concept discovery with concept balancing for
robust classification. CoBalT follows a two-stage procedure
common in the literature: first, inferring information about
the training data, and then leveraging this information for
robust training.

In Stage 1, we propose to vector quantize semantic group-
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ing representations into discrete concepts (Section 3.2), en-
abling the association of each input with relevant sets of
concepts (see Fig 1) and facilitating the calculation of con-
cept occurrence statistics across the dataset.

In Stage 2, we utilize the occurrence statistics of concepts
via importance sampling to train a separate classifier (Sec-
tion 3.3). The architecture of the classifier is inconsequen-
tial; the key contribution lies in the concept-aware sampling
procedure, bridging object-centric representation learning
and learning under subpopulation shifts.

Integrating Stages 1 and 2 introduces CoBalT (Concept Bal-
ancing Technique) tailored for robust classification. We
evaluate CoBalT across the CMNIST, Waterbirds, CelebA,
Urban Cars and ImageNet-9 (IN-9L) datasets, demonstrat-
ing improvements without the need for group annotations
(Section 4). We achieve a 3% improvement on Waterbirds
compared to state-of-the-art (SOTA) group agnostic meth-
ods like MaskTune (Asgari et al., 2022), ULA (Tsirigo-
tis et al., 2023) and XRM (Pezeshki et al., 2023), remain
competitive on CelebA, and achieve 1–2% improvement
on challenging IN-9L test sets while maintaining original
test set performance. We also show 3% improvement over
SOTA baseline requiring group annotation in the Urban Cars
dataset containing multiple spurious correlations per class.

Class 1(Waterbird) Class 0(Landbird) Class 1(Waterbird) Class 0(Landbird) Class 1(Waterbird) Class 0(Landbird)Class 1(Waterbird) Class 0(Landbird) Class 1(Waterbird) Class 0(Landbird) Class 1(Waterbird) Class 0(Landbird)

Figure 1. Images from Waterbirds dataset with different discov-
ered concepts through our method. Here we arbitrarily select
two of these concepts, which can be interpreted as trees/bamboo
background (left) and water background (right), and show input
samples from each of these.

2. Related Works
Robust training: Our approach extends existing methodolo-
gies for robust classification model training, particularly ad-

dressing the costly acquisition of group labels in real-world
data. Unlike GDRO (Sagawa et al., 2020), which optimizes
for the worst group-level error, and its semi-supervised ex-
tension, SSA (Nam et al., 2022), our method is tailored
for scenarios lacking sufficient labeled group data. Addi-
tionally, methods like DFR (Kirichenko et al., 2023) and
AFR (Qiu et al., 2023) retrain the classification layer with
group-balanced datasets and ensure feature reweighing, re-
quiring group-labeled training/validation data, a necessity
we circumvent. ULA (Tsirigotis et al., 2023) employs a
Self-Supervised Learning (SSL) pre-trained model’s pre-
dictions as a bias proxy, while MaskTune (Asgari et al.,
2022) assumes predictions from Empirical Risk Minimiza-
tion (ERM) models to be biased. To train an unbiased model,
the former adjusts the classifier’s logits during debiasing
training, and the latter masks out the input data based on the
saliency map of the prediction.

Group inference methods: Obtaining group labels in real-
world data is often costly. Several methods have been pro-
posed for inferring group labels initially, followed by robust
model training. LfF (Nam et al., 2020) uses two models,
where the second model is trained using examples with
higher loss in the first model. This approach contrasts with
GEORGE (Sohoni et al., 2020), which clusters represen-
tations from the first stage ERM model to infer group in-
formation and then trains a second model using GDRO.
Similarly, JTT (Liu et al., 2021) and and CNC (Zhang et al.,
2022)identify minority groups based on miss-classifications
of the first stage ERM model; however, JTT continues with
ERM to train the robust model, while CNC uses contrastive
learning to align representations of minority examples with
the majority. These methods either rely on extra group anno-
tation or fail in the presence of multiple unbalanced minority
groups and noisy examples (Yang et al., 2024).

SPARE (Yang et al., 2024) separates spurious information
in the early stages of training and uses k-means clustering
to differentiate between minority and majority groups but
relies on validation group annotation data to determine the
specific epoch for separation. Conversely, our approach does
not depend on group-annotated data for epoch identifica-
tion; instead, we utilize a self-supervised method combined
with spatial decomposition to separate spurious and non-
spurious information effectively.The recently introduced
XRM (Pezeshki et al., 2023) identifies groups within train-
ing and validation datasets through model prediction errors,
operating under the assumption that models inherently learn
spurious correlations. This methodology could be detrimen-
tal in scenarios where such an assumption does not hold true
(Yong et al., 2022).

Concept discovery. To address spurious correlations, DISC
(Wu et al., 2023) introduces a human-interpretable concepts
bank and Moayeri et al. (2023) rank data points by the spu-
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rious concepts that they contain. However, they require
additional annotations of potential spurious features, posing
practical challenges and limiting its general applicability.
Learning abstract representations from images by decom-
posing them into higher-level concepts without human an-
notations has been explored in previous work. A recent
development is slot attention (Locatello et al., 2020), which
groups spatially repetitive visual features by imposing an
attention bottleneck. This method and its variants have been
successfully applied to discover object-centric concepts in
synthetic datasets (Locatello et al., 2020; Engelcke et al.,
2021; Zhang et al., 2023). However, they face challenges
when applied to complex real-world data. Seitzer et al.
(2023) hypothesized that reconstructing the pixel space as a
learning objective might not introduce enough inductive bias
to facilitate the emergence of objects or concepts in real data.
As a solution, they propose reconstructing the features from
the self-supervised pre-trained DINO model (Caron et al.,
2021). With similar motivation, Wen et al. (2022) employs
a joint embedding teacher-student architecture, similar to
Caron et al. (2021), where the student model attempts to pre-
dict the concept representations of the teacher network. We
extend this work to discover discrete symbols-like concepts
by applying vector quantization (van den Oord et al., 2017)
to continuous concept representations aiding compositional
reasoning of images, such as identifying common groups or
attributes in the dataset like humans.

3. Method
Unlike existing methods, our goal is not to discover the
subgroups of a dataset specifically, but more general con-
cepts. For example, while groups in the Waterbirds dataset
are explicitly defined to be the product of classes with
some binary background attribute, {water bird, land bird}×
{water background, land background}, the concepts could
capture dataset-independent ideas such as blue bird, street
background, or short beak.

We base our approach on the two-stage training procedure
common in the literature, with the first stage determining
some information about the training data and the second
stage using this information to perform robust training.

The first stage combines two key components:

1. Spatial clustering (Caron et al., 2021; Wen et al.,
2022), which groups pixels into semantic regions (Sec-
tion 3.1). While our approach in this paper is based on
the method by Wen et al. (2022), in principle, the re-
quirement is simply for an unsupervised representation
learner that decomposes the input into objects.

2. A novel vector clustering technique we call concept
dictionary learning (Section 3.2), achieved through
vector quantization (van den Oord et al., 2017). This

process discretizes the information of the slots into dis-
tinct concepts, which are more manageable compared
to continuous representations of semantic regions. For
example, instead of storing details about the specific
shape and appearance of a bird, this clustering iden-
tifies broader concepts like bird types, which offer
greater utility across various inputs. These concepts
encompass typical foreground objects such as cats and
dogs, background elements like land and sky (see Fig.
1), or other abstract notions not as readily interpretable
as individual words.

The key aspect of our proposed second component is its inde-
pendence from human labeling, achieved through leveraging
the self-supervised learning setup of the first component.
This lack of reliance to human labeling offers significant
advantages, particularly in complex datasets. For example,
when dealing with large datasets like ImageNet, determin-
ing relevant subgroups across the images is challenging due
to the vast number of possibilities. Spurious correlations in
a dataset are likely to vary depending on the specific task be-
ing performed with the dataset. Without pre-labeling every
conceivable group (which is clearly infeasible), identifying
the subgroups necessary to address spurious correlations
seems nearly impossible.

By adopting a data-driven approach where concepts are
learned, we can discover concepts that a model inherently
relies on. However, this approach has the potential drawback
of weakening the connection between a learned concept and
a concept that humans readily understand. One advantage of
an object-centric decomposition, as demonstrated by meth-
ods like Wen et al. (2022), is that the spatial grouping of a
concept provides humans with additional insight into that
concept represents.

3.1. Architecture

The model architecture used for concept learning shares the
same overall structure as many recent self-supervised ap-
proaches to representation learning (Caron et al., 2021; Grill
et al., 2020; Zbontar et al., 2021; Chen et al., 2020). Fol-
lowing Wen et al. (2022), we employ a two-branch network
where the branches are structurally similar but asymmetric
in parameter weights. Each branch comprises an encoder
that outputs patch representation vectors of the input im-
age, a projector that transforms the representations into an
embedding space, and a slot module where spatial patch rep-
resentation vectors are semantically grouped into concept
representations. Our focus lies on building our model based
on the output of the slot module. The overall architecture is
illustrated and briefly described in Figure 2, with detailed
information provided in Appendix A.

More precisely, we will utilize the slots of the student and
teacher branches, zs ∈ RN×d and zt ∈ RN×d, where the
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Figure 2. Architecture for learning slots and clustering without human annotation. xs and xt are two different augmented views of the
same image. The teacher and student encoders project the augmented images into different patches yt and ys respectively, which are
subsequently decomposed into concept representations zt and zs by slot attention. Then zt and zs are clustered into different concepts of
dictionary C using a vector-quantization. Stop-gradient is applied to teacher branch and the teacher encoder and slot module parameters
are updated through the exponential moving average of the student encoder and slot module parameters.

hyperparameters N represents the number of slots and d
denotes the dimensionality of each slot. Each slot serves as
a semantic grouping of an area in the input; for instance, a
slot could correspond to a single object in the image.

3.2. Concept Dictionary

For the next step, we aim to discover meaningful discrete
concepts from these spatially-decomposed semantic group-
ings. To do so, we employ vector quantization (van den
Oord et al., 2017) which acts as a learned discretization or
clustering mechanism that effectively clusters similar con-
cepts in the training data into distinct categorical concepts.

This is done by utilizing a codebook that we call concept
dictionary C ∈ RK×d with K vectors of dimension d, each
of which corresponds to a symbolic concept (e.g. water, tree,
bird, etc.) that we want to learn. Note that we do not super-
vise these concepts in any way – these words simply denote
possible meanings we could assign to these concepts post-
hoc. We assign each slot (vector representation) to a discrete
symbolic concept by learning a categorical distribution over
the entries in the dictionary.

Given a randomly initialized concept dictionary C, we
associate each slot (for student and teacher branches) to
a concept in the concept dictionary through distributions
ps ∈ RK×N , pt ∈ RN by seeking the most similar concept:

(ps)ij =
exp(−∥Ci − (z̄s)j∥22/τs)∑K
t=1 exp(−∥Ct − (z̄s)j∥22/τs)

(1)

(pt)i = argmax
j

−∥Cj − (z̄t)i∥22 (2)

where Ci, (z̄s)j ∈ Rd, z̄s = zs/||zs||, z̄t = zt/||zt|| (the
i-th slot of zs and zt are normalized to have unit L2 norm),

and τs is a temperature hyperparameter. For the teacher
branch, inspired by Caron et al. (2021), rather than taking
a softmax, we use a sharpened distribution. In particular,
we employ the argmax to facilitate a hard assignment into
a one-hot representation. This hard assignment ensures
that each slot is associated with a single distinct concept.
We then use these as the supervision signal for the student
branch, where we encourage each slot representation of
the student to also be assigned to a single concept vector.
This difference in softmax and argmax has the benefit of
making the distributions of the student and teacher branches
different, which avoids the representation collapse problem
mentioned in Caron et al. (2021).

Following Roy et al. (2018), throughout training at each
step, C is updated by the exponential moving average of
batch-wise teacher concept representations zt as follows:

Cj = αc · Cj + (1− αc) ·
∑
i

1{(pt)i = j}(zt)i (3)

with αc is the update rate of the codebook. We set it to 0.9
for all our experiments.

Loss As for the learning objectives, in addition to the
losses proposed by Wen et al. (2022) (see Appendix A), we
include a novel term Lvq , motivated as follows. Since we do
not have any explicit human supervision of concepts, we ex-
ploit the assignment of concepts of the teacher to supervise
the student. The purpose of the loss term Lvq is to ensure
the consistency of the prediction between the slot represen-
tations of the teacher and the student. We encourage this
alignment by distilling the teacher’s prediction of discrete
concepts to the student with a cross-entropy loss, which is
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calculated as follows:

Lvq = −
N∑
i=1

K∑
j=1

I(i)1{(pt)i = j} log(ps)ij (4)

where I(i) is the indicator function that avoids calculating
the loss for the slot where the student and teacher does not
have any common patch assignment. Details of how this is
calculated are described in Appendix A.

We then include this objective as a term in the overall loss
of Wen et al. (2022):

L = Ldis + Lcon + Lvq (5)

where Ldis governs attention distillation from teacher to
student and Lcon is a contrastive loss between slot represen-
tations to avoid redundancy and encourage diversity. These
losses are described in detail in Appendix A.

This concludes the first stage of our training process. To
recap, we extract slot representations following the method-
ology in Wen et al. (2022), then compute concept distri-
butions ps and pt over the concept dictionary C, which
is incrementally updated based on assignments from the
teacher branch. Our learning objective is designed to distill
the teacher concept distribution to the student. Through this
process, we establish the association of training samples
with sets of concepts. This information will be utilized in
the subsequent section.

3.3. Training a Robust Classifier

In the second stage, we train a separate classifier based on
the concepts learned in the first stage, which are considered
fixed. Integrating this information into the training process
offers various possibilities. Our approach draws inspiration
from previous works (Sagawa et al., 2020; Yang et al., 2024)
where, if ground-truth subgroups are known, adjusting the
subgroup sampling rate evenly is the most effective method.
We adapt this concept to our framework, modifying it to
suit learned concepts rather than ground-truth subgroups.
However, this adaptation presents challenges, such as each
data point belonging to multiple concepts instead of a single
subgroup, and the occurrence of each concept in multiple
classes at varying frequencies.

Sampling method Our core approach involves adjusting
the sampling rate of samples to ensure an even representa-
tion of concepts and, when feasible, an even representation
of classes within those concepts. This entails sampling
prevalent concepts less frequently and rare concepts more
frequently. Additionally, within each concept, we aim to
maintain balanced representation of labeled classes. By do-
ing so, we bias the classifier training towards rarer concepts
while striving to balance classes within a concept whenever
possible.

This strategy is guided by the understanding that minority
groups, characterized by rarer concepts within a class, are
more susceptible to misclassification due to concept overlap.
Notably, our sampling method differs from the weighting
scheme proposed by (Yang et al., 2024), which contrasts
between groups within the same class. Instead, our ap-
proach focuses on contrasting between samples from the
same concept but belonging to different classes.

Within a cluster c, we have multiple classes with Tc,y repre-
sents the samples from the cluster c and class y. We compute
the weight and probability of sampling that class within the
cluster as:

wc,y =
1

|Tc,y|
, pc,y =

wλ
c,y∑

ŷ w
λ
c,ŷ

(6)

where λ is a sampling factor, a hyperparameter. Yang et al.
(2024) recommend to increase λ from the default of 1 when
the inter-concept groups are not well separable. The choice
of this hyperparameter can be guided by the average silhou-
ette score (Rousseeuw, 1987), which measures how well the
clusters are separated. In our case, it reflects the degree of
distinction between groups from one cluster to the groups
of the other cluster.

Algorithm 1 Batch Sampling Strategy
K: clusters with samples of different classes
n: batch size
Tc,y: Set of samples belonging to cluster c and class y

Initialize batch← {}
for i = 1 to n do

c← uniformly select a cluster from 1 to K
wc,y ← calculate weights 1

|Tc,y|

y ← select a class with pc,y =
wλ

c,y∑
ŷ wλ

c,ŷ

b← select a sample from c of class y
batch← batch ∪ {b}

end for
return batch

3.4. Early stopping

As demonstrated by Idrissi et al. (2022), having access to
group information is crucial for effective model selection,
particularly in scenarios involving spurious correlations. In
our experiments, we explore three distinct model selection
strategies by altering the criteria for early stopping:

1. CoBalThg: This strategy relies on human-annotated
worst-group labels.

2. CoBalTig: Here, we utilize the inferred worst group.

3. CoBalTavg: This strategy employs the average valida-
tion accuracy as the criterion for early stopping.
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While CoBalThg offers the advantage of leveraging human
annotations, it also reintroduces dependency on manual
labeling. Consequently, we generally prefer settings where
CoBalTig and CoBalTavg are more suitable.

For CoBalTig , our approach involves inferring groups from
the discovered concepts. Each group is defined by the
unique combination of class and concept. For instance,
if we have two concepts and three classes, we would gener-
ate six groups accordingly. It is important to note that these
inferred groups may not align with the ground-truth groups
in the dataset, if such labels are even available. Neverthe-
less, our method utilizes these inferred groups as an early
stopping criterion.

4. Experiments
To illustrate the effectiveness of our spatial concept discov-
ery and sampling strategy, we investigate two challenging
scenarios where training a robust classifier using empirical
risk minimization (ERM) with i.i.d. (independent and iden-
tically distributed) sampling faces significant difficulties.

Scenario 1: Classification complicated by class imbalance
and attribute imbalance with single spurious correlation.
In this scenario, markedly underrepresented, and attributes
within classes exhibit uneven distributions in the training
data. This presents considerable challenges for an ERM-
trained model, particularly concerning under-represented
attributes.

Scenario 2: When data containing two spurious correlations
per class, Li et al. (2023) shows the limitations of SOTA
methods that present ’whack-a-mole’ behavior: mitigating
one spurious correlation but amplifying the other.

Scenario 3: Test data has attributes not present in the train-
ing data, requiring attribute generalization. For example, if
the training set has cows on grassland and rarely on a beach,
the test set might have cows on a volcano. This scenario is
demanding as the classifier must recognize and generalize
unknown attributes. Moreover, merely defining subgroups
in this scenario is inherently challenging.

4.1. Datasets

Considering the scenarios outlined, we train our model using
the following publicly available datasets: CMNIST (Alain
et al., 2015), CelebA (Liu et al., 2014), Waterbirds (Sagawa
et al., 2020), UrbanCars (Li et al., 2023), Background Chal-
lenge ImageNet-9 (Xiao et al., 2021).

Scenario 1. The CMNIST dataset (Alain et al., 2015)
contains colored versions of the MNIST digits (LeCun et al.,
1998). We use the challenging 5-class setup from (Zhang
et al., 2022), where each class pairs two digits, with 99.5%
of training samples in each class spuriously correlated to a

unique color.

The CelebA dataset (Liu et al., 2015) shows a significant
class imbalance in gender (male/female) and hair color
(dark/blonde). Most of the male images (162,770) have
dark hair, while only 1,387 (0.85%) have blonde hair. This
imbalance risks bias, potentially causing the model to asso-
ciate gender with hair color.

The Waterbirds dataset, as detailed in (Sagawa et al., 2020),
has two classes: landbirds and waterbirds. The background:
land or water acts as a spurious attribute. The common
instances (waterbird, water) and (landbird, land) make it
challenging to differentiate the bird type from the spuriously
correlated background.

Scenario 2. The UrbanCars dataset (Li et al., 2023)
includes two classes (urban and country vehicles) along with
two incidental spurious attributes: (1) background (BG):
city vs. countryside and (2) co-occurring objects (CoObj):
fireplug and stop sign vs. cows and horses.

Scenario 3. We utilize the Background Challenge
ImageNet-9 (IN-9L) dataset (Xiao et al., 2021), derived
from a subset of ImageNet known as ImageNet-9. This
dataset is purposefully crafted to assess the robustness of
models against background variations. It encompasses four
distinct types of background modifications in its test sets:

• Original: Maintains the original background.

• Mixed-same: Replaces the background taken from
another image within the same class.

• Mixed-rand: Replaces the background taken from a
randomly selected image.

• Only-FG: Eliminates the background entirely, leaving
only the foreground object.

This dataset challenges classifiers to remain robust to back-
ground changes, serving as a benchmark for evaluating a
model’s ability to generalize and focus on primary object
features despite background variability or absence.

4.2. Results

We present additional results and ablations in Appendix C.

4.2.1. SCENARIO 1 (CMNIST, WATERBIRDS, CELEBA)

As shown in Table 1, our evaluation on Waterbirds, CelebA
and CMNIST showcases the effectiveness of our approach,
which achieves superior or comparable performance com-
pared to methods that do not rely on human-annotated group
labels. Particularly noteworthy is CoBalTig, which outper-
forms in worst-group accuracy the recent methods ULA
(Tsirigotis et al., 2023) and XRM (Pezeshki et al., 2023) by
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Waterbirds CelebA IN-9L

Figure 3. Segmented regions with slots in different datasets. # of slots used for Waterbirds, CelebA and ImageNet-9 is 4. The pixels in
the images are grouped by slots and represent high-level concepts such as body parts of birds and backgrounds like trees, water, and so on
in Waterbirds; humans, animals, grasses, and so on in IN-9L and nose, head, and so on in CelebA.

Table 1. CMNIST results with LeNet-5, and Waterbirds and CelebA results with ImageNet pre-trained ResNet50. Other model results
are reported from Yang et al. (2024); Asgari et al. (2022); Pezeshki et al. (2023); Tsirigotis et al. (2023). The upper section uses human
annotated group information for training and validation, the middle for validation only, and the bottom does not use group annotation.
Best results are highlighted in each section. CoBalThg , CoBalTig , CoBalTavg are our trained models where early stopping is done by
human-annotated worst group, inferred worst group, and average validation accuracy respectively.

Group Label CMNIST Waterbirds CelebA
Method Train Val Worst Group Average Worst Group Average Worst Group Average

GB ✓ ✓ 82.2±1.0 91.7±0.6 86.3±0.3 93.0±1.5 85.0±1.1 92.7±0.1
DFRTr (Kirichenko et al., 2023) ✓ ✓ - - 90.4±1.5 94.1±0.5 80.1±1.1 89.7±0.4
DFRV al (Kirichenko et al., 2023) ✓ ✓ - - 91.8±2.6 93.5±1.4 87.3±1.0 90.2±0.8

GDRO (Sagawa et al., 2020) ✓ ✓ 78.5±4.5 90.6±0.1 89.9±0.6 92.0±0.6 88.9±1.3 93.9±0.1
DISC (Wu et al., 2023) ✓ ✓ - - 88.7±0.4 93.8±0.7 - -

GEORGE (Sohoni et al., 2020) × ✓ 76.4±2.3 89.5±0.3 76.2±2.0 95.7±0.5 54.9±1.9 94.6±0.2
LfF (Nam et al., 2020) × ✓ 0.0±0.0 25.0±0.0 78.0 91.2 77.2 85.1

CIM (Taghanaki et al., 2021) × ✓ 0.0±0.0 36.8±1.3 77.2 95.6 83.6 90.6
JTT (Liu et al., 2021) × ✓ 74.5±2.4 90.2±0.8 83.8±1.2 89.3±0.7 81.5±1.7 88.1±0.3

CnC (Zhang et al., 2022) × ✓ 77.4±3.0 90.9±0.6 88.5±0.3 90.9±0.1 88.8±0.9 89.9±0.5
SPARE (Yang et al., 2024) × ✓ 83.0±1.7 91.8±0.7 89.8±0.6 94.2±1.6 90.3±0.3 91.1±0.1

AFR (Qiu et al., 2023) × ✓ - - 90.4±1.1 94.2±1.2 82.0±0.5 91.3±0.3
CoBalThg (ours) × ✓ 79.0±4.3 96.6±1.8 90.6±0.7 93.7±0.6 88.0±2.5 92.3±0.7

ERM × × 0.0±0.0 20.1±0.2 62.6±0.3 97.3±1.0 47.7±2.1 94.9±0.3
MaskTune (Asgari et al., 2022) × × - - 86.4±1.9 93.0±0.7 78.0±1.2 91.3±0.1

ULA (Tsirigotis et al., 2023) × × 75.1±0.8 - 86.1±1.5 91.5±0.7 86.5±3.7 93.9±0.2
XRM (Pezeshki et al., 2023) × × 70.5 - 86.1 90.6 89.8 91.8

CoBalTig (ours) × × 73.5±2.1 96.0±1.6 89.0±1.6 92.5±1.7 89.2±1.2 92.3±0.6
CoBalTavg (ours) × × 74.5±2.0 96.2±2.0 90.6±0.7 93.8±0.8 81.1±2.7 92.8±0.9

nearly 3% on Waterbirds, while also demonstrating compet-
itive performance on CelebA and CMNIST with an average
accuracy similar to the other methods.

Even when selecting the model based on the average vali-
dation accuracy (CoBalTavg), without attempting to infer
groups, our model still demonstrates competitive results.
Unlike other baselines that leverage human-annotated group-
labeled training or validation sets for early stopping or hyper-
parameter tuning (as detailed in Appendix C), our method
makes group inferences for both training and validation data
without relying on human labels.

Furthermore, our method exhibits similar performance to
other methods employing group annotations. We provide
visualizations of the feature attributions of ERM and our
method in the Waterbirds dataset, as illustrated in Figure 4,
demonstrating that our method relies less on spurious back-

grounds compared to ERM.

4.2.2. SCENARIO 2 (URBAN CARS)

When multiple spurious correlations are present in the
datasets, existing methods show a Whack-a-mole behav-
ior, where mitigating one spurious correlation amplify the
other in minority groups. CoBalT is good at identifying
abstractions from data, which help to identify multiple spu-
rious attributes and thus improve spurious correlation.

From Table 2, we can see that when there are two spuri-
ous correlations such as backgrounds and co-occurring ob-
jects, our method overcomes these correlations and achieves
SOTA performance outperforming SPARE by 3%. We also
see that methods like EIIL, LfF and JTT struggle to perform
better in the presence of multiple spurious correlations.
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Table 2. Results from the Urban Cars dataset using ResNet-50,
when there are multiple spurious correlations (BG+CoObj) exist.

Method Worst Group Average
ERM 28.4 97.6
EIIL 50.6 95.5

GEORGE 35.2 97.9
LfF 34.0 97.2
JTT 55.8 95.9

SPARE 76.9±1.8 96.6±0.5
GDRO 75.2 91.6

CoBalTig (ours) 80.0±2.8 96.3±0.6
CoBalTavg (ours) 76.8±6.5 97.3±0.7

4.2.3. SCENARIO 3 (IMAGENET-9 BACKGROUND)

In the more realistic setting of the ImageNet-9 background
challenge dataset, we assess the attribute generalization
capability of our method. Training our model exclusively
on the original ImageNet-9 trainset, without accessing the
‘mask-rand’ subset where background images are randomly
swapped, we select the model based on inferred worst group
performance on the original validation set.

As illustrated in Table 3, our method (CoBalTig) outper-
forms MaskTune (Asgari et al., 2022) by 1.1% on Mixed-
same, 1.5% on Mixed-rand, and 1.9% on Only-FG. Ad-
ditionally, we observe improvements compared to other
methods across all test sets. These results underscore the ef-
ficacy of our concept discovery method and the importance
weight-based sampling strategy in learning task-relevant
information and mitigating spurious correlations. Notably,
our sampling technique for addressing imbalances within
the training set remains effective even in scenarios where
the imbalance is not readily apparent.

Many techniques used for Waterbirds and CelebA are inap-
plicable to this dataset due to the lack of inference groups.
Our method, however, is more versatile and performs well
across various scenarios.

Table 3. Results on Background Challenge (ImageNet-9). Top
rows based on ResNet-50 (ImageNet-Pretrained), 4 slots and code-
book size 8. The results of other methods are taken from Asgari
et al. (2022).

Method Original Mixed-same Mixed-rand Only-FG
ERM 97.9 90.5 79.2 88.5

CIM (Taghanaki et al., 2021) 97.7 89.8 81.1 -
SIN (Sauer & Geiger, 2021) 89.2 73.1 63.7 -

INSIN (Sauer & Geiger, 2021) 94.7 85.9 78.5 -
INCGN (Sauer & Geiger, 2021) 94.2 83.4 80.1 -
MaskTune (Asgari et al., 2022) 95.6 91.1 78.6 88.1

CoBalTig (ours) 97.9 91.2 80.1 90.0
CoBalTavg (ours) 97.9 91.2 80.3 90.1

4.2.4. RESULTS WITHOUT VALIDATION GROUPS

In our previous evaluations, we selected the model by early
stopping based on the worst group validation performance,

with the groups being inferred on the validation data by our
proposed method. To evaluate the impact of model selec-
tion, we now consider a scenario where we lack access to
human-annotated validation groups for CelebA. In this case,
other methods select the model based on average valida-
tion accuracy, as they typically rely on human-annotated
validation groups.

From Table 4, we can see that the performance of different
methods substantially degrades when group-labeled vali-
dation data is unavailable for early stopping. Many of the
group inference methods perform even worse than ERM,
with the notable exception of MaskTune. However, Mask-
Tune still performs significantly worse than our methods
CoBalTig and CoBalTavg . This underscores the critical im-
portance of having access to group-labeled data for many
baseline methods to effectively work.

In contrast, our method proves valuable by inferring groups
in an unsupervised manner. when we perform early stopping
based on average validation accuracy, akin to the baseline
methods in this table, our method CoBalTavg significantly
outperforms others, particularly on the worst group.

Table 4. Results from the CelebA dataset using ResNet-50 (when
early stopping is not done using validation group labels for other
methods). We do early stopping based on our inferred groups
on the validation set without using validation group labels. The
baseline results are taken from Asgari et al. (2022).

Method Worst Group Average
ERM 47.7±2.1 94.9±0.3

CVaR DRO (Levy et al., 2020) 36.1 82.5
DivDis (Lee et al., 2023) 55.0 90.8

LfF 24.4 85.1
JTT 40.6 88.0

MaskTune 78.0±1.2 91.3±0.1
CoBalTig (ours) 89.2±1.2 92.3±0.6

CoBalTavg (ours) 81.1±2.7 92.8±0.9

4.2.5. INTERPRETATION OF CONCEPTS

Our proposed method decomposes images into high-level
concepts in an unsupervised way and clusters the images
based on those concepts. Through the slot-based decompo-
sition model, objectness or high-level concepts emerge in
complex real-world data sets, which can be viewed through
the attention map of each slot as in Figure 3. For example,
in Waterbirds, the region grouped by slots belongs to parts
of the body of birds and background such as trees, water, etc.
In the IN-9L dataset, the slot distinguishes humans, animals,
grass, etc. For CelebA, the model learns to separate the
nose, eyes, and hair on the human face.

These decomposed slot representations are matched with a
set of vector-quantized codes from the learned dictionary.
Each code in the dictionary represents high-level abstract
concepts. This approach effectively makes each code as the
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Figure 4. Gradcam heat-map on Waterbirds dataset (from left to
right Input, ERM and CoBalT respectively in three columns). ERM
models spuriously correlates to background information for classi-
fying bird types whereas our methods reduce the spurious correla-
tion by focusing on image regions that contain birds.

centroid of a specific cluster. By matching slot representa-
tions to the closest centroid, we can categorize an image
into multiple distinct clusters. This allows us to identify and
group images based on shared high-level concepts, despite
the fact that they belong to different classes. Such an orga-
nization becomes particularly insightful when we observe
images from varied classes clustering together. This clus-
tering is based on the similarity of the underlying concepts
these images represent. For example, images from different
classes but with a common feature or concept might find
themselves grouped in the same cluster (e.g. trees and water
in Figure 1 respectively).

4.2.6. LIMITATIONS WITHOUT SPATIALLY SEPARABLE
CONCEPTS

Our method relies on the disentanglement of different con-
cepts by clustering slots, which implicitly assumes spatial
separability between different concepts. These concepts are
assumed to be at the object level that might represent fore-
ground/background spurious correlations. We hypothesize
that because of this, on CMNIST and CelebA (Table 1),
where concepts are less spatially separable, our method’s
benefit is a bit limited compared to other datasets like Water-
birds, Urban Cars, Bar (Nam et al., 2020) (Table 6), where

concepts have clear spatial regions. Further investigation in
this direction is needed. In principle, one could try to learn a
disentangled representation of the high level objects and use
the disentangled factors of variations as concept. Work like
Singh et al. (2022) that further factorizes the representation
of each semantic region can be used to mitigate this issue by
allowing one spatial region to be represented as a collection
of concepts.

4.2.7. AVOIDING REPRESENTATION COLLAPSE

Our concept discovery method is based on self-supervised
Siamese representation learning, utilizing two parallel en-
coders: the student produces the source slot encoding and
the teacher produces the target encoding. One of the main
issues with this kind of encoder-only learning framework is
representation collapse (Hua et al., 2021). During training,
our method can obtain a degenerate solution in which all
representations of the slots fall into one cluster, while still
minimizing the objective in Equation 5.

To avoid this degenerate case, we employ a similar set of
ideas as DINO (Caron et al., 2021) to have asymmetric
teacher and student branches: 1) using data augmentations
of teacher and student views; 2) centering and sharpening
of teacher slot distributions; 3) updating teacher weights by
taking an exponential moving average of student. Typically,
the teacher model’s weights are updated after every gradient
update step for most datasets. However, for the CMNIST
datasets, data augmentation is not used. To maintain the
asymmetry between the teacher and student models in the
absence of data augmentation, the updates for the CMNIST
datasets are performed less frequently, specifically after
every 20 steps.

5. Conclusion
Drawing inspiration from object-centric representation
learning based on slot attention, we proposed a framework
for decomposing images into concepts in an unsupervised
way. We demonstrated the effectiveness of these concept
clusters in discerning between minority and majority group
samples within the dataset, all without relying on human
group annotations. Leveraging these concepts, we devised
an importance sampling technique that prioritizes rare con-
cepts for each class, culminating in the training of a robust
model exhibiting consistent performance with existing base-
lines in mitigating worst group errors.

Our exploration in this paper has been confined to vision
datasets; however, future investigations could extend to NLP
or multi-modal datasets to further alleviate biased learning.
Additionally, promising research avenues involve techniques
targeting spurious concepts, such as concept-aware data
augmentations, warranting further exploration.
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A. Detailed architecture
Encoders and Projectors. We employ a student encoder fs, projector gs for a branch we call the student branch which is
updated using stochastic gradient descent (SGD). For simplicity, we represent the parameter weights of both the encoder and
the projector of the student branch by θs. Similarly, the other branch named the teacher branch, parameterised by θt, has
the same set of architectural components, respectively, teacher encoder ft, projector gt, but with different sets of weights,
which are updated by the exponential moving average of the student parameters as:

For an input image, two randomly augmented views xs, xt ∈ Rc×h×w are created, where c, h, and w are input image
channel, height and width respectively; the goal is to extract slot representations from one view of the teacher branch and
apply consistency to another view of the student branch. Firstly, the augmented views are encoded and projected by the
student and teacher encoder and projectors as ys = gs(fs(xs)) ∈ RP×d and yt = gt(ft(xt)) ∈ RP×d, where are P spatial
patch representations of dimension d.

Slot Module. We can learn abstract concept representations by grouping semantically similar patch representation vectors.
To do that, we employ randomly initialized vectors for the student branch, which we call student slots Ss ∈ RN×d, where
N is the number of slots with dimension d. These slot vectors are then used to perform an attention-weighted pooling of
patch vectors. To encourage competition among slots, where each slot attends to distinctive and semantically similar patch
vectors, we utilize slot attention (Locatello et al., 2020) where attention is calculated over the ‘slot’ axis as below:

We define any normalized vector as z̄ = z/||z|| and any column normalized matrix as Z̄ = [z̄1, ..., z̄N ]

As = softmax
N

(S̄s.ȳs
T /τs) ∈ RN×P (7)

where τs is the temperature for the student.

Then we can calculate concept representations using slots by pooling the patch representations based on the attention maps
as follows:

zs = As.ys, zt = At.yt ∈ RN×d (8)

Teacher We do the same for the teacher branch, teacher slots by initializing them from the student slots weights
St ∈ RN×d as: The weights of Ss are updated by SGD, but the weights of St are updated by the exponential moving
average of Ss as follows:

θt = αt · θs + (1− αt) · θt (9)
St = (1− αt) · Ss + αt · St (10)

At = softmax
N

(S̄t.ȳt
T /τt) ∈ RN×P (11)

where τt is the temperature for the teacher.

Loss Since we utilize a two-branch teacher-student architecture for better inductive bias to facilitate higher-level abstraction,
we focus on attention distillation from teacher to student. The student model learns to mimic the attention patterns of
the teacher, effectively capturing the representation of the essential abstract concept from the data without explicitly
reconstructing the input.

We utilize the attention distillation loss introduced in Wen et al. (2022):

Ldis = −
∑
N

∑
P

M ◦At logAs (12)

where M is a mask that prevents distillation of non-overlapping patches from the teacher to the student views. Since the
student and teacher branches observe two randomly cropped views, there may exist non-overlapping patches to which we do
not want to apply distillation.

To avoid redundant slots and facilitate the learning of different information, we use a contrastive loss between the slot
representations introduced in Wen et al. (2022). This ensures that similar concepts have closer representations in the
embedding space, while dissimilar ones are further apart.
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Lcon =
1

N

N∑
i=1

− log
I(i) exp

(
p(z̄is).z̄

i
t/τc

)∑N
î=1 I (̂i) exp

(
p(z̄ îs), z̄

î
t/τc

) (13)

where p is predictor network as in (Caron et al., 2021) and I is an indicator function that finds common slots between the
views of the teacher and the student after masking out the slots that fail to attend to any patch as below:

I(i) =

{
1 if (ms)i = (mt)i

0 otherwise

(ms)i =

P∑
j=1

1{i = argmaxA:j
s } ≥ 1

(mt)i =

P∑
j=1

1{i = argmaxA:j
t } ≥ 1

B. Implementation Details
Architecture

For the training of the concept learning model, Imagenet pre-trained ResNet-50 has been used for the student encoder fs
and the teacher encoder ft. The student ps and teacher pt projector networks are similar to(Caron et al., 2021) with a hidden
dimension of 1024 and an output dimension of 32. We also use 32 as the slot dimension and the concept vector dimension
for all datasets except CMNIST. For CMNIST, we use slot and hidden dimensions of 16 and 32, respectively.

B.1. Training Details

We train the concept discovery and classification model using ResNet50 (He et al., 2016) pre-trained on ImageNet from the
Pytorch library (Paszke et al., 2019) as a backbone for all data sets except CMNIST where LeNet-5 (LeCun et al., 1998) is
used. All experiments were performed with NVIDIA A100 and V100 GPUs.

Data Augmentation

For the training of the concept learning model, we follow the data augmentation scheme proposed in Wen et al. (2022).

Hyperparameters

For both the student and teacher networks, the temperature values τs and τt are 0.1 and 0.07, similar to Caron et al. (2021).
For the exponential moving average (EMA) update coefficients αc and αt, we use 0.9 and 0.99 respectively. To obtain the
sampling factor (λ) in Algorithm 1, we use the average silhouette score as in Yang et al. (2024). For all datasets, when the
average silhouette score ≤ 0.8, we set λ = 2, otherwise 1. For Waterbirds and Urban Cars, it is 2, and for other data sets, it
is set to 1.

For training the concept discovery model, we use Adam (Kingma & Ba, 2015) as an optimizer with a learning rate of 2e−4

and a weight decay of 5e−4 for 50 epochs with a batch size of 128. The same configuration is used for all data sets, except
CMNIST and CelebA, which are trained for 20 epochs. For CMNIST, the batch size is 32.

We train classification models using SGD with 0.9 momentum for all datasets. The learning rate is 1e−4, except for CMNIST
(1e−3). A weight decay of 0.1 is applied to Waterbirds, CelebA, and Urban Cars. Training epochs: Waterbirds (300),
CelebA (60), IN-9L (100), Urban Cars (300), and CMNIST (20). The batch size is 128 for all datasets, except CMNIST
(32).
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C. Additional Results
Ablation Studies

To perform an ablation study on the Waterbirds dataset, we used different numbers of slots {2, 4, 6, 8} and the size of
the codebook {2, 4, 8, 12, 16}. From Figure 6, we can see the segmentation mask with a varying number of slots. From
the figure, it is clear that on average 3 − 4 and 2 − 6 slots are activated per image when we initialize with 4 and 6 slots,
respectively. We can identify the activated slots for each image based on Equation A. If we increase the number of slots,
we can see fine-grained segmentation. Figure 7 and Figure 8 shows similar ablation studies of segmented images while
varying the # slots in the CelebA and IN-9L data sets, respectively.

From Figure 5, we can see the impact on the performance of the worst group accuracy when varying the number of slots
and the size of the codebook. It is evident that over-segmentation (with more slots) degrades the worst group accuracy. We
hypothesize that we can have the right balance between the worst group and the average accuracy with a suitable number of
slots, which encourages us to learn abstract semantic concepts. In all of our experiments, we use 4 as the # slot for all data
sets.

Table 5 shows the worst group and average accuracy on CelebA dataset while varying the size of the codebook and fixing
the # slots to 4.

Codebook Size Worst group Acc Avg Acc
4 74.4 93.5
8 88.3 92.6

12 86.7 89.7
16 88.3 90.4

Table 5. Varying Codebook size on CelebA (# slots fixed to 4)
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Figure 5. Ablation on Worst group Test Accuracy on Waterbirds dataset with varying slots and codebook size

Results on Bar Dataset with Spatially Separable Concepts

We further evaluated our method on the Biased Action Recognition (BAR) dataset (Nam et al., 2020), which includes six
action classes biased to distinct places. In this dataset, the concepts have clear spatial regions and we see (Table 6) the
efficacy of our method, where it outperforms other baselines.

Table 6. Result on BAR (Nam et al., 2020) dataset

ERM ReBias (Bahng et al., 2020) LfF BiaSwap (Kim et al., 2021) CoBalTig

51.9±5.9 59.7±1.5 63.0±2.8 52.4 67.0±0.9
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# slots: 4 # slots: 6 # slots: 8

Figure 6. Ablation of segmentation mask with varying slots on Waterbirds

# slots: 4 # slots: 6 # slots: 8

Figure 7. Ablation of segmentation mask with varying slots on CelebA
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# slots: 4 # slots: 8 # slots: 12

Figure 8. Ablation of segmentation mask with varying slots on IN-9L
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