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ABSTRACT

Known for their impressive performance in generative modeling, diffusion mod-
els are attractive candidates for density-based anomaly detection. This paper in-
vestigates different variations of diffusion modeling for unsupervised and semi-
supervised anomaly detection. In particular, we find that Denoising Diffusion
Probability Models (DDPM) are performant on anomaly detection benchmarks
yet computationally expensive. By simplifying DDPM in application to anomaly
detection, we are naturally led to an alternative approach called Diffusion Time
Estimation (DTE)[|DTE estimates the distribution over diffusion time for a given
input and uses the mode or mean of this distribution as the anomaly score. We de-
rive an analytical form for this density and leverage a deep neural network to im-
prove inference efficiency. Through empirical evaluations on the ADBench bench-
mark, we demonstrate that all diffusion-based anomaly detection methods perform
competitively for both semi-supervised and unsupervised settings. Notably, DTE
achieves orders of magnitude faster inference time than DDPM, while outper-
forming it on this benchmark. These results establish diffusion-based anomaly
detection as a scalable alternative to traditional methods and recent deep-learning
techniques for standard unsupervised and semi-supervised anomaly detection set-
tings.

1 INTRODUCTION

Anomaly detection seeks to identify observations that differ from the others to such a large extent
that they are likely generated by a different mechanism (Hawkins| [1980). This is a longstanding
research problem in machine learning with applications in various fields ranging from medicine
(Pachauri & Sharmal 2015} [Salem et al.| [2013), finance (Ahmed et al.| [2016b)), security (Ahmed
et al.,|2016a), manufacturing (Susto et al.,[2017)), particle physics (Fraser et al.,|2022) and geospatial
data (Yairi et al.,2006). Despite its significance and potential for impact (e.g., leading to the discov-
ery of new phenomena), to this day traditional anomaly detection methods, such as nearest neigh-
bours, reportedly outperform deep learning techniques on various benchmarks (Han et al., [2022)
by a significant margin. This is true for unsupervised, semi-supervised, and supervised anomaly
detection tasks. However, the growing number of applications involving high-dimensional data and
massive datasets are beginning to challenge the classical, and in particular non-parametric, tech-
niques, and there is a need for scalable, interpretable, and expressive deep learning techniques for
anomaly detection.

In recent years, denoising diffusion probabilistic models (DDPMs) (Ho et al., |2020) have received
much attention as a powerful class of generative models. While these models have been successfully
utilized for anomaly detection in domain-specific image datasets (Wolleb et al., [2022; Zhang et al.,
2023a; Wyatt et al., [2022)), a comprehensive exploration of their applicability for general-purpose
anomaly detection across diverse tabular, image, and natural language datasets is notably absent.

Our starting point is the observation that DDPM exhibits competitive performance compared to
previous approaches for unsupervised and semi-supervised anomaly detection. These are some of
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the most challenging settings, where either an unlabelled mix of normal and anomalous samples
are available for training or, at best, the training data only includes normal samples. However,
the expressivity and interpretability of DDPM come with a considerable computational cost. This
computational complexity poses challenges for anomaly detection tasks involving large datasets or
data streams.

In anomaly detection using DDPM, we deterministically “denoise” the input and measure the dis-
tance to its denoised reconstruction; a large distance indicates an anomaly. Since we only use this
distance for outlier identification, in order to reduce the complexity of the diffusion-based approach,
we propose to directly estimate this distance, which is correlated with diffusion time.

More precisely, we estimate the posterior distri-
bution of diffusion time (or noise variance) for a o e
given input. This estimated distribution serves ¢
as a guide for identifying anomalies, as they are
anticipated to exhibit higher posterior density
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cal to k-Nearest Neighbours (kNN) for anomaly
detection. We then propose a parametric model,
a deep neural network, allowing us to leverage
the generalization capability and efficient infer-
ence time of deep learning.

Figure 1: Average inference time vs. aver-
age AUC ROC for all 57 ADBench datasets in
the semi-supervised setting. Lower right is bet-
ter (DTE Categorical). Colour scheme: red
We provide an extensive evaluation compared (diffusion-based), green (deep learning), blue
to classical and other deep models for differ- (classical).

ent anomaly detection settings on more than 57

datasets from ADBench (Han et al. |2022). Our empirical results suggest that using a single deep
neural network architecture across all datasets and settings makes the diffusion model competitive
with classical and other deep models. Figure [I] shows the efficiency and effectiveness of differ-
ent anomaly detection algorithms across all datasets in ADBench. Notably, our proposed method
surpasses the direct application of DDPMs, achieving substantial improvements in inference time.

The contributions of our work are summarized as follows:
 Evaluation of denoising diffusion probabilistic models on various anomaly detection tasks
encompassing tabular data and embeddings of images and natural language datasets.

* Development of a simplified approach that models the posterior distribution over diffusion
time as a proxy for anomaly detection.

* Derivation of an analytical form of the posterior distribution of diffusion time and develop-
ment of a non-parametric estimator that leads us to kNN.

* Introduction of a parametric approach utilizing a deep neural network for improved gener-
alization and scalability.

* Implementation of additional baselines and extensive evaluation on 57 datasets from AD-
Bench, showcasing competitive performance compared to classical and existing deep-
learning-based anomaly detection algorithms.

* Investigation into the interpretability of diffusion-based methods, including our novel ap-
proach, highlighting their strengths and limitations.

» Exploration of optimal representation selections for image datasets with diffusion methods.

2 PRELIMINARIES

A classification of anomaly detection methods is based on the availability of labelled data. Super-
vised setting is similar to binary classification with unbalanced classes since the number of anomalies
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in the data is generally a small fraction of the total number of samples. This setup is limited to the
identification of known anomalies. The more challenging unsupervised setting assumes that the data
is a mix of normal and anomalies, without access to labels. Methods in this category often make
assumptions about the data-generation process. Therefore, embedding techniques and deep genera-
tive models are prime candidates. However, a challenge for deep models is the fact that they tend to
model the anomalies within the input data more easily, making the task of identifying them harder. A
middle ground between supervised and unsupervised is semi-supervised or one-class classification
setting, where one has access to purely normal samples during training, yet anomalies of unknown
nature can exist at inference time. Perhaps confusingly, the term semi-supervised is also used when
partial labelling of anomalies is available during the training. In this work, we are interested in
identifying anomalies with an unknown distribution and therefore do not assume access to any la-
bel information for outliers. That is we consider both unsupervised and the one-class classification
version of semi-supervised anomaly detection.

2.1 DIFFUSION PROBABILISTIC MODELS

A diffusion process is a stochastic process characterized by a probability distribution that evolves
over time, governed by the diffusion equation. Diffusion probabilistic models (Sohl-Dickstein et al.}
2015} |Ho et al., [2020) are latent variable probabilistic models where the state at time steps larger
than zero are considered latent variables. Let xg ~ ¢(x) denote the data and x4, ...,xr denote
the corresponding latent variables. The forward diffusion process is generally fixed to add Gaussian
noise at each timestep according to a variance schedule (i, ..., 7. The approximate posterior
q(x1.7 | X0) is given by,
T

g(x1.7]%0) : H (x¢]x4—1) q(x¢|x¢—1) == N (%31 — Bexe—1, Be]) )]

Choosing the transitions as Gaussian distributions enables sampling x; at any time in closed form.
Letay :=1— By and @ := Hi:l «, then,

q(x¢|x0) 1= N (x4; Vauxo, (1 — a)I). 2

Diffusion probabilistic models then learn transitions that reverse the forward diffusion process. Start-
ing at p(xr) = N (x7;0, I), the joint distribution of the reverse process pg(xg.7) is given by,

T
po(xor) = p(xr) [ [ po(xicalxe),  polxicalxe) = N(xe1; po (%0, 1), Do (x1,1))  (3)
t=1
This parameterized Markov chain also called the reverse process, can produce samples matching the
data distribution after a finite number of transition steps.

3 DIFFUSION TIME ESTIMATION

Denoising diffusion probabilistic models (DDPM), as introduced in (Ho et al., [2020), can be used
to generate samples matching the data distribution even in high-dimensional spaces. The reverse
diffusion process implicitly learns the score function of the data distribution and can be used for the
likelihood-based identification of anomalies. A common approach used in prior works on anomaly
detection using diffusion models (Wolleb et al. 2022; Zhang et al., 2023a; Wyatt et al.| 2022) is to
reconstruct input samples by simulating the reverse diffusion chain and then using the reconstruction
distance to identify anomalies. This is particularly useful where anomalies are localized in the
image, and the difference between the input and its reconstruction identifies this localized anomaly.
While all previous works focus on this scenario in image data, we consider the broader problem of
identification of anomalous samples without assumptions on data type or the nature of the anomaly.

Toward this objective, we evaluate the reconstruction-based approach using DDPMs on the AD-
Bench benchmark, which comprises 57 datasets, including tabular, image, and natural language
data. We observe that the choice of timestep at the start of reverse diffusion is arbitrary, yet it can
significantly affect the anomaly detection performance. We found that using 25% of the maximum
timestep globally leads to good results; see the Appendix [A]for an ablation.
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Figure 2: DDPM and DTE on a toy dataset shown in (a). (b) shows the Gaussian density function
associated with the lowest timestep of DDPM and (c) shows the vector field corresponding to the
gradient of this density. (d) plots the mode of the DTE posterior distribution over diffusion time,
which we show in subsequent sections is an inverse Gamma distribution. (e) shows the gradient of
(d), and (f) shows the flow associated with this gradient, showing that random samples are mapped
toward the data manifold.

As anticipated, the expressivity of these models allows them to perform competitively compared
to prior work. However, inference for a single data point involves simulating the reverse diffusion
chain in its entirety, making this approach computationally expensive. By quantifying the disparity
between the reconstructed output and the original input, the objective is to effectively capture the
deviations of anomalous samples from the underlying data manifold. We contend that modeling the
score function by learning the reverse process is unnecessary if the objective is only the identification
of anomalies.

Building upon this idea, we propose a much simpler approach that does not require modeling the
reverse diffusion process but instead models the distribution over diffusion time corresponding to
noisy input samples. Assuming anomalies are distanced from the data manifold, the density for
larger timesteps should have a higher value for anomalies, enabling their probabilistic identification.
This can be seen as a direct estimation of reconstruction error.

More concretely, we simulate anomalous samples using a diffusion process and train a neural net-
work to predict the diffusion time corresponding to the noisy samples. Provided that the noisy
samples cover the entire feature space, this procedure should also capture potential anomalies. Fig-
ure [2] contrasts DDPM and DTE on a toy dataset. The success of our method in using diffusion for
anomaly detection is due to the space-filling property of the diffusion process; different regions of
the space are sampled at different rates, depending on their proximity to the data manifold. To our
knowledge, this is the first setting that uses this property of diffusion beyond its application in learn-
ing time-dependent score functions for generative modelling. While in that setting, the estimated
score is able to meaningfully approximate the true score over the entire space, we show that we are
able to approximate the diffusion time for arbitrary points, including normal or anomalous points.

3.1 POSTERIOR DISTRIBUTION OF DIFFUSION TIME

Assuming x, € R? is produced through a diffusion process, starting from the data manifold, our
goal in this section is to identify the distribution over its diffusion time, as a surrogate for its dis-
tance from the manifold. The diffusion process described by Equation (2) specifies a distribution
corresponding to each timestep. First, let us assume the dataset consists of a single data point at the
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origin. Denote the variance at time ¢ as af = 1 — &, and consider the d-dimensional zero mean
Gaussian distribution at each timestep A (0, 02). The posterior distribution over o given x; is:

_ s |?
plo?ixe) o plxalo?) plo?) = N0, 02) o oy S (22 )
t
a a+1
This is an inverse Gamma distribution p(c?;a,b) = ﬁ (%) exp (—%) with parameter
t t
values a = d/2 — 1 and b = ||x,|?/2.

(a) Analytical posterior p(o7|xs) (b) Non-parametric estimate

Figure 3: Posterior timestep distribution p(o?|x;), where x, is produced using diffusion with dif-
ferent time steps s € {1,...,T}, averaged over the vertebral dataset. (a) shows the analytical
distribution computed by placing Gaussian distributions of different variances at each point in the
dataset, and (b) shows the inverse Gamma distribution with scale parameter value depending on the
average distance to the k-nearest neighbours (k = 32).

If instead of a single data point at the origin, we have a dataset D, with the corresponding data
distribution p(x), we have

P07 %) o p(xslo})p(o) = Y p(xs|x0. 07 )p(x0) = D N(xs:%0,071). )
X0 x0ED

We refer to Equation (@) as the analytic estimator in subsequent sections since it is the exact poste-
rior distribution. The posterior distribution can be interpreted as adding the likelihoods of Gaussian
distributions centered around data points x¢ € D with different (time-dependent) variances. Substi-
tuting the Gaussian density function and simplifying, we get

- s — xo]|? - [[xs — ol|®
p(o?]xs) o Z oy Yexp (—w =0, %exp [ log Z exp —T .

x0€D x0 €D

We can approximate the log-sum-exp term using max function:

L s = %ol _ 4 Ui s = o
p(of]xs) % oy Yexp <>I<{1127>§_52(7t2 =0, exp _o?,glé%sf )]

The posterior over diffusion time approximately has the form of an inverse Gamma distribution with
the shape parameter a = d/2 — 1 depending only on the dimensionality of the data and the scale

2
parameter b = miny,ep @ depending on the distance of the input point to the closest point

in the dataset. Note that, asa > 0 = d > 2, this analysis is only valid for three or higher
dimensions.
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3.2 NON-PARAMETRIC MODEL

The posterior over diffusion time given by Equation (5) can potentially be used as a non-parametric
approach to anomaly detection. The approximation of log-sum-exp using the maximum value (near-
est neighbour) becomes less accurate for larger timesteps, in which a point has a comparable distance
to several points in the dataset. We found that instead of setting the scale parameter b based on the
distance to the closest point, approximating log-sum-exp using the average distance to k-nearest
neighbours of the input point works better in practice. The non-parametric estimator is then:

_ 1 1 [|lxs — xo]|?
2 X 5@ N s — 200
potix) Sortexp |~ 3 e ©
x0 EKNN(x5)

Sl v

Figure [3] shows the analytical posterior distribution obtained using Equation (@) and the non-
parametric estimator given in Equation (6)) for a real dataset.

The upshot is that, given a point x4, this method approximates the scale parameter of the inverse
Gamma distribution using the average distance to its k-nearest neighbours. The anomaly score is
the mean of this distribution over diffusion time. As seen in Figure [3| points x that are produced
using diffusion with larger time-steps also have a higher posterior mean, on average, enabling us to
identify them as points that are far from the manifold. Interestingly, this method closely resembles
the classical k-nearest neighbours (kNN). In fact, the anomaly rankings given by these methods are
identical. In our experiments, the difference in score comes from the distance calculation: for DTE
non-parametric, we take the mean distance from the k-nearest neighbours as opposed to (a variation
of) kNN that takes the distance from the kth-nearest neighbour.

3.3 PARAMETRIC MODEL

The non-parametric estimator of diffusion time becomes compute and memory-intensive when deal-
ing with large datasets due to the need to find the k-nearest neighbours for each input sample in the
entire dataset. To tackle the scalability problem, we employ deep neural networks to estimate the
posterior distribution, which also enhances generalization capabilities. The full training procedure
for both parametric models is available in Appendix
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Figure 4: Predicted diffusion time against ground truth diffusion time for Gaussian model (¢5-
regression), Inverse Gamma model, and categorical model (with seven bins) on the test set for
various datasets. The maximum length of the diffusion Markov chain is 7' = 300. The shaded
region indicates the standard deviation in predictions across the dataset.

Inverse Gamma model In Section [3.1] we saw that the posterior distribution over time-dependent
variance has the form of an inverse Gamma distribution. We train a deep neural network parameter-
ized by 6, which we denote by fj, to predict the scale parameter b of the inverse Gamma distribution,
given the noisy sample x;. Since the shape parameter a depends only on the dimensionality of the
data, it is a known fixed parameter. We minimize the negative log-likelihood given by:

L(0) := —Eq x, [alog fo(x¢) — (a+ 1)logo} — fo(x¢)/07) (7

The expectation is over data samples xo ~ p(x) and timesteps ¢ ~ U[1,T]. The mode of the
distribution is used as anomaly score.
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Figure [ shows the predicted timestep for the inverse Gamma model applied to different datasets,
with the length of Markov chain 7" = 300. Compared to standard /5 regression which assumes that
the output variable is Gaussian distributed, the inverse Gamma model has a much lower bias for
diffusion time prediction for smaller timesteps, which empirically validates our analysis. However,
this model suffers from high bias and high variance for larger timesteps. The high bias can be
attributed to the approximation error of log-sum-exp using k-nearest neighbours, which becomes
inaccurate for larger timesteps. The high variance is a consequence of the shape of the inverse
Gamma distribution, which becomes flat for large values of the scale parameter (see Figure[3).

Categorical model The inverse Gamma model while analytically accurate, can restrict the ex-
pressivity of the neural network. In order to provide more flexibility in learning the diffusion time
distribution, we can model it as a categorical distribution over T classes, where T is the length of the
Markov chain associated with the diffusion process. This approach does not assume any parametric
distribution over diffusion time and requires the model to accurately predict the full distribution.
Let y; € {0,1}7 denote the one-hot vector with one at coordinate ¢, and fy denote the deep neural
network that predicts the class probabilities, fy : X — [0, 1]7. We minimize the cross-entropy loss
function, which is equivalent to maximizing the log—likelihood of the categorical distribution:

Zy log ( fo xt)““))] (8)

In practice, we simplify the learning task by combining timesteps into bins and training a model to
predict the correct bin. If B_denotes the number of bins, then the corresponding bin for a timestep
t would be L%J Figure |4| shows the predicted timestep for the categorical model on different
datasets. Compared to the inverse Gamma model, it suffers from significantly less bias across the
entire range of timesteps. The score calculation is described in Appendix with the training
algorithm in Appendix [D.2]

L(0) :=E; 4,

4 EXPERIMENTS

Setting We perform experiments on the ADBench benchmark (Han et al.|[2022), which comprises
a set of popular tabular anomaly detection datasets as well as newly created tabular datasets made
from images and natural language tasks, all described in Appendix The implementation details
are provided in Appendix [D] with the training algorithm, model architecture, hyperparameters, and
comparison of the run-time. Some ablation studies are in Appendix [A] We implement and compare
the results of the various approaches proposed in Section [3} the non-parametric, the parametric
inverse Gamma, and the parametric categorical DTE.

Baselines We compare against all the unsupervised learning methods included in ADBench. These
include classical methods, namely CBLOF (He et al., |2003), COPOD (Li et al.| |2020), ECOD (L1
et al., 2022)), FeatureBagging (Lazarevic & Kumar, 2005), HBOS (Goldstein & Dengell [2012),
IForest (Liu et al., [2008), kNN (Ramaswamy et al., 2000), LODA (Pevny, 2016), LOF (Breunig
et al., 2000), MCD (Fauconnier & Haesbroeckl 2009), OCSVM (Scholkopf et al.l [1999), and PCA
(Shyu et al.l [2003). The deep learning-based methods include DeepSVDD (Ruff et al, |2018), and
DAGMM (Zong et al |2018)). Outside of ADBench, we also compare against some more recently
proposed deep learning-based approaches such as DROCC (Goyal et al.l [2020), GOAD (Bergman
& Hoshen, 2020), ICL (Shenkar & Wolf, 2022), SLAD (Xu et al.| 2023b)) and DIF (Xu et al.
2023a); see Section [5]for a brief overview. For each method, we picked the best-performing set of
hyperparameters given in their original paper. We also have four additional generative baselines:
normalizing flows with planar flows (Rezende & Mohamed, [2015) to identify anomalies based on
the log-likelihood, DDPM, VAE (Kingma & Welling, [2013)) and GAN (Goodfellow et al., 2014) to
reconstruct the input and compare it with the original input to identify anomalies.

Results Figure [5] shows the overall performance of these different methods on 57 tasks in AD-
Bench, each limited to 50,000 data points. The results for each individual dataset are provided in
Appendix [F] We report the mean AUC ROC and its standard deviation over five different seeds for
each method. For the unsupervised setting, we used bootstrapping over the whole dataset for train-
ing, while inference is made on the full dataset. For the semi-supervised setting, we used 50% of
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Figure 5: AUC ROC means and standard deviations on the 57 datasets from ADBench over five
different seeds for a) the semi-supervised setting using normal samples only for training and b) the
unsupervised setting with bootstrapped training instances. Colour scheme: red (diffusion-based),
green (deep learning methods), blue (classical methods). DTE outperforms all baselines for the
semi-supervised setting apart from kNN. It is also competitive in the unsupervised setting.

the normal samples for training, while the test set contains the rest of the normal samples and all
anomalous samples. The proposed method is among the few competitive in both semi-supervised
and unsupervised settings. In particular, our method outperforms all previous deep learning-based
approaches in both settings significantly and also outperforms the DDPM model. Unsurprisingly,
deep learning methods have a higher variance than non-parametric methods. Using bagging can be
a way to help reduce the variance at the cost of more training and inference time.

Figure [T| compares our method’s performance and inference time with the other baselines. In some
applications, such as medical and network monitoring, fast inference time is crucial as the algorithm
must detect anomalies in real time. Our method uses a forward pass through a simple neural network
for predictions, which gives it the shortest inference time over all the methods considered here.
Training time, inference time and compute amounts are available in Appendix [D.4]

Choice of representation ADBench’s image datasets use vector representation derived from pre-
trained ImageNet embeddings. We investigated the impact of representation quality for semi-
supervised anomaly detection across several datasets: VisA (Zou et al., 2022), CIFAR-10, and
MNIST. We observe that different methods, including DDPM, kNN and DTE, perform better when
applied to image embeddings rather than raw images. In particular, embeddings produced through
self-supervision are generally of higher quality when compared to those produced for classification,
and the embeddings that are specialized or fined-tuned to the target dataset produce the best results.
The results are reported in Appendix [E]

We also observe that KNN remains a top-performing algorithm for anomaly detection, where its only
disadvantage remains its scalability. As explained in Section 3.2} the non-parametric method gives
the same anomaly ranking as kKNN. DTE can thus be approximately interpreted as a parametric k-
nearest neighbours algorithm which can be beneficial for large datasets that require smaller inference
time. To understand the anomalies, both DDPM and DTE are able to identify a “denoised” data
point; DDPM depends on an initial time step hyper-parameter, whereas DTE does not, by using
deterministic ODE flow. However, DDPM outperforms in denoising, being explicitly trained for it.
Further interpretability discussion, illustrated with a toy example, is in Appendix [B]

5 RELATED WORK

We refer the reader to the following surveys for a comprehensive review (Pang et al.,|2021;|Chandola
et al [2009; Ruff et al., 2021 [Hodge & Austin, [2004). Although recently, the spotlight has shifted
towards deep learning methodologies, classical techniques such as kNN (Ramaswamy et al., [2000)
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persistently exhibit strong performance. We compared our method with some of these techniques in
Section 4] Clustering and nearest neighbour algorithms use the distance to score instances, making
them easily interpretable. Clustering algorithms, such as CBLOF (He et al., [2003) and k-means
(MacQueen, |1967), assume that anomalies are either not part of cluster, are part of smaller clusters
than normal instances, or lie further away from the cluster centroid. In contrast, nearest neighbour
algorithms use the distance between points or relative density with respect to their neighbourhood.

As anomalies can be more difficult to detect in high-dimensional spaces and complex data distribu-
tions (Pang et al.,2021)), the development of deep anomaly detection algorithms has been increasing
over the past few years (Ruff et al.| [2021). In particular, several works combine autoencoders with
other classical techniques (Zhou & Paffenroth, 2017} [Kim et al., [2020; |An & Chol 2015}, [Erfani
et al., 2016; Sakurada & Yairi [2014 | Xia et al., 2015). Other notable methods include DeepSVDD
(Ruff et al.|[2018)), DAGMM (Zong et al.,|2018)); Lunar (Goodge et al.,2022), DROCC (Goyal et al.,
2020), GOAD (Bergman & Hoshenl 2020), SO-GAAL and MO-GAAL (Liu et al., 2019), SLAD
(Xu et al., [2023b) and DIF (Xu et al., 2023a). Deep kNN methods (Pang et al., 2018} |Sun et al.,
2022) learn representations to apply kNN. ICL (Shenkar & Wolf}2022), which uses contrastive rep-
resentation learning reported competitive results for ODDS datasets, for the semi-supervised setting.

Diffusion-based Techniques While diffusion models have been previously used for anomaly de-
tection in image and video (Yan et al.| [2023}; [Flaborea et al.,|2023}; [Tur et al.| |2023) data for a one-
class setting (semi-supervised), their application in the context of tabular data and the unsupervised
setting was unexplored. Wolleb et al.|(2022)) proposed an encoding method using a diffusion process
followed by a denoising procedure guided by a classifier. |[Zhang et al.| (2023a) synthesizes anomaly
samples to train the denoising network for anomaly repair. AnoDDPM employs a specific diffusion
noise to train a denoising network for normal image reconstruction (Wyatt et al., 2022). Similarly,
Graham et al.| (2023)) utilized a DDPM to reconstructs an image for multiple different timesteps
combined together to make anomaly scores. |Liu et al.| (2023)) introduced a diffusion method that
reconstruct an image by in-painting the input masked by a checkerboard pattern. Lastly, Zhang et al.
(2023b)) used a latent diffusion model trained with simulated anomalous samples on images.

6 CONCLUSION

This paper investigates the applicability of diffusion modelling for unsupervised and semi-
supervised anomaly detection. We observe that specific design choices in DDPMs, although some-
what arbitrary, significantly influence their performance. Despite the expressivity and interpretabil-
ity of DDPMs, they come with notable computational overhead compared to existing parametric
techniques. For anomaly detection, DDPM essentially estimates the distance between the input and
its “denoised reconstruction”; we observe that one could directly produce this estimate, or equiv-
alently estimate the diffusion time. We first observe that the distribution of diffusion time given a
noisy input, follows an inverse Gamma distribution. This forms the basis for our non-parametric
approach that accurately predicts the diffusion time and turns out to create the same anomaly score
ranking as kKNN. A subsequent parametric strategy leverages a deep neural network, harnessing
its generalization and rapid inference capabilities for large datasets. We evaluate the effectiveness
of DTE on ADBench, a benchmark comprising popular anomaly detection datasets. Our results
demonstrate competitive performance compared to prior work while improving the inference time
by several orders of magnitude. Furthermore, we find that using pre-trained embeddings for images
considerably improves the performance of diffusion-based methods, showing the potential advan-
tage of using latent space diffusion.

7 LIMITATIONS AND FUTURE WORK

While our approach, DTE, achieves excellent performance with low inference time, it is important to
acknowledge that in terms of interpretability, DTE falls behind DDPM as we explain in Appendix [B]
and Section 4] This may pose challenges for practitioners seeking to understand the underlying
mechanisms and behaviours of the data. Evaluating DTE in handling larger and more complex
real-world datasets remains an avenue for future exploration. While here, we only address point
anomalies, applications of diffusion modelling for group and contextual anomalies remain a high-
impact unexplored area that we plan to investigate in the future.
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8 REPRODUCIBILITY STATEMENT

We have made efforts to ensure that our method is reproducible. Appendix [D.I] provides a de-
scription of all datasets included in ADBench, along with the preprocessing steps. Appendix
presents a formal algorithm for parametric DTE and Appendix provides a detailed description
of the network architecture and hyperparameters. We provide full results for both the unsupervised
and semi-supervised settings with additional metrics, for all individual datasets and baselines in Ap-
pendix [F as a reference for researchers to reproduce our experimental results. We are releasing the
code as part of the supplemental material with detailed explanations to run the experiments.
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A ABLATION STUDIES

We perform several ablation studies to understand DDPM and the proposed DTE method.
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timesteps of the DDPM model. the DTE categorical model.

Reconstruction timestep in DDPM  When using DDPMs for anomaly detection based on the
reconstruction distance, the denoising model requires an input timestep to create the reconstruction.
We found that this somewhat arbitrary hyperparameter choice can significantly affect performance
as shown in Figure[6]

For the unsupervised setting, we found that a value close to 50% of the maximum timestep results
in the highest AUC ROC score on average. For the semi-supervised, the AUC ROC decreases as
we increase the reconstruction timestep. Since the model is trained only on normal samples, the
anomalies are sufficiently distanced from the learned data manifold for minor changes to result in a
large reconstruction error while a larger timestep decreases the precision on normal samples.

Number of bins in categorical DTE  As discussed in Section[3.3] we implement categorical DTE
by combining multiple timesteps into bins. This turns out to be an important hyperparameter as it
affects the final performance significantly. Figure [/|shows that a low number of bins leads to better
performance. This can be attributed to the fact that we calculate the mean of the predicted timestep
distribution rather than the mode to calculate anomaly scores and that adding more bins increases
the complexity of the learning task.

Maximum timestep in DTE We study the
effect of changing the maximum timestep in the
noising diffusion process. As seen in Figure [§] 101
the maximum timestep affects performance un-
til roughly 7' = 250, since for very low val-
ues of 7', the noisy samples might not resemble
standard Gaussian noise and might not cover all
potential anomalies in the dataset. We also note
categorical DTE is more robust to the value of
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Gaussian distribution.
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Figure 8: Average AUC ROC over the 57 ADBench datasets for different maximum timestep T for
the categorical and inverse gamma DTE models on both semi-supervised and unsupervised settings.

B INTERPRETABILITY

In certain applications, the mere identification
of anomalies in the dataset is insufficient; it
is imperative to understand the underlying rea-
sons for flagging specific data points as anoma-
lies. Both DDPM and DTE can provide inter-
pretability by identifying a corresponding “de-
noised” or normal data point. In DDPM this
is achieved using the deterministic ODE flow,
which is (rather arbitrarily) initialized at some
large time step. We found the initial time step
to be an important hyper-parameter, which im-

pacts both anomaly detection and interpretabil- ; gure 10: Interpretability in DTE (first row) and

ity for DDPM. In p.ra.c.tlce,. T' = .25 x T per- DDPM (second row) on MNIST. Visual interpre-
forms well as th§ 1p1t1al time-step. DTE has 00 of o gray patch anomaly on an MNIST im-
the benefit of avoiding such hyper-parameters, ;o0 yging the categorical diffusion model with a
where one could use the gradlept flow assocl- simple convolution network on the first row and a
at'ed W,lth th'e modF: of the posterior to denoise a DDPM on the second for comparison. a) original
given input; see Figure[J](d, e, and f). anomalous image, b) the denoised version using
Figure [T0] shows another example, this time us- gradient descent c) difference between the origi-
ing the categorical likelihood on the MNIST nal and the denoised image, d) visualization of the
dataset. We artificially introduce a gray patch ~gradient on top of the original image.

as an anomaly (Figure [I0] (a)) and perform the

gradient descent procedure reducing the mean

of the posterior density. We observe that this procedure indeed partially eliminates the patch (Fig-
ure [T0] (b)). We also note that since it is explicitly trained to remove the noise from a noisy input,
DDPM performs better in removing the patch.

(a) Original (b) Denoised (c) Difference (d) Gradient

As detailed in Section [3.2] the non-parametric DTE yields the same anomaly score as kNN. Thus,
the parametric DTE can be viewed as an approximate parametric kNN algorithm. This perspective
enhances DTE’s interpretability: the neural network’s score represents the estimated distance of a
point to the manifold. Although we can’t pinpoint which training set instance most closely matches
an input, interpreting the score as a distance to a certain neighbourhood offers a straightforward
insight into the method’s functioning.
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C NON-PARAMETRIC ESTIMATION OF TIMESTEP DISTRIBUTION

In Figure [3] we visualize the analytical posterior distribution along with the non-parametric esti-
mate. The difference between these distributions is shown in Figure[TT] While the two distributions
are quite similar, their shape is very peaked for low values of the diffusion timestep. The slight
misalignment between the peaks of the analytical and the non-parametric estimate gives rise to the
spiky shape seen in the difference. For higher values of the diffusion timestep, the difference is very
close to zero, demonstrating that the non-parametric estimate based on k-nearest neighbours is a
very close approximation to the true posterior distribution of timestep.

(a) Analytical posterior p(af |zs)  (b) Non-parametric estimate (c) Difference

Figure 11: Posterior timestep distribution p(c7|x;), where x4 is produced using diffusion with
different time steps s € {1, ..., T}, averaged over the vertebral dataset. (a) shows the analytical
distribution computed by placing Gaussian distributions of different variances at each point in the
dataset, (b) shows the inverse Gamma distribution with scale parameter value depending on the
average distance to the k-nearest neighbours (k = 32), and (c) shows the difference between (a) and

(b).

D IMPLEMENTATION DETAILS

D.1 DATASETS AND PREPROCESSING

Datasets description We show the results from our methods and baselines over multiple datasets
from ADBench (Han et al., 2022) described in Table |I[ There are 47 tabular datasets ranging from
multiple different applications. There are also five datasets composed of extracted representations of
images after the last average polling layer from a Resnet-18 (He et al.,2015) model pre-trained on
ImageNet. Similarly, there are five datasets composed of extracted embedding of NLP tasks from
BERT (Devlin et al., 2019). We also show results on VisA (Zou et al., 2022}, which is a dataset
composed of images of 12 different objects where the anomalies are various flaws on the objects.

Training and test data configuration For ADBench, the semi-supervised setting, we use half of
the normal data in the training set, and the other half is in the test set with all the anomalies. For
the unsupervised setting, we sample the whole dataset with replacement for the training data, while
the test data is the whole dataset. This bootstrapping method allows us to test the variance over the
training dataset for each method.

Preprocessing We standardize the input samples based on the mean and standard deviation calcu-
lated over the training data, to ensure consistency across the input values and mitigate the impact of
potential outliers or scale variations. For VisA, 90% of the normal instances are making the training
data, while the anomalies and the remaining 10% are in the test set. For CIFAR-10 and MNIST,
One class is set as the anomaly while the others are part of the training data. 80% of the normal
instances are in the training data while the remaining 20% and the anomalies are in the test data.
For ADBench, CIFAR-10, MNIST-C, SVHN, and FashionMNIST are made up of one class for the
normal sample, while the anomalies are the rest of the classes downsampled to make up 5% of the
total data.
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On the importance of standardization for diffusion models Throughout the course of our in-
vestigations, we discovered the critical importance of standardization. This is due to the fact that the
incorporated Gaussian noise operates under the assumption that each feature is centered at zero with
unit standard deviation. Consequently, implementing standard scaling facilitates the comprehensive

Table 1: Description of all datasets in ADBench

Dataset Name # Samples  # Features # Anomaly % Anomaly Category
ALOI 49534 27 1508 3.04 Image
annthyroid 7200 6 534 7.42 Healthcare
backdoor 95329 196 2329 244 Network
breastw 683 9 239 34.99 Healthcare
campaign 41188 62 4640 11.27 Finance
cardio 1831 21 176 9.61 Healthcare
Cardiotocography 2114 21 466 22.04 Healthcare
celeba 202599 39 4547 2.24 Image
census 299285 500 18568 6.20 Sociology
cover 286048 10 2747 0.96 Botany
donors 619326 10 36710 5.93 Sociology
fault 1941 27 673 34.67 Physical
fraud 284807 29 492 0.17 Finance
glass 214 7 9 4.21 Forensic
Hepatitis 80 19 13 16.25 Healthcare
http 567498 3 2211 0.39 Web
InternetAds 1966 1555 368 18.72 Image
Tonosphere 351 32 126 35.90 Oryctognosy
landsat 6435 36 1333 20.71 Astronautics
letter 1600 32 100 6.25 Image
Lymphography 148 18 6 4.05 Healthcare
magic.gamma 19020 10 6688 35.16 Physical
mammography 11183 6 260 232 Healthcare
mnist 7603 100 700 9.21 Image
musk 3062 166 97 3.17 Chemistry
optdigits 5216 64 150 2.88 Image
PageBlocks 5393 10 510 9.46 Document
pendigits 6870 16 156 2.27 Image
Pima 768 8 268 34.90 Healthcare
satellite 6435 36 2036 31.64 Astronautics
satimage-2 5803 36 71 1.22 Astronautics
shuttle 49097 9 3511 7.15 Astronautics
skin 245057 3 50859 20.75 Image
smtp 95156 3 30 0.03 Web
SpamBase 4207 57 1679 39.91 Document
speech 3686 400 61 1.65 Linguistics
Stamps 340 9 31 9.12 Document
thyroid 3772 6 93 247 Healthcare
vertebral 240 6 30 12.50 Biology
vowels 1456 12 50 343 Linguistics
Waveform 3443 21 100 2.90 Physics
WBC 223 9 10 4.48 Healthcare
WDBC 367 30 10 2.72 Healthcare
Wilt 4819 5 257 5.33 Botany
wine 129 13 10 7.75 Chemistry
WPBC 198 33 47 23.74 Healthcare
yeast 1484 8 507 34.16 Biology
CIFARI10 5263 512 263 5.00 Image
FashionMNIST 6315 512 315 5.00 Image
MNIST-C 10000 512 500 5.00 Image
MVTec-AD 5354 512 1258 23.50 Image
SVHN 5208 512 260 5.00 Image
Agnews 10000 768 500 5.00 NLP
Amazon 10000 768 500 5.00 NLP

Imdb 10000 768 500 5.00 NLP

Yelp 10000 768 500 5.00 NLP
20newsgroups 11905 768 591 4.96 NLP
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coverage of the anomaly detection space by the noise. This proved to be an essential component of
the proposed anomaly detection method.

D.2 ALGORITHM

Algorithm 1 Training Process for parametric DTE

Parameters: 7 : maximum timestep, A : learning rate
Input: Training data D

1: 6+ 6y > Initialize weights of the model
2: Bo, B, ..., Br—1 < linear(0,0.01) > Define the 3 schedule for forward diffusion
3: forallt < T do

4: ap HZ=1(1 — Bs) > Compute the &
5: o — 1 —y > Set standard deviation for each timestep
6: end for

7. for num_epochs do

8: for all x( in D do

9: t~U0,T-1) > Sample timestep ¢ uniformly
10: e~N(0,1) > Sample standard Gaussian noise
11: Xt X+ o€ > Compute noisy sample of x at timestep ¢
12: L +loss(fop(x¢)) > Equation (8) for inverse Gamma or Equation (9) for categorical
13: 00—Vl > Update model parameters
14: end for
15: end for

D.3 MODEL ARCHITECTURE AND HYPERPARAMETERS

We first found the hyperparameters using different training splits for the semi-supervised setting
on the shuttle and thyroid datasets (network architecture, maximum timestep, batch size, number of
epochs). We then tuned some of them over all the datasets using different training seeds than the ones
used for the final results (number of bins and learning rate). This is the case for the diffusion methods
and the normalizing flow method. For the other baselines, we picked the set of hyperparameters from
the original papers that provided the best results over the whole benchmark.

DTE For the non-parametric DTE, the score is calculated based on the approximate posterior dis-
tribution in Equation (6) with & = 5 for the semi-supervised setting and k& = 32 for the unsupervised
setting. The anomaly score is the mean of the posterior to avoid having an anomaly score that is
restricted by the maximum variance using the mode. The be consistent, we selected the same & for
the kNN baseline.

For the DTE parametric approach, we employ a multi-layer perceptron (MLP) neural network. We
use a common architecture and set of hyperparameters across all datasets. When training on images,
we used a ResNet-50 architecture.

For the categorical model, we found that using the mean over each output probability bin provided
the best results. That is, the anomaly score for each individual x is computed as follow:

0
1

score = fp(x) 2 )

B-1
where B is the number of bins and fy(x;) is the output probability vector of the network using a
softmax, which is an N x B matrix, where the sum across each row equates to one and [V is the

batch size. The score for each instance will be a value between 0 and B — 1. The higher the score
is, the more anomalous an instance is.

Employing the mode as a measurement metric proved suboptimal given the disproportionate rep-
resentation of the first bin, a pattern that remained consistent even among anomalous instances.
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Consequently, it was observed that while the probabilities could be diffusely distributed across the
remaining bins, the mode predominantly remained in the first bin. In contrast, utilizing the mean
allowed us to effectively account for this distribution characteristic, enabling an inclusive weighting
scheme across all bins. Additionally, the mean offered a continuous scoring system as opposed to
the integer values provided by the mode, thereby affording a more nuanced understanding of the
anomalous data.

Table 2: Hyperparameters for parametric DTE model

Hyperparameter Value

Hidden layer sizes [256, 512, 256]
Activation function ReLU

Optimizer Adam
Learning rate 0.0001
Dropout 0.5
Batch size 64

Number of epochs 400
Maximum timestep 300
Number of bins 7

DDPM For the DDPM model, we used a modified ResNet for tabular data (Gorishniy et al.|[2021)
with added time embedding before each block, inspired by the work done for TabDDPM (Kotelnikov
et al.,2022). Recognizing that learning noise at each timestep presents a considerably complex task,
the necessity for a more sophisticated model than a simple MLP became evident to optimize the
efficacy of our method. Furthermore, the lack of research on diffusion models for tabular data has
constrained our ability to apply a model of comparable strength to the U-net model typically used
for images, to our benchmark datasets. This presents an interesting direction for further research,
with the potential to significantly enhance the performance of machine learning models on tabular
datasets. In contrast to prior work (Wyatt et al., 2022; Wolleb et al., 2022), we do not add noise to
the data point before reconstructing it as we found that it leads to overall slightly better results. This
is a minor change, one intuition for the boost of performance could be that adding noise can modify
the images toward anomalous data, thus increasing the amount of false positives.

Table 3: Hyperparameters for DDPM model

Hyperparameter Value
Number of blocks 3
Main layer size 128
Hidden layer size 256
Time embedding dimensions 256
Optimizer Adam
Learning rate 0.0001
Dropout layer 1 0.4
Dropout layer 2 0.1
Batch size 64
Number of epochs 400
Maximum timestep 1000
Reconstruction timestep 250

Normalizing Flows Baseline We compare our diffusion methods with a normalizing flows base-
line that uses planar flows (Rezende & Mohamed, 2015)). Normalizing flows allow to compute the
exact likelihoods of data point, which allow to easily assign anomaly scores. Once trained, the model
can estimate the density of any data point in the input space. This is done by passing the data point
through the inverse of the learned transformation and then computing the density of the transformed
point under the simple target distribution. The density of the original point under the complex data
distribution can be computed from this using the change-of-variables formula.
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D.4 COMPUTE

The total amount of compute required to reproduce our experiments with five seeds, including all of
the baselines and the proposed DTE model amounts to 473 GPU-hours for the unsupervised setting
and 225 GPU-hours for the semi-supervised setting on an RTX8000 GPU with 48 gigabytes of

Table 4: Hyperparameters for PlanarFlow model

Hyperparameter Value
Number of transformations 10
Optimizer Adam
Learning rate 0.002
Batch size 64
Number of epochs 200

memory for running the ADBench datasets.

Figure [T2] shows the training and inference times averaged over all datasets in ADBench over five
seeds for all methods discussed in Section 4. As expected, deep learning-based methods have sig-
nificantly higher training times compared to classical methods but comparable inference times. In
particular, the inference time for the parametric DTEs is orders of magnitude lower than all other
methods. The non-parametric variant of DTE has no training phase, so we show the inference time

in both plots.

Training time (s) - log scale

Inference time (s) - log scale

Figure 12: Mean training and inference time on the 57 datasets from ADBench over five different
seeds for the semi-supervised setting using normal samples only for training. Colour scheme: red
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E CHOICE OF REPRESENTATION FOR IMAGES

In this section, we compare the effect of choice of representation on the performance of diffusion-
based anomaly detection techniques. Three choices considered are 1) pixel space representation,
2) self-supervised embedding, and 3) embedding produced by a classifier. Results for three image
datasets are reported in Table[5] The datasets and preprocessing are described in Appendix and
the full results are in Appendix [F] As expected, using pre-trained embeddings leads to better results
than pixel space for all methods considered. Tables [9]to [I2] report other experiments that lead to a
similar conclusion.

In particular, using self-supervised embedding for CIFAR-10, significantly improved the anomaly
detection performance as the pre-training was done on CIFAR-10 itself. Note that all the other
pre-training were supervised classification using ResNet-34 on ImageNet and not directly on the
datasets. Overall, pre-training improves the results for all methods and all datasets with the exception
of kNN and the non-parametric DTE (DTE-NP) on MNIST. This result can be attributed to the
simplicity of the MNIST dataset when adapted to anomaly detection tasks. As a reminder, DTE-NP
is equivalent to kNN, but corresponds to the variation that uses the mean distance of the k-nearest
neighbours instead of the distance to the kth-nearest neighbour.

Zou et al.| (2022) highlighted the advantages of tailoring specialized self-supervised learning tech-
niques to specific datasets, exemplified by their method for VisA. As our methods are not explicitly
designed for these datasets, our results for all diffusion-based methods reported here lag behind
those of methods specialized to this dataset. In particular, VisA dataset contains images that are
quite similar with the exception of highly localized anomalies.

Table 5: Average AUC ROC and standard deviations for the different subsets of each dataset, average
across 5 runs, semi-supervised setting using different pre-training algorithms.

DTE-NP DTE-C DDPM kNN
VisA, supervised ImageNet pre-training 83.63(10.50) 81.07(11.01) 80.47(12.47) 83.26(10.64)
VisA, VicReg ImageNet pre-training 83.36(12.44) 81.89(12.26) 83.14(13.76) 83.68(13.54
VisA, no pre-training 75.96(10.54) 64.53(19.61) 57.85(21.74) 75.40(9.85)
CIFAR10, supervised ImageNet pre-training  53.91(7.16) 52.57(5.53) 52.96(7.05) 54.42(7.56)
CIFAR10, VicReg pre-training 80.92(10.81) 63.36(11.92) 54.22(10.26) 79.01(11.53)
CIFAR10, no pre-training 51.53(14.81) 50.25(3.34)  50.50(7.67)  51.64(14.90)
MNIST, supervised ImageNet pre-training 78.07(12.48) 64.34(11.93) 60.62(10.26) 76.86(11.54)
MNIST, no pre-training 81.94(16.46) 49.02(16.51) 51.29(18.85) 84.14(15.60)

F FULL RESULTS

We provide the full table of results corresponding to the AUC ROC box-plots in Sectiond] We report
additional metrics including F1 score and area under the precision-recall curve (AUC PR) along with
the corresponding box-plots. All results are shown averaged across five seeds along with standard
deviations in brackets for all 57 datasets in ADBench. In the subsequent tables, DTE-NP refers
to the non-parametric DTE estimator, DTE-IG refers to the parametric inverse Gamma model, and
DTE-C refers to the parametric categorical model. Tables [9]to[I2]show the results for three methods
when using pre-trained embeddings on CIFAR-10 and SVHN compared to trained directly on the
images, as it is set up in ADBench. The difference with Table [5]is that instead of having one class
as an anomaly, here we have one class as normal while the rest of the classes are downsampled to
produce the anomalies.
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F.1 SEMI-SUPERVISED SETTING

DTE (Categorical) I DTE (Categorical) I
DTE (Inverse Gamma) 1 I DTE (Inverse Gamma) 1 I
DTE (Non — Parametric) [ ] DTE (Non — Parametric) 1 [ ]
I 1 _—
DIF 4 ] DIF 4 -
SLAD A ] SLAD A |
GANomaly 1 I GANomaly 1 I
VAE 4 [ ] VAE 1 [}
PlanarFlow - I PlanarFlow 1 I
ICL I ICL 1 I
GOAD - ] 1 I
DROCC 4 DROCC 1 | I —
DeepSVDD 1 ] DeepSVDD 1 [
DAGMM A I DAGMM 1 | I —
PCA ] PCA - m
0oCsvM | OCSVM 4 m
MCD A | MCD - |
LOF 4 | LOF 4 |
LODA 4 I LODA 4 I
KNN 1 | KNN 1 o=
IForest 4 I IForest 4 I
HBOS - ] HBOS - ]
FeatureBagging 1 I FeatureBagging [ |
ECOD 1 L] ECOD 1 ]
COPOD 4 - COPOD - ]
CBLOF ] CBLOF 4 |
T T T T T T T T T T v T T T T T T
20 25 30 35 40 45 50 55 60 25 30 35 40 45 50 55 60
F1 score AUC PR
(a) F1 scores (b) AUC PR scores

Figure 13: F1 score and AUC PR means and standard deviations on the 57 datasets from ADBench
over five different seeds for the semi-supervised setting using normal samples only for training.
Colour scheme: red (diffusion-based), green (deep learning methods), blue (classical methods).

Table 6: Average AUC ROC and standard deviations for 5 runs of the VisA dataset, semi-supervised
setting using embeddings of supervised ResNet-34 pre-trained on ImageNet with the same training
split.

DTE-NP DTE-C DDPM kNN
candle 90.88(0.0)  89.26(3.37)  87.37(0.26)  90.76(0.0)
capsules 62.77(0.0)  56.04(3.51)  66.65(0.6)  62.67(0.0)
cashew 93.7(0.0) 87.17(2.95)  89.69(0.25)  93.24(0.0)
chewinggum 93.88(0.0)  94.69(1.53)  92.55(0.26)  93.52(0.0)
fryum 87.38(0.0)  81.25(3.91)  85.84(0.17)  87.68(0.0)

macaronil  70.27(0.0)  71.9(4.94)  64.33(0.69)  69.34(0.0)
macaroni2  67.65(0.0)  66.77(2.36)  51.6(0.64)  66.35(0.0)

pebl 90.14(0.0)  85.49(1.72)  94.38(0.37)  90.67(0.0)
pcb2 88.88(0.0)  81.32(2.76)  83.24(04)  87.77(0.0)
pcb3 80.83(0.0)  81.72(1.98)  79.61(0.2)  81.25(0.0)
pcbd 93.77(0.0)  91.05(2.46)  88.7(0.56)  93.07(0.0)
pipe fryum  83.24(0.0)  86.19(2.38)  81.72(0.36)  82.86(0.0)
mean 83.63(10.50) 81.07(11.01) 80.47(12.47) 83.26(10.64)
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Table 7: Average AUC ROC and standard deviations for 5 runs of the VisA dataset, semi-supervised
setting using embeddings of VicReg pre-trained on ImageNet with the same training split.

DTE-NP DTE-C DDPM kNN
candle 82.97(0.0)  84.72(0.8)  85.27(0.07)  85.44(0.0)
capsules 65.63(0.0)  68.24(1.08)  69.01(0.6)  65.92(0.0)
cashew 90.7(0.0) 82.75(5.28)  90.26(0.43)  90.74(0.0)
chewinggum 97.98(0.0)  97.78(0.12)  97.78(0.08)  98.0(0.0)
fryum 88.88(0.0)  79.62(2.69)  89.13(0.23)  88.82(0.0)

macaronil  70.03(0.0)  68.17(1.19)  64.09(0.17)  69.52(0.0)
macaroni2  52.06(0.0)  55.81(2.06) 51.93(0.27)  52.16(0.0)

pebl 93.02(0.0)  91.07(0.5)  93.19(0.08)  93.22(0.0)
pcb2 85.7(0.0) 83.77(0.96)  83.68(0.17)  85.69(0.0)
pcb3 83.26(0.0)  81.57(0.75)  82.03(0.13)  83.05(0.0)
pcbd 98.6(0.0) 98.21(0.35)  98.35(0.03)  98.66(0.0)
pipe fryum  91.44(0.0)  90.98(1.29)  93.05(0.05)  92.96(0.0)
mean 83.36(12.44) 81.89(12.26) 83.14(13.76) 83.68(13.54)

Table 8: Average AUC ROC and standard deviations for 5 runs of the VisA dataset, semi-supervised
setting using the images directly with the same training split.

DTE-NP DTE-C DDPM kNN
candle 77.48(0.0) 83.03(4.42) 51.96(6.2) 77.38(0.0)
capsules 63.75(0.0) 72.61(7.91) 33.19(0.37) 68.02(0.0)
cashew 90.14(0.0) 79.5(27.78) 96.26(0.56) 93.32(0.0)
chewinggum 66.92(0.0) 56.99(4.66) 68.82(1.02) 65.66(0.0)
fryum 74.32(0.0) 77.28(10.99) 25.24(1.22) 74.5(0.0)

macaronil  68.67(0.0)  54.52(20.66) 74.7(1.14)  70.11(0.0)
macaroni2  74.04(0.0)  54.48(8.11)  37.04(0.48)  77.02(0.0)

pebl 83.59(0.0)  51.53(16.31) 72.02(0.97)  80.53(0.0)
pcb2 87.4(0.0) 74.04(15.82)  77.56(0.55)  78.87(0.0)
pcb3 71.75(0.0)  40.86(8.75)  68.11(2.12)  66.03(0.0)
pcb4 94.5(0.0) 73.61(11.82) 28.46(2.18)  92.94(0.0)
pipe fryum  58.96(0.0)  56.04(19.1)  60.95(5.78)  60.42(0.0)
mean 75.96(10.54)  64.53(19.61) 57.85(21.74) 75.40(9.85)

Table 9: Mean AUC ROC and standard deviation over 5 seeds for different methods trained on the
images directly versus trained on embeddings generated by a pre-trained ResNet-18 on ImageNet
for the unsupervised setting on the CIFAR-10 dataset.

DDPM DTE-C kNN

Images 54.72(4.55) 48.95(8.33) 57.45(1.55)
Embeddings  66.34(0.14) 62.87(1.57) 66.17(0.33)

Table 10: Mean AUC ROC and standard deviation over 5 seeds for different methods trained on the
images directly versus trained on embeddings generated by a pre-trained ResNet-18 on ImageNet
for the unsupervised setting on the SVHN dataset.

DDPM DTE-C kNN

Images 54.97(2.41) 49.07(3.06) 56.29(1.22)
Embeddings 61.48(0.24) 59.96(1.24) 61.17(0.28)
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Table 11: Mean AUC ROC and standard deviation over 5 seeds for different methods trained on the
images directly versus trained on embeddings generated by a pre-trained ResNet-18 on ImageNet
for the semi-supervised setting on the CIFAR-10 dataset.

DDPM DTE-C kNN
Images 55.96(4.69) 52.66(6.28) 59.10(1.80)
Embeddings  67.91(0.13)  68.53(1.59)  67.53(0.0)

Table 12: Mean AUC ROC and standard deviation over 5 seeds for different methods trained on the
images directly versus trained on embeddings generated by a pre-trained ResNet-18 on ImageNet
for the semi-supervised setting on the SVHN dataset.

DDPM DTE-C kNN
Images 57.28(2.75) 48.78(4.23) 55.92(1.17)
Embeddings 61.37(0.08) 62.91(1.1)  61.69(0.0)
F.2 UNSUPERVISED SETTING
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Figure 14: F1 score and AUC PR means and standard deviations on the 57 datasets from ADBench
over five different seeds for the unsupervised setting with bootstrapped training instances. Colour
scheme: red (diffusion-based), green (deep learning methods), blue (classical methods).
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