

000
001
002
003

ALL BY LARGE LANGUAGE MODEL ITSELF

004 **Anonymous authors**
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053004 Paper under double-blind review
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

The scaling laws constitute one of the fundamental principles of large language models (LLMs), which reveal that the model performance constantly improves as the training data increase. In this paper, we propose dynamic reinforcement learning (RL), which takes a step to achieve the scalability of RL for training the LLM by itself. Dynamic RL operates by sampling data from the dynamically changed LLM itself, estimating golden answers based on the model’s own outputs, and then using this self-generated data to optimize the model. Its dynamic characteristic allows the data distribution to continuously adapt to the evolving model, leading to better alignment between training data and model capabilities. Unlike conventional approaches, dynamic RL requires neither static, pre-collected datasets nor external verifiers for correctness. All is done by the large language model itself. Experimental results demonstrate that dynamic RL can continually improve model performance over a thousand of training steps and achieve results comparable to models trained on large-scale external datasets.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance across a wide range of tasks (Jaech et al., 2024; Guo et al., 2025). A key factor driving this success is the principle of scaling laws (Kaplan et al., 2020), which shows that LLM performance improves as the amount of training data increases. LLMs can be trained using different learning paradigms, such as supervised learning and reinforcement learning (RL), each exhibiting different scalability characteristics.

In supervised learning, models are trained on data sampled from a static distribution, requiring pre-collected datasets of questions paired with human-labeled solutions. However, these human-labeled solutions are costly and finite, which limits scalability. In contrast, DeepSeek-R1 (Guo et al., 2025) demonstrates that RL can train models without relying on human-labeled solutions by sampling solutions from the dynamic LLM itself, thereby achieving great scalability. Since the questions are sampled from a static distribution while the solutions are sampled from a dynamic distribution, we refer to this paradigm as *semi-dynamic reinforcement learning*.

Despite its advantages, semi-dynamic RL still depends on static datasets of human-created questions and human-labeled answers, which remain finite and costly. Moreover, since the questions are sampled from a static distribution that may not align with the evolving LLM, the number of effective training questions gradually decreases over time (Yu et al., 2025; Zheng et al., 2025). This mismatch between static data and a constantly evolving model ultimately constrains scalability.

To address this limitation, we propose *dynamic reinforcement learning*, which takes a step toward achieving scalable RL using the LLM itself. In this framework, the LLM autonomously generates both questions and solutions, learning directly from its own self-sampled data without relying on external datasets or verifiers for correctness. All is done by the large language model itself. The dynamic nature of this approach allows the data distribution to evolve continuously alongside the model, ensuring better alignment between training data and model capabilities.

Transitioning from semi-dynamic RL to dynamic RL introduces additional challenges, most notably the absence of golden answers and the risk of mode collapse. Since the questions are generated by the LLM itself, human-labeled golden answers are unavailable and should instead be estimated. The core design principle of our dynamic RL is to encourage the model to generate relatively more questions whose answers can be reliably estimated by the estimation method, rather than to devise a new estimation method.

To realize this principle, we adopt three strategies. First, we estimate golden answers using majority voting (Wang et al.) and introduce a question reward function that promotes the generation of questions suitable for this estimation. Second, we design prompts and introduce filtering rules to exclude questions that are likely to be incorrectly answered. Third, we adjust the training dynamics by tuning hyperparameters so that the model produces questions of moderate difficulty that match with the estimation method.

Another major challenge is mode collapse, a phenomenon in which generated data degenerates into a limited set of modes (Kossale et al., 2022). In dynamic RL, this manifests as question collapse, where the model repeatedly produces similar questions, and answer collapse, where the model defaults to identical answers. Such collapse ultimately leads to performance degradation. For example, the model may repeatedly generate nearly identical questions such as “Solve the equation $2x + 3 = 7$ ”, or consistently output the same answer, such as “ $\boxed{1}$ ”, across different questions.

To mitigate this issue, we introduce a diversity reward function that prompts the model to generate new questions with diverse estimated golden answers. This mechanism effectively enhances both question and answer diversity, thereby alleviating mode collapse.

Finally, we experimentally validate the scalability of dynamic RL. Our results demonstrate that dynamic RL can enhance model performance over a thousand of training steps by itself, and achieve accuracy comparable to that of semi-dynamic RL trained on large-scale, pre-collected static datasets.

2 DYNAMIC REINFORCEMENT LEARNING

Learning Scalability Scaling laws represent one of the fundamental laws in LLMs, which show that model performance can improve as model size, dataset size, and compute scale up. This phenomenon underpins the success of LLMs, as it suggests that model capability scales with resources.

We discuss the learning scalability in terms of training paradigms. LLMs can be trained through unsupervised learning, supervised learning, and RL. The supervised and unsupervised learning objectives can be expressed as

$$\mathcal{J}_{sl}(\theta) = \mathbb{E}_{q \sim \phi, s \sim \mu(\cdot|q)} [\log \pi_\theta(s|q)],$$

where ϕ is the distribution over questions q , $\mu(\cdot|q)$ is the distribution of solutions s conditioned on q , and π_θ is the LLM policy model parameterized by θ . Unsupervised learning can be regarded as a special case where the conditioning variable q is absent. Since both q and s are drawn from static distributions, we refer to this paradigm as *static learning*. However, the policy model π_θ constantly changes during training, while the data are sampled from a static distribution that can not adapt to the evolving policy model π_θ . This mismatch inherently limits the scalability of learning.

RL, in contrast, optimizes a different objective:

$$\mathcal{J}_{rl}(\theta) = \mathbb{E}_{q \sim \phi, s \sim \pi_\theta(\cdot|q)} [R(q, s)],$$

where $R(q, s)$ denotes the reward function evaluating the quality of a solution s given a question q . Recent approaches, such as DeepSeek-R1, demonstrate that RL can enhance scalability by allowing the solutions sampled from the dynamic policy model to refine itself. Since the solutions s are sampled from the evolving distribution $\pi_\theta(\cdot|q)$ during training, this paradigm can be described as *semi-dynamic reinforcement learning*. However, the questions q remain drawn from a static distribution ϕ , which continues to constrain scalability.

Dynamic Reinforcement Learning To further enhance scalability of RL, we propose a framework termed *dynamic reinforcement learning*. In this framework, we first sample questions from the policy model π_θ itself, then generates corresponding solutions from the policy model π_θ itself, and finally leverages the sampled data to optimize itself. All is done by the policy model π_θ itself. By continually sampling from dynamically evolving distributions π_θ , the policy model can iteratively improve its performance. To this end, we optimize two objective functions: one for generating higher-quality solutions and another for generating higher-quality questions.

108 We first introduce the objective function $\mathcal{J}_s(\theta)$, which optimizes the quality of generated solutions:
 109

$$110 \quad \mathcal{J}_s(\theta) = \mathbb{E}_{q \sim \pi_\theta(\cdot|z), s \sim \pi_\theta(\cdot|q)} [R_s(q, s)], \quad (1)$$

112 where $\pi_\theta(\cdot|z)$ denotes the distribution of questions q given a prompt z , and $\pi_\theta(\cdot|q)$ denotes the
 113 distribution of solutions s given a question q . The function $R_s(q, s)$ serves as the solution reward,
 114 evaluating the quality of the generated solutions s for the corresponding question q .

115 Next, we define the objective function $\mathcal{J}_q(\theta)$, which optimizes the quality of generated questions:
 116

$$117 \quad \mathcal{J}_q(\theta) = \mathbb{E}_{z \sim p(z), q \sim \pi_\theta(\cdot|z)} [R_q(z, q)], \quad (2)$$

118 where $R_q(z, q)$ is the question reward function, assessing the quality of a question q given a prompt
 119 z . The distribution $p(z)$ specifies how prompts z are sampled.

120 In summary, we jointly optimize $\mathcal{J}_s(\theta)$ and $\mathcal{J}_q(\theta)$ to enhance both the quality of solutions and the
 121 quality of questions. In the following, we detail the design of the prompt distribution $p(z)$, solution
 122 reward function $R_s(q, s)$ and the question reward function $R_q(z, q)$.

124 **Prompt** Since this paper focuses on mathematical reasoning, we employ only a single type of
 125 prompt, denoted as z_0 , with $p(z_0) = 1$, meaning that the prompt z is always fixed to z_0 . The prompt
 126 z_0 is explicitly designed to emphasize mathematical reasoning, as illustrated in the following box. It
 127 consists of three sentences: the first instructs the model to generate a single math question along with
 128 its solution. Since generating a question may also lead the model to implicitly produce a solution, we
 129 allow the model to output both the question and its solution directly. The second sentence aims to
 130 prohibit questions with non-unique answers, while the third sentence specifies the required output
 131 format, from which we retain only the question part.

132 **Prompt z_0 :** Generate exactly one math question and its step-by-step solution. The answer to the
 133 question should exist and be unique.

134 Format the output as follows:

135 Question: <math question here>

136 Solution: <step-by-step solution here>

138 **Solution Reward Function** To define the solution reward function $R_s(q, s)$, we first require a
 139 golden, or reference answer, for each question q . Since such answers are generally unavailable in
 140 dynamic RL, we estimate the golden answer using a majority-voting scheme (Wang et al.).

142 Specifically, for each question q , we sample m solutions $\{s_j\}_{j=1}^m$ from the distribution $\pi_\theta(\cdot|q)$. For
 143 each solution s_j , we extract its final answer a_j via a function $e(\cdot)$, which can be regular expressions
 144 or LLMs (Guo et al., 2025). We then define majority voting using a similarity metric $S_a(\cdot, \cdot)$ (Guo
 145 et al., 2025; Team et al., 2025). For any two answers a_{j_1} and a_{j_2} , the similarity is given by

$$146 \quad 147 \quad S_a(a_{j_1}, a_{j_2}) = \begin{cases} 1, & \text{if } a_{j_1} \text{ and } a_{j_2} \text{ are mathematically equivalent,} \\ 0, & \text{otherwise.} \end{cases} \quad (3)$$

149 The majority-voted golden answer $l(q)$ and its support size $r(q)$ are defined as
 150

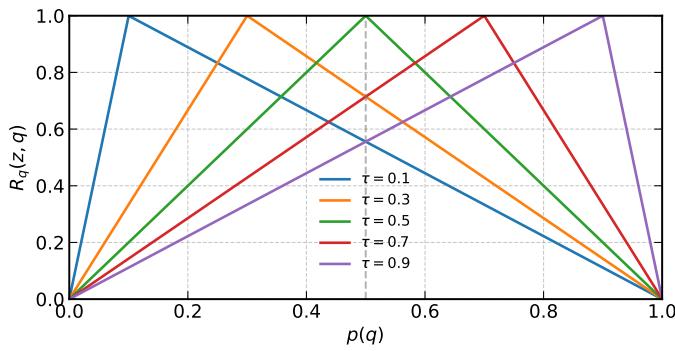
$$151 \quad 152 \quad l(q) = \arg \max_{a \in \{a_j\}_{j=1}^m} \sum_{k=1}^m S_a(a, a_k), \quad (4)$$

$$154 \quad 155 \quad r(q) = \max_{a \in \{a_j\}_{j=1}^m} \sum_{k=1}^m S_a(a, a_k), \quad (5)$$

157 where $l(q)$ represents the estimated golden answer for q , and $r(q)$ denotes the number of answers
 158 that are mathematically equivalent to $l(q)$.

159 Finally, the solution reward function $R_s(q, s)$ evaluates whether the extracted answer $e(s)$ matches
 160 the majority-voted golden answer $l(q)$:

$$161 \quad R_s(q, s) = S_a(l(q), e(s)). \quad (6)$$

Figure 1: Question Reward function $R_q(z, q)$ with different τ .

Question Reward Function We define the question reward function based on the mean solution reward of a question q . For a given question q , the mean solution reward $p(q)$ is defined as

$$p(q) = \mathbb{E}_{s \sim \pi_\theta(\cdot|q)}[R_s(q, s)|q] \approx \text{Mean}(\{R_s(q, s_j)\}_{j=1}^m) = \frac{r(q)}{m}. \quad (7)$$

Here, $p(q)$ can be seen as an approximate measure of the difficulty of question q : larger values of $p(q)$ correspond to easier questions, while smaller values correspond to harder ones.

The question reward function $R_q(z, q)$ is then defined as

$$R_q(z, q) = \begin{cases} \frac{p(q)}{\tau}, & \text{if } 0 \leq p(q) \leq \tau, \\ \frac{1-p(q)}{1-\tau}, & \text{if } \tau < p(q) \leq 1, \end{cases} \quad (8)$$

where $\tau \in [0, 1]$ is a hyperparameter. Figure 1 illustrates the behavior of $R_q(z, q)$ under different values of τ . As $p(q)$ increases from 0 to τ , the reward $R_q(z, q)$ increases; as $p(q)$ increases further from τ to 1, the reward decreases.

The question reward function $R_q(z, q)$ plays both a collaborative and an adversarial role with respect to the solution reward function $R_s(q, s)$. It is collaborative in that, when $p(q) \leq \tau$, it drives the model to generate easier questions, thereby reinforcing the increase of $\mathcal{J}_s(\theta)$. At the same time, it is adversarial because, when $p(q) > \tau$, it pushes the model toward harder questions, counteracting the growth of $\mathcal{J}_s(\theta)$. In this way, $R_q(z, q)$ balances the training dynamics, guiding the policy model toward generating questions of moderate difficulty.

Since questions with relatively large $p(q)$ can be estimated more accurately using the majority-voting-based estimation method, we set τ to a relatively large value to encourage the model to generate more questions q with high $p(q)$. In our experiments, we set $\tau = \frac{3}{4}$.

Question Filtering To ensure the quality of generated questions q , we further filter out some questions q by setting $R_q(z, q) = 0$ and $R_s(q, s) = 0$. The filtering is based on the following rules:

1. Filter questions containing the word "prove".
2. Filter questions by multiple question marks, or paired keywords (e.g., "find ... and ..."), or enumerations (e.g., "1. ... 2.").
3. Filter questions including "Solution:" or "Answer:" or "\boxed{" or "The final answer is" or "To solve" or "Let's break down".

The first rule excludes mathematical proof questions, which are incompatible with majority voting in the solution reward function. The second rule removes questions containing multiple subquestions to ensure that each question has only a single answer. The third rule removes questions that include solutions, since we experimentally observe that their presence can shorten the model's output and potentially degrade performance.

216 **Mode Collapse** Transitioning from semi-dynamic RL to dynamic RL introduces additional challenges, particularly the issues of mode collapse (Kossale et al., 2022). Mode collapse is a phenomenon in generative models in which the generator produces a limited variety of outputs, ignoring many modes of the true data distribution. In dynamic RL, mode collapse manifests in two forms: question mode collapse and answer mode collapse.

217 Question mode collapse occurs when the questions generated by the policy model are highly similar. 218 For example, the model repeatedly generates questions like "Solve the equation $2x + 3 = 7$.". This 219 lack of diversity can lead to saturation or even collapse in model performance. Therefore, it is 220 essential to generate diverse questions that differ from one another.

221 Answer mode collapse arises when the answers extracted from model solutions are highly uniform. 222 We observed that after a few hundred training steps, generated answers to different questions often 223 converge to the same response, such as "\boxed{1}", causing performance collapse. This occurs 224 because the golden answer is estimated via majority voting, which favors answers that are easily 225 generated. Consequently, it is necessary to generate questions whose majority-voted golden answers 226 are diverse.

227 **Diversity Reward Function** To mitigate mode collapse, we propose diversity reward functions that 228 encourage greater variability in generated data. The core idea is that the more an object resembles 229 others, the lower its diversity reward. We first present the general form of the diversity reward 230 function, followed by the specific formulations for question diversity reward function and answer 231 diversity reward function.

232 Let $\{x_k\}_{k=1}^K$ be a set of K objects sampled from the policy model π_θ , where each object can be a 233 question or an answer. For any pair of objects in this set, we define a similarity metric $S(\cdot, \cdot) \in [0, 1]$, 234 where $S(x, x) = 1$ and larger values indicate greater similarity between objects. The diversity reward 235 for an object $x \in \{x_k\}_{k=1}^K$ is then defined as

$$236 R_d(x) = \frac{1}{\sum_{k=1}^K S(x, x_k)}. \quad (9)$$

237 Intuitively, if many objects in the set are similar to x , the sum $\sum_{k=1}^K S(x, x_k)$ will be large, resulting 238 in a smaller diversity reward $R_d(x)$. Conversely, a larger $R_d(x)$ indicates that x is less similar to 239 other objects. Since $0 \leq S(x, x_k) \leq 1$, it follows that $0 \leq R_d(x) \leq 1$, where $R_d(x) = 1$ implies 240 that x is only similar to itself.

241 The question diversity reward is then defined as

$$242 R_{dq}(q) = \frac{1}{\sum_{i=1}^n S_q(q, q_i)}, \quad (10)$$

243 where $q \in \{q_i\}_{i=1}^n$ and $S_q(\cdot, \cdot)$ measures the similarity between two questions. Each question q is 244 first tokenized into a sequence using a tokenizer $t(\cdot)$, and then similarity $S_q(\cdot, \cdot)$ is computed using 245 the overlap ratio of sequences:

$$246 S_q(q, q_i) = \text{overlap}(t(q), t(q_i)) = \frac{\sum_{j=1}^{\min(|t(q)|, |t(q_i)|)} \mathbf{1}(t(q)_j = t(q_i)_j)}{\min(|t(q)|, |t(q_i)|)} \\ 247 t(q) = [t(q)_1, t(q)_2, t(q)_3, \dots], t(q_i) = [t(q_i)_1, t(q_i)_2, t(q_i)_3, \dots]. \quad (11)$$

248 Similarly, the answer diversity reward is defined as

$$249 R_{da}(l(q)) = \frac{1}{\sum_{i=1}^n S_a(l(q), l(q_i))}, \quad (12)$$

250 where $l(\cdot)$ denotes the estimated golden answer defined in Eq. (4), and $S_a(\cdot, \cdot)$ is the similarity metric 251 between two answers defined in Eq. (3).

252 **Objective Function** Combining the solution reward function, question reward function, question 253 diversity reward function, and answer diversity reward function, we define the following objective

270 **Algorithm 1** Dynamic RL: Dynamic Reinforcement Learning

271 **Input:** Initial policy model π_{θ_0} , number of steps N , number of questions n , number of solutions m ,
272 prompt z_0 , prompt z_q , coefficients $\{\lambda_q, \lambda_s, \lambda_{dq}, \lambda_{da}\}$, threshold τ .

273 1: Initialize policy model $\pi_{\theta} \leftarrow \pi_{\theta_0}$.

274 2: **for** step = 1 **to** N **do**

275 3: Sample n questions q from $\pi_{\theta}(\cdot|z_0)$.

276 4: Sample m solutions s from $\pi_{\theta}(\cdot|q, z_q)$ for each question q .

277 5: Estimate the golden answer $l(q)$ by Eq. (4) for each question q .

278 6: Compute solution reward $R_s(q, s)$ by Eq. (6) for each question-solution pair (q, s) .

279 7: Compute question reward $R_q(z, q)$ Eq. (8) for each question q .

280 8: Compute question diversity reward $R_{dq}(q)$ Eq. (10) for each question q .

281 9: Compute answer diversity reward $R_{da}(l(q))$ Eq. (12) for each question q .

282 10: Filter question by setting $R_q(z, q) = 0$ and $R_s(q, s) = 0$ according to the rules in Paragraph
283 "Question Filtering" of Section 2.

284 11: Optimize π_{θ} by maximizing objective function Eq. (14) via gradient ascent method.

285 12: **end for**

286 **Output:** Optimized policy model π_{θ} .

288 function $\mathcal{L}(\theta)$:

$$\begin{aligned} \mathcal{L}(\theta) &= \mathcal{L}_q(\theta) + \mathcal{L}_s(\theta), \\ \mathcal{L}_q(\theta) &= \mathbb{E}_{z \sim p(z), q \sim \pi_{\theta}(\cdot|z)} \left[\lambda_q R_q(z, q) + \lambda_{dq} R_{dq}(q) + \lambda_{da} R_{da}(l(q)) \right], \\ \mathcal{L}_s(\theta) &= \mathbb{E}_{q \sim \pi_{\theta}(\cdot|z), s \sim \pi_{\theta}(\cdot|q)} \left[\lambda_s R_s(q, s) \right], \end{aligned} \quad (13)$$

294 where $\lambda_q, \lambda_{dq}, \lambda_{da}, \lambda_s \geq 0$ are coefficients to balance different reward functions.

295 By applying policy gradient theorem (Sutton et al., 1999) and reward normalization (Shao et al.,
296 2024) to $\mathcal{L}_q(\theta)$ and $\mathcal{L}_s(\theta)$, we optimize the following surrogate objective function $\mathcal{J}(\theta)$,

$$\begin{aligned} \mathcal{J}(\theta) &= \mathbb{E}_{z \sim p(z), q \sim \pi_{\theta}(\cdot|z)} \left[A_q \log \pi_{\theta}(q|z) \right] + \mathbb{E}_{q \sim \pi_{\theta}(\cdot|z), s \sim \pi_{\theta}(\cdot|q)} \left[A_s \log \pi_{\theta}(s|q) \right], \\ A_q &= \lambda_q \frac{R_q(z, q) - \text{Mean}(\{R_q(z, q_i)\}_{i=1}^n)}{\text{Std}(\{R_q(z, q_i)\}_{i=1}^n)} + \lambda_{dq} \frac{R_{dq}(q) - \text{Mean}(\{R_{dq}(q_i)\}_{i=1}^n)}{\text{Std}(\{R_{dq}(q_i)\}_{i=1}^n)} \\ &\quad + \lambda_{da} \frac{R_{da}(l(q)) - \text{Mean}(\{R_{da}(l(q_i))\}_{i=1}^n)}{\text{Std}(\{R_{da}(l(q_i))\}_{i=1}^n)}, \\ A_s &= \lambda_s \frac{R_s(q, s) - \text{Mean}(\{R_s(q, s_j)\}_{j=1}^m)}{\text{Std}(\{R_s(q, s_j)\}_{j=1}^m)}. \end{aligned} \quad (14)$$

309 We use GRPO (Shao et al., 2024) to normalize each reward function and use advantage decomposition
310 (Xiao et al., 2025) to get the final advantage function, which separately normalizes each individual
311 reward function. Note that we treat $\pi_{\theta}(\cdot|z)$ as a fixed distribution when applying policy gradient
312 theorem to $\mathcal{L}_s(\theta)$, analogous to semi-dynamic RL.

313 We present the detailed implementation of our dynamic RL in Alg.(1).

3 EXPERIMENTS

3.1 SETTINGS

319 **Baselines** We compare dynamic RL with semi-dynamic RL (Guo et al., 2025). For semi-dynamic
320 RL, models are trained on four datasets of different scales: the small-scale MATH-7.5K (Hendrycks
321 et al., 2021), the medium-scale DAPO-Math-17k (Yu et al., 2025), and the large-scale DeepScaleR-
322 Preview-40K (Luo et al., 2025). In contrast, dynamic RL requires no external datasets, as it learns
323 from its own generated data. We adopt Qwen2.5-Math-1.5B and Qwen2.5-Math-7B as the base
models.

Table 1: The model performance on math datasets.

Methods	MATH500	AMC23	AIME2024	AIME2025	Average
<i>Qwen2.5-Math-1.5B</i>					
Base Model	40.8	24.2	4.4	4.2	18.4
Semi-dynamic RL (7.5K)	67.6	54.2	13.3	6.0	35.3
Semi-dynamic RL (17K)	71.2	50.3	17.9	7.5	36.7
Semi-dynamic RL (40K)	74.6	56.6	15.6	10.6	39.4
Dynamic RL	76.3	53.6	11.8	11.1	38.2
<i>Qwen2.5-Math-7B</i>					
Base Model	54.4	37.7	13.3	6.7	28.0
Semi-dynamic RL (7.5K)	76.2	60.8	24.8	11.0	43.2
Semi-dynamic RL (17K)	81.0	66.4	27.9	13.1	47.1
Semi-dynamic RL (40K)	81.2	64.5	29.2	16.3	47.8
Dynamic RL	83.8	66.9	21.4	17.3	47.4

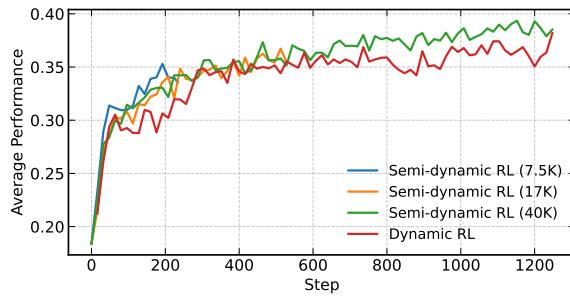


Figure 2: The average performance across different training steps.

Evaluation We evaluate models on four math benchmark datasets: MATH500 (Hendrycks et al., 2021; Lightman et al., 2023), AMC23 (Art of Problem Solving, 2025b), AIME2024 and AIME2025 (Art of Problem Solving, 2025a). We report the avg@16 evaluation metric, which averages pass@1 over 16 sampled answers.

Hyperparameters Settings We set $\lambda_s = 1$ and search λ_q over $\{10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}\}$. To promote answer diversity, we set $\lambda_{da} = 1$. For λ_{dq} , we conduct a search over $\{1, 10^{-1}, 10^{-2}, 10^{-3}\}$. For τ in Eq. (8), we search over $\{\frac{1}{4}, \frac{1}{2}, \frac{3}{4}\}$. The best-performing hyperparameters are found to be $\{\lambda_q = 10^{-3}, \lambda_{dq} = 10^{-1}, \tau = \frac{3}{4}\}$.

We set the batch size n to 32, the number of sampled solutions m to 16, and the learning rate to 10^{-6} . For rollouts, we use temperature = 1.0 and top- p = 1.0, while for evaluation we use temperature = 0.6, top- p = 0.95 and top- k = 20. The maximum question length is set to 1024 tokens, and the maximum solution length is set to 3072 tokens. We train semi-dynamic for 1 epoch and dynamic RL the same steps as semi-dynamic trained on DeepScaleR-Preview-40K dataset.

To ensure fair comparison, we keep all shared hyperparameters identical between dynamic RL and semi-dynamic RL. The only differences lie in the methods themselves and the training datasets.

3.2 RESULTS

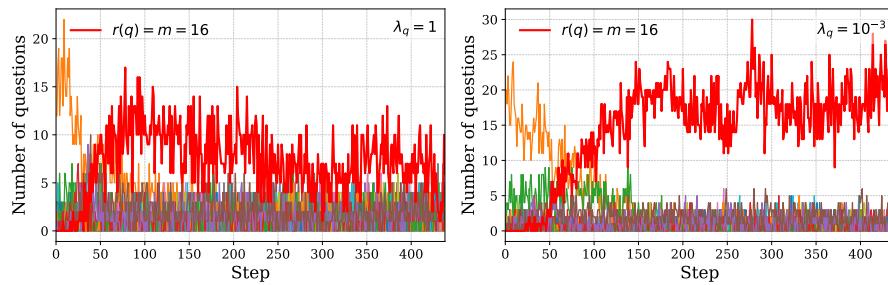
See Table 1 and Figure 2 for detailed results. Dynamic RL achieves performance comparable to semi-dynamic RL (40K) without relying on any external datasets, and it continues to improve over more than one thousand training steps. In contrast, Zhang et al. (2025c) reports that semi-dynamic RL without golden answers can sustain improvement for only a limited number of steps.

378
379
380 Table 2: The model performance on math datasets.
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

Methods	MATH500	AMC23	AIME2024	AIME2025	Average
Dynamic RL (40K)	83.8	66.9	21.4	17.3	47.4
w/o filtering	81.6	66.7	20.8	15.6	46.2
w/o R_q	82.2	62.3	19.2	16.3	45.0
w/o R_{dq}	82.4	64.5	14.6	14.0	43.9
w/o R_{da}	80.4	66.4	19.0	13.5	44.8
$\tau = 1/4$	82.8	65.5	20.6	18.8	46.9
$\tau = 3/4$	81.2	64.7	20.2	19.6	46.4
$\lambda_{dq} = 1$	82.2	63.3	19.5	17.5	45.7
$\lambda_{dq} = 10^{-5}$	83.2	65.3	16.9	16.0	45.4
$\lambda_q = 1$	81.2	63.8	20.4	14.2	44.9
$\lambda_q = 10^{-5}$	81.8	62.3	16.0	14.6	43.7

395 3.3 ABLATION STUDIES
396397 We conduct ablation studies to examine the effectiveness of the question filtering, the question reward
398 function R_q , the question diversity reward function R_{dq} , the answer diversity reward function R_{da} ,
399 and the choice of τ in Eq. (8).400 As reported in Table 2, all three reward functions and question filtering contribute to improving model
401 performance. Moreover, setting a relatively large value of τ facilitates more reliable estimation of
402 answers, which in turn leads to better performance.405 3.4 EXPLORATION AND EXPLOITATION
406407 We further demonstrate the effectiveness of dynamic RL from the view of exploration and exploitation.
408 The objective function in Eq. (14) consists of four reward functions. We temporarily omit the answer
409 diversity reward function R_{da} because answer diversity is relatively easier to satisfy. The solution
410 reward function R_s plays a role for improving the model performance, similar to semi-dynamic RL.
411 The question diversity reward function R_{dq} plays a role of exploration, which aims to generate new
412 questions. The question reward function R_q plays a role of exploitation, which favors questions with
413 proper $p(q)$ (See Figure 1).414 To balance exploration and exploitation, we tune the hyper-parameters λ_{dq} and λ_q . For λ_{dq} , an exces-
415 sively large value causes the model to prioritize generating new questions, preventing convergence,
416 while too small a value may lead to mode collapse in question generation and, consequently, degraded
417 model performance. Table 2 illustrates the performance across different values of λ_{dq} . In practice,
418 we set λ_{dq} to a relatively large value to preserve sufficient exploration.419 For λ_q , we adopt a relatively small value to moderate exploitation. If λ_q is too small, R_{dq} dominates,
420 resulting in over-exploration. Conversely, if λ_q is too large, the model generates overly hard questions,
421 making it impossible for the LLM to accurately estimate golden answers, which ultimately harms
422 performance as shown in Table 2.423 To further clarify this point, Figure 3 presents the distribution of $r(q)$ (as defined in Eq.(5)) at different
424 training steps, where $r(q)$ denotes the frequency of the majority answer. We focus on the red curve
425 corresponding to $r(q) = m = 16$, as this category constitutes the largest portion of each batch and
426 reflects the simplest type of questions. The number of questions satisfying $r(q) = m$ therefore serves
427 as a proxy for batch-level difficulty: the higher this number, the easier the questions in the batch.428 As shown in Figure 3, larger values of λ_q reduce the count of questions with $r(q) = m$, because
429 $R_q(z, q) = 0$ when $r(q) = m$. As a result, an excessively large λ_q pushes the question generator too
430 quickly toward harder questions, making the answer estimation increasingly unreliable. In summary,
431 the difficulty of the generated questions at each training step should remain aligned with the current
432 capability of the LLM and the reliability of the chosen estimation method.

432
433
434
435
436
437
438
439
440
441



442 Figure 3: The distribution of $r(q)$ during training. The curves show the counts of questions with
443 $r(q) = i$ for $1 \leq i \leq 16$, reflecting the full distribution of $r(q)$ throughout training. Since it is
444 difficult to derive meaningful conclusions from curves other than the one for $r(q) = m = 16$, we
445 have intentionally omitted legends for the remaining lines.

446
447

448 We allow the model to generate a proportion non-contributory questions ($r(q) = m$, the advantage
449 $A_s = 0$ (defined in Eq.(14))), such that the remaining questions are located near the boundary
450 $r(q) = m$. Learning from data near the boundary may extend the boundary of an LLM by itself.
451

452
453

454 **455 Unsupervised RL** DeepSeek-R1 (Guo et al., 2025) shows that RL can significantly enhance
456 model performance without relying on human-labeled solutions. Nevertheless, it still depends on
457 human-labeled golden answers to guide the learning process. In contrast, unsupervised RL seeks to
458 train models entirely without human-labeled answers. Some approaches define objectives based on
459 the consistency of model outputs, Zhang et al. (2025a) propose rewards derived from intermediate
460 reasoning states, and Zuo et al. (2025) explore estimating golden answers through answer consistency.
461 Meanwhile, Shao et al. (2025) demonstrate that even random or negative rewards can serve as
462 effective training signals for RL. Other approaches, including Zhang et al. (2025b) and Agarwal
463 et al. (2025), link RL with entropy minimization at either the sequence or token level, using answer
464 entropy as a surrogate objective. These methods primarily focus on estimation strategies. In contrast,
465 dynamic RL emphasizes generating questions that can be reliably assessed by estimation methods.

466

467 **Self-play RL** Self-play RL is a paradigm in which an agent enhances its performance by iteratively
468 interacting with versions of itself (Zhang et al., 2024). This approach typically relies on a verifiable
469 environment, particularly in code-related tasks, where unit tests can provide efficient verification. Lin
470 et al. (2025) propose a self-play solver-verifier framework that jointly improves a model’s ability to
471 generate both code and corresponding test units. Similarly, Wang et al. (2025) introduce a framework
472 that co-evolves coding and unit test generation by leveraging feedback from their interactions. Other
473 studies, such as Zhao et al. (2025) and Zhou et al. (2025), allow the LLM to generate code tasks
474 and learn from them, provided these tasks are feasible and verifiable. Despite these advances, these
475 methods still depend on an external verifier to check answer correctness, whereas dynamic RL
476 estimates the golden answers directly from the model’s outputs.

477

5 CONCLUSION

478

479 In this paper, we propose dynamic RL, a framework designed to enhance the scalability of RL by
480 leveraging the LLM itself. Dynamic RL samples both questions and solutions directly from the
481 LLM, allowing the training data to adapt dynamically as the model evolves. However, this approach
482 introduces new challenges, including the absence of golden answers and the risk of mode collapse. To
483 address these issues, we encourage the model to generate a greater proportion of questions that can be
484 reliably estimated and introduce a diversity reward function to promote data diversity. Experimental
485 results demonstrate that Dynamic RL achieves performance comparable to semi-dynamic RL, without
486 relying on external supervision. We envision that further refinements of this approach will continue
487 to improve the scalability of RL.

486 REFERENCES
487

- 488 Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effectiveness
489 of entropy minimization in llm reasoning. *arXiv preprint arXiv:2505.15134*, 2025.
- 490 Art of Problem Solving. Aime problems and solutions, 2025a. URL https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions. Accessed: 2025-04-20.
- 491 Art of Problem Solving. Amc problems and solutions, 2025b. URL https://artofproblemsolving.com/wiki/index.php?title=AMC_Problems_and_Solutions. Accessed: 2025-04-20.
- 492
- 493 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
494 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
495 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- 496
- 497 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
498 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv
499 preprint arXiv:2103.03874*, 2021.
- 500
- 501 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
502 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint
503 arXiv:2412.16720*, 2024.
- 504
- 505 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
506 Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
507 *arXiv preprint arXiv:2001.08361*, 2020.
- 508
- 509 Youssef Kossale, Mohammed Airaj, and Aziz Darouichi. Mode collapse in generative adversarial
510 networks: An overview. In *2022 8th International Conference on Optimization and Applications
(ICOA)*, pp. 1–6. IEEE, 2022.
- 511
- 512 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
513 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In *The Twelfth
514 International Conference on Learning Representations*, 2023.
- 515
- 516 Zi Lin, Sheng Shen, Jingbo Shang, Jason Weston, and Yixin Nie. Learning to solve and verify: A
517 self-play framework for code and test generation. *arXiv preprint arXiv:2502.14948*, 2025.
- 518
- 519 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y Tang, Manan Roongta, Colin Cai,
520 Jeffrey Luo, Tianjun Zhang, Li Erran Li, et al. Deepscaler: Surpassing o1-preview with a 1.5 b
521 model by scaling rl. *Notion Blog*, 2025.
- 522
- 523 Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei Du,
524 Nathan Lambert, Sewon Min, Ranjay Krishna, et al. Spurious rewards: Rethinking training signals
525 in rlrv. *arXiv preprint arXiv:2506.10947*, 2025.
- 526
- 527 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
528 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
529 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
- 530
- 531 Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
532 for reinforcement learning with function approximation. *Advances in neural information processing
533 systems*, 12, 1999.
- 534
- 535 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
536 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
537 llms. *arXiv preprint arXiv:2501.12599*, 2025.
- 538
- 539 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In *The Eleventh International Conference on Learning Representations*.

- 540 Yinjie Wang, Ling Yang, Ye Tian, Ke Shen, and Mengdi Wang. Co-evolving llm coder and unit tester
 541 via reinforcement learning. *arXiv preprint arXiv:2506.03136*, 2025.
- 542
- 543 Changyi Xiao, Mengdi Zhang, and Yixin Cao. Bnpo: Beta normalization policy optimization. *arXiv*
 544 *preprint arXiv:2506.02864*, 2025.
- 545
- 546 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 547 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
 548 scale. *arXiv preprint arXiv:2503.14476*, 2025.
- 549
- 550 Kongcheng Zhang, Qi Yao, Shunyu Liu, Yingjie Wang, Baisheng Lai, Jieping Ye, Mingli Song,
 551 and Dacheng Tao. Consistent paths lead to truth: Self-rewarding reinforcement learning for llm
 552 reasoning. *arXiv preprint arXiv:2506.08745*, 2025a.
- 553
- 554 Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question
 555 is already half the answer: Fully unsupervised llm reasoning incentivization. *arXiv preprint*
 556 *arXiv:2504.05812*, 2025b.
- 557
- 558 Ruize Zhang, Zelai Xu, Chengdong Ma, Chao Yu, Wei-Wei Tu, Wenhao Tang, Shiyu Huang, Deheng
 559 Ye, Wenbo Ding, Yaodong Yang, et al. A survey on self-play methods in reinforcement learning.
 560 *arXiv preprint arXiv:2408.01072*, 2024.
- 561
- 562 Yanzhi Zhang, Zhaoxi Zhang, Haoxiang Guan, Yilin Cheng, Yitong Duan, Chen Wang, Yue Wang,
 563 Shuxin Zheng, and Jiyan He. No free lunch: Rethinking internal feedback for llm reasoning. *arXiv*
 564 *preprint arXiv:2506.17219*, 2025c.
- 565
- 566 Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun
 567 Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero data.
 568 *arXiv preprint arXiv:2505.03335*, 2025.
- 569
- 570 Haizhong Zheng, Yang Zhou, Brian R Bartoldson, Bhavya Kailkhura, Fan Lai, Jiawei Zhao, and
 571 Beidi Chen. Act only when it pays: Efficient reinforcement learning for llm reasoning via selective
 572 rollouts. *arXiv preprint arXiv:2506.02177*, 2025.
- 573
- 574 Yifei Zhou, Sergey Levine, Jason Weston, Xian Li, and Sainbayar Sukhbaatar. Self-challenging
 575 language model agents. *arXiv preprint arXiv:2506.01716*, 2025.
- 576
- 577
- 578
- 579
- 580
- 581
- 582
- 583
- 584
- 585
- 586
- 587
- 588
- 589
- 590
- 591
- 592
- 593

594 **A APPENDIX**595 **A.1 QUESTIONS**

596 Table 3 presents several generated questions whose answers may not be accurately estimated.

597

600 Table 3: Examples of issues in generated questions.

601 Issue	602 Case	603 Analysis
604 Non-unique Answer 605 (No Answer)	606 Find two integers x and y 607 such that $x^2 + y^2 = 7$.	608 This question has no valid an- 609 swer. The model may still 610 output an arbitrary answer, 611 leading to errors. Since there 612 is no general method to de- 613 termine whether a mathemati- 614 cal problem has a unique sol- 615 ution, we add the prompt 616 “The answer to the question 617 should exist and be unique.” 618 to the prompt z_0 to reduce 619 the occurrence of such cases.
620 Non-unique Answer 621 (Multiple Answers)	622 Find the unique positive inte- 623 ger x such that $\lfloor \frac{x}{5} \rfloor \times \lfloor \frac{x}{7} \rfloor =$ 624 15.	625 The correct answers are 626 $\{25, 26, 27\}$, so the answers 627 are not unique. However, 628 the model may output only 629 one answer (e.g., 25) and 630 treat it as the golden answer. 631 Consequently, other correct 632 answers may be incorrectly 633 judged as wrong.
634 Non-unique Answer 635 (Insufficient Conditions)	636 What is the determinant of a 637 2x2 matrix?	638 This question has insufficient 639 conditions because the ma- 640 trix itself is not given. The 641 model may compute deter- 642 minants for different mat- 643 rices, producing inconsis- 644 tent answers. Such questions 645 tend to be treated as hard 646 because $p(q)$ may decrease 647 when multiple answers exist. Therefore, we require that ev- ery question admit a unique answer.
648 Sub-questions	649 In triangle ABC, vertex A 650 has an angle of 163° , side 651 BC measures 1.9 units, and 652 vertex C has an angle of 7° . 653 Find: 654 1. The area of triangle ABC. 655 2. The circumradius of trian- 656 gle ABC. 657 3. The inradius of triangle 658 ABC. 659 4. The semiperimeter of tri- 660 angle ABC.	661 This question contains mul- 662 tiple sub-questions. The 663 model may output only one 664 result or place only one in 665 “\boxed{ }”, which lowers 666 $p(q)$. Consequently, such 667 questions are often treated as 668 hard due to low $p(q)$. We 669 therefore apply a filtering 670 rule to remove this type of 671 questions.

648	Issue	Case	Analysis
649	Numerical Approximation	Suppose the probability that a randomly chosen 10-digit phone number contains at least one digit that is 1 is calculated. If there are 9 choices for digits 2-9 and 10 choices for digit 0, find this probability. Also, consider if each digit is used independently for the phone number.	The correct answer is $1 - \left(\frac{9}{10}\right)^{10} \approx 0.6513$. Answers such as 0.6513 and 0.651 are mathematically correct, yet minor numerical differences may cause them to be treated as incorrect. Since such cases occur infrequently, we do not explicitly address them.
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687	Underestimated Difficulty	Let X and Y be independent random variables, each following a uniform distribution on the interval $[0, 1]$. Let $Z = \min(X, Y)$ and $W = \max(X, Y)$. Find the value of $P(Z + W \geq 1.5)$.	We first demonstrate that the metric $p(q)$ only approximates question difficulty and may underestimate it in some cases. Let $l_t(q)$ denote the true golden answer, $r_t(q)$ the number of answers equivalent to it, and $p_t(q) = \frac{r_t(q)}{m}$ the true difficulty measure. Since $r(q)$ in Eq. (5) is maximized, $p(q)$ serves as an upper bound of $p_t(q)$, i.e., $p_t(q) \leq p(q)$. For this question, the correct answer is $\frac{1}{8}$. However, the frequency of “ $\frac{1}{8}$ ” is 3, while that of “ $\frac{1}{2}$ ” is 4, yielding $p(q) = \frac{4}{16}$, which exceeds the true measure $p_t(q) = \frac{3}{16}$. Thus, using $p(q)$ can underestimate difficulty and mislead majority voting. To mitigate this, we set τ in Eq. (8) to a relatively high value and tune hyperparameters for more reliable question generation.

Table 4 presents several questions generated at different training steps that can be correctly answered.

688
689
690
691
692
693
694
695
696
697
698
699
700
701

Table 4: Questions across training steps.

702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

Step	Question	Solution
1	What is the value of x in the equation $2x + 3 = 7$?	<p>To find the value of x in the equation $2x + 3 = 7$, we need to isolate x. Here are the steps:</p> <ol style="list-style-type: none"> 1. Subtract 3 from both sides of the equation: $2x + 3 - 3 = 7 - 3$ <p>Simplifying, we get:</p> $2x = 4$ <ol style="list-style-type: none"> 2. Divide both sides of the equation by 2: $\frac{2x}{2} = \frac{4}{2}$ <p>Simplifying, we get:</p> $x = 2$ <p>So, the value of x is 2.</p>

Step	Question	Solution
50	<p>Solve for x:</p> $x^2 - 5x + 6 = 0$	<p>To solve the quadratic equation $x^2 - 5x + 6 = 0$, we can use the quadratic formula, which is given by:</p> $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ <p>where $a = 1$, $b = -5$, and $c = 6$.</p> <p>Alternatively, we can factorize the quadratic equation directly. Let's try both methods.</p> <p>### Method 1: Factorization</p> <p>We need to find two numbers that multiply to give 6 (the constant term) and add up to -5 (the coefficient of the x term). The numbers -2 and -3 meet these conditions because $(-2) \times (-3) = 6$ and $(-2) + (-3) = -5$.</p> <p>So we can write:</p> $x^2 - 5x + 6 = (x - 2)(x - 3)$ <p>Setting each factor to zero gives us:</p> $x - 2 = 0 \quad \text{or} \quad x - 3 = 0$ <p>So the solutions are:</p> $x = 2 \quad \text{or} \quad x = 3$ <p>### Method 2: Quadratic Formula</p> <p>Using the quadratic formula:</p> $x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 1 \cdot 6}}{2 \cdot 1} = \frac{5 \pm \sqrt{25 - 24}}{2} = \frac{5 \pm \sqrt{1}}{2} = \frac{5 \pm 1}{2}$ <p>This gives us two solutions: $x = \frac{5+1}{2} = \frac{6}{2} = 3$ and $x = \frac{5-1}{2} = \frac{4}{2} = 2$</p> <p>So the solutions are:</p> $x = 2 \quad \text{or} \quad x = 3$ <p>The final answer is:</p> <div style="border: 1px solid black; padding: 2px; display: inline-block;">2, 3</div>

Step	Question	Solution
100	<p>Consider three sets A, B, and C defined as follows:</p> $A = \{x \in \mathbb{R} \mid x^2 - 3x + 2 \geq 0\}$ $B = \{x \in \mathbb{R} \mid x < 2\}$ $C = \{x \in \mathbb{R} \mid x^2 - 4 \leq 0\}$ <p>Determine $(A \cup B) \cap C$.</p>	<p>To solve the problem, let's first determine the elements of each set A, B, and C.</p> <ol style="list-style-type: none"> **Set A**: The inequality $x^2 - 3x + 2 \geq 0$ can be factored as $(x - 1)(x - 2) \geq 0$. This inequality holds when $x \leq 1$ or $x \geq 2$. So, $A = (-\infty, 1] \cup [2, \infty)$. **Set B**: This is the set of all real numbers less than 2, i.e., $B = (-\infty, 2)$. **Set C**: The inequality $x^2 - 4 \leq 0$ can be factored as $(x - 2)(x + 2) \leq 0$. This inequality holds when $-2 \leq x \leq 2$. So, $C = [-2, 2]$. <p>Next, we need to find $A \cup B$:</p> $A \cup B = (-\infty, 1] \cup [2, \infty) \cup (-\infty, 2) = (-\infty, 2) \cup [2, \infty) = (-\infty, \infty) = \mathbb{R}$ <p>Finally, we need to find $(A \cup B) \cap C$:</p> $(A \cup B) \cap C = \mathbb{R} \cap [-2, 2] = [-2, 2]$ <p>So the final answer is $[-2, 2]$.</p>

Step	Question	Solution
500	<p>Evaluate the line integral of the vector field</p> $\vec{F}(x, y) = (y^2, x^2)$ <p>along the curve defined by the parametric equations $x = \cos(t)$, $y = \sin(t)$, $0 \leq t \leq 2\pi$.</p>	<p>To evaluate the line integral of the vector field $\vec{F}(x, y) = (y^2, x^2)$ along the curve defined by the parametric equations $x = \cos(t)$, $y = \sin(t)$ for $0 \leq t \leq 2\pi$, we follow these steps:</p> <ol style="list-style-type: none"> 1. Parameterize the curve: The curve is given by $x = \cos(t)$ and $y = \sin(t)$. The vector function for the curve is $\vec{r}(t) = (\cos(t), \sin(t))$. 2. Find the derivative of the parameterization: The derivative of $\vec{r}(t)$ with respect to t is $\vec{r}'(t) = (-\sin(t), \cos(t))$. 3. Evaluate the vector field along the curve: Substitute $x = \cos(t)$ and $y = \sin(t)$ into the vector field $\vec{F}(x, y) = (y^2, x^2)$. This gives $\vec{F}(\cos(t), \sin(t)) = (\sin^2(t), \cos^2(t))$. 4. Compute the dot product: The dot product $\vec{F}(\cos(t), \sin(t)) \cdot \vec{r}'(t)$ is $(\sin^2(t), \cos^2(t)) \cdot (-\sin(t), \cos(t)) = -\sin^3(t) + \cos^3(t)$. 5. Set up the integral: The line integral is $\int_0^{2\pi} (-\sin^3(t) + \cos^3(t)) dt$. 6. Evaluate the integral: We can split the integral into two parts: $\int_0^{2\pi} -\sin^3(t) dt + \int_0^{2\pi} \cos^3(t) dt$. Both $\sin^3(t)$ and $\cos^3(t)$ are odd functions over the interval $[0, 2\pi]$, and the integral of an odd function over a symmetric interval around the origin (or any multiple of the period) is zero. Therefore, both integrals are zero: $\int_0^{2\pi} -\sin^3(t) dt = 0$ and $\int_0^{2\pi} \cos^3(t) dt = 0$. Adding these together, we get $\int_0^{2\pi} (-\sin^3(t) + \cos^3(t)) dt = 0$. <p>The final answer is 0.</p>

918	Step	Question	Solution
919	1000	Given the function $f(v) = v^5 + v^3$, find the integral of $\frac{f'(v)}{2f(v)}$ with respect to v .	<p>To find the integral of $\frac{f'(v)}{2f(v)}$ with respect to v, we start by identifying the function $f(v)$ and its derivative $f'(v)$. Given $f(v) = v^5 + v^3$, we compute the derivative: $f'(v) = \frac{d}{dv}(v^5 + v^3) = 5v^4 + 3v^2$.</p> <p>Now, we substitute $f'(v)$ and $f(v)$ into the integral: $\int \frac{f'(v)}{2f(v)} dv = \int \frac{5v^4 + 3v^2}{2(v^5 + v^3)} dv$. We can simplify the integrand by factoring out the common terms in the numerator and the denominator: $\int \frac{5v^4 + 3v^2}{2(v^5 + v^3)} dv = \int \frac{5v^4 + 3v^2}{2v^3(v^2 + 1)} dv = \int \frac{5v + 3/v}{2(v^2 + 1)} dv$.</p> <p>This integral can be simplified further by recognizing that the numerator $5v + 3/v$ can be split into two separate fractions: $\int \frac{5v + 3/v}{2(v^2 + 1)} dv = \int \left(\frac{5v}{2(v^2 + 1)} + \frac{3/v}{2(v^2 + 1)} \right) dv = \int \frac{5v}{2(v^2 + 1)} dv + \int \frac{3/v}{2(v^2 + 1)} dv$.</p> <p>However, a simpler approach is to recognize that the integral $\int \frac{f'(v)}{2f(v)} dv$ is of the form $\int \frac{1}{2} \frac{f'(v)}{f(v)} dv$, which is a standard form that can be integrated directly. The integral of $\frac{f'(v)}{f(v)}$ is $\ln f(v)$, so we have: $\int \frac{f'(v)}{2f(v)} dv = \frac{1}{2} \int \frac{f'(v)}{f(v)} dv = \frac{1}{2} \ln f(v) + C$, where C is the constant of integration. Substituting back the function $f(v) = v^5 + v^3$, we get: $\int \frac{f'(v)}{2f(v)} dv = \frac{1}{2} \ln v^5 + v^3 + C$.</p> <p>Therefore, the final answer is: $\boxed{\frac{1}{2} \ln v^5 + v^3 + C}$.</p>

A.2 EXPERIMENTS

We further show more experimental results.

Training Dynamics We show the training dynamics of different rewards as in Figure 4.

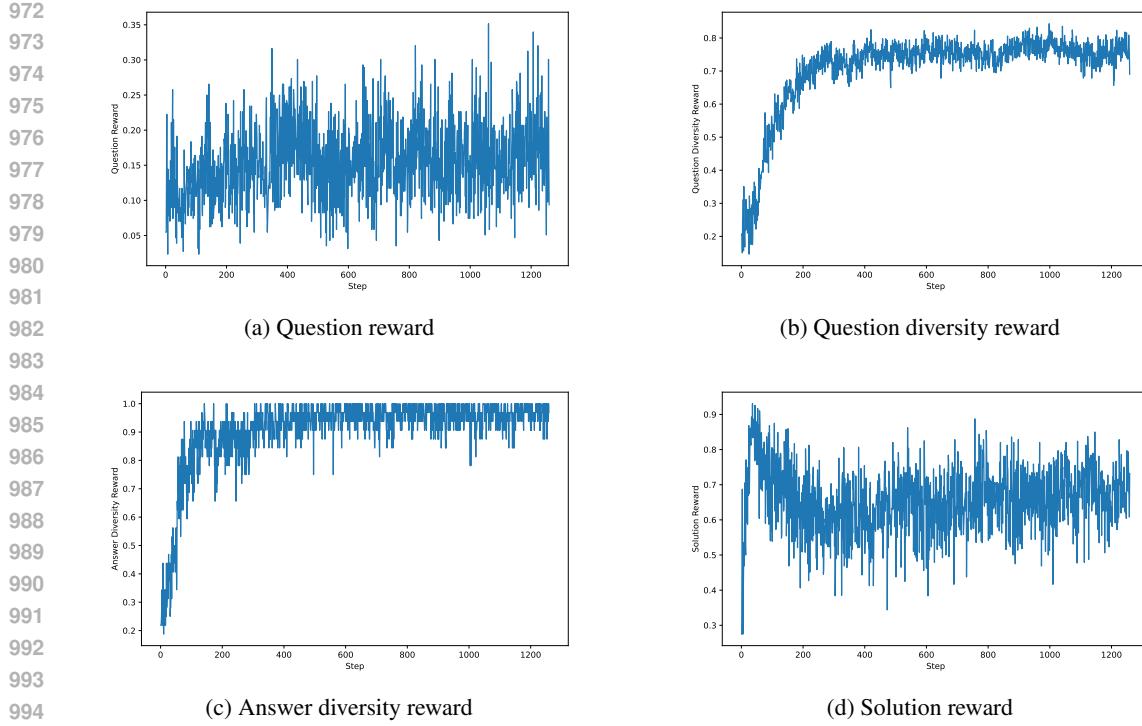


Figure 4: Overview of four reward components.

The answer diversity reward steadily increases and eventually remains close to 1, as satisfying answer diversity is relatively easy. The question diversity reward also increases during the early stages of training and then stabilizes in the range of approximately 0.7 to 0.8, which prevents both mode collapse and excessive exploration.

The trajectories of the question reward and solution reward highlight the adversarial relationship between these two objectives. In the early phase of training (Step 0 to Step 50), the model performance improves rapidly, leading to a sharp increase in the solution reward, while the question reward decreases because overly simple questions receive low scores. As training progresses (Step 50 to Step 450), the generated questions gradually become more challenging, causing the solution reward to decline and the question reward to rise. After this phase, both rewards continue to fluctuate within a stable range, maintaining an effective balance between question difficulty and model solvability.

Mode Collapse We further empirically analyze the mode collapse phenomena. Figure 5 illustrates the entropy of generated questions with and without the question diversity reward. Without this reward, the entropy becomes unstable, collapsing around Step 750 and then exploding around Step 870. Since entropy alone may not fully capture mode collapse, we also manually inspected the generated questions. We found that 93.75% of the questions became equivalent by Step 750, and by Step 870 the model produced largely random tokens. In contrast, when the question diversity reward is enabled, we do not observe the mode collapse phenomena.

Figure 6 presents the ratio of unique answers within each batch, with and without the answer diversity reward. Without this reward, the ratio collapses to nearly zero after Step 480. With the reward enabled, the ratio increases to nearly one by Step 200. Manual inspection further confirms degeneration without this reward: by Step 480, 96.9% of answers collapse to the answer “0”.

Sensitivity Analysis We conduct sensitivity analysis on the hyperparameter λ_{dq} and λ_q . See Table 5 and Table 6 for the results. It can be seen that the performance does not oscillate with changes in λ_q and λ_{dq} .

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

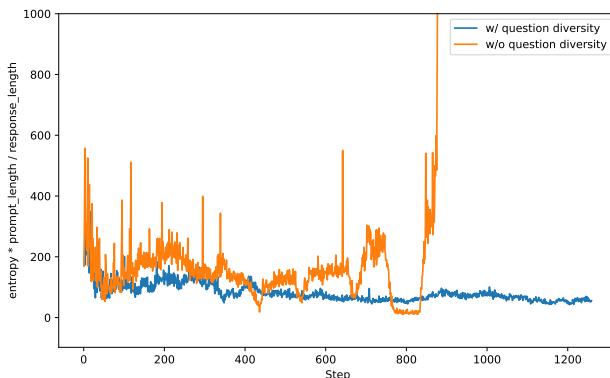
1036

1037

1038

1039

Figure 5: The entropy of generated questions during training.



1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

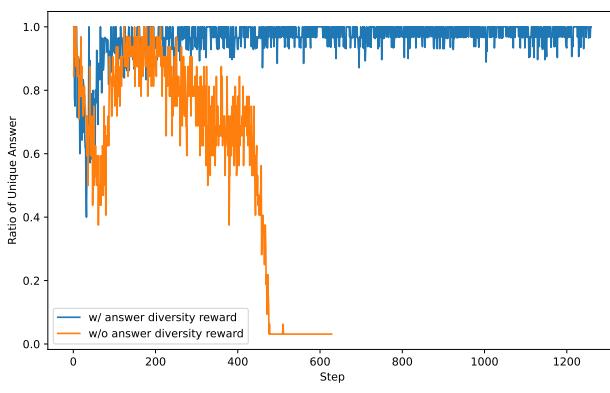
1059

1060

1061

1062

Figure 6: The ratio of unique answer during training.

Table 5: The model performance with different λ_q .

λ_q	1	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}
MATH500	81.2	82.6	82.4	83.8	82.0	81.8
AMC23	63.8	65.3	68.9	66.9	66.1	62.3
AIME24	20.4	19.2	17.1	21.4	19.8	16.0
AIME25	14.2	16.5	16.9	17.3	14.8	14.6
Average	44.9	45.9	46.3	47.4	45.7	43.7

1069

1070

1071

1072

Table 6: The model performance with different λ_{dq} .

λ_q	1	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}
MATH500	82.2	83.8	83.0	81.4	81.4	83.2
AMC23	63.3	66.9	65.0	66.3	65.3	65.3
AIME24	19.5	21.4	19.2	19.4	20.8	16.9
AIME25	17.5	17.3	18.5	16.0	16.6	16.0
Average	45.7	47.4	46.4	45.8	45.5	45.4