
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ALL BY LARGE LANGUAGE MODEL ITSELF

Anonymous authors
Paper under double-blind review

ABSTRACT

The scaling laws constitute one of the fundamental principles of large language
models (LLMs), which reveal that the model performance constantly improves
as the training data increase. In this paper, we propose dynamic reinforcement
learning (RL), which takes a step to achieve the scalability of RL for training the
LLM by itself. Dynamic RL operates by sampling data from the dynamically
changed LLM itself, estimating golden answers based on the model’s own outputs,
and then using this self-generated data to optimize the model. Its dynamic charac-
teristic allows the data distribution to continuously adapt to the evolving model,
leading to better alignment between training data and model capabilities. Unlike
conventional approaches, dynamic RL requires neither static, pre-collected datasets
nor external verifiers for correctness. All is done by the large language model itself.
Experimental results demonstrate that dynamic RL can continually improve model
performance over a thousand of training steps and achieve results comparable to
models trained on large-scale external datasets.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance across a wide range of
tasks (Jaech et al., 2024; Guo et al., 2025). A key factor driving this success is the principle of scaling
laws (Kaplan et al., 2020), which shows that LLM performance improves as the amount of training
data increases. LLMs can be trained using different learning paradigms, such as supervised learning
and reinforcement learning (RL), each exhibiting different scalability characteristics.

In supervised learning, models are trained on data sampled from a static distribution, requiring pre-
collected datasets of questions paired with human-labeled solutions. However, these human-labeled
solutions are costly and finite, which limits scalability. In contrast, DeepSeek-R1 (Guo et al., 2025)
demonstrates that RL can train models without relying on human-labeled solutions by sampling
solutions from the dynamic LLM itself, thereby achieving great scalability. Since the questions are
sampled from a static distribution while the solutions are sampled from a dynamic distribution, we
refer to this paradigm as semi-dynamic reinforcement learning.

Despite its advantages, semi-dynamic RL still depends on static datasets of human-created questions
and human-labeled answers, which remain finite and costly. Moreover, since the questions are
sampled from a static distribution that may not align with the evolving LLM, the number of effective
training questions gradually decreases over time (Yu et al., 2025; Zheng et al., 2025). This mismatch
between static data and a constantly evolving model ultimately constrains scalability.

To address this limitation, we propose dynamic reinforcement learning, which takes a step toward
achieving scalable RL using the LLM itself. In this framework, the LLM autonomously generates
both questions and solutions, learning directly from its own self-sampled data without relying on
external datasets or verifiers for correctness. All is done by the large language model itself. The
dynamic nature of this approach allows the data distribution to evolve continuously alongside the
model, ensuring better alignment between training data and model capabilities.

Transitioning from semi-dynamic RL to dynamic RL introduces additional challenges, most notably
the absence of golden answers and the risk of mode collapse. Since the questions are generated
by the LLM itself, human-labeled golden answers are unavailable and should instead be estimated.
The core design principle of our dynamic RL is to encourage the model to generate relatively more
questions whose answers can be reliably estimated by the estimation method, rather than to devise a
new estimation method.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To realize this principle, we adopt three strategies. First, we estimate golden answers using majority
voting (Wang et al.) and introduce a question reward function that promotes the generation of
questions suitable for this estimation. Second, we design prompts and introduce filtering rules to
exclude questions that are likely to be incorrectly answered. Third, we adjust the training dynamics
by tuning hyperparameters so that the model produces questions of moderate difficulty that match
with the estimation method.

Another major challenge is mode collapse, a phenomenon in which generated data degenerates into a
limited set of modes (Kossale et al., 2022). In dynamic RL, this manifests as question collapse, where
the model repeatedly produces similar questions, and answer collapse, where the model defaults
to identical answers. Such collapse ultimately leads to performance degradation. For example, the
model may repeatedly generate nearly identical questions such as “Solve the equation 2x+ 3 = 7”,
or consistently output the same answer, such as “\boxed{1}”, across different questions.

To mitigate this issue, we introduce a diversity reward function that prompts the model to generate
new questions with diverse estimated golden answers. This mechanism effectively enhances both
question and answer diversity, thereby alleviating mode collapse.

Finally, we experimentally validate the scalability of dynamic RL. Our results demonstrate that
dynamic RL can enhance model performance over a thousand of training steps by itself, and achieve
accuracy comparable to that of semi-dynamic RL trained on large-scale, pre-collected static datasets.

2 DYNAMIC REINFORCEMENT LEARNING

Learning Scalability Scaling laws represent one of the fundamental laws in LLMs, which show that
model performance can improve as model size, dataset size, and compute scale up. This phenomenon
underpins the success of LLMs, as it suggests that model capability scales with resources.

We discuss the learning scalability in terms of training paradigms. LLMs can be trained through
unsupervised learning, supervised learning, and RL. The supervised and unsupervised learning
objectives can be expressed as

Jsl(θ) = Eq∼ϕ, s∼µ(·|q)

[
log πθ(s|q)

]
,

where ϕ is the distribution over questions q, µ(·|q) is the distribution of solutions s conditioned on q,
and πθ is the LLM policy model parameterized by θ. Unsupervised learning can be regarded as a
special case where the conditioning variable q is absent. Since both q and o are drawn from static
distributions, we refer to this paradigm as static learning. However, the policy model πθ constantly
changes during training, while the data are sampled from a static distribution that can not adapt to the
evolving policy model πθ. This mismatch inherently limits the scalability of learning.

RL, in contrast, optimizes a different objective:

Jrl(θ) = Eq∼ϕ, s∼πθ(·|q)

[
R(q, s)

]
,

where R(q, s) denotes the reward function evaluating the quality of a solution s given a question q.
Recent approaches, such as DeepSeek-R1, demonstrate that RL can enhance scalability by allowing
the solutions sampled from the dynamic policy model to refine itself. Since the solutions s are
sampled from the evolving distribution πθ(·|q) during training, this paradigm can be described
as semi-dynamic reinforcement learning. However, the questions q remain drawn from a static
distribution ϕ, which continues to constrain scalability.

Dynamic Reinforcement Learning To further enhance scalability of RL, we propose a framework
termed dynamic reinforcement learning. In this framework, we first sample questions from the policy
model πθ itself, then generates corresponding solutions from the policy model πθ itself, and finally
leverages the sampled data to optimize itself. All is done by the policy model πθ itself. By continually
sampling from dynamically evolving distributions πθ, the policy model can iteratively improve its
performance. To this end, we optimize two objective functions: one for generating higher-quality
solutions and another for generating higher-quality questions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

We first introduce the objective function Js(θ), which optimizes the quality of generated solutions:

Js(θ) = Eq∼πθ(·|z), s∼πθ(·|q)

[
Rs(q, s)

]
, (1)

where πθ(·|z) denotes the distribution of questions q given a prompt z, and πθ(·|q) denotes the
distribution of solutions s given a question q. The function Rs(q, s) serves as the solution reward,
evaluating the quality of the generated solutions s for the corresponding question q.

Next, we define the objective function Jq(θ), which optimizes the quality of generated questions:

Jq(θ) = Ez∼p(z), q∼πθ(·|z)

[
Rq(z, q)

]
, (2)

where Rq(z, q) is the question reward function, assessing the quality of a question q given a prompt
z. The distribution p(z) specifies how prompts z are sampled.

In summary, we jointly optimize Js(θ) and Jq(θ) to enhance both the quality of solutions and the
quality of questions. In the following, we detail the design of the prompt distribution p(z), solution
reward function Rs(q, s) and the question reward function Rq(z, q).

Prompt Since this paper focuses on mathematical reasoning, we employ only a single type of
prompt, denoted as z0, with p(z0) = 1, meaning that the prompt z is always fixed to z0. The prompt
z0 is explicitly designed to emphasize mathematical reasoning, as illustrated in the following box. It
consists of three sentences: the first instructs the model to generate a single math question along with
its solution. Since generating a question may also lead the model to implicitly produce a solution, we
allow the model to output both the question and its solution directly. The second sentence aims to
prohibit questions with non-unique answers, while the third sentence specifies the required output
format, from which we retain only the question part.

Prompt z0: Generate exactly one math question and its step-by-step solution. The answer to the
question should exist and be unique.
Format the output as follows:
Question: <math question here>
Solution: <step-by-step solution here>

Solution Reward Function To define the solution reward function Rs(q, s), we first require a
golden, or reference answer, for each question q. Since such answers are generally unavailable in
dynamic RL, we estimate the golden answer using a majority-voting scheme (Wang et al.).

Specifically, for each question q, we sample m solutions {sj}mj=1 from the distribution πθ(·|q). For
each solution sj , we extract its final answer aj via a function e(·), which can be regular expressions
or LLMs (Guo et al., 2025). We then define majority voting using a similarity metric Sa(·, ·) (Guo
et al., 2025; Team et al., 2025). For any two answers aj1 and aj2 , the similarity is given by

Sa(aj1 , aj2) =

{
1, if aj1 and aj2 are mathematically equivalent,
0, otherwise.

(3)

The majority-voted golden answer l(q) and its support size r(q) are defined as

l(q) = argmax
a∈{aj}m

j=1

m∑
k=1

Sa(a, ak), (4)

r(q) = max
a∈{aj}m

j=1

m∑
k=1

Sa(a, ak), (5)

where l(q) represents the estimated golden answer for q, and r(q) denotes the number of answers
that are mathematically equivalent to l(q).

Finally, the solution reward function Rs(q, s) evaluates whether the extracted answer e(s) matches
the majority-voted golden answer l(q):

Rs(q, s) = Sa

(
l(q), e(s)

)
. (6)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
p(q)

0.0

0.2

0.4

0.6

0.8

1.0

R q
(z

,q
)

= 0.1
= 0.3
= 0.5
= 0.7
= 0.9

Figure 1: Question Reward function Rq(z, q) with different τ .

Question Reward Function We define the question reward function based on the mean solution
reward of a question q. For a given question q, the mean solution reward p(q) is defined as

p(q) = Es∼πθ(·|q)[Rs(q, s)|q] ≈ Mean({Rs(q, sj)}mj=1) =
r(q)

m
. (7)

Here, p(q) can be seen as an approximate measure of the difficulty of question q: larger values of
p(q) correspond to easier questions, while smaller values correspond to harder ones.

The question reward function Rq(z, q) is then defined as

Rq(z, q) =


p(q)

τ
, if 0 ≤ p(q) ≤ τ,

1− p(q)

1− τ
, if τ < p(q) ≤ 1,

(8)

where τ ∈ [0, 1] is a hyperparameter. Figure 1 illustrates the behavior of Rq(z, q) under different
values of τ . As p(q) increases from 0 to τ , the reward Rq(z, q) increases; as p(q) increases further
from τ to 1, the reward decreases.

The question reward function Rq(z, q) plays both a collaborative and an adversarial role with respect
to the solution reward function Rs(q, s). It is collaborative in that, when p(q) ≤ τ , it drives the
model to generate easier questions, thereby reinforcing the increase of Js(θ). At the same time, it
is adversarial because, when p(q) > τ , it pushes the model toward harder questions, counteracting
the growth of Js(θ). In this way, Rq(z, q) balances the training dynamics, guiding the policy model
toward generating questions of moderate difficulty.

Since questions with relatively large p(q) can be estimated more accurately using the majority-
voting–based estimation method, we set τ to a relatively large value to encourage the model to
generate more questions q with high p(q). In our experiments, we set τ = 3

4 .

Question Filtering To ensure the quality of generated questions q, we further filter out some
questions q by setting Rq(z, q) = 0 and Rs(q, s) = 0. The filtering is based on the following rules:

1. Filter questions containing the word ”prove”.
2. Filter questions by multiple question marks, or paired keywords (e.g., ”find . . . and . . . ”), or

enumerations (e.g., ”1. . . . 2.”).
3. Filter questions including ”Solution:” or ”Answer:” or ”\boxed” or ”The final answer is” or

”To solve” or ”Let’s break down”.

The first rule excludes mathematical proof questions, which are incompatible with majority voting in
the solution reward function. The second rule removes questions containing multiple subquestions to
ensure that each question has only a single answer. The third rule removes questions that include
solutions, since we experimentally observe that their presence can shorten the model’s output and
potentially degrade performance.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Mode Collapse Transitioning from semi-dynamic RL to dynamic RL introduces additional chal-
lenges, particularly the issues of mode collapse (Kossale et al., 2022). Mode collapse is a phenomenon
in generative models in which the generator produces a limited variety of outputs, ignoring many
modes of the true data distribution. In dynamic RL, mode collapse manifests in two forms: question
mode collapse and answer mode collapse.

Question mode collapse occurs when the questions generated by the policy model are highly similar.
For example, the model repeatedly generates questions like ”Solve the equation 2x+ 3 = 7.”. This
lack of diversity can lead to saturation or even collapse in model performance. Therefore, it is
essential to generate diverse questions that differ from one another.

Answer mode collapse arises when the answers extracted from model solutions are highly uniform.
We observed that after a few hundred training steps, generated answers to different questions often
converge to the same response, such as ”\boxed{1}”, causing performance collapse. This occurs
because the golden answer is estimated via majority voting, which favors answers that are easily
generated. Consequently, it is necessary to generate questions whose majority-voted golden answers
are diverse.

Diversity Reward Function To mitigate mode collapse, we propose diversity reward functions that
encourage greater variability in generated data. The core idea is that the more an object resembles
others, the lower its diversity reward. We first present the general form of the diversity reward
function, followed by the specific formulations for question diversity reward function and answer
diversity reward function.

Let {xk}Kk=1 be a set of K objects sampled from the policy model πθ, where each object can be a
question or an answer. For any pair of objects in this set, we define a similarity metric S(·, ·) ∈ [0, 1],
where S(x, x) = 1 and larger values indicate greater similarity between objects. The diversity reward
for an object x ∈ {xk}Kk=1 is then defined as

Rd(x) =
1∑K

k=1 S(x, xk)
. (9)

Intuitively, if many objects in the set are similar to x, the sum
∑K

k=1 S(x, xk) will be large, resulting
in a smaller diversity reward Rd(x). Conversely, a larger Rd(x) indicates that x is less similar to
other objects. Since 0 ≤ S(x, xk) ≤ 1, it follows that 0 ≤ Rd(x) ≤ 1, where Rd(x) = 1 implies
that x is only similar to itself.

The question diversity reward is then defined as

Rdq(q) =
1∑n

i=1 Sq(q, qi)
, (10)

where q ∈ {qi}ni=1 and Sq(·, ·) measures the similarity between two questions. Each question q is
first tokenized into a sequence using a tokenizer t(·), and then similarity Sq(·, ·) is computed using
the overlap ratio of sequences:

Sq(q, qi) = overlap(t(q), t(qi)) =

min(|t(q)|,|t(qi)|)∑
j=1

1(t(q)j = t(qi)j)

min(|t(q)|, |t(qi)|)
t(q) = [t(q)1, t(q)2, t(q)3, · · ·], t(qi) = [t(qi)1, t(qi)2, t(qi)3, · · ·]. (11)

Similarly, the answer diversity reward is defined as

Rda(l(q)) =
1∑n

i=1 Sa(l(q), l(qi))
, (12)

where l(·) denotes the estimated golden answer defined in Eq. (4), and Sa(·, ·) is the similarity metric
between two answers defined in Eq. (3).

Objective Function Combining the solution reward function, question reward function, question
diversity reward function, and answer diversity reward function, we define the following objective

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Dynamic RL: Dynamic Reinforcement Learning

Input: Initial policy model πθ0 , number of steps N , number of questions n, number of solutions m,
prompt z0, prompt zq , coefficients {λq, λs, λdq, λda}, threshold τ .

1: Initialize policy model πθ ← πθ0 .
2: for step = 1 to N do
3: Sample n questions q from πθ(·|z0).
4: Sample m solutions s from πθ(·|q, zq) for each question q.
5: Estimate the golden answer l(q) by Eq. (4) for each question q.
6: Compute solution reward Rs(q, s) by Eq. (6) for each question-solution pair (q, s).
7: Compute question reward Rq(z, q) Eq. (8) for each question q.
8: Compute question diversity reward Rdq(q) Eq. (10) for each question q.
9: Compute answer diversity reward Rda(l(q)) Eq. (12) for each question q.

10: Filter question by setting Rq(z, q) = 0 and Rs(q, s) = 0 according to the rules in Paragraph
”Question Filtering” of Section 2.

11: Optimize πθ by maximizing objective function Eq. (14) via gradient ascent method.
12: end for
Output: Optimized policy model πθ.

function L(θ):
L(θ) = Lq(θ) + Ls(θ),

Lq(θ) = Ez∼p(z), q∼πθ(·|z)

[
λqRq(z, q) + λdqRdq(q) + λdaRda(l(q))

]
,

Ls(θ) = Eq∼πθ(·|z), s∼πθ(·|q)

[
λsRs(q, s)

]
, (13)

where λq, λdq, λda, λs ≥ 0 are coefficients to balance different reward functions.

By applying policy gradient theorem (Sutton et al., 1999) and reward normalization (Shao et al.,
2024) to Lq(θ) and Ls(θ), we optimize the following surrogate objective function J (θ),

J (θ) =Ez∼p(z), q∼πθ(·|z)

[
Aq log πθ(q|z)

]
+ Eq∼πθ(·|z), s∼πθ(·|q)

[
As log πθ(s|q)

]
,

Aq =λq
Rq(z, q)−Mean({Rq(z, qi)}ni=1)

Std({Rq(z, qi)}ni=1)
+ λdq

Rdq(q)−Mean({Rdq(qi)}ni=1)

Std({Rdq(qi)}ni=1)

+λda
Rda(l(q))−Mean({Rda(l(qi))}ni=1)

Std({Rda(l(qi))}ni=1)
,

As =λs

Rs(q, s)−Mean({Rs(q, sj)}mj=1)

Std({Rs(q, sj)}mj=1)
. (14)

We use GRPO (Shao et al., 2024) to normalize each reward function and use advantage decomposition
(Xiao et al., 2025) to get the final advantage function, which separately normalizes each individual
reward function. Note that we treat πθ(·|z) as a fixed distribution when applying policy gradient
theorem to Ls(θ), analogous to semi-dynamic RL.

We present the detailed implementation of our dynamic RL in Alg.(1).

3 EXPERIMENTS

3.1 SETTINGS

Baselines We compare dynamic RL with semi-dynamic RL (Guo et al., 2025). For semi-dynamic
RL, models are trained on four datasets of different scales: the small-scale MATH-7.5K (Hendrycks
et al., 2021), the medium-scale DAPO-Math-17k (Yu et al., 2025), and the large-scale DeepScaleR-
Preview-40K (Luo et al., 2025). In contrast, dynamic RL requires no external datasets, as it learns
from its own generated data. We adopt Qwen2.5-Math-1.5B and Qwen2.5-Math-7B as the base
models.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: The model performance on math datasets.

Methods MATH500 AMC23 AIME2024 AIME2025 Average
Qwen2.5-Math-1.5B

Base Model 40.8 24.2 4.4 4.2 18.4
Semi-dynamic RL (7.5K) 67.6 54.2 13.3 6.0 35.3
Semi-dynamic RL (17K) 71.2 50.3 17.9 7.5 36.7
Semi-dynamic RL (40K) 74.6 56.6 15.6 10.6 39.4
Dynamic RL 76.3 53.6 11.8 11.1 38.2

Qwen2.5-Math-7B

Base Model 54.4 37.7 13.3 6.7 28.0
Semi-dynamic RL (7.5K) 76.2 60.8 24.8 11.0 43.2
Semi-dynamic RL (17K) 81.0 66.4 27.9 13.1 47.1
Semi-dynamic RL (40K) 81.2 64.5 29.2 16.3 47.8
Dynamic RL 83.8 66.9 21.4 17.3 47.4

0 200 400 600 800 1000 1200
Step

0.20

0.25

0.30

0.35

0.40

Av
er

ag
e

Pe
rfo

rm
an

ce

Semi-dynamic RL (7.5K)
Semi-dynamic RL (17K)
Semi-dynamic RL (40K)
Dynamic RL

Figure 2: The average performance across different training steps.

Evaluation We evaluate models on four math benchmark datasets: MATH500 (Hendrycks et al.,
2021; Lightman et al., 2023), AMC23 (Art of Problem Solving, 2025b), AIME2024 and AIME2025
(Art of Problem Solving, 2025a). We report the avg@16 evaluation metric, which averages pass@1
over 16 sampled answers.

Hyperparameters Settings We set λs = 1 and search λq over {10−2, 10−3, 10−4, 10−5}. To
promote answer diversity, we set λda = 1. For λdq , we conduct a search over {1, 10−1, 10−2, 10−3}.
For τ in Eq. (8), we search over { 14 ,

1
2 ,

3
4}. The best-performing hyperparameters are found to be

{λq = 10−3, λdq = 10−1, τ = 3
4}.

We set the batch size n to 32, the number of sampled solutions m to 16, and the learning rate to 10−6.
For rollouts, we use temperature = 1.0 and top-p = 1.0, while for evaluation we use temperature
= 0.6, top-p = 0.95 and top-k = 20. The maximum question length is set to 1024 tokens, and the
maximum solution length is set to 3072 tokens. We train semi-dynamic for 1 epoch and dynamic RL
the same steps as semi-dynamic trained on DeepScaleR-Preview-40K dataset.

To ensure fair comparison, we keep all shared hyperparameters identical between dynamic RL and
semi-dynamic RL. The only differences lie in the methods themselves and the training datasets.

3.2 RESULTS

See Table 1 and Figure 2 for detailed results. Dynamic RL achieves performance comparable to
semi-dynamic RL (40K) without relying on any external datasets, and it continues to improve over
more than one thousand training steps. In contrast, Zhang et al. (2025c) reports that semi-dynamic
RL without golden answers can sustain improvement for only a limited number of steps.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: The model performance on math datasets.

Methods MATH500 AMC23 AIME2024 AIME2025 Average
Dynamic RL (40K) 83.8 66.9 21.4 17.3 47.4
w/o filtering 81.6 66.7 20.8 15.6 46.2
w/o Rq 82.2 62.3 19.2 16.3 45.0
w/o Rdq 82.4 64.5 14.6 14.0 43.9
w/o Rda 80.4 66.4 19.0 13.5 44.8
τ = 1/4 82.8 65.5 20.6 18.8 46.9
τ = 3/4 81.2 64.7 20.2 19.6 46.4

λdq = 1 82.2 63.3 19.5 17.5 45.7
λdq = 10−5 83.2 65.3 16.9 16.0 45.4
λq = 1 81.2 63.8 20.4 14.2 44.9
λq = 10−5 81.8 62.3 16.0 14.6 43.7

3.3 ABLATION STUDIES

We conduct ablation studies to examine the effectiveness of the question filtering, the question reward
function Rq, the question diversity reward function Rdq, the answer diversity reward function Rda,
and the choice of τ in Eq. (8).

As reported in Table 2, all three reward functions and question filtering contribute to improving model
performance. Moreover, setting a relatively large value of τ facilitates more reliable estimation of
answers, which in turn leads to better performance.

3.4 EXPLORATION AND EXPLOITATION

We further demonstrate the effectiveness of dynamic RL from the view of exploration and exploitation.
The objective function in Eq. (14) consists of four reward functions. We temporarily omit the answer
diversity reward function Rda because answer diversity is relatively easier to satisfy. The solution
reward function Rs plays a role for improving the model performance, similar to semi-dynamic RL.
The question diversity reward function Rdq plays a role of exploration, which aims to generate new
questions. The question reward function Rq plays a role of exploitation, which favors questions with
proper p(q) (See Figure 1).

To balance exploration and exploitation, we tune the hyper-parameters λdq and λq . For λdq , an exces-
sively large value causes the model to prioritize generating new questions, preventing convergence,
while too small a value may lead to mode collapse in question generation and, consequently, degraded
model performance. Table 2 illustrates the performance across different values of λdq. In practice,
we set λdq to a relatively large value to preserve sufficient exploration.

For λq , we adopt a relatively small value to moderate exploitation. If λq is too small, Rdq dominates,
resulting in over-exploration. Conversely, if λq is too large, the model generates overly hard questions,
making it impossible for the LLM to accurately estimate golden answers, which ultimately harms
performance as shown in Table 2.

To further clarify this point, Figure 3 presents the distribution of r(q) (as defined in Eq.(5)) at different
training steps, where r(q) denotes the frequency of the majority answer. We focus on the red curve
corresponding to r(q) = m = 16, as this category constitutes the largest portion of each batch and
reflects the simplest type of questions. The number of questions satisfying r(q) = m therefore serves
as a proxy for batch-level difficulty: the higher this number, the easier the questions in the batch.

As shown in Figure 3, larger values of λq reduce the count of questions with r(q) = m, because
Rq(z, q) = 0 when r(q) = m. As a result, an excessively large λq pushes the question generator too
quickly toward harder questions, making the answer estimation increasingly unreliable. In summary,
the difficulty of the generated questions at each training step should remain aligned with the current
capability of the LLM and the reliability of the chosen estimation method.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300 350 400
Step

0

5

10

15

20

N
um

be
r

of
 q

ue
st

io
ns

q = 1r(q) = m = 16

0 50 100 150 200 250 300 350 400
Step

0

5

10

15

20

25

30

N
um

be
r

of
 q

ue
st

io
ns

q = 10 3r(q) = m = 16

Figure 3: The distribution of r(q) during training. The curves show the counts of questions with
r(q) = i for 1 ≤ i ≤ 16, reflecting the full distribution of r(q) throughout training. Since it is
difficult to derive meaningful conclusions from curves other than the one for r(q) = m = 16, we
have intentionally omitted legends for the remaining lines.

We allow the model to generate a proportion non-contributory questions (r(q) = m, the advantage
As = 0 (defined in Eq.(14))), such that the remaining questions are located near the boundary
r(q) = m. Learning from data near the boundary may extend the boundary of an LLM by itself.

4 RELATED WORK

Unsupervised RL DeepSeek-R1 (Guo et al., 2025) shows that RL can significantly enhance
model performance without relying on human-labeled solutions. Nevertheless, it still depends on
human-labeled golden answers to guide the learning process. In contrast, unsupervised RL seeks to
train models entirely without human-labeled answers. Some approaches define objectives based on
the consistency of model outputs, Zhang et al. (2025a) propose rewards derived from intermediate
reasoning states, and Zuo et al. (2025) explore estimating golden answers through answer consistency.
Meanwhile, Shao et al. (2025) demonstrate that even random or negative rewards can serve as
effective training signals for RL. Other approaches, including Zhang et al. (2025b) and Agarwal
et al. (2025), link RL with entropy minimization at either the sequence or token level, using answer
entropy as a surrogate objective. These methods primarily focus on estimation strategies. In contrast,
dynamic RL emphasizes generating questions that can be reliably assessed by estimation methods.

Self-play RL Self-play RL is a paradigm in which an agent enhances its performance by iteratively
interacting with versions of itself (Zhang et al., 2024). This approach typically relies on a verifiable
environment, particularly in code-related tasks, where unit tests can provide efficient verification. Lin
et al. (2025) propose a self-play solver-verifier framework that jointly improves a model’s ability to
generate both code and corresponding test units. Similarly, Wang et al. (2025) introduce a framework
that co-evolves coding and unit test generation by leveraging feedback from their interactions. Other
studies, such as Zhao et al. (2025) and Zhou et al. (2025), allow the LLM to generate code tasks
and learn from them, provided these tasks are feasible and verifiable. Despite these advances, these
methods still depend on an external verifier to check answer correctness, whereas dynamic RL
estimates the golden answers directly from the model’s outputs.

5 CONCLUSION

In this paper, we propose dynamic RL, a framework designed to enhance the scalability of RL by
leveraging the LLM itself. Dynamic RL samples both questions and solutions directly from the
LLM, allowing the training data to adapt dynamically as the model evolves. However, this approach
introduces new challenges, including the absence of golden answers and the risk of mode collapse. To
address these issues, we encourage the model to generate a greater proportion of questions that can be
reliably estimated and introduce a diversity reward function to promote data diversity. Experimental
results demonstrate that Dynamic RL achieves performance comparable to semi-dynamic RL, without
relying on external supervision. We envision that further refinements of this approach will continue
to improve the scalability of RL.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effective-
ness of entropy minimization in llm reasoning. arXiv preprint arXiv:2505.15134, 2025.

Art of Problem Solving. Aime problems and solutions, 2025a. URL https:
//artofproblemsolving.com/wiki/index.php/AIME_Problems_and_
Solutions. Accessed: 2025-04-20.

Art of Problem Solving. Amc problems and solutions, 2025b. URL https:
//artofproblemsolving.com/wiki/index.php?title=AMC_Problems_
and_Solutions. Accessed: 2025-04-20.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Youssef Kossale, Mohammed Airaj, and Aziz Darouichi. Mode collapse in generative adversarial
networks: An overview. In 2022 8th International Conference on Optimization and Applications
(ICOA), pp. 1–6. IEEE, 2022.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Zi Lin, Sheng Shen, Jingbo Shang, Jason Weston, and Yixin Nie. Learning to solve and verify: A
self-play framework for code and test generation. arXiv preprint arXiv:2502.14948, 2025.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Tianjun Zhang, Li Erran Li, et al. Deepscaler: Surpassing o1-preview with a 1.5 b
model by scaling rl. Notion Blog, 2025.

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei Du,
Nathan Lambert, Sewon Min, Ranjay Krishna, et al. Spurious rewards: Rethinking training signals
in rlvr. arXiv preprint arXiv:2506.10947, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations.

10

https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php?title=AMC_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php?title=AMC_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php?title=AMC_Problems_and_Solutions

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yinjie Wang, Ling Yang, Ye Tian, Ke Shen, and Mengdi Wang. Co-evolving llm coder and unit tester
via reinforcement learning. arXiv preprint arXiv:2506.03136, 2025.

Changyi Xiao, Mengdi Zhang, and Yixin Cao. Bnpo: Beta normalization policy optimization. arXiv
preprint arXiv:2506.02864, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

Kongcheng Zhang, Qi Yao, Shunyu Liu, Yingjie Wang, Baisheng Lai, Jieping Ye, Mingli Song,
and Dacheng Tao. Consistent paths lead to truth: Self-rewarding reinforcement learning for llm
reasoning. arXiv preprint arXiv:2506.08745, 2025a.

Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question
is already half the answer: Fully unsupervised llm reasoning incentivization. arXiv preprint
arXiv:2504.05812, 2025b.

Ruize Zhang, Zelai Xu, Chengdong Ma, Chao Yu, Wei-Wei Tu, Wenhao Tang, Shiyu Huang, Deheng
Ye, Wenbo Ding, Yaodong Yang, et al. A survey on self-play methods in reinforcement learning.
arXiv preprint arXiv:2408.01072, 2024.

Yanzhi Zhang, Zhaoxi Zhang, Haoxiang Guan, Yilin Cheng, Yitong Duan, Chen Wang, Yue Wang,
Shuxin Zheng, and Jiyan He. No free lunch: Rethinking internal feedback for llm reasoning. arXiv
preprint arXiv:2506.17219, 2025c.

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun
Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero data.
arXiv preprint arXiv:2505.03335, 2025.

Haizhong Zheng, Yang Zhou, Brian R Bartoldson, Bhavya Kailkhura, Fan Lai, Jiawei Zhao, and
Beidi Chen. Act only when it pays: Efficient reinforcement learning for llm reasoning via selective
rollouts. arXiv preprint arXiv:2506.02177, 2025.

Yifei Zhou, Sergey Levine, Jason Weston, Xian Li, and Sainbayar Sukhbaatar. Self-challenging
language model agents. arXiv preprint arXiv:2506.01716, 2025.

Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen
Zhang, Xinwei Long, Ermo Hua, et al. Ttrl: Test-time reinforcement learning. arXiv preprint
arXiv:2504.16084, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 QUESTIONS

Table 3 presents several generated questions whose answers may not be accurately estimated.

Table 3: Examples of issues in generated questions.

Issue Case Analysis
Non-unique Answer
(No Answer) Find two integers x and y

such that x2 + y2 = 7.
This question has no valid an-
swer. The model may still
output an arbitrary answer,
leading to errors. Since there
is no general method to de-
termine whether a mathemat-
ical problem has a unique so-
lution, we add the prompt
“The answer to the question
should exist and be unique.”
to the prompt z0 to reduce
the occurrence of such cases.

Non-unique Answer
(Multiple Answers) Find the unique positive inte-

ger x such that
⌊
x
5

⌋
×
⌊
x
7

⌋
=

15.

The correct answers are
{25, 26, 27}, so the answers
are not unique. However,
the model may output only
one answer (e.g., 25) and
treat it as the golden answer.
Consequently, other correct
answers may be incorrectly
judged as wrong.

Non-unique Answer
(Insufficient Conditions) What is the determinant of a

2x2 matrix?
This question has insufficient
conditions because the ma-
trix itself is not given. The
model may compute deter-
minants for different matri-
ces, producing inconsistent
answers. Such questions
tend to be treated as hard
because p(q) may decrease
when multiple answers exist.
Therefore, we require that ev-
ery question admit a unique
answer.

Sub-questions In triangle ABC, vertex A
has an angle of 163◦, side
BC measures 1.9 units, and
vertex C has an angle of 7◦.
Find:
1. The area of triangle ABC.
2. The circumradius of trian-
gle ABC.
3. The inradius of triangle
ABC.
4. The semiperimeter of tri-
angle ABC.

This question contains mul-
tiple sub-questions. The
model may output only one
result or place only one
in “\boxed”, which lowers
p(q). Consequently, such
questions are often treated as
hard due to low p(q). We
therefore apply a filtering
rule to remove this type of
questions.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Issue Case Analysis
Numerical Approximation Suppose the probability that

a randomly chosen 10-digit
phone number contains at
least one digit that is 1 is cal-
culated. If there are 9 choices
for digits 2-9 and 10 choices
for digit 0, find this probabil-
ity. Also, consider if each
digit is used independently
for the phone number.

The correct answer is 1 −(
9
10

)10 ≈ 0.6513. Answers
such as 0.6513 and 0.651 are
mathematically correct, yet
minor numerical differences
may cause them to be treated
as incorrect. Since such
cases occur infrequently, we
do not explicitly address
them.

Underestimated Difficulty Let X and Y be independent
random variables, each fol-
lowing a uniform distribution
on the interval [0, 1]. Let
Z = min(X,Y) and W =
max(X,Y). Find the value
of P (Z +W ≥ 1.5).

We first demonstrate that the
metric p(q) only approxi-
mates question difficulty and
may underestimate it in some
cases. Let lt(q) denote the
true golden answer, rt(q) the
number of answers equiva-
lent to it, and pt(q) =

rt(q)
m

the true difficulty measure.
Since r(q) in Eq. (5) is max-
imized, p(q) serves as an
upper bound of pt(q), i.e.,
pt(q) ≤ p(q).
For this question, the correct
answer is 1

8 . However, the
frequency of “ 1

8” is 3, while
that of “ 1

2” is 4, yielding
p(q) = 4

16 , which exceeds
the true measure pt(q) =

3
16 .

Thus, using p(q) can under-
estimate difficulty and mis-
lead majority voting. To
mitigate this, we set τ in
Eq. (8) to a relatively high
value and tune hyperparam-
eters for more reliable ques-
tion generation.

Table 4 presents several questions generated at different training steps that can be correctly answered.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 4: Questions across training steps.

Step Question Solution
1 What is the value of x in the

equation 2x+ 3 = 7?
To find the value of x in the
equation 2x + 3 = 7, we
need to isolate x. Here are
the steps:
1. Subtract 3 from both sides
of the equation:

2x+ 3− 3 = 7− 3

Simplifying, we get:

2x = 4

2. Divide both sides of the
equation by 2:

2x

2
=

4

2

Simplifying, we get:

x = 2

So, the value of x is 2 .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Step Question Solution
50 Solve for x:

x2 − 5x+ 6 = 0

To solve the quadratic equa-
tion x2−5x+6 = 0, we can
use the quadratic formula,
which is given by:

x =
−b±

√
b2 − 4ac

2a

where a = 1, b = −5, and
c = 6.
Alternatively, we can factor-
ize the quadratic equation di-
rectly. Let’s try both meth-
ods.
Method 1: Factorization
We need to find two numbers
that multiply to give 6 (the
constant term) and add up to
-5 (the coefficient of the x
term). The numbers -2 and
-3 meet these conditions be-
cause (−2)× (−3) = 6 and
(−2) + (−3) = −5.
So we can write:

x2−5x+6 = (x−2)(x−3)

Setting each factor to zero
gives us:

x− 2 = 0 or x− 3 = 0

So the solutions are:

x = 2 or x = 3

Method 2: Quadratic
Formula Using the
quadratic formula:

x =
−(−5)±

√
(−5)2−4·1·6
2·1 =

5±
√
25−24
2 = 5±

√
1

2 = 5±1
2

This gives us two solu-
tions: x = 5+1

2 = 6
2 = 3

x = 5−1
2 = 4

2 = 2
So the solutions are:

x = 2 or x = 3

The final answer is:

2, 3

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Step Question Solution
100 Consider three sets A, B,

and C defined as follows:

A = {x ∈ R | x2−3x+2 ≥ 0}

B = {x ∈ R | x < 2}
C = {x ∈ R | x2 − 4 ≤ 0}
Determine (A ∪B) ∩ C.

To solve the problem, let’s
first determine the elements
of each set A, B, and C.
1. **Set A**: The inequality
x2 − 3x+ 2 ≥ 0 can be fac-
tored as (x− 1)(x− 2) ≥ 0.
This inequality holds when
x ≤ 1 or x ≥ 2. So, A =
(−∞, 1] ∪ [2,∞).
2. **Set B**: This is the set
of all real numbers less than
2, i.e., B = (−∞, 2).
3. **Set C**: The inequality
x2 − 4 ≤ 0 can be factored
as (x− 2)(x+ 2) ≤ 0. This
inequality holds when −2 ≤
x ≤ 2. So, C = [−2, 2].
Next, we need to find A∪B:
A∪B = (−∞, 1]∪ [2,∞)∪
(−∞, 2) = (−∞, 2) ∪
[2,∞) = (−∞,∞) = R.
Finally, we need to find (A∪
B)∩C: (A∪B)∩C = R∩
[−2, 2] = [−2, 2].
So the final answer is
[−2, 2] .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Step Question Solution
500 Evaluate the line integral of

the vector field

F⃗ (x, y) = (y2, x2)

along the curve defined by
the parametric equations x =
cos(t), y = sin(t), 0 ≤
t ≤ 2π.

To evaluate the line integral
of the vector field F⃗ (x, y) =
(y2, x2) along the curve de-
fined by the parametric equa-
tions x = cos(t), y = sin(t)
for 0 ≤ t ≤ 2π, we follow
these steps:
1. **Parameterize the
curve**: The curve is given
by x = cos(t) and y =
sin(t). The vector func-
tion for the curve is r⃗(t) =
(cos(t), sin(t)).
2. **Find the derivative
of the parameterization**:
The derivative of r⃗(t) with
respect to t is r⃗′(t) =
(− sin(t), cos(t)).
3. **Evaluate the vector field
along the curve**: Substi-
tute x = cos(t) and y =
sin(t) into the vector field
F⃗ (x, y) = (y2, x2). This
gives F⃗ (cos(t), sin(t)) =
(sin2(t), cos2(t)).
4. **Compute the dot
product**: The dot product
F⃗ (cos(t), sin(t)) · r⃗′(t)
is (sin2(t), cos2(t)) ·
(− sin(t), cos(t)) =
− sin3(t) + cos3(t).
5. **Set up the inte-
gral**: The line integral is∫ 2π

0
(− sin3(t) + cos3(t)) dt.

6. **Evaluate the integral**:
We can split the integral into
two parts:

∫ 2π

0
− sin3(t) dt+∫ 2π

0
cos3(t) dt. Both sin3(t)

and cos3(t) are odd func-
tions over the interval
[0, 2π], and the integral
of an odd function over a
symmetric interval around
the origin (or any multi-
ple of the period) is zero.
Therefore, both integrals are
zero:

∫ 2π

0
− sin3(t) dt = 0

and
∫ 2π

0
cos3(t) dt = 0.

Adding these together,
we get

∫ 2π

0
(− sin3(t) +

cos3(t)) dt = 0.
The final answer is 0 .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Step Question Solution

1000 Given the function f(v) =
v5 + v3, find the integral of
f ′(v)
2f(v) with respect to v.

To find the integral of f ′(v)
2f(v)

with respect to v, we start
by identifying the function
f(v) and its derivative f ′(v).
Given f(v) = v5 + v3,
we compute the derivative:
f ′(v) = d

dv (v
5 + v3) =

5v4 + 3v2.
Now, we substitute f ′(v)
and f(v) into the integral:∫ f ′(v)

2f(v) dv =
∫

5v4+3v2

2(v5+v3) dv.

We can simplify the in-
tegrand by factoring out
the common terms in the
numerator and the denom-
inator:

∫
5v4+3v2

2(v5+v3) dv =∫
5v4+3v2

2v3(v2+1) dv =∫ 5v+3/v
2(v2+1) dv.

This integral can be simpli-
fied further by recognizing
that the numerator 5v + 3/v
can be split into two separate
fractions:

∫ 5v+3/v
2(v2+1) dv =∫ (

5v
2(v2+1) +

3/v
2(v2+1)

)
dv =∫

5v
2(v2+1) dv+

∫ 3/v
2(v2+1) dv.

However, a simpler approach
is to recognize that the in-
tegral

∫ f ′(v)
2f(v) dv is of the

form
∫

1
2
f ′(v)
f(v) dv, which is

a standard form that can be
integrated directly. The in-
tegral of f ′(v)

f(v) is ln |f(v)|,
so we have:

∫ f ′(v)
2f(v) dv =

1
2

∫ f ′(v)
f(v) dv = 1

2 ln |f(v)| +
C, where C is the con-
stant of integration. Sub-
stituting back the function
f(v) = v5 + v3, we get:∫ f ′(v)

2f(v) dv = 1
2 ln |v

5+v3|+
C.
Therefore, the final answer is:
1

2
ln |v5 + v3|+ C .

A.2 EXPERIMENTS

We further show more experimental results.

Training Dynamics We show the training dynamics of different rewards as in Figure 4.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000 1200
Step

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Qu
es

tio
n

Re
wa

rd

(a) Question reward

0 200 400 600 800 1000 1200
Step

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Qu
es

tio
n

Di
ve

rs
ity

 R
ew

ar
d

(b) Question diversity reward

0 200 400 600 800 1000 1200
Step

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

An
sw

er
 D

iv
er

sit
y

Re
wa

rd

(c) Answer diversity reward

0 200 400 600 800 1000 1200
Step

0.3

0.4

0.5

0.6

0.7

0.8

0.9

So
lu

tio
n

Re
wa

rd

(d) Solution reward

Figure 4: Overview of four reward components.

The answer diversity reward steadily increases and eventually remains close to 1, as satisfying answer
diversity is relatively easy. The question diversity reward also increases during the early stages of
training and then stabilizes in the range of approximately 0.7 to 0.8, which prevents both mode
collapse and excessive exploration.

The trajectories of the question reward and solution reward highlight the adversarial relationship
between these two objectives. In the early phase of training (Step 0 to Step 50), the model performance
improves rapidly, leading to a sharp increase in the solution reward, while the question reward
decreases because overly simple questions receive low scores. As training progresses (Step 50 to
Step 450), the generated questions gradually become more challenging, causing the solution reward
to decline and the question reward to rise. After this phase, both rewards continue to fluctuate within
a stable range, maintaining an effective balance between question difficulty and model solvability.

Mode Collapse We further empirically analyze the mode collapse phenomena. Figure 5 illustrates
the entropy of generated questions with and without the question diversity reward. Without this
reward, the entropy becomes unstable, collapsing around Step 750 and then exploding around Step
870. Since entropy alone may not fully capture mode collapse, we also manually inspected the
generated questions. We found that 93.75% of the questions became equivalent by Step 750, and by
Step 870 the model produced largely random tokens. In contrast, when the question diversity reward
is enabled, we do not observe the mode collapse phenomena.

Figure 6 presents the ratio of unique answers within each batch, with and without the answer diversity
reward. Without this reward, the ratio collapses to nearly zero after Step 480. With the reward enabled,
the ratio increases to nearly one by Step 200. Manual inspection further confirms degeneration without
this reward: by Step 480, 96.9% of answers collapse to the answer “0”.

Sensitivity Analysis We conduct sensitivity analysis on the hyperparameter λdq and λq . See Table
5 and Table 6 for the results. It can be seen that the performance does not oscillate with changes in
λq and λdq .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000 1200
Step

0

200

400

600

800

1000

en
tro

py
 *

pr
om

pt
_le

ng
th

 /
re

sp
on

se
_le

ng
th

w/ question diversity
w/o question diversity

Figure 5: The entropy of generated questions during training.

0 200 400 600 800 1000 1200
Step

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f U

ni
qu

e
An

sw
er

w/ answer diversity reward
w/o answer diversity reward

Figure 6: The ratio of unique answer during training.

Table 5: The model performance with different λq .

λq 1 10−1 10−2 10−3 10−4 10−5

MATH500 81.2 82.6 82.4 83.8 82.0 81.8
AMC23 63.8 65.3 68.9 66.9 66.1 62.3
AIME24 20.4 19.2 17.1 21.4 19.8 16.0
AIME25 14.2 16.5 16.9 17.3 14.8 14.6
Average 44.9 45.9 46.3 47.4 45.7 43.7

Table 6: The model performance with different λdq .

λq 1 10−1 10−2 10−3 10−4 10−5

MATH500 82.2 83.8 83.0 81.4 81.4 83.2
AMC23 63.3 66.9 65.0 66.3 65.3 65.3
AIME24 19.5 21.4 19.2 19.4 20.8 16.9
AIME25 17.5 17.3 18.5 16.0 16.6 16.0
Average 45.7 47.4 46.4 45.8 45.5 45.4

20

	Introduction
	Dynamic Reinforcement Learning
	Experiments
	Settings
	Results
	Ablation Studies
	Exploration and Exploitation

	Related Work
	Conclusion
	Appendix
	Questions
	Experiments

