Under review as a conference paper at ICLR 2026

ALL BY LARGE LANGUAGE MODEL ITSELF

Anonymous authors
Paper under double-blind review

ABSTRACT

The scaling laws constitute one of the fundamental principles of large language
models (LLMs), which reveal that the model performance constantly improves
as the training data increase. In this paper, we propose dynamic reinforcement
learning (RL), which takes a step to achieve the scalability of RL for training LLMs
by itself. Dynamic RL operates by sampling data from the dynamically changed
LLM itself, estimating golden answers based on the model’s own outputs, and then
using this self-generated data to optimize the model. Its dynamic characteristic
allows the data distribution to continuously adapt to the evolving model, leading to
better alignment between training data and model capabilities. Unlike conventional
approaches, dynamic RL requires neither static, pre-collected datasets nor external
verifiers for correctness. All is done by large language model itself. Experimental
results demonstrate that dynamic RL can continually improve model performance
over a thousand of training steps and achieve results comparable to models trained
on large-scale external datasets.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance across a wide range of
tasks (Jaech et al.| [2024} |Guo et al}[2025). A key factor driving this success is the principle of scaling
laws (Kaplan et al., 2020), which shows that LLM performance improves as the amount of training
data increases. LLMs can be trained using different learning paradigms, such as supervised learning
and reinforcement learning (RL), each exhibiting different scalability characteristics.

In supervised learning, models are trained on data sampled from a static distribution, requiring pre-
collected datasets of questions paired with human-labeled solutions. However, these human-labeled
solutions are costly and finite, which limits scalability. In contrast, DeepSeek-R1 (Guo et al.| 2025}
demonstrates that RL can train models without relying on human-labeled solutions by sampling
solutions from the dynamic LLM itself, thereby achieving great scalability. Since the questions are
sampled from a static distribution while the solutions are sampled from a dynamic distribution, we
refer to this paradigm as semi-dynamic reinforcement learning.

Despite its advantages, semi-dynamic RL still depends on static datasets of human-created questions
and human-labeled answers, which remain finite and costly. Moreover, since the questions are
sampled from a static distribution that may not align with the evolving LLM, the number of effective
training questions gradually decreases over time (Yu et al., 2025} [Zheng et al.| [2025)). This mismatch
between static data and a constantly evolving model ultimately constrains scalability.

To address this limitation, we propose dynamic reinforcement learning, which takes a step toward
achieving scalable RL using the LLM itself. In this framework, the LLM autonomously generates
both questions and solutions, learning directly from its own self-sampled data without relying on
external datasets or verifiers for correctness. All is done by large language model itself. The dynamic
nature of this approach allows the data distribution to evolve continuously alongside the model,
ensuring better alignment between training data and model capabilities.

Transitioning from semi-dynamic RL to dynamic RL introduces additional challenges, most notably
the absence of golden answers and the risk of mode collapse. Since the questions are generated
by the LLM itself, human-labeled golden answers are unavailable and should instead be estimated.
The core design principle of our dynamic RL is to encourage the model to generate relatively more
questions whose answers can be reliably estimated by the estimation method, rather than to devise a
new estimation method.

Under review as a conference paper at ICLR 2026

To realize this principle, we adopt three strategies. First, we estimate golden answers using majority
voting (Wang et al.) and introduce a question reward function that promotes the generation of
questions suitable for this estimation. Second, we introduce filtering rules to exclude questions that are
likely to be incorrectly answered. Third, we adjust the training dynamics by tuning hyperparameters
so that the model produces questions of moderate difficulty that match with the estimation method.

Another major challenge is mode collapse, a phenomenon in which generated data degenerates into a
limited set of modes (Kossale et al.,2022). In dynamic RL, this manifests as question collapse, where
the model repeatedly produces similar questions, and answer collapse, where the model defaults
to identical answers. Such collapse ultimately leads to performance degradation. For example, the
model may repeatedly generate nearly identical questions such as “Solve the equation 2x + 3 = 77,
or consistently output the same answer, such as “boxed{1}”, across different questions.

To mitigate this issue, we introduce a diversity reward function that prompts the model to generate
new questions with diverse estimated golden answers. This mechanism effectively enhances both
question and answer diversity, thereby alleviating mode collapse.

Finally, we experimentally validate the scalability of dynamic RL. Our results demonstrate that
dynamic RL can enhance model performance over a thousand of training steps by itself, and achieve
accuracy comparable to that of semi-dynamic RL trained on large-scale, pre-collected static datasets.

2 DYNAMIC REINFORCEMENT LEARNING

Learning Scalability Scaling laws represent one of the fundamental laws in LLMs, which show that
model performance can improve as model size, dataset size, and compute scale up. This phenomenon
underpins the success of LLMs, as it suggests that model capability scales with resources.

We discuss the learning scalability in terms of training paradigms. LLMs can be trained through
unsupervised learning, supervised learning, and RL. The supervised and unsupervised learning
objectives can be expressed as

jsl(e) = Equ, s~u(-q) |:10g 7r9(8|q)])

where p is the distribution over questions ¢, p(+|¢) is the distribution of solutions s conditioned on g,
and 7y is the LLM policy model parameterized by 6. Unsupervised learning can be regarded as a
special case where the conditioning variable ¢ is absent. Since both ¢ and o are drawn from static
distributions, we refer to this paradigm as static learning. However, the policy model 7y constantly
changed during training, while the data is sampled from a static distribution, which can not be adapted
to the evolving policy model 7y, inherently limits the learning scalability.

RL, in contrast, optimizes a different objective:

Iri(0) = Eqp, smmo (-lg) {R(q» 3)}7

where R(q, s) denotes the reward function evaluating the quality of a solution s given a question g.
Recent approaches, such as DeepSeek-R1, demonstrate that RL can enhance scalability by allowing
the solutions sampled from the dynamic policy model to refine itself. Since the solutions s are
sampled from the evolving distribution 74 (+|¢) during training, this paradigm can be described
as semi-dynamic reinforcement learning. However, the questions ¢ remain drawn from a static
distribution p, which continues to constrain scalability.

Dynamic Reinforcement Learning To further enhance scalability of RL, we propose a framework
termed dynamic reinforcement learning. In this framework, we first samples questions from the policy
model 7y itself, then generates corresponding solutions from the policy model 7y itself, and finally
leverages the sampled data to optimize itself. All is done by policy model 7y itself. By continually
sampling from dynamically evolving distributions 7y, the policy model can iteratively improve its
performance. To this end, we optimize two objective functions: one for generating higher-quality
solutions and another for generating higher-quality questions.

We first introduce the objective function J(6), which optimizes the quality of generated solutions:

Js(0) = Egrrg(-12), s~mo(-la) [RS(CL 3)}) (D

Under review as a conference paper at ICLR 2026

where 7y (-|z) denotes the distribution of questions ¢ given a prompt z, and mg(-|¢) denotes the
distribution of solutions s given a question g. The function R,(g, s) serves as the solution reward,
evaluating the quality of the generated solutions s for the corresponding question q.

Next, we define the objective function J;(6), which optimizes the quality of generated questions:

jq(a) = Ezwp(z),q~w9(~|z) [Rq(zv Q)}) 2)

where R, (z, q) is the question reward function, assessing the quality of a question ¢ given a prompt
z. The distribution p(z) specifies how prompts z are sampled.

In summary, we jointly optimize J5(¢) and J,(#) to enhance both the quality of solutions and the
quality of questions. In the following, we detail the design of the prompt distribution p(z), solution
reward function R, (g, s) and the question reward function R(z, g).

Prompt z Since this paper focuses on mathematical reasoning, we employ only a single type of
prompt, denoted as zg, with p(zo) = 1, meaning that the prompt z is always fixed to zo. The prompt
zp is explicitly designed to emphasize mathematical reasoning, as illustrated in the following box. It
consists of three sentences: the first instructs the model to generate a single math question along with
its solution. Since generating questions may also lead the model to produce solution implicitly, we
allow the model to output both the question and its solution directly. The second sentence explicitly
prohibits questions with non-unique answers, while the third sentence specifies the required output
format, from which we retain only the question part.

Prompt z,: Generate exactly one math question and its step-by-step solution. The answer to the
question should exist and be unique.

Format the output as follows:

Question: <the math question here>

Solution: <step-by-step solution here>

Solution Reward Function To define the solution reward function R,(g, s), we first require a
golden, or reference answer, for each question ¢. Since such answers are generally unavailable in
dynamic RL, we estimate the golden answer using a majority-voting scheme (Wang et al.)).

Specifically, for each question g, we sample m solutions {s; }2; from the distribution 7 (-|g). For
each solution s;, we extract its final answer a; via a function e(+), which can be regular expressions
or LLMs (Guo et al.;[2025). We then define majority voting using a similarity metric S, (-, -). For any
two answers a;, and aj,, the similarity is given by

1, if a;, and a;, are mathematically equivalent,
a 19 g = ! . 3
Sala, a2) {0, otherwise.)
The majority-voted golden answer [(q) and its support size r(q) are defined as
m
l(q) = argmax Z Sa(a,ar), 4)
ae{aj};nzl k=1
m
r(g) = max Y Si(a,an),)
a€{a; };nzl k=1

where [(q) represents the estimated golden answer for ¢, and r(q) denotes the number of answers
that are mathematically equivalent to [(q).

Finally, the solution reward function R,(q, s) evaluates whether the extracted answer e(s) matches
the majority-voted golden answer I(q):

Ry(q,5) = Sa(l(q), e(s)). (©6)

Under review as a conference paper at ICLR 2026

1.0
0.8} i
'g: 0.6 b
N
o 0.4+ — 17=0.1 i
7=0.3
— 7=0.5
0.2 —T=07]
— 7=0.9
| | | |
0'8.0 0.2 0.4 0.6 0.8 1.0
p(q)

Figure 1: Question Reward function R,(z, ¢) with different 7.

Question Reward Function We define the question reward function based on the mean solution
reward of a question ¢. For a given question ¢, the mean solution reward p(q) is defined as
r(q)

P(a) = By (1 [Bs(q; 5)la] = Mean({Rs(q, 5)}521) = == ™

Here, p(q) can be seen as an approximate measure of the difficulty of question ¢: larger values of
p(g) correspond to easier questions, while smaller values correspond to harder ones.

The question reward function R,(z, ¢) is then defined as

@, if0 <p(q) <,
Ry(zq) =14 17 @®)
ﬂ, ifr <p(q) <1,

1—-7
where 7 € [0,1] is a hyperparameter. Figureillustrates the behavior of R,(z,¢) under different
values of 7. As p(g) increases from 0 to 7, the reward R,(z, ¢) increases; as p(q) increases further
from 7 to 1, the reward decreases.

The question reward R,(z, ¢) plays both a collaborative and an adversarial role with respect to the
solution reward R(q, s). It is collaborative in that, when p(q) < 7, it drives the model to generate
easier questions, thereby reinforcing the increase of 7,(6). At the same time, it is adversarial because,
when p(q) > 7, it pushes the model toward harder questions, counteracting the growth of 7 ().
In this way, R,(#, ¢) balances the training dynamics, guiding the policy model toward generating
questions of moderate difficulty.

Since questions with relatively large p(q) can be estimated more accurately using the majority-
voting—based estimation method, we set 7 to a relatively large value to encourage the model to
generate more questions ¢ with high p(q). In our experiments, we set 7 = %.
Question Filtering To ensure the quality of generated questions g, we further filter out some
questions ¢ by setting R,(z,¢) = 0 and R,(q, s) = 0. The filtering is based on the following rules:

1. Filter questions containing the word “’prove”.

2. Filter questions whose last clause includes “and”, as well as those containing multiple
subquestions labeled ”1.” and ”2.” or ’1)” and 2)” or "’i)” and "’ii)”.

3. Filter questions including ”Solution:” or ”Answer:” or "boxed” or "The final answer is” or
”To solve” or ”Let’s break down”.

The first rule excludes mathematical proof questions, which are incompatible with majority voting in
the solution reward function. The second rule removes questions containing multiple subquestions to
ensure that each question has only a single answer. The third rule removes questions that include
solutions, since we experimentally observe that their presence can shorten the model’s output and
potentially degrade performance.

Under review as a conference paper at ICLR 2026

Mode Collapse Transitioning from semi-dynamic RL to dynamic RL introduces additional chal-
lenges, particularly the issues of mode collapse (Kossale et al.,[2022). Mode collapse is a phenomenon
in generative models in which the generator produces a limited variety of outputs, ignoring many
modes of the true data distribution. In dynamic RL, mode collapse manifests in two forms: question
mode collapse and answer mode collapse.

Question mode collapse occurs when the questions generated by the policy model are highly similar.
For example, the model repeatedly generates questions like ”Solve the equation 2z + 3 = 7.”. This
lack of diversity can lead to saturation or even collapse in model performance. Therefore, it is
essential to generate diverse questions that differ from one another.

Answer mode collapse arises when the answers extracted from model solutions are highly uniform.
We observed that after a few hundred training steps, generated answers to different questions often
converge to the same response, such as “boxed{1}”, causing performance collapse. This occurs
because the golden answer is estimated via majority voting, which favors answers that are easily
generated. Consequently, it is necessary to generate questions whose majority-voted golden answers
are diverse.

Diversity Reward Function To mitigate mode collapse, we propose diversity reward functions that
encourage greater variability in generated data. The core idea is that the more an object resembles
others, the lower its diversity reward. We first present the general form of the diversity reward
function, followed by the specific formulations for question diversity reward function and answer
diversity reward function.

Let {xk}szl be a set of K objects sampled from the policy model 7y, where each object can be a
question or an answer. For any pair of objects in this set, we define a similarity metric S(-,-) € [0, 1],
where S(z, x) = 1 and larger values indicate greater similarity between objects. The diversity reward
for an object x € {z} }X_ is then defined as

1

Rylr) = ————.
d() 2521 S(xka)

C))

Intuitively, if many objects in the set are similar to z, the sum Zle S(x, xy) will be large, resulting
in a smaller diversity reward Rq(z). Conversely, a larger R;(x) indicates that x is less similar to
other objects. Since 0 < S(x,zy) < 1, it follows that 0 < Ry(z) < 1, where Ry(x) = 1 implies
that x is only similar to itself.

The question diversity reward is then defined as
1
Z?:1 Se(q,a:)’

where g € {¢;}]—; and S, (-, -) measures the similarity between two questions. Each question ¢ is
first tokenized into a sequence using a tokenizer ¢(-), and then similarity S, (-, -) is computed using
the overlap ratio of sequences:

Raq(q) = (10)

min(|t(q)[,It(q:)])
> 1(t(q); = t(a:);)
S,(q,q;) = overlap(t(q), t(q;)) = min(|t(q)], [t(q¢)]) ’
t(q) = [t t(@)2: 1(a)s, - -], t(qi) = [H(ai)1, 8(gi)2, (g3, - -] (an

Similarly, the answer diversity reward is defined as

1
B Z?:l Sa(l(Q)a l(qz))7

where [(-) denotes the estimated golden answer defined in Eq. (@), and S, (-, -) is the similarity metric
between two answers defined in Eq. (3).

Raa(l(q))

(12)

Objective Function Combining the solution reward function, question reward function, question
diversity reward function and answer diversity reward function, we define the following objective

Under review as a conference paper at ICLR 2026

Algorithm 1 Dynamic RL: Dynamic Reinforcement Learning

Input: Initial policy model 7y, prompt zp, number of steps N, batch size n, number of solutions m,
coefficients { Ay, As, Adg, Ada }, threshold 7.
1: Initialize policy model g < g, .
2: for step = 1 to N do
3: Sample n questions g from 7y (+|2g).
4: Sample m solutions s from 7y (-|g) for each question g.
5: Estimate the golden answer [(q) by Eq. (4) for each question q.
6: Compute solution reward function R;(q, s) for each question-solution pair (g, s).
7: Compute question reward function R,(z, ¢) for each question g.
8 Compute question diversity reward function Rq,(g) for each question g.
9: Compute answer diversity reward function Rg,(I(¢)) for each question g.
0: Filter question by setting R,(z,¢) = 0 and R,(g, s) = 0 according to the rules in Paragraph
”Question Filtering” in Section 2]
11: Optimize T by maximizing objective function Eq. (TI4) via gradient ascent method.
12: end for
Output: Optimized policy model 7g.

10:

function L(6):
L(0) = L4(0) + L:(6),

L,(0) =]Esz(z),qu;(.\z) {)‘qRq(% q) + AagRaq(q) + AaaRaa(l(q)) |,

£s (9) =]EqN‘n'g(»\z), s~7o(+|q) |:ASRS (Q7 S):| 5 (13)
where {A\; > 0, A\gqy > 0, Agq > 0, \s > 0} are coefficients to balance different reward functions.

By applying policy gradient theorem (Sutton et al., [1999) and reward normalization (Shao et al.,
2024) to L,(0) and L(6), we optimize the following surrogate objective function 7 (6),

T(0) =E.p(z), gomo-|2) [Aq log 7o (q|2) | + Egmry(-|2), somo(-lq) | As log Ta(s]q) |,

Rq(z,q) —Mean({Ry(2,¢:)}i1) Raq(q) — Mean({Raq(g:)}i-1)
Std({Ry(2, qi) }i=1) Std({Raq(q:) }7=1)
Raa(U(q)) — Mean({Raa(U(q)) }i=1)
Std({Raa(l(q)) 1) ’
Rs(g,s) — Mean({Rs(q; s])};nzl)

. , | 14
Std({Rs(q,s5)}721) "

Ay =g

+)\dq

+)\da

We use GRPO (Shao et al.,|2024) to normalize each reward function and use advantage decomposition
(Xiao et al.,[2025) to get the final advantage function, which separately normalizes each individual
reward function. Note that we treat my(-|z) as a fixed distribution when applying policy gradient
theorem to L, (), analogous to semi-dynamic RL.

We present the detailed implementation of our dynamic RL in Alg.(T).

3 EXPERIMENTS

3.1 SETTINGS

Baselines We compare dynamic RL with semi-dynamic RL (Guo et al.| [2025). For semi-dynamic
RL, models are trained on three datasets of different scales: the small-scale MATH-7.5K (Hendrycks
et al., [2021), the medium-scale DAPO-Math-17k (Yu et al., 2025), and the large-scale dataset
DeepScaleR-Preview-40K (Luo et al.,[2025). In contrast, dynamic RL requires no external datasets,
as it generates and learns from its own data. We adopt Qwen2.5-Math-1.5B and Qwen2.5-Math-7B
as the base models.

Under review as a conference paper at ICLR 2026

Table 1: The model performance on math datasets.

Methods MATHS500 AMC23 AIME2024 AIME2025 Average
Owen2.5-Math-1.5B
Base Model 40.8 24.2 4.4 4.2 18.4
Semi-dynamic RL (7.5K) 67.6 54.2 13.3 6.0 353
Semi-dynamic RL (17K) 71.2 50.3 17.9 7.5 36.7
Semi-dynamic RL (40K) 74.6 56.6 15.6 10.6 394
Dynamic RL 76.3 53.6 11.8 11.1 38.2
QOwen2.5-Math-7B
Base Model 54.4 37.7 13.3 6.7 28.0
Semi-dynamic RL (7.5K) 76.2 60.8 24.8 11.0 43.2
Semi-dynamic RL (17K) 81.0 66.4 27.9 13.1 47.1
Semi-dynamic RL (40K) 81.2 64.5 29.2 16.3 47.8
Dynamic RL 83.8 66.9 21.4 17.3 47.4
0.40F -
[0}
20.35F B
E
€ 0.30F .
&
%0.25 - —— Semi-dynamic RL (7.5K) {
§ Semi-dynamic RL (17K)
< —— Semi-dynamic RL (40K)
0.20f —— Dynamic RL 1
6 260 460 660 860 10‘00 12‘00

Step

Figure 2: The average performance across different training steps.

Evaluation We evaluate models on four math benchmark datasets: MATHS500 (Hendrycks et al.,
2021} |Lightman et al.,[2023), AMC23 (Art of Problem Solving|, |2025b), AIME2024 and AIME2025
(Art of Problem Solving, [2025a)). We report the pass@ 1 evaluation metric.

Hyperparameters Settings We set Ay = 1 and search A\, over {1072,1073,107%,107°}. To
promote answer diversity, we set g, = 1. For A4y, we conduct a search over {1,1071,1072,1073}.
For 7 in Eq. , we search over {i, %, %} The best-performing hyperparameters are found to be
{Ag=1073 Xy =107, 7 = 2},

We set the batch size n to 32, the number of sampled solutions per question m to 16, and the learning
rate to 10~. For rollouts, we use temperature = 1.0 and top-p = 1.0, while for evaluation we use
temperature = 0.6, top-p = 0.95 and top-k = 20. The maximum question length is set to 1024
tokens, and the maximum solution length is set to 3072 tokens. We train semi-dynamic for 1 epoch
and dynamic RL the same steps as semi-dynamic trained on DeepScaleR-Preview-40K dataset.

To ensure fair comparison, we keep all shared hyperparameters identical between dynamic RL and
semi-dynamic RL. The only differences lie in the methods themselves and the training datasets.

3.2 RESULTS

See Table [T]and Figure 2] for the results. Dynamic RL achieves performance comparable to semi-
dynamic RL (40K) without relying on external datasets or verifiers, and it can continue to improve
over thousands of steps. The slightly lower performance of dynamic RL compared to semi-dynamic

Under review as a conference paper at ICLR 2026

Table 2: The model performance on math datasets.
Methods MATHS500 AMC23 AIME2024 AIME2025 Average

Dynamic RL 83.8 66.9 214 17.3 47.4
w/o R, 82.2 62.3 19.2 16.3 45.0
w/o Rgq 82.4 64.5 14.6 14.0 43.9
w/o Rqq 80.4 66.4 19.0 13.5 44.8
7=0.5 82.8 65.5 20.6 18.8 46.9
7=0.25 81.2 64.7 20.2 19.6 46.4
Adg =1 82.2 63.3 19.5 17.5 45.7
Aag = 1077 83.2 65.3 16.9 16.0 45.4
Ag=1 81.2 63.8 20.4 14.2 44.9
Ay =107° 81.8 62.3 16.0 14.6 43.7

RL (40K) is primarily due to the generation of low-quality questions or misestimation of answers
(see Table[3]in Appendix [A).

3.3 ABLATION STUDIES

We conduct ablation studies to examine the effectiveness of the question reward function R, the
question diversity reward function 244, the answer diversity reward function R4,, and the choice of

7 in Eq. (8).

As reported in Table [2] all three reward functions contribute to improving model performance.
Moreover, setting a relatively large value of 7 facilitates more reliable estimation of answers, which in
turn leads to better performance. Question filtering brings no performance improvement and mainly
serves to stabilize training.

3.4 EXPLORATION AND EXPLOITATION

We further demonstrate the effectiveness of dynamic RL from the view of exploration and exploitation.
The objective function in Eq. (T4) consists of four reward functions. We temporarily omit the answer
diversity reward function R4, because answer diversity is relatively easier to satisfy. The solution
reward function R plays a role for improving the model performance, similar to semi-dynamic RL.
The question diversity reward function R4, plays a role of exploration, which aims to generate new
questions. The question reward function R, plays a role of exploitation, which favors questions with
proper p(q) (See Figure|[l).

To balance exploration and exploitation, we carefully tune the hyper-parameters Agq and Aq4. For Agq,
an excessively large value causes the model to prioritize generating new questions, preventing conver-
gence, while too small a value may lead to mode collapse in question generation and, consequently,
degraded model performance. Table illustrates the performance across different values of Agqq. In
practice, we set Aqq to a relatively large value to preserve sufficient exploration.

For A\, we adopt a relatively small value to moderate exploitation. If)\, is too small, R4, dominates,
resulting in over-exploration. Conversely, if A, is too large, the model generates overly hard questions,
making it impossible for the LLM to accurately estimate golden answers, which ultimately harms
performance. This issue arises because p(g) in R, is only an approximate measure of question
difficulty. It may underestimate the true difficulty of questions due to the maximization property in
7(g) (See Table[3|in Appendix [A).

To further illustrate this point, Figurepresents the distribution of r(g) at different training steps,
focusing on the red curve 7(q) = m = 16. At each step, we sample a batch of questions, and the
number of questions satisfying r(q) = m serves as a proxy for batch difficulty: the higher the number,
the easier the batch. As shown in Figure |3| large A\, values reduce the number of questions with
r(q) = m, since Ry(z,q) = 0 for r(q) = m. Consequently, an excessively large)\, accelerates
the shift toward harder questions, making it increasingly difficult to estimate answers reliably. In

Under review as a conference paper at ICLR 2026

N}
o

N}
o

-
=)

w

Number of questions
Number of questions
&

50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Step Step

Figure 3: The distribution of 7(¢) during training.

summary, the difficulty of current batch questions should match with the capability of current LLM
and the estimation method.

We allow the model to generate a proportion non-contributory questions (r(q) = m, the advantage
As = 0), such that the remaining questions are located near the boundary r(q) = m. Learning from
data near the boundary may extend the boundary of the LLM by itself.

4 RELATED WORK

Unsupervised RL DeepSeek-R1 shows that RL can significantly enhance
model performance without relying on human-labeled solutions. Nevertheless, it still depends on
human-labeled golden answers to guide the learning process. In contrast, unsupervised RL seeks to
train models entirely without human-labeled answers. Some approaches define objectives based on
the consistency of model outputs, Zhang et al.| (2025a)) propose rewards derived from intermediate
reasoning states, and|[Zuo et al.| (2025) explore estimating golden answers through answer consistency.
Meanwhile, [Shao et al.| (2025) demonstrate that even random or negative rewards can serve as
effective training signals for RL. Other approaches, including [Zhang et al|(2025b) and [Agarwal
(2025), link RL with entropy minimization at either the sequence or token level, using answer
entropy as a surrogate objective. These methods primarily focus on estimation strategies. In contrast,
dynamic RL emphasizes generating questions that can be reliably assessed by estimation methods.

Self-play RL Self-play RL is a paradigm in which an agent enhances its performance by iteratively
interacting with versions of itself (Zhang et al., 2024). This approach typically relies on a verifiable
environment, particularly in code-related tasks, where unit tests can provide efficient verification.
propose a self-play solver-verifier framework that jointly improves a model’s ability to
generate both code and corresponding test units. Similarly, introduce a framework
that co-evolves coding and unit test generation by leveraging feedback from their interactions. Other
studies, such as [Zhao et al.| (2025)) and [Zhou et al.| (2025)), allow the LLM to generate code tasks
and learn from them, provided these tasks are feasible and verifiable. Despite these advances, these
methods still depend on an external verifier to check answer correctness, whereas dynamic RL
estimates the golden answers directly from the model’s outputs.

5 CONCLUSION

In this paper, we propose dynamic RL, a framework designed to enhance the scalability of RL by
leveraging the LLM itself. Dynamic RL samples both questions and solutions directly from the
LLM, allowing the training data to adapt dynamically as the model evolves. However, this approach
introduces new challenges, including the absence of golden answers and the risk of mode collapse. To
address these issues, we encourage the model to generate a greater proportion of questions that can be
reliably estimated and introduce a diversity reward function to promote data diversity. Experimental
results demonstrate that Dynamic RL achieves performance comparable to semi-dynamic RL, without
relying on external supervision. We envision that further refinements of this approach will continue
to improve the scalability of RL.

Under review as a conference paper at ICLR 2026

REFERENCES

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effective-
ness of entropy minimization in llm reasoning. arXiv preprint arXiv:2505.15134, 2025.

Art of Problem Solving. Aime problems and solutions, 2025a. URL |https:
//artofproblemsolving.com/wiki/index.php/AIME_Problems_and_
Solutionsl Accessed: 2025-04-20.

Art of Problem Solving. Amc problems and solutions, 2025b. URL |https:
//artofproblemsolving.com/wiki/index.php?title=AMC_Problems_
and_Solutions. Accessed: 2025-04-20.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Youssef Kossale, Mohammed Airaj, and Aziz Darouichi. Mode collapse in generative adversarial
networks: An overview. In 2022 8th International Conference on Optimization and Applications
(ICOA), pp. 1-6. IEEE, 2022.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Zi Lin, Sheng Shen, Jingbo Shang, Jason Weston, and Yixin Nie. Learning to solve and verify: A
self-play framework for code and test generation. arXiv preprint arXiv:2502.14948, 2025.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Tianjun Zhang, Li Erran Li, et al. Deepscaler: Surpassing ol-preview witha 1.5 b
model by scaling rl. Notion Blog, 2025.

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei Du,
Nathan Lambert, Sewon Min, Ranjay Krishna, et al. Spurious rewards: Rethinking training signals
in rlvr. arXiv preprint arXiv:2506.10947, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations.

Yinjie Wang, Ling Yang, Ye Tian, Ke Shen, and Mengdi Wang. Co-evolving 1lm coder and unit tester
via reinforcement learning. arXiv preprint arXiv:2506.03136, 2025.

10

https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php?title=AMC_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php?title=AMC_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php?title=AMC_Problems_and_Solutions

Under review as a conference paper at ICLR 2026

Changyi Xiao, Mengdi Zhang, and Yixin Cao. Bnpo: Beta normalization policy optimization. arXiv
preprint arXiv:2506.02864, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source 1lm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

Kongcheng Zhang, Qi Yao, Shunyu Liu, Yingjie Wang, Baisheng Lai, Jieping Ye, Mingli Song,
and Dacheng Tao. Consistent paths lead to truth: Self-rewarding reinforcement learning for llm
reasoning. arXiv preprint arXiv:2506.08745, 2025a.

Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question
is already half the answer: Fully unsupervised llm reasoning incentivization. arXiv preprint
arXiv:2504.05812, 2025b.

Ruize Zhang, Zelai Xu, Chengdong Ma, Chao Yu, Wei-Wei Tu, Wenhao Tang, Shiyu Huang, Deheng
Ye, Wenbo Ding, Yaodong Yang, et al. A survey on self-play methods in reinforcement learning.
arXiv preprint arXiv:2408.01072, 2024.

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun
Wau, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero data.
arXiv preprint arXiv:2505.03335, 2025.

Haizhong Zheng, Yang Zhou, Brian R Bartoldson, Bhavya Kailkhura, Fan Lai, Jiawei Zhao, and
Beidi Chen. Act only when it pays: Efficient reinforcement learning for llm reasoning via selective
rollouts. arXiv preprint arXiv:2506.02177, 2025.

Yifei Zhou, Sergey Levine, Jason Weston, Xian Li, and Sainbayar Sukhbaatar. Self-challenging
language model agents. arXiv preprint arXiv:2506.01716, 2025.

Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen
Zhang, Xinwei Long, Ermo Hua, et al. Ttrl: Test-time reinforcement learning. arXiv preprint
arXiv:2504.16084, 2025.

11

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 QUESTIONS

Table 3] presents several generated questions whose answers may not be accurately estimated.

Table 3: Examples of issues in generated questions.

Issue

Case

Analysis

Non-unique Answer
(No Answer)

Non-unique Answer
(Multiple Answers)

Non-unique Answer
(Insufficient Conditions)

Subquestion

Find two integers x and y
such that 22 4+ y2 = 7.

Find the unique positive inte-
gerzsuchthat [Z|x |£]| =
15.

What is the determinant of a
2x2 matrix?

In triangle ABC, vertex A
has an angle of 163°, side
BC measures 1.9 units, and
vertex C has an angle of 7°.
Find:

1. The area of triangle ABC.
2. The circumradius of trian-
gle ABC.

3. The inradius of triangle
ABC.

4. The semiperimeter of tri-
angle ABC.

This question has no valid an-
swer. The model may still
output an arbitrary answer,
leading to errors. Since there
is no general method to de-
termine whether a mathemat-
ical problem has a unique so-
Iution, we add the prompt
“The answer to the question
should exist and be unique.”
to the prompt 2y to reduce
the occurrence of such cases.

The correct answers are
{25, 26,27}, so the answers
are not unique. However,
the model may output only
one answer (e.g., 25) and
treat it as the golden answer.
Consequently, other correct
answers may be incorrectly
judged as wrong.

This question has insufficient
conditions because the ma-
trix itself is not given. The
model may compute deter-
minants for different matri-
ces, producing inconsistent
answers. Such questions
tend to be treated as hard
because p(q) may decrease
when multiple answers exist.
Therefore, we require that ev-
ery question admit a unique
answer.

This question contains multi-
ple subquestions. The model
may output only one result
or place only one in “boxed”,
which lowers p(g). Conse-
quently, such questions are
often treated as hard due to
low p(q). We therefore apply
a filtering rule to remove this
type of questions.

12

Under review as a conference paper at ICLR 2026

Issue

Case

Analysis

Numerical Approximation

Underestimated Difficulty

Suppose the probability that
a randomly chosen 10-digit
phone number contains at
least one digit that is 1 is cal-
culated. If there are 9 choices
for digits 2-9 and 10 choices
for digit O, find this probabil-
ity. Also, consider if each
digit is used independently
for the phone number.

Let X and Y be independent
random variables, each fol-
lowing a uniform distribution
on the interval [0,1]. Let
Z = min(X,Y)and W =
max(X,Y). Find the value
of P(Z+W > 1.5).

The correct answer is 1 —
(19—0)10 ~ 0.6513. Answers
such as 0.6513 and 0.651 are
mathematically correct, yet
minor numerical differences
may cause them to be treated
as incorrect. Since such
cases occur infrequently, we
do not explicitly address
them.

We first demonstrate that the
metric p(g) only approxi-
mates question difficulty and
may underestimate it in some
cases. Let l;(q) denote the
true golden answer, r;(q) the
number of answers equiva-

lent to it, and p;(q) = "Tglq)
the true difficulty measure.
Since r(g) in Eq. (5)) is max-
imized, p(q) serves as an
upper bound of p;(q), i.e.,
pe(q) < p(q).

For this question, the correct
answer is 3. However, the
frequency of “é” is 3, while
that of “1” is 4, yielding
p(q) = 5. which exceeds
the true measure p;(q) = .
Thus, using p(q) can under-
estimate difficulty and mis-
lead majority voting. To
mitigate this, we set 7 in
Eq. (§) to a relatively high
value and tune hyperparam-
eters for more reliable ques-
tion generation.

Table [presents several questions generated at different training steps that can be correctly answered.

13

Under review as a conference paper at ICLR 2026

Table 4: Questions across training steps.

Step Question Solution
1 What is the value of x in the To find the value of x in the
equation 2z + 3 = 77 equation 2x + 3 = 7, we
need to isolate x. Here are

the steps:

1. Subtract 3 from both sides
of the equation:

2r+3-3=7-3
Simplifying, we get:
20 =4

2. Divide both sides of the
equation by 2:

2x

2 2
Simplifying, we get:

=2

So, the value of z is .

14

Under review as a conference paper at ICLR 2026

Step

Question

Solution

50

Solve for z:

22 —5x+6=0

To solve the quadratic equa-
tion 22 — 5z +6 = 0, we can
use the quadratic formula,
which is given by:

. —b+Vb% — 4dac
o 2a

where a = 1, b = —5, and
c=06.

Alternatively, we can factor-
ize the quadratic equation di-
rectly. Let’s try both meth-
ods.

Method 1: Factorization
We need to find two numbers
that multiply to give 6 (the
constant term) and add up to
-5 (the coefficient of the =
term). The numbers -2 and
-3 meet these conditions be-
cause (—2) x (—3) = 6 and
(—2) + (-3) = —5.

So we can write:

22 —52+6 = (z—2)(z—3)

Setting each factor to zero
gives us:

r—2=0 or z—3=0
So the solutions are:
r=2 or =3

Method 2: Quadratic
Formula Using the
quadratic formula:

—(=5)£+/(—5)2—4-1-6
xr = 21 =
5+v25—-24 __ 5+v1 _ 5+1

= =¥ =

2 2
This gives us two solu-
tions: z = 2 = 5 =3

5—1 4 2
T=25=35=

2
So the solutions are:
r=2 or =3

The final answer is:

15

Under review as a conference paper at ICLR 2026

Step

Question Solution

100

Consider three sets A, B, To solve the problem, let’s
and C defined as follows: first determine the elements
of each set A, B, and C.
A={zeR|2"-32+2> 0} >“"‘Set A**: The inequality
—{x€R|x<2} z? — 3z + 2 > 0 can be fac-
tored as (x — 1)(z —2) > 0.
C={reR[2®-4<0} Ths inequality holds when
Determine (AU B) N C. z <lorxz > 2 So A=
(—o0,1] U [2,00).
2. **Set B**: This is the set
of all real numbers less than
2,ie., B=(—00,2).
3. **Set C'**: The inequality
22 — 4 < 0 can be factored
as (z — 2)(x +2) < 0. This
inequality holds when —2 <
x<2.S0,C=[-2,2].
Next, we need to find AU B:
AUB = (—00,1]U[2,00)U
(—0,2) = (—00,2) U
2, oo) (—o0,00) =R.
Finally, we need to find (AU
B)NC: (AUB)NC =RN
-2.2) = [-2,2]
So the final answer is
[22]]

16

Under review as a conference paper at ICLR 2026

Step

Question

Solution

500

Evaluate the line integral of
the vector field

Fz,y) = (y*.2°)
along the curve defined by
the parametric equations x =

cos(t), y =sin(t), 0<
t < 2.

To evaluate the line integral
of the vector field F(x,y) =
(y?,2%) along the curve de-
fined by the parametric equa-
tions & = cos(t), y = sin(t)
for 0 < t < 27, we follow
these steps:
1. **Parameterize the
curve**: The curve is given
by x = cos(t) and y =
sin(t). The vector func-
tion for the curve is 7(t) =
(cos(t), sin(t)).
2. **Find the derivative
of the parameterization®*:
The derivative of 7(t) with
respect to t is 7(t) =
(—sin(t), cos(t)).
3. **Evaluate the vector field
along the curve**: Substi-
tute x = cos(t) and y =
sin(¢) into the vector field
ﬁ(a@y) = (y%,2?). This
gives F(cos(t),sin(t)) =
(sin?(t), cos?(t)).
4. **Compute the dot
product®*: The dot product
Fl(cos(t),sin(t)) - #(t)
is (sin?(t), cos?(t))
(—sin(t), cos(t))
—sin®(t) 4 cos®(t).
5. **Set up the inte-
gral** The line integral is
fo —sin3(t) 4 cos®(t)) dt.
. >"*Evaluate the integral**:
We can split the integral into
two parts: fo% — sin®(t) dt +
fozﬂ cos®(t) dt. Both sin®(t)
and cos®(t) are odd func-
tions over the interval
[0,27], and the integral
of an odd function over a
symmetric interval around
the origin (or any multi-
ple of the period) is zero.
Therefore, both integrals are
zero: fo%—sin (t)dt =0
and f cos®(t)dt = 0.
Addlng these together,
we get fo%(— sin®(t) +
cos®(t)) dt = 0.
The final answer is

17

Under review as a conference paper at ICLR 2026

Step

Question

Solution

1000

Given the function f(v) =
v® + o3, find the integral of
£ (v)
2f(v)

with respect to v.

To find the integral of 5 f((v))
with respect to v, we start
by identifying the function
f(v) and its derivative f'(v).
Given f(v) = v° + 07,
we compute the derivative:
f) = &A@+) =
5vt + 3v2.

Now, we substitute f'(v)
and f(v) into the integral:

f gf(z)) dv f 25(1)11"—:31}]3)

We can simplify the in-
tegrand by factoring out
the common terms in the
numerator and the2 denom—
. . 5v +3v
inator: [2(uo+v3)
f 5v +3v
203(1)2+1

5v+3/v
J 2(v2+/1) dv.

This integral can be simpli-
fied further by recognizing
that the numerator 5v 4 3/v
can be split into two separate

fractions: f;g’vti/f’) dv =

J (2(v2+1) + 2(v2+1) dv =

3/
fz(v2+1) dv+ [2(1;211 dv.
However, a simpler approach
is to recognize that the in-

tegral [2f() dy is of the

1f (v)

form f 37 dv, which is

a standard form that can be
integrated directly. The in-
tegral of ff((;’)) is In|f(v)],

so we have: [gf((”) dv =

5 5 dv =3 |f(0)] +
C, where C is the con-
stant of integration. Sub-
stituting back the function
flv) = v° + 03, we get:

(v _1
f2f((v) = In|v°+vd|+

Therefore, the final answer is:

1
§1n|v5+v3|+C.

18

	Introduction
	Dynamic Reinforcement Learning
	Experiments
	Settings
	Results
	Ablation Studies
	Exploration and Exploitation

	Related Work
	Conclusion
	Appendix
	Questions

