ALL BY LARGE LANGUAGE MODEL ITSELF

Anonymous authors

Paper under double-blind review

ABSTRACT

The scaling laws constitute one of the fundamental principles of large language models (LLMs), which reveal that the model performance constantly improves as the training data increase. In this paper, we propose dynamic reinforcement learning (RL), which takes a step to achieve the scalability of RL for training LLMs by itself. Dynamic RL operates by sampling data from the dynamically changed LLM itself, estimating golden answers based on the model's own outputs, and then using this self-generated data to optimize the model. Its dynamic characteristic allows the data distribution to continuously adapt to the evolving model, leading to better alignment between training data and model capabilities. Unlike conventional approaches, dynamic RL requires neither static, pre-collected datasets nor external verifiers for correctness. All is done by large language model itself. Experimental results demonstrate that dynamic RL can continually improve model performance over a thousand of training steps and achieve results comparable to models trained on large-scale external datasets.

1 Introduction

Large language models (LLMs) have demonstrated remarkable performance across a wide range of tasks (Jaech et al., 2024; Guo et al., 2025). A key factor driving this success is the principle of scaling laws (Kaplan et al., 2020), which shows that LLM performance improves as the amount of training data increases. LLMs can be trained using different learning paradigms, such as supervised learning and reinforcement learning (RL), each exhibiting different scalability characteristics.

In supervised learning, models are trained on data sampled from a static distribution, requiring precollected datasets of questions paired with human-labeled solutions. However, these human-labeled solutions are costly and finite, which limits scalability. In contrast, DeepSeek-R1 (Guo et al., 2025) demonstrates that RL can train models without relying on human-labeled solutions by sampling solutions from the dynamic LLM itself, thereby achieving great scalability. Since the questions are sampled from a static distribution while the solutions are sampled from a dynamic distribution, we refer to this paradigm as *semi-dynamic reinforcement learning*.

Despite its advantages, semi-dynamic RL still depends on static datasets of human-created questions and human-labeled answers, which remain finite and costly. Moreover, since the questions are sampled from a static distribution that may not align with the evolving LLM, the number of effective training questions gradually decreases over time (Yu et al., 2025; Zheng et al., 2025). This mismatch between static data and a constantly evolving model ultimately constrains scalability.

To address this limitation, we propose *dynamic reinforcement learning*, which takes a step toward achieving scalable RL using the LLM itself. In this framework, the LLM autonomously generates both questions and solutions, learning directly from its own self-sampled data without relying on external datasets or verifiers for correctness. All is done by large language model itself. The dynamic nature of this approach allows the data distribution to evolve continuously alongside the model, ensuring better alignment between training data and model capabilities.

Transitioning from semi-dynamic RL to dynamic RL introduces additional challenges, most notably the absence of golden answers and the risk of mode collapse. Since the questions are generated by the LLM itself, human-labeled golden answers are unavailable and should instead be estimated. The core design principle of our dynamic RL is to encourage the model to generate relatively more questions whose answers can be reliably estimated by the estimation method, rather than to devise a new estimation method.

To realize this principle, we adopt three strategies. First, we estimate golden answers using majority voting (Wang et al.) and introduce a question reward function that promotes the generation of questions suitable for this estimation. Second, we introduce filtering rules to exclude questions that are likely to be incorrectly answered. Third, we adjust the training dynamics by tuning hyperparameters so that the model produces questions of moderate difficulty that match with the estimation method.

Another major challenge is mode collapse, a phenomenon in which generated data degenerates into a limited set of modes (Kossale et al., 2022). In dynamic RL, this manifests as question collapse, where the model repeatedly produces similar questions, and answer collapse, where the model defaults to identical answers. Such collapse ultimately leads to performance degradation. For example, the model may repeatedly generate nearly identical questions such as "Solve the equation 2x + 3 = 7", or consistently output the same answer, such as "boxed $\{1\}$ ", across different questions.

To mitigate this issue, we introduce a diversity reward function that prompts the model to generate new questions with diverse estimated golden answers. This mechanism effectively enhances both question and answer diversity, thereby alleviating mode collapse.

Finally, we experimentally validate the scalability of dynamic RL. Our results demonstrate that dynamic RL can enhance model performance over a thousand of training steps by itself, and achieve accuracy comparable to that of semi-dynamic RL trained on large-scale, pre-collected static datasets.

2 DYNAMIC REINFORCEMENT LEARNING

Learning Scalability Scaling laws represent one of the fundamental laws in LLMs, which show that model performance can improve as model size, dataset size, and compute scale up. This phenomenon underpins the success of LLMs, as it suggests that model capability scales with resources.

We discuss the learning scalability in terms of training paradigms. LLMs can be trained through unsupervised learning, supervised learning, and RL. The supervised and unsupervised learning objectives can be expressed as

$$\mathcal{J}_{sl}(\theta) = \mathbb{E}_{q \sim \rho, s \sim \mu(\cdot|q)} \Big[\log \pi_{\theta}(s|q) \Big],$$

where ρ is the distribution over questions q, $\mu(\cdot|q)$ is the distribution of solutions s conditioned on q, and π_{θ} is the LLM policy model parameterized by θ . Unsupervised learning can be regarded as a special case where the conditioning variable q is absent. Since both q and o are drawn from static distributions, we refer to this paradigm as $static\ learning$. However, the policy model π_{θ} constantly changed during training, while the data is sampled from a static distribution, which can not be adapted to the evolving policy model π_{θ} , inherently limits the learning scalability.

RL, in contrast, optimizes a different objective:

$$\mathcal{J}_{rl}(\theta) = \mathbb{E}_{q \sim \rho, s \sim \pi_{\theta}(\cdot|q)} \Big[R(q, s) \Big],$$

where R(q,s) denotes the reward function evaluating the quality of a solution s given a question q. Recent approaches, such as DeepSeek-R1, demonstrate that RL can enhance scalability by allowing the solutions sampled from the dynamic policy model to refine itself. Since the solutions s are sampled from the evolving distribution $\pi_{\theta}(\cdot|q)$ during training, this paradigm can be described as $semi-dynamic\ reinforcement\ learning$. However, the questions q remain drawn from a static distribution ρ , which continues to constrain scalability.

Dynamic Reinforcement Learning To further enhance scalability of RL, we propose a framework termed *dynamic reinforcement learning*. In this framework, we first samples questions from the policy model π_{θ} itself, then generates corresponding solutions from the policy model π_{θ} itself, and finally leverages the sampled data to optimize itself. All is done by policy model π_{θ} itself. By continually sampling from dynamically evolving distributions π_{θ} , the policy model can iteratively improve its performance. To this end, we optimize two objective functions: one for generating higher-quality solutions and another for generating higher-quality questions.

We first introduce the objective function $\mathcal{J}_s(\theta)$, which optimizes the quality of generated solutions:

$$\mathcal{J}_s(\theta) = \mathbb{E}_{q \sim \pi_{\theta}(\cdot|z), s \sim \pi_{\theta}(\cdot|q)} \Big[R_s(q,s) \Big], \tag{1}$$

where $\pi_{\theta}(\cdot|z)$ denotes the distribution of questions q given a prompt z, and $\pi_{\theta}(\cdot|q)$ denotes the distribution of solutions s given a question q. The function $R_s(q,s)$ serves as the solution reward, evaluating the quality of the generated solutions s for the corresponding question q.

Next, we define the objective function $\mathcal{J}_q(\theta)$, which optimizes the quality of generated questions:

$$\mathcal{J}_q(\theta) = \mathbb{E}_{z \sim p(z), \, q \sim \pi_\theta(\cdot|z)} \Big[R_q(z, q) \Big], \tag{2}$$

where $R_q(z,q)$ is the question reward function, assessing the quality of a question q given a prompt z. The distribution p(z) specifies how prompts z are sampled.

In summary, we jointly optimize $\mathcal{J}_s(\theta)$ and $\mathcal{J}_q(\theta)$ to enhance both the quality of solutions and the quality of questions. In the following, we detail the design of the prompt distribution p(z), solution reward function $R_s(q,s)$ and the question reward function $R_q(z,q)$.

Prompt z Since this paper focuses on mathematical reasoning, we employ only a single type of prompt, denoted as z_0 , with $p(z_0)=1$, meaning that the prompt z is always fixed to z_0 . The prompt z_0 is explicitly designed to emphasize mathematical reasoning, as illustrated in the following box. It consists of three sentences: the first instructs the model to generate a single math question along with its solution. Since generating questions may also lead the model to produce solution implicitly, we allow the model to output both the question and its solution directly. The second sentence explicitly prohibits questions with non-unique answers, while the third sentence specifies the required output format, from which we retain only the question part.

Prompt z_0 : Generate exactly one math question and its step-by-step solution. The answer to the question should exist and be unique.

Format the output as follows:

Question: <the math question here>
Solution: <step-by-step solution here>

Solution Reward Function To define the solution reward function $R_s(q, s)$, we first require a golden, or reference answer, for each question q. Since such answers are generally unavailable in dynamic RL, we estimate the golden answer using a majority-voting scheme (Wang et al.).

Specifically, for each question q, we sample m solutions $\{s_j\}_{j=1}^m$ from the distribution $\pi_{\theta}(\cdot|q)$. For each solution s_j , we extract its final answer a_j via a function $e(\cdot)$, which can be regular expressions or LLMs (Guo et al., 2025). We then define majority voting using a similarity metric $S_a(\cdot,\cdot)$. For any two answers a_{j_1} and a_{j_2} , the similarity is given by

$$S_a(a_{j_1},a_{j_2}) = \begin{cases} 1, & \text{if } a_{j_1} \text{ and } a_{j_2} \text{ are mathematically equivalent,} \\ 0, & \text{otherwise.} \end{cases}$$
 (3)

The majority-voted golden answer l(q) and its support size r(q) are defined as

$$l(q) = \underset{a \in \{a_j\}_{j=1}^m}{\text{arg max}} \sum_{k=1}^m S_a(a, a_k),$$
(4)

$$r(q) = \max_{a \in \{a_j\}_{j=1}^m} \sum_{k=1}^m S_a(a, a_k), \tag{5}$$

where l(q) represents the estimated golden answer for q, and r(q) denotes the number of answers that are mathematically equivalent to l(q).

Finally, the solution reward function $R_s(q, s)$ evaluates whether the extracted answer e(s) matches the majority-voted golden answer l(q):

$$R_s(q,s) = S_a(l(q), e(s)). \tag{6}$$

Figure 1: Question Reward function $R_q(z,q)$ with different τ .

Question Reward Function We define the question reward function based on the mean solution reward of a question q. For a given question q, the mean solution reward p(q) is defined as

$$p(q) = \mathbb{E}_{s \sim \pi_{\theta}(\cdot|q)}[R_s(q, s)|q] \approx \text{Mean}(\{R_s(q, s_j)\}_{j=1}^m) = \frac{r(q)}{m}.$$
 (7)

Here, p(q) can be seen as an approximate measure of the difficulty of question q: larger values of p(q) correspond to easier questions, while smaller values correspond to harder ones.

The question reward function $R_q(z,q)$ is then defined as

$$R_q(z,q) = \begin{cases} \frac{p(q)}{\tau}, & \text{if } 0 \le p(q) \le \tau, \\ \frac{1-p(q)}{1-\tau}, & \text{if } \tau < p(q) \le 1, \end{cases}$$
(8)

where $\tau \in [0,1]$ is a hyperparameter. Figure 1 illustrates the behavior of $R_q(z,q)$ under different values of τ . As p(q) increases from 0 to τ , the reward $R_q(z,q)$ increases; as p(q) increases further from τ to 1, the reward decreases.

The question reward $R_q(z,q)$ plays both a collaborative and an adversarial role with respect to the solution reward $R_s(q,s)$. It is collaborative in that, when $p(q) \leq \tau$, it drives the model to generate easier questions, thereby reinforcing the increase of $\mathcal{J}_s(\theta)$. At the same time, it is adversarial because, when $p(q) > \tau$, it pushes the model toward harder questions, counteracting the growth of $\mathcal{J}_s(\theta)$. In this way, $R_q(z,q)$ balances the training dynamics, guiding the policy model toward generating questions of moderate difficulty.

Since questions with relatively large p(q) can be estimated more accurately using the majority-voting-based estimation method, we set τ to a relatively large value to encourage the model to generate more questions q with high p(q). In our experiments, we set $\tau = \frac{3}{4}$.

Question Filtering To ensure the quality of generated questions q, we further filter out some questions q by setting $R_q(z,q)=0$ and $R_s(q,s)=0$. The filtering is based on the following rules:

- 1. Filter questions containing the word "prove".
- 2. Filter questions whose last clause includes "and", as well as those containing multiple subquestions labeled "1." and "2." or "1)" and "2)" or "i)" and "ii)".
- 3. Filter questions including "Solution:" or "Answer:" or "boxed" or "The final answer is" or "To solve" or "Let's break down".

The first rule excludes mathematical proof questions, which are incompatible with majority voting in the solution reward function. The second rule removes questions containing multiple subquestions to ensure that each question has only a single answer. The third rule removes questions that include solutions, since we experimentally observe that their presence can shorten the model's output and potentially degrade performance.

Mode Collapse Transitioning from semi-dynamic RL to dynamic RL introduces additional challenges, particularly the issues of mode collapse (Kossale et al., 2022). Mode collapse is a phenomenon in generative models in which the generator produces a limited variety of outputs, ignoring many modes of the true data distribution. In dynamic RL, mode collapse manifests in two forms: question mode collapse and answer mode collapse.

Question mode collapse occurs when the questions generated by the policy model are highly similar. For example, the model repeatedly generates questions like "Solve the equation 2x + 3 = 7." This lack of diversity can lead to saturation or even collapse in model performance. Therefore, it is essential to generate diverse questions that differ from one another.

Answer mode collapse arises when the answers extracted from model solutions are highly uniform. We observed that after a few hundred training steps, generated answers to different questions often converge to the same response, such as "boxed $\{1\}$ ", causing performance collapse. This occurs because the golden answer is estimated via majority voting, which favors answers that are easily generated. Consequently, it is necessary to generate questions whose majority-voted golden answers are diverse.

Diversity Reward Function To mitigate mode collapse, we propose diversity reward functions that encourage greater variability in generated data. The core idea is that the more an object resembles others, the lower its diversity reward. We first present the general form of the diversity reward function, followed by the specific formulations for question diversity reward function and answer diversity reward function.

Let $\{x_k\}_{k=1}^K$ be a set of K objects sampled from the policy model π_θ , where each object can be a question or an answer. For any pair of objects in this set, we define a similarity metric $S(\cdot,\cdot) \in [0,1]$, where S(x,x)=1 and larger values indicate greater similarity between objects. The diversity reward for an object $x \in \{x_k\}_{k=1}^K$ is then defined as

$$R_d(x) = \frac{1}{\sum_{k=1}^K S(x, x_k)}.$$
 (9)

Intuitively, if many objects in the set are similar to x, the sum $\sum_{k=1}^K S(x,x_k)$ will be large, resulting in a smaller diversity reward $R_d(x)$. Conversely, a larger $R_d(x)$ indicates that x is less similar to other objects. Since $0 \le S(x,x_k) \le 1$, it follows that $0 \le R_d(x) \le 1$, where $R_d(x) = 1$ implies that x is only similar to itself.

The question diversity reward is then defined as

$$R_{dq}(q) = \frac{1}{\sum_{i=1}^{n} S_q(q, q_i)},$$
(10)

where $q \in \{q_i\}_{i=1}^n$ and $S_q(\cdot,\cdot)$ measures the similarity between two questions. Each question q is first tokenized into a sequence using a tokenizer $t(\cdot)$, and then similarity $S_q(\cdot,\cdot)$ is computed using the overlap ratio of sequences:

$$S_{q}(q, q_{i}) = \operatorname{overlap}(t(q), t(q_{i})) = \frac{\sum_{j=1}^{\min(|t(q)|, |t(q_{i})|)} \mathbf{1}(t(q)_{j} = t(q_{i})_{j})}{\min(|t(q)|, |t(q_{i})|)},$$

$$t(q) = [t(q)_{1}, t(q)_{2}, t(q)_{3}, \cdots], t(q_{i}) = [t(q_{i})_{1}, t(q_{i})_{2}, t(q_{i})_{3}, \cdots]. \tag{11}$$

Similarly, the answer diversity reward is defined as

$$R_{da}(l(q)) = \frac{1}{\sum_{i=1}^{n} S_a(l(q), l(q_i))},$$
(12)

where $l(\cdot)$ denotes the estimated golden answer defined in Eq. (4), and $S_a(\cdot, \cdot)$ is the similarity metric between two answers defined in Eq. (3).

Objective Function Combining the solution reward function, question reward function, question diversity reward function and answer diversity reward function, we define the following objective

Algorithm 1 Dynamic RL: Dynamic Reinforcement Learning

Input: Initial policy model π_{θ_0} , prompt z_0 , number of steps N, batch size n, number of solutions m, coefficients $\{\lambda_q, \lambda_s, \lambda_{dq}, \lambda_{da}\}$, threshold τ .

- 1: Initialize policy model $\pi_{\theta} \leftarrow \pi_{\theta_0}$.
- 2: **for** step = 1 **to** N **do**

- 3: Sample *n* questions *q* from $\pi_{\theta}(\cdot|z_0)$.
- 4: Sample m solutions s from $\pi_{\theta}(\cdot|q)$ for each question q.
- 5: Estimate the golden answer l(q) by Eq. (4) for each question q.
- 6: Compute solution reward function $R_s(q, s)$ for each question-solution pair (q, s).
- 7: Compute question reward function $R_q(z,q)$ for each question q.
- 8: Compute question diversity reward function $R_{dq}(q)$ for each question q.
- 9: Compute answer diversity reward function $R_{da}(l(q))$ for each question q.
- 10: Filter question by setting $R_q(z,q) = 0$ and $R_s(q,s) = 0$ according to the rules in Paragraph "Question Filtering" in Section 2.
- 11: Optimize π_{θ} by maximizing objective function Eq. (14) via gradient ascent method.
- 12: **end for**

Output: Optimized policy model π_{θ} .

288 function $\mathcal{L}(\theta)$:

$$\mathcal{L}(\theta) = \mathcal{L}_{q}(\theta) + \mathcal{L}_{s}(\theta),$$

$$\mathcal{L}_{q}(\theta) = \mathbb{E}_{z \sim p(z), q \sim \pi_{\theta}(\cdot|z)} \Big[\lambda_{q} R_{q}(z, q) + \lambda_{dq} R_{dq}(q) + \lambda_{da} R_{da}(l(q)) \Big],$$

$$\mathcal{L}_{s}(\theta) = \mathbb{E}_{q \sim \pi_{\theta}(\cdot|z), s \sim \pi_{\theta}(\cdot|q)} \Big[\lambda_{s} R_{s}(q, s) \Big],$$
(13)

where $\{\lambda_q \geq 0, \lambda_{dq} \geq 0, \lambda_{da} \geq 0, \lambda_s \geq 0\}$ are coefficients to balance different reward functions.

By applying policy gradient theorem (Sutton et al., 1999) and reward normalization (Shao et al., 2024) to $\mathcal{L}_q(\theta)$ and $\mathcal{L}_s(\theta)$, we optimize the following surrogate objective function $\mathcal{J}(\theta)$,

$$\mathcal{J}(\theta) = \mathbb{E}_{z \sim p(z), \, q \sim \pi_{\theta}(\cdot|z)} \Big[A_{q} \log \pi_{\theta}(q|z) \Big] + \mathbb{E}_{q \sim \pi_{\theta}(\cdot|z), \, s \sim \pi_{\theta}(\cdot|q)} \Big[A_{s} \log \pi_{\theta}(s|q) \Big],$$

$$A_{q} = \lambda_{q} \frac{R_{q}(z, q) - \text{Mean}(\{R_{q}(z, q_{i})\}_{i=1}^{n})}{\text{Std}(\{R_{q}(z, q_{i})\}_{i=1}^{n})} + \lambda_{dq} \frac{R_{dq}(q) - \text{Mean}(\{R_{dq}(q_{i})\}_{i=1}^{n})}{\text{Std}(\{R_{dq}(l(q))\}_{i=1}^{n})} + \lambda_{da} \frac{R_{da}(l(q)) - \text{Mean}(\{R_{da}(l(q))\}_{i=1}^{n})}{\text{Std}(\{R_{da}(l(q))\}_{i=1}^{n})},$$

$$A_{s} = \lambda_{s} \frac{R_{s}(q, s) - \text{Mean}(\{R_{s}(q, s_{j})\}_{j=1}^{m})}{\text{Std}(\{R_{s}(q, s_{j})\}_{j=1}^{m})}.$$
(14)

We use GRPO (Shao et al., 2024) to normalize each reward function and use advantage decomposition (Xiao et al., 2025) to get the final advantage function, which separately normalizes each individual reward function. Note that we treat $\pi_{\theta}(\cdot|z)$ as a fixed distribution when applying policy gradient theorem to $\mathcal{L}_s(\theta)$, analogous to semi-dynamic RL.

We present the detailed implementation of our dynamic RL in Alg.(1).

3 EXPERIMENTS

3.1 SETTINGS

Baselines We compare dynamic RL with semi-dynamic RL (Guo et al., 2025). For semi-dynamic RL, models are trained on three datasets of different scales: the small-scale MATH-7.5K (Hendrycks et al., 2021), the medium-scale DAPO-Math-17k (Yu et al., 2025), and the large-scale dataset DeepScaleR-Preview-40K (Luo et al., 2025). In contrast, dynamic RL requires no external datasets, as it generates and learns from its own data. We adopt Qwen2.5-Math-1.5B and Qwen2.5-Math-7B as the base models.

Table 1: The model performance on math datasets.

Methods	MATH500	AMC23	AIME2024	AIME2025	Average	
	Qwen2.5-Math-1.5B					
Base Model	40.8	24.2	4.4	4.2	18.4	
Semi-dynamic RL (7.5K)	67.6	54.2	13.3	6.0	35.3	
Semi-dynamic RL (17K)	71.2	50.3	17.9	7.5	36.7	
Semi-dynamic RL (40K)	74.6	56.6	15.6	10.6	39.4	
Dynamic RL	76.3	53.6	11.8	11.1	38.2	
Qwen2.5-Math-7B						
Base Model	54.4	37.7	13.3	6.7	28.0	
Semi-dynamic RL (7.5K)	76.2	60.8	24.8	11.0	43.2	
Semi-dynamic RL (17K)	81.0	66.4	27.9	13.1	47.1	
Semi-dynamic RL (40K)	81.2	64.5	29.2	16.3	47.8	
Dynamic RL	83.8	66.9	21.4	17.3	47.4	

Figure 2: The average performance across different training steps.

Evaluation We evaluate models on four math benchmark datasets: MATH500 (Hendrycks et al., 2021; Lightman et al., 2023), AMC23 (Art of Problem Solving, 2025b), AIME2024 and AIME2025 (Art of Problem Solving, 2025a). We report the pass@1 evaluation metric.

Hyperparameters Settings We set $\lambda_s=1$ and search λ_q over $\{10^{-2},10^{-3},10^{-4},10^{-5}\}$. To promote answer diversity, we set $\lambda_{da}=1$. For λ_{dq} , we conduct a search over $\{1,10^{-1},10^{-2},10^{-3}\}$. For τ in Eq. (8), we search over $\{\frac{1}{4},\frac{1}{2},\frac{3}{4}\}$. The best-performing hyperparameters are found to be $\{\lambda_q=10^{-3},\lambda_{dq}=10^{-1},\tau=\frac{3}{4}\}$.

We set the batch size n to 32, the number of sampled solutions per question m to 16, and the learning rate to 10^{-6} . For rollouts, we use temperature = 1.0 and top-p = 1.0, while for evaluation we use temperature = 0.6, top-p = 0.95 and top-k = 20. The maximum question length is set to 1024 tokens, and the maximum solution length is set to 3072 tokens. We train semi-dynamic for 1 epoch and dynamic RL the same steps as semi-dynamic trained on DeepScaleR-Preview-40K dataset.

To ensure fair comparison, we keep all shared hyperparameters identical between dynamic RL and semi-dynamic RL. The only differences lie in the methods themselves and the training datasets.

3.2 RESULTS

See Table 1 and Figure 2 for the results. Dynamic RL achieves performance comparable to semi-dynamic RL (40K) without relying on external datasets or verifiers, and it can continue to improve over thousands of steps. The slightly lower performance of dynamic RL compared to semi-dynamic

Table 2: The model performance on math datasets.

Methods	MATH500	AMC23	AIME2024	AIME2025	Average
Dynamic RL	83.8	66.9	21.4	17.3	47.4
w/o R_q	82.2	62.3	19.2	16.3	45.0
w/o R_{dq}	82.4	64.5	14.6	14.0	43.9
w/o R_{da}	80.4	66.4	19.0	13.5	44.8
$\tau = 0.5$	82.8	65.5	20.6	18.8	46.9
$\tau = 0.25$	81.2	64.7	20.2	19.6	46.4
$\lambda_{dq} = 1$	82.2	63.3	19.5	17.5	45.7
$\lambda_{dq}^{-1} = 10^{-5}$	83.2	65.3	16.9	16.0	45.4
$\lambda_q = 1$	81.2	63.8	20.4	14.2	44.9
$\lambda_q = 10^{-5}$	81.8	62.3	16.0	14.6	43.7

RL (40K) is primarily due to the generation of low-quality questions or misestimation of answers (see Table 3 in Appendix A).

3.3 ABLATION STUDIES

We conduct ablation studies to examine the effectiveness of the question reward function R_q , the question diversity reward function R_{dq} , the answer diversity reward function R_{da} , and the choice of τ in Eq. (8).

As reported in Table 2, all three reward functions contribute to improving model performance. Moreover, setting a relatively large value of τ facilitates more reliable estimation of answers, which in turn leads to better performance. Question filtering brings no performance improvement and mainly serves to stabilize training.

3.4 EXPLORATION AND EXPLOITATION

We further demonstrate the effectiveness of dynamic RL from the view of exploration and exploitation. The objective function in Eq. (14) consists of four reward functions. We temporarily omit the answer diversity reward function R_{da} because answer diversity is relatively easier to satisfy. The solution reward function R_s plays a role for improving the model performance, similar to semi-dynamic RL. The question diversity reward function R_{dq} plays a role of exploration, which aims to generate new questions. The question reward function R_q plays a role of exploitation, which favors questions with proper p(q) (See Figure 1).

To balance exploration and exploitation, we carefully tune the hyper-parameters λ_{dq} and λ_q . For λ_{dq} , an excessively large value causes the model to prioritize generating new questions, preventing convergence, while too small a value may lead to mode collapse in question generation and, consequently, degraded model performance. Table 2 illustrates the performance across different values of λ_{dq} . In practice, we set λ_{dq} to a relatively large value to preserve sufficient exploration.

For λ_q , we adopt a relatively small value to moderate exploitation. If λ_q is too small, R_{dq} dominates, resulting in over-exploration. Conversely, if λ_q is too large, the model generates overly hard questions, making it impossible for the LLM to accurately estimate golden answers, which ultimately harms performance. This issue arises because p(q) in R_q is only an approximate measure of question difficulty. It may underestimate the true difficulty of questions due to the maximization property in r(q) (See Table 3 in Appendix A).

To further illustrate this point, Figure 3 presents the distribution of r(q) at different training steps, focusing on the red curve r(q) = m = 16. At each step, we sample a batch of questions, and the number of questions satisfying r(q) = m serves as a proxy for batch difficulty: the higher the number, the easier the batch. As shown in Figure 3, large λ_q values reduce the number of questions with r(q) = m, since $R_q(z,q) = 0$ for r(q) = m. Consequently, an excessively large λ_q accelerates the shift toward harder questions, making it increasingly difficult to estimate answers reliably. In

Figure 3: The distribution of r(q) during training.

summary, the difficulty of current batch questions should match with the capability of current LLM and the estimation method.

We allow the model to generate a proportion non-contributory questions (r(q) = m), the advantage $A_s = 0$, such that the remaining questions are located near the boundary r(q) = m. Learning from data near the boundary may extend the boundary of the LLM by itself.

4 RELATED WORK

Unsupervised RL DeepSeek-R1 (Guo et al., 2025) shows that RL can significantly enhance model performance without relying on human-labeled solutions. Nevertheless, it still depends on human-labeled golden answers to guide the learning process. In contrast, unsupervised RL seeks to train models entirely without human-labeled answers. Some approaches define objectives based on the consistency of model outputs, Zhang et al. (2025a) propose rewards derived from intermediate reasoning states, and Zuo et al. (2025) explore estimating golden answers through answer consistency. Meanwhile, Shao et al. (2025) demonstrate that even random or negative rewards can serve as effective training signals for RL. Other approaches, including Zhang et al. (2025b) and Agarwal et al. (2025), link RL with entropy minimization at either the sequence or token level, using answer entropy as a surrogate objective. These methods primarily focus on estimation strategies. In contrast, dynamic RL emphasizes generating questions that can be reliably assessed by estimation methods.

Self-play RL Self-play RL is a paradigm in which an agent enhances its performance by iteratively interacting with versions of itself (Zhang et al., 2024). This approach typically relies on a verifiable environment, particularly in code-related tasks, where unit tests can provide efficient verification. Lin et al. (2025) propose a self-play solver-verifier framework that jointly improves a model's ability to generate both code and corresponding test units. Similarly, Wang et al. (2025) introduce a framework that co-evolves coding and unit test generation by leveraging feedback from their interactions. Other studies, such as Zhao et al. (2025) and Zhou et al. (2025), allow the LLM to generate code tasks and learn from them, provided these tasks are feasible and verifiable. Despite these advances, these methods still depend on an external verifier to check answer correctness, whereas dynamic RL estimates the golden answers directly from the model's outputs.

5 Conclusion

In this paper, we propose dynamic RL, a framework designed to enhance the scalability of RL by leveraging the LLM itself. Dynamic RL samples both questions and solutions directly from the LLM, allowing the training data to adapt dynamically as the model evolves. However, this approach introduces new challenges, including the absence of golden answers and the risk of mode collapse. To address these issues, we encourage the model to generate a greater proportion of questions that can be reliably estimated and introduce a diversity reward function to promote data diversity. Experimental results demonstrate that Dynamic RL achieves performance comparable to semi-dynamic RL, without relying on external supervision. We envision that further refinements of this approach will continue to improve the scalability of RL.

REFERENCES

- Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effectiveness of entropy minimization in llm reasoning. *arXiv preprint arXiv:2505.15134*, 2025.
- Art of Problem Solving. Aime problems and solutions, 2025a. URL https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions. Accessed: 2025-04-20.
- Art of Problem Solving. Amc problems and solutions, 2025b. URL https://artofproblemsolving.com/wiki/index.php?title=AMC_Problems_and_Solutions. Accessed: 2025-04-20.
- Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv* preprint arXiv:2501.12948, 2025.
- Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv* preprint arXiv:2103.03874, 2021.
- Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint arXiv:2412.16720*, 2024.
- Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. *arXiv* preprint arXiv:2001.08361, 2020.
- Youssef Kossale, Mohammed Airaj, and Aziz Darouichi. Mode collapse in generative adversarial networks: An overview. In 2022 8th International Conference on Optimization and Applications (ICOA), pp. 1–6. IEEE, 2022.
- Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth International Conference on Learning Representations*, 2023.
- Zi Lin, Sheng Shen, Jingbo Shang, Jason Weston, and Yixin Nie. Learning to solve and verify: A self-play framework for code and test generation. *arXiv preprint arXiv:2502.14948*, 2025.
- Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y Tang, Manan Roongta, Colin Cai, Jeffrey Luo, Tianjun Zhang, Li Erran Li, et al. Deepscaler: Surpassing o1-preview with a 1.5 b model by scaling rl. *Notion Blog*, 2025.
- Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei Du, Nathan Lambert, Sewon Min, Ranjay Krishna, et al. Spurious rewards: Rethinking training signals in rlvr. *arXiv preprint arXiv:2506.10947*, 2025.
- Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
- Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for reinforcement learning with function approximation. *Advances in neural information processing systems*, 12, 1999.
- Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
 models. In *The Eleventh International Conference on Learning Representations*.
 - Yinjie Wang, Ling Yang, Ye Tian, Ke Shen, and Mengdi Wang. Co-evolving llm coder and unit tester via reinforcement learning. *arXiv* preprint arXiv:2506.03136, 2025.

- Changyi Xiao, Mengdi Zhang, and Yixin Cao. Bnpo: Beta normalization policy optimization. *arXiv* preprint arXiv:2506.02864, 2025.
 - Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at scale. *arXiv preprint arXiv:2503.14476*, 2025.
 - Kongcheng Zhang, Qi Yao, Shunyu Liu, Yingjie Wang, Baisheng Lai, Jieping Ye, Mingli Song, and Dacheng Tao. Consistent paths lead to truth: Self-rewarding reinforcement learning for llm reasoning. *arXiv* preprint arXiv:2506.08745, 2025a.
 - Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question is already half the answer: Fully unsupervised llm reasoning incentivization. *arXiv* preprint *arXiv*:2504.05812, 2025b.
 - Ruize Zhang, Zelai Xu, Chengdong Ma, Chao Yu, Wei-Wei Tu, Wenhao Tang, Shiyu Huang, Deheng Ye, Wenbo Ding, Yaodong Yang, et al. A survey on self-play methods in reinforcement learning. arXiv preprint arXiv:2408.01072, 2024.
 - Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero data. *arXiv preprint arXiv:2505.03335*, 2025.
 - Haizhong Zheng, Yang Zhou, Brian R Bartoldson, Bhavya Kailkhura, Fan Lai, Jiawei Zhao, and Beidi Chen. Act only when it pays: Efficient reinforcement learning for llm reasoning via selective rollouts. *arXiv preprint arXiv:2506.02177*, 2025.
 - Yifei Zhou, Sergey Levine, Jason Weston, Xian Li, and Sainbayar Sukhbaatar. Self-challenging language model agents. *arXiv* preprint arXiv:2506.01716, 2025.
 - Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen Zhang, Xinwei Long, Ermo Hua, et al. Ttrl: Test-time reinforcement learning. arXiv preprint arXiv:2504.16084, 2025.

A APPENDIX

A.1 QUESTIONS

Table 3 presents several generated questions whose answers may not be accurately estimated.

Table 3: Examples of issues in generated questions.

Issue	Case	Analysis
Non-unique Answer (No Answer)	Find two integers x and y such that $x^2 + y^2 = 7$.	This question has no valid answer. The model may still output an arbitrary answer, leading to errors. Since there is no general method to determine whether a mathematical problem has a unique solution, we add the prompt "The answer to the question should exist and be unique." to the prompt z_0 to reduce the occurrence of such cases.
Non-unique Answer (Multiple Answers)	Find the unique positive integer x such that $\left\lfloor \frac{x}{5} \right\rfloor \times \left\lfloor \frac{x}{7} \right\rfloor = 15$.	The correct answers are $\{25, 26, 27\}$, so the answers are not unique. However, the model may output only one answer (e.g., 25) and treat it as the golden answer. Consequently, other correct answers may be incorrectly judged as wrong.
Non-unique Answer (Insufficient Conditions)	What is the determinant of a 2x2 matrix?	This question has insufficient conditions because the matrix itself is not given. The model may compute determinants for different matrices, producing inconsistent answers. Such questions tend to be treated as hard because $p(q)$ may decrease when multiple answers exist. Therefore, we require that every question admit a unique
Subquestion	In triangle ABC, vertex A has an angle of 163°, side BC measures 1.9 units, and vertex C has an angle of 7°. Find: 1. The area of triangle ABC. 2. The circumradius of triangle ABC. 3. The inradius of triangle ABC. 4. The semiperimeter of triangle ABC.	answer. This question contains multiple subquestions. The model may output only one result or place only one in "boxed", which lowers $p(q)$. Consequently, such questions are often treated as hard due to low $p(q)$. We therefore apply a filtering rule to remove this type of questions.

Issue	Case	Analysis
Numerical Approximation	Suppose the probability that a randomly chosen 10-digit phone number contains at least one digit that is 1 is calculated. If there are 9 choices for digits 2-9 and 10 choices for digit 0, find this probability. Also, consider if each digit is used independently for the phone number.	The correct answer is $1 - \left(\frac{9}{10}\right)^{10} \approx 0.6513$. Answer such as 0.6513 and 0.651 ar mathematically correct, ye minor numerical difference may cause them to be treate as incorrect. Since such cases occur infrequently, which do not explicitly address them.
Underestimated Difficulty	Let X and Y be independent random variables, each following a uniform distribution on the interval $[0,1]$. Let $Z = \min(X,Y)$ and $W = \max(X,Y)$. Find the value of $P(Z+W \ge 1.5)$.	We first demonstrate that the metric $p(q)$ only approximates question difficulty and may underestimate it in some cases. Let $l_t(q)$ denote the true golden answer, $r_t(q)$ the number of answers equivalent to it, and $p_t(q) = \frac{r_t(q)}{m}$ the true difficulty measures Since $r(q)$ in Eq. (5) is may imized, $p(q)$ serves as an upper bound of $p_t(q)$, i.e. $p_t(q) \leq p(q)$. For this question, the correct answer is $\frac{1}{8}$. However, the frequency of " $\frac{1}{8}$ " is 3, while that of " $\frac{1}{2}$ " is 4, yielding $p(q) = \frac{4}{16}$, which exceed the true measure $p_t(q) = \frac{3}{16}$. Thus, using $p(q)$ can underestimate difficulty and misted majority voting. The mitigate this, we set τ in Eq. (8) to a relatively high value and tune hyperparameters for more reliable question generation.

Table 4 presents several questions generated at different training steps that can be correctly answered.

Table 4: Questions across training steps.

Step	Question	Solution
1	What is the value of x in the equation $2x + 3 = 7$?	To find the value of x in the equation $2x + 3 = 7$, we need to isolate x . Here are the steps: 1. Subtract 3 from both sides of the equation:
		2x + 3 - 3 = 7 - 3
		Simplifying, we get:
		2x = 4
		2. Divide both sides of the equation by 2:
		$\frac{2x}{2} = \frac{4}{2}$
		Simplifying, we get:
		x = 2
		So, the value of x is $\boxed{2}$.

Question	Solution
Solve for <i>x</i> :	To solve the quadratic equa
$x^2 - 5x + 6 - 0$	tion $x^2 - 5x + 6 = 0$, we ca
x - 0x + 0 = 0	use the quadratic formula
	which is given by:
	$-b \pm \sqrt{b^2 - 4ac}$
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
	where $a = 1$, $b = -5$, an
	c = 6.
	Alternatively, we can facto
	ize the quadratic equation d
	rectly. Let's try both met
	ods.
	### Method 1: Factorization
	We need to find two number that multiply to give 6 (the
	constant term) and add up to
	-5 (the coefficient of the
	term). The numbers -2 ar
	-3 meet these conditions b
	cause $(-2) \times (-3) = 6$ ar
	(-2) + (-3) = -5. So we can write:
	$x^2 - 5x + 6 = (x - 2)(x - 3)$
	Setting each factor to zer
	gives us:
	x - 2 = 0 or $x - 3 =$
	So the solutions are:
	x = 2 or $x = 3$
	### Method 2: Quadrat
	Formula Using th
	quadratic formul
	$x = \frac{-(-5)\pm\sqrt{(-5)^2 - 4\cdot1\cdot6}}{2\cdot1}$
	$5\pm\sqrt{25-24}$ $5\pm\sqrt{1}$ $5\pm$
	$\frac{5\pm\sqrt{25-24}}{2} = \frac{5\pm\sqrt{1}}{2} = \frac{5\pm}{2}$
	tions: $x = \frac{5+1}{2} = \frac{6}{2} =$
	$x = \frac{5-1}{2} = \frac{4}{5} = 2$
	This gives us two solutions: $x = \frac{5+1}{2} = \frac{6}{2} = x = \frac{5-1}{2} = \frac{4}{2} = 2$ So the solutions are:
	x = 2 or $x = 3$
	x = 2 or $x = 3$
	The final answer is:
	2,3
	4, 9
	Solve for x : $x^2 - 5x + 6 = 0$

Step	Question	Solution
100	Consider three sets A , B ,	To solve the problem, let's
	and C defined as follows:	first determine the elements
	$A = \{ x \in \mathbb{R} \mid x^2 - 3x + 2 \ge 0 \}$	of each set A , B , and C . 1. **Set A **: The inequality
	$B = \{x \in \mathbb{R} \mid x < 2\}$	$x^2 - 3x + 2 \ge 0$ can be fac-
	$C = \{x \in \mathbb{R} \mid x^2 - 4 \le 0\}$	tored as $(x-1)(x-2) \ge 0$.
		This inequality holds when
	Determine $(A \cup B) \cap C$.	$x \le 1 \text{ or } x \ge 2. \text{ So, } A = 0$
		$(-\infty,1] \cup [2,\infty)$. 2. **Set B **: This is the set
		of all real numbers less than
		2, i.e., $B = (-\infty, 2)$.
		3. **Set C **: The inequality
		$x^2 - 4 \le 0$ can be factored
		as $(x-2)(x+2) \le 0$. This inequality holds when $-2 \le$
		$x \le 2$. So, $C = [-2, 2]$.
		Next, we need to find $A \cup B$:
		$A \cup B = (-\infty, 1] \cup [2, \infty) \cup$
		$(-\infty,2)$ = $(-\infty,2)$ \cup
		$[2,\infty)=(-\infty,\infty)=\mathbb{R}.$
		Finally, we need to find $(A \cup B) \cap C$
		$B) \cap C$: $(A \cup B) \cap C = \mathbb{R} \cap [-2, 2] = [-2, 2]$.
		So the final answer is
		[-2,2].

864	Step	Question	Solution
865			
866	500	Evaluate the line integral of	To evaluate the line integral
867		the vector field	of the vector field $\vec{F}(x,y) =$
868		$\vec{F}(x,y) = (y^2, x^2)$	(y^2, x^2) along the curve defined by the perspective equation
869		-1 4h	fined by the parametric equa- tions $x = \cos(t)$, $y = \sin(t)$
870		along the curve defined by the parametric equations $x =$	for $0 \le t \le 2\pi$, we follow
871		$\cos(t), y = \sin(t), 0 \le$	these steps:
872		$t \le 2\pi.$	1. **Parameterize the
873		·	curve**: The curve is given
874			by $x = \cos(t)$ and $y =$
875			$\sin(t)$. The vector func-
876			tion for the curve is $\vec{r}(t) =$
877			$(\cos(t), \sin(t)).$
878			2. **Find the derivative of the parameterization**:
879			The derivative of $\vec{r}(t)$ with
880			respect to t is $\vec{r}'(t) =$
881			$(-\sin(t),\cos(t)).$
882			3. **Evaluate the vector field
883			along the curve**: Substi-
884			tute $x = \cos(t)$ and $y =$
885			$\sin(t)$ into the vector field
886			$\vec{F}(x,y) = (y^2, x^2)$. This
887			gives $\vec{F}(\cos(t), \sin(t)) =$
888			$(\sin^2(t),\cos^2(t)).$
889 890			4. **Compute the dot
891			product**: The dot product
892			$\vec{F}(\cos(t),\sin(t)) \cdot \vec{r}'(t)$
893			is $(\sin^2(t), \cos^2(t))$
894			$(-\sin(t),\cos(t)) =$
895			$-\sin^3(t) + \cos^3(t)$.
896			5. **Set up the integral**: The line integral is
897			
898			$\int_0^{2\pi} (-\sin^3(t) + \cos^3(t)) dt.$ 6. **Evaluate the integral**:
899			We can split the integral into
900			two parts: $\int_0^{2\pi} -\sin^3(t) dt +$
901			
902			$\int_0^{2\pi} \cos^3(t) dt$. Both $\sin^3(t)$
903			and $\cos^3(t)$ are odd func-
904			tions over the interval $[0, 2\pi]$, and the integral
905			of an odd function over a
906			symmetric interval around
907			the origin (or any multi-
908			ple of the period) is zero.
909			Therefore, both integrals are
910			zero: $\int_0^{2\pi} -\sin^3(t) dt = 0$
911			and $\int_0^{2\pi} \cos^3(t) dt = 0$.
912			Adding these together,
913			Adding these together, we get $\int_0^{2\pi} (-\sin^3(t) +$
914			$\cos^3(t) dt = 0.$
915			The final answer is $\boxed{0}$.
916			
0.4			

Step	Question	Solution
1000	Given the function $f(v) =$	To find the integral of $\frac{f'(v)}{2f(v)}$
	$v^5 + v^3$, find the integral of	with respect to v , we start
	$\frac{f'(v)}{2f(v)}$ with respect to v.	by identifying the function
	2f(v)	f(v) and its derivative $f'(v)$.
		Given $f(v) = v^5 + v^3$,
		we compute the derivative:
		$f'(v) = \frac{d}{dv}(v^5 + v^3) =$
		$5v^4 + 3v^2$.
		Now, we substitute $f'(v)$
		and $f(v)$ into the integral:
		$\int \frac{f'(v)}{2f(v)} dv = \int \frac{5v^4 + 3v^2}{2(v^5 + v^3)} dv.$
		We can simplify the in-
		tegrand by factoring out
		the common terms in the
		numerator and the denominator: $\int_{0}^{\infty} \frac{5v^4 + 3v^2}{2(v^5 + v^3)} dv =$
		$\int_{0}^{\infty} \frac{2(v^5+v^3)}{(v^5+v^3)^2} dv = -\frac{1}{2}$
		$\int \frac{5v^4 + 3v^2}{2v^3(v^2 + 1)} dv =$
		$\int \frac{5v+3/v}{2(v^2+1)} dv.$
		This integral can be simpli-
		fied further by recognizing
		that the numerator $5v + 3/v$
		can be split into two separate
		fractions: $\int \frac{5v+3/v}{2(v^2+1)} dv =$
		$\int \left(\frac{5v}{2(v^2+1)} + \frac{3/v}{2(v^2+1)} \right) dv =$
		$\int_{\mathbf{u}} \frac{5v}{2(v^2+1)} dv + \int_{\mathbf{u}} \frac{3/v}{2(v^2+1)} dv.$
		However, a simpler approach is to recognize that the in-
		tegral $\int \frac{f'(v)}{2f(v)} dv$ is of the
		form $\int \frac{1}{2} \frac{f'(v)}{f(v)} dv$, which is
		a standard form that can be
		integrated directly. The in-
		tegral of $\frac{f'(v)}{f(v)}$ is $\ln f(v) $,
		so we have: $\int \frac{f'(v)}{2f(v)} dv =$
		$\frac{1}{2} \int \frac{f'(v)}{f(v)} dv = \frac{1}{2} \ln f(v) + \frac{1}{2} \int \frac{f'(v)}{f(v)} dv = \frac{1}{2} \ln f(v) + \frac{1}{2} \int \frac{f'(v)}{f(v)} dv = \frac{1}{2} \ln f(v) + \frac{1}{2} \int \frac{f'(v)}{f(v)} dv = \frac{1}{2} \ln f(v) + \frac{1}{2} \int \frac{f'(v)}{f(v)} dv = \frac{1}{2} \ln f(v) + \frac{1}{2} \int \frac{f'(v)}{f(v)} dv = \frac{1}{2} \ln f(v) + \frac{1}{2} \int \frac{f'(v)}{f(v)} dv = \frac{1}{2} \ln f(v) + \frac{1}{2} \int \frac{f'(v)}{f(v)} dv = \frac{1}{2} \ln f(v) + \frac{1}{2} \int \frac{f'(v)}{f(v)} dv = \frac{1}{2} \ln f(v) + \frac{1}{2} \int \frac{f'(v)}{f(v)} dv = \frac{1}{2} \int \frac{f'(v)}{f(v)} $
		C, where C is the con-
		stant of integration. Sub-
		stituting back the function $f(v) = v^5 + v^3$, we get:
		f(v) = v + v, we get.
		$\int_{C} \frac{f'(v)}{2f(v)} dv = \frac{1}{2} \ln v^5 + v^3 + \frac{1}{2} \ln v^5 + v^5 + \frac{1}{2} \ln v^5 + \frac$
		U. Therefore the final ensurer is:
		Therefore, the final answer is:
		$\left \frac{1}{2} \ln v^5 + v^3 + C \right $.
		2