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Abstract

Combining discrete probability distributions and combinatorial optimization prob-
lems with neural network components has numerous applications but poses several
challenges. We propose Implicit Maximum Likelihood Estimation (I-MLE), a
framework for end-to-end learning of models combining discrete exponential fam-
ily distributions and differentiable neural components. I-MLE is widely applicable
as it only requires the ability to compute the most probable states and does not
rely on smooth relaxations. The framework encompasses several approaches such
as perturbation-based implicit differentiation and recent methods to differentiate
through black-box combinatorial solvers. We introduce a novel class of noise
distributions for approximating marginals via perturb-and-MAP. Moreover, we
show that I-MLE simplifies to maximum likelihood estimation when used in some
recently studied learning settings that involve combinatorial solvers. Experiments
on several datasets suggest that I-MLE is competitive with and often outperforms
existing approaches which rely on problem-specific relaxations.

1 Introduction

While deep neural networks excel at perceptual tasks, they tend to generalize poorly whenever the
problem at hand requires some level of symbolic manipulation or reasoning, or exhibit some (known)
algorithmic structure. Logic, relations, and explanations, as well as decision processes, frequently
find natural abstractions in discrete structures, ill-captured by the continuous mappings of standard
neural nets. Several application domains, ranging from relational and explainable ML to discrete
decision-making [Mišić and Perakis, 2020], could benefit from general-purpose learning algorithms
whose inductive biases are more amenable to integrating symbolic and neural computation. Motivated
by these considerations, there is a growing interest in end-to-end learnable models incorporating
discrete components that allow, e.g., to sample from discrete latent distributions [Jang et al., 2017,
Paulus et al., 2020] or solve combinatorial optimization problems [Pogančić et al., 2019, Mandi et al.,
2020]. Discrete energy-based models (EBMs) [LeCun et al., 2006] and discrete world models [Hafner
et al., 2020] are additional examples of neural network based models that require the ability to
backpropagate through discrete probability distributions.

For complex discrete distributions, it is intractable to compute the exact gradients of the expected
loss. For combinatorial optimization problems, the loss is discontinuous, and the gradients are zero
almost everywhere. The standard approach revolves around problem-specific smooth relaxations,
which allow one to fall back to (stochastic) backpropagation. These strategies, however, require
tailor-made relaxations, presuppose access to the constraints and are, therefore, not always feasible
nor tractable for large state spaces. Moreover, reverting to discrete outputs at test time may cause
unexpected behavior. In other situations, discrete outputs are required at training time because one
has to make one of a number of discrete choices, such as accessing discrete memory or deciding on
an action in a game.
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With this paper, we take a step towards the vision of general-purpose algorithms for hybrid learn-
ing systems. Specifically, we consider settings where the discrete component(s), embedded in a
larger computational graph, are discrete random variables from the constrained exponential family1.
Grounded in concepts from Maximum Likelihood Estimation (MLE) and perturbation-based implicit
differentiation, we propose Implicit Maximum Likelihood Estimation (I-MLE). To approximate the
gradients of the discrete distributions’ parameters, I-MLE computes, at each update step, a target
distribution q that depends on the loss incurred from the discrete output in the forward pass. In
the backward pass, we approximate maximum likelihood gradients by treating q as the empirical
distribution. We propose ways to derive target distributions and introduce a novel family of noise per-
turbations well-suited for approximating marginals via perturb-and-MAP. I-MLE is general-purpose
as it only requires the ability to compute most probable states and not faithful samples or probabilistic
inference. In summary, we make the following contributions:

1. We propose implicit maximum likelihood estimation (I-MLE) as a framework for computing
gradients with respect to the parameters of discrete exponential family distributions;

2. We show that this framework is useful for backpropagating gradients through both discrete
probability distributions and discrete combinatorial optimization problems;

3. I-MLE requires two ingredients: a family of target distribution q and a method to sample
from complex discrete distributions. We propose two families of target distributions and a
family of noise-distributions for Gumbel-max (perturb-and-MAP) based sampling.

4. We show that I-MLE simplifies to explicit maximum-likelihood learning when used in some
recently studied learning settings involving combinatorial optimization solvers.

5. Extensive experimental results suggest that I-MLE is flexible and competitive compared to
the straight-through and relaxation-based estimators.

Instances of the I-MLE framework can be easily integrated into modern deep learning pipelines,
allowing one to readily utilize several types of discrete layers with minimal effort. We provide
implementations and Python notebooks at https://github.com/nec-research/tf-imle

2 Problem Statement and Motivation

x θ ~ z yp(z; θ)

hv fu
𝒞

Figure 1: Illustration of the addressed learning prob-
lem. z is the discrete (latent) structure.

We consider models described by the equations

θ = hv(x), z ∼ p(z;θ), y = fu(z), (1)

where x ∈ X and y ∈ Y denote feature inputs
and target outputs, hv : X → Θ and fu : Z → Y
are smooth parameterized maps, and p(z;θ) is a
discrete probability distribution.

Given a set of examples D = {(x̂j , ŷj)}Nj=1, we are concerned with learning the parameters
ω = (v,u) of (1) by finding approximate solutions of minω

∑
j L(x̂j , ŷj ;ω)/N . The training error

L is typically defined as:

L(x̂, ŷ;ω) = Eẑ∼p(z;θ̂) [`(fu(ẑ), ŷ)] with θ̂ = hv(x̂), (2)

where ` : Y × Y → R+ is a point-wise loss function. Fig. 1 illustrates the setting. For example, an
interesting instance of (1) and (2) arises in learning to explain user reviews [Chen et al., 2018] where
the task is to infer a target sentiment score (e.g. w.r.t. the quality of a product) from a review while
also providing a concise explanation of the predicted score by selecting a subset of exactly k words
(cf. Example 2). In Section 6, we present experiments precisely in this setting. As anticipated in the
introduction, we restrict the discussion to instances in which p(z;θ) belongs to the (constrained)
discrete exponential family, which we now formally introduce.

Let Z be a vector of discrete random variables over a state space Z and let C ⊆ Z be the set of states
that satisfy a given set of linear constraints.2 Let θ ∈ Θ ⊆ Rm be a real-valued parameter vector.

1This includes integer linear programs via a natural link that we outline in Example 3.
2For the sake of simplicity we assume Z ⊆ {0, 1}m. The set C is the integral polytope spanned by the given,

problem-specific, linear constraints.
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The probability mass function (PMF) of a discrete constrained exponential family r.v. is:

p(z;θ) =

{
exp (〈z,θ〉/τ −A(θ)) if z ∈ C,
0 otherwise. (3)

Here, 〈·, ·〉 is the inner product and τ the temperature, which, if not mentioned otherwise, is assumed
to be 1. A(θ) is the log-partition function defined as A(θ) = log

(∑
z∈C exp (〈z,θ〉/τ)

)
. We call

〈z,θ〉 the weight of the state z. The marginals (expected value, mean) of the r.v.s Z are defined
as µ(θ) := Eẑ∼p(z;θ)[ẑ]. Finally, the most probable or Maximum A-Posteriori (MAP) states are
defined as MAP(θ) := arg maxz∈C 〈z,θ〉. The family of probability distributions we define here
captures a broad range of settings and subsumes probability distributions such as positive Markov
random fields and statistical relational formalisms [Wainwright and Jordan, 2008, Raedt et al., 2016].
We now discuss some examples which we will use in the experiments. Crucially, in Example 3 we
establish the link between the constrained exponential family and integer linear programming (ILP)
identifying the ILP cost coefficients with the distribution’s parameters θ.

Example 1 (Categorical Variables). An m-way (one-hot) categorical variable corresponds to
p(z;θ) = exp (〈z,θ〉 −A(θ)), subject to the constraint 〈z,1〉 = 1, where 1 is a vector of ones.

As C = {ei}mi=1, where ei is the i-th vector of the canonical base, the parameters of the above
distribution coincide with the weights, which are often called logits in this context. The marginals
µ coincide with the PMF and can be expressed through a closed-form smooth function of θ: the
softmax. This facilitates a natural relaxation that involves using µ(θ) in place of z [Jang et al., 2017].
The convenient properties of the categorical distribution, however, quickly disappear even for slightly
more complex distributions, as the following example shows.

Example 2 (k-subset Selection). Assume we want to sample binary m-dimensional vectors with k
ones. This amounts to replacing the constraint in Example 1 by the constraint 〈z,1〉 = k.

Here, a closed-form expression for the marginals does not exist: sampling from this distribution
requires computing the

(
m
k

)
= O(mk) weights (if k ≤ m/2). Computing MAP states instead takes

time linear in m.

Example 3 (Integer Linear Programs). Consider the combinatorial optimization problem given by
the integer linear program arg minz∈C〈z, c〉, where C is an integral polytope and c ∈ Rm is a
vector of cost coefficients, and let z∗(c) be the set of its solutions. We can associate to the ILP the
family (indexed by τ > 0) of probability distributions p(z;θ) from (3), with C the ILP polytope
and θ = −c. Then, for every τ > 0, the solutions of the ILP correspond to the MAP states:
MAP(θ) = arg maxz∈C〈z,θ〉 = z∗(c) and for τ → 0 one has that Pr(Z ∈ z∗(c))→ 1.

Many problems of practical interest can be expressed as ILPs, such as finding shortest paths, planning
and scheduling problems, and inference in propositional logic.

3 The Implicit Maximum Likelihood Estimator

In this section, we develop and motivate a family of general-purpose gradient estimators for Eq. (2)
that respect the structure of C . 3 Let (x̂, ŷ) ∈ D be a training example and ẑ ∼ p(z;hv(x̂)). The
gradient of L w.r.t. u is given by∇uL(x̂, ŷ;ω) = Eẑ[∂ufu(ẑ)ᵀ∇y`(y, ŷ)] with y = fu(ẑ), which
may be estimated by drawing one or more samples from p. Regarding ∇vL, one has

∇vL(x̂, ŷ;ω) = ∂vhv(x̂)ᵀ∇θL(x̂, ŷ;ω), (4)

where the major challenge is to compute∇θL. A standard approach is to employ the score function
estimator (SFE) which typically suffers from high variance. Whenever a pathwise derivative estimator
(PDE) is available it is usually the preferred choice [Schulman et al., 2015]. In our setting, however,
the PDE is not readily applicable since z is discrete and, therefore, every (exact) reparameterization
path would be discontinuous. Various authors developed (biased) adaptations of the PDE for discrete
r.v.s (see Section 5). These involve either smooth approximations of p(z;θ) or approximations of the
derivative of the reparameterization map. Our proposal departs from these two routes and instead
involves the formulation of an implicit maximum likelihood estimation problem. In a nutshell, I-MLE

3The derivations are adaptable to other types of losses defined over the outputs of Eq. (1).
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Algorithm 1 Instance of I-MLE with perturbation-based implicit differentiation.

function FORWARDPASS(θ)
// Sample from the noise distribution ρ(ε)
ε ∼ ρ(ε)
// Compute a MAP state of perturbed θ
ẑ = MAP(θ + ε)
save θ, ε, and ẑ for the backward pass
return ẑ

function BACKWARDPASS(∇z`(fu(z), ŷ), λ)
load θ, ε, and ẑ from the forward pass
// Compute target distribution parameters
θ′ = θ − λ∇z`(fu(z), ŷ)
// Single sample I-MLE gradient estimate
∇̂θL(θ̂, θ̂′) = ẑ − MAP(θ′ + ε)

return ∇̂θL(θ̂, θ̂′)

is a (biased) estimator that replaces∇θL in Eq. (4) with ∇̂θL, where L is an implicitly defined MLE
objective and ∇̂ is an estimator of the gradient.

We now focus on deriving the (implicit) MLE objective L. Let us assume we can, for any given ŷ,
construct an exponential family distribution q(z;θ′) that, ideally, is such that

Eẑ∼q(z;θ′) [`(fu(ẑ), ŷ)] ≤ Eẑ∼p(z;θ) [`(fu(ẑ), ŷ)] . (5)

We will call q the target distribution. The idea is that, by making p more similar to q we can
(iteratively) reduce the model loss L(x̂, ŷ;ω). To this purpose, we define L as the MLE objective4

between the model distribution p with parameters θ and the target distribution q with parameters θ′:

L(θ,θ′) := −Eẑ∼q(z;θ′)[log p(ẑ;θ)] = Eẑ∼q(z;θ′)[A(θ)− 〈ẑ,θ〉] (6)

Now, exploiting the fact that∇θA(θ) = µ(θ), we can compute the gradient of L as

∇θL(θ,θ′) = µ(θ)− Eẑ∼q(z;θ′)[ẑ] = µ(θ)− µ(θ′), (7)

that is , the difference between the marginals of the current distribution p and the marginals of the
target distribution q, also equivalent to the gradient of the KL divergence between p and q.

We will not use Eq. (7) directly, as computing the marginals is, in general, a #P-hard problem
and scales poorly with the dimensionality m. MAP states are typically less expensive to compute
(e.g. see Example 2) and are often used directly to approximate µ(θ)5 or to compute perturb-and-
MAP approximations, where µ(θ) ≈ Eε∼ρ(ε) MAP(θ + ε) where ε ∼ ρ(ε) is an appropriate noise
distribution with domain Rm. In this work we follow – and explore in more detail in Section 3.2 –
the latter approach (also referred to as the Gumbel-max trick [cf. Papandreou and Yuille, 2011]), a
strategy that retains most of the computational advantages of the pure MAP approximation but may
be less crude. Henceforth, we only assume access to an algorithm to compute MAP states (such as a
standard ILP solver in the case of Example 3) and rephrase Eq. (1) as

θ = hv(x), z = MAP(θ + ε) with ε ∼ p(ε), y = fu(z). (8)

With Eq. (8) in place, the general expression for the I-MLE estimator is ∇̂vL(x,y;ω) =

∂vhv(x̂)ᵀ∇̂θL(θ,θ′) with θ = hv(x̂) where, for S ∈ N+:

∇̂θL(θ,θ′) =
1

S

S∑
i=1

[MAP(θ + εi)− MAP(θ′ + εi)], with εi ∼ ρ(ε) for i ∈ {1, . . . , S}. (9)

If the states of both the distributions p and q are binary vectors, ∇̂θL(θ,θ′) ∈ [−1, 1]m and when
S = 1 ∇̂θL(θ,θ′) ∈ {−1, 0, 1}m. In the following, we discuss the problem of constructing families
of target distributions q. We will also analyze under what assumptions the inequality of Eq. (5) holds.

3.1 Target Distributions via Perturbation-based Implicit Differentiation

The efficacy of the I-MLE estimator hinges on a proper choice of q, a hyperparameter of our
framework. In this section we derive and motivate a class of general-purpose target distributions,
rooted in perturbation-based implicit differentiation (PID):

q(z;θ′) = p(z;θ − λ∇z`(fu(z), ŷ)) with z = MAP(θ + ε) and ε ∼ ρ(ε), (10)
4We expand on this in Appendix A where we also review the classic MLE setup [Murphy, 2012, Ch. 9].
5This is known as the perceptron learning rule in standard MLE.
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where θ = hv(x̂), (x̂, ŷ) ∈ D is a data point, and λ > 0 is a hyperparameter that controls the
perturbation intensity.

To motivate Eq. (10), consider the setting where the inputs to f are the marginals of p(z;θ) (rather
than discrete perturb-and-MAP samples as in Eq. (8)), that is, y = fu(µ(θ)) with θ = hv(x̂), and
redefine the training error L of Eq. (2) accordingly. A seminal result by Domke [2010] shows that, in
this case, we can obtain∇θL by perturbation-based differentiation as:

∇θL(x̂, ŷ;ω) = lim
λ→0

{
1

λ
[µ(θ)− µ (θ − λ∇µL(x̂, ŷ;ω))]

}
, (11)

where ∇µL = ∂µfu(µ)ᵀ∇y`(y, ŷ). The expression inside the limit may be interpreted as the
gradient of an implicit MLE objective (see Eq. (7)) between the distribution p with (current) parame-
ters θ and p with parameters perturbed in the negative direction of the downstream gradient ∇µL.
Now, we can adapt (11) to our setting of Eq. (8) by resorting to the straight-through estimator (STE)
assumption [Bengio et al., 2013]. Here, the STE assumption translates into reparameterizing z as a
function of µ and approximating ∂µz ≈ I . Then, ∇µL = ∂µz

ᵀ∇zL ≈ ∇zL and we approximate
Eq. (11) as:

∇θL(x̂, ŷ;ω) ≈ 1

λ
[µ(θ)− µ (θ − λ∇zL(x̂, ŷ;ω))] =

1

λ
∇θL(θ,θ − λ∇zL(x̂, ŷ;ω)), (12)

for some λ > 0. From Eq. (12) we derive (10) by taking a single sample estimator of ∇zL (with
perturb-and-MAP sampling) and by incorporating the constant 1/λ into a global learning rate. I-
MLE with PID target distributions may be seen as a way to generalize the STE to more complex
distributions. Instead of using the gradients ∇zL to backpropagate directly, I-MLE uses them to
construct a target distribution q. With that, it defines an implicit maximum likelihood objective, whose
gradient (estimator) propagates the supervisory signal upstream, critically, taking the constraints into
account. When using Eq. (10) with ρ(ε) = δ0(ε)6, the I-MLE estimator also recovers a recently
proposed gradient estimation rule to differentiate through black-box combinatorial optimization
problems [Pogančić et al., 2019]. I-MLE unifies existing gradient estimation rules in one framework.
Algorithm 1 shows the pseudo-code of the algorithm implementing Eq. (9) for S = 1, using the PID
target distribution of Eq. (10). The simplicity of the code also demonstrates that instances of I-MLE
can easily be implemented as a layer.

We will resume the discussion about target distributions in Section 4, where we analyze more closely
the setup of Example 3. Next, we focus on the perturb-and-MAP strategies and derive a class of noise
distributions that is particularly apt to the settings we consider in this work.

3.2 A Novel Family of Perturb-and-MAP Noise Distributions

When p is a complex high-dimensional distribution, obtaining Monte Carlo estimates of the gradient
in Eq. (7) requires approximate sampling. In this paper, we rely on perturbation-based sampling, also
known as perturb and MAP [Papandreou and Yuille, 2011]. In this Section we propose a novel way
to design tailored noise perturbations. While the proposed family of noise distributions works with
I-MLE, the results of this section are of independent interest and can also be used in other (relaxed)
perturb-and-MAP based gradient estimators [e.g. Paulus et al., 2020]. First, we start by revisiting a
classic result by Papandreou and Yuille [2011] which theoretically motivates the perturb-and-MAP
approach (also known as the Gumbel-max trick), which we generalize here to consider also the
temperature parameter τ .
Proposition 1. Let p(z;θ) be a discrete exponential family distribution with integer polytope C and
temperature τ , and let 〈z,θ〉 be the unnormalized weight of each z ∈ C. Moreover, let θ̃ be such
that, for all z ∈ C, 〈z, θ̃〉 = 〈z,θ〉+ ε(z) with each ε(z) sampled i.i.d. from Gumbel(0, τ). Then
we have that Pr(MAP(θ̃) = z) = p(z;θ).

All proofs can be found in Appendix B. The proposition states that if we can perturb the weights
〈z,θ〉 of each z ∈ C with independent Gumbel(0, τ) noise, then obtaining MAP states from the
perturbed model is equivalent to sampling from p(z;θ) at temperature7 τ . For complex exponential

6δ0 is the Dirac delta centered around 0 – this is equivalent to approximating the marginals with MAP.
7Note that the temperature here is different to the temperature of the Gumbel softmax trick [Jang et al., 2017]

which scales both the sum of the logits and the samples from Gumbel(0, 1).
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distributions, perturbing the weights 〈z,θ〉 for each state z ∈ C is at least as expensive as computing
the marginals exactly. Hence, one usually resorts to local perturbations of each [θ]i (the i-th entry of
the vector θ) with Gumbel noise. Fortunately, we can prove that, for a large class of distributions, it is
possible to design more suitable local perturbations. First, we show that, for any κ ∈ N+, a Gumbel
distribution can be written as a finite sum of κ i.i.d. (implicitly defined) random variables.
Lemma 1. Let X ∼ Gumbel(0, τ) and let κ ∈ N+. Define the Sum-of-Gamma distribution as

SoG(κ, τ, s) :=
τ

κ

{
s∑
i=1

{Gamma(1/κ, κ/i)} − log(s)

}
, (13)

where s ∈ N+ and Gamma(α, β) is the Gamma distribution with shape α and scale β, and let
SoG(κ, τ) := lims→∞ SoG(κ, τ, s). Then we have that X ∼∑κ

j=1 εj , with εj ∼ SoG(κ, τ).

Based on Lemma 1, we can show that for exponential family distributions where every z ∈ C has
exactly k non-zero entries we can design perturbations of 〈z,θ〉 following a Gumbel distribution.
Theorem 1. Let p(z;θ) be a discrete exponential family distribution with integer polytope C and
temperature τ . Assume that if z ∈ C then 〈z,1〉 = k for some constant k ∈ N+. Let θ̃ be the
perturbation obtained by [θ̃]j = [θ]j + εj with εj ∼ SoG(k, τ) from Eq. (13). Then, ∀z ∈ C we
have that 〈z, θ̃〉 = 〈z,θ〉+ ε(z), with ε(z) ∼ Gumbel(0, τ).
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Figure 2: Histograms for 10k samples where each
sample is (left) the sum of 5 εj ∼ Gumbel(0, 1) or
(right) the sum of 5 εj ∼ SoG(5, 1, 10).

Many problems such as k-subset selection, travel-
ing salesman, spanning tree, and graph matching
strictly satisfy the assumption of Theorem 1. We
can, however, also apply the strategy in cases
where the variance of 〈Z,1〉 is small (e.g. short-
est weighted path). The Sum-of-Gamma pertur-
bations provide a more fine-grained approach to
noise perturbations. For τ = κ = 1, we ob-
tain the standard Gumbel perturbations. In con-
trast to the standard Gumbel(0, 1) noise, the pro-
posed local Sum-of-Gamma perturbations result in weights’ perturbations that follow the Gum-
bel distribution. Fig. 2 shows histograms of 10k samples, where each sample is either the sum
of 5 samples from Gumbel(0, 1) (the standard approach) or the sum of k = 5 samples from
SoG(5, 1, 10) = 1

5

∑10
i=1{Gamma(1/5, 5/i) − log(10)}. While we still cannot sample faithfully

from p(z;θ) as the perturbations are not independent, we can counteract the problem of partially
dependent perturbations by increasing the temperature τ and, therefore, the variance of the noise
distribution. We explore and verify the importance of tuning τ empirically. In the appendix, we
also show that the infinite series from Lemma 1 can be well approximated by a finite sum using
convergence results for the Euler-Mascheroni series [Mortici, 2010].

4 Target Distributions for Combinatorial Optimization Problems

In this section, we explore the setting where the discrete computational component arises from a
combinatorial optimization (CO) problem, specifically an integer linear program (ILP). Many authors
have recently considered the setup where the CO component occupies the last layer of the model
defined by Eq. (1) (where fu is the identity) and the supervision is available in terms of examples
of either optimal solutions [e.g. Pogančić et al., 2019] or optimal cost coefficients (conditioned on
the inputs) [e.g. Elmachtoub and Grigas, 2020]. We have seen in Example 3 that we can naturally
associate to each ILP a probability distribution (see Eq. (3)) with θ given by the negative cost
coefficients c of the ILP and C the integral polytope. Letting τ → 0 is equivalent to taking the MAP
in the forward pass. Furthermore, in Section 3.1 we showed that the I-MLE framework subsumes a
recently propose method by Pogančić et al. [2019]. Here, instead, we show that, for a certain choice
of the target distribution, I-MLE estimates the gradient of an explicit maximum likelihood learning
loss L where the data distribution is ascribed to either (examples of) optimal solutions or optimal
cost coefficients.

Let q(z;θ′) be the distribution p(z;θ′), with parameters

[θ′]i :=

{
[θ]i if [∇zL]i = 0
−[∇zL]i otherwise. (14)
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In the first CO setting, we observe training data D = {(x̂j , ŷj)}Nj=1 where ŷj ∈ C and the loss
` measures a distance between a discrete ẑj ∼ p(z;θj) with θj = hv(x̂) and a given optimal
solution of the ILP ŷj . An example is the Hamming loss `H [Pogančić et al., 2019] defined as
`H(z,y) = z ◦ (1− y) + y ◦ (1− z), where ◦ denotes the Hadamard (or entry-wise) product.
Fact 1. If one uses `H , then I-MLE with the target distribution of Eq. (14) and ρ(ε) = δ0 is
equivalent to the perceptron-rule estimator of the MLE objective between p(z;hv(x̂j)) and ŷj .

It follows that the method by Pogančić et al. [2019] returns, for a large enough λ, the maximum-
likelihood gradients (scaled by 1/λ) approximated by the perceptron rule. The proofs are given in
Appendix B.

In the second CO setting, we observe training data D = {(x̂j , ĉj)}Nj=1, where ĉj is the optimal cost
conditioned on input x̂j . Here, various authors [e.g. Elmachtoub and Grigas, 2020, Mandi et al.,
2020, Mandi and Guns, 2020] use as point-wise loss the regret `R(θ, c) = c> (z(θ)− ẑ∗(c)) where
z(θ) is a state sampled from p(z;θ) (possibly with temperature τ → 0, that is, a MAP state) and
ẑ∗(c) ∈ z∗(c) is an optimal state for c.
Fact 2. If one uses `R then I-MLE with the target distribution of Eq. (14) is equivalent to the
perturb-and-MAP estimator of the MLE objective between p(z;hv(x̂j)) and p(z;−ĉj).

This last result also implies that when using the target distribution q from (14) in conjunction with
the regret, I-MLE performs maximum-likelihood learning minimizing the KL divergence between
the current distribution and the distribution whose parameters are the optimal cost.

Moreover, both facts imply that, when sampling from the MAP states of the distribution q defined by
Eq. (14), we have that `(ẑ, ŷ) = 0 for ẑ ∈ MAP(θ′). Therefore, `(ẑ, ŷ) = 0 ≤ Eẑ∼p(z;θ) [`((ẑ, ŷ)],
meaning that the inequality of Eq. (5) is satisfied for τ → 0.

5 Related Work

Several papers address the gradient estimation problem for discrete r.v.s, many resorting to relaxations.
Maddison et al. [2017], Jang et al. [2017] propose the Gumbel-softmax distribution to relax categorical
r.v.s; Paulus et al. [2020] study extensions to more complex probability distributions. The concrete
distribution (the Gumbel-softmax distribution) is only directly applicable to categorical variables.
For more complex distributions, one has to come up with tailor-made relaxations or use the straight-
through or score function estimators (see for instance Kim et al. [2016], Grover et al. [2019]). In
our experiments, we compare with the Gumbel-softmax estimator in Figure 4 (left and right). We
show that the k-subset VAE trained with I-MLE achieves loss values that are similar to those of the
categorical (1-subset) VAE trained with the Gumbel-softmax gradient estimator. Tucker et al. [2017],
Grathwohl et al. [2018] develop parameterized control variates (the former was named REBAR)
based on continuous relaxations for the score-function estimator. In contrast, we focus explicitly on
problems where only discrete samples are used during training. Moreover, REBAR is tailored to
categorical distributions. I-MLE is intended for models with complex distributions (e.g. those with
with many constraints).

Approaches that do not rely on relaxations are specific to certain distributions [Bengio et al., 2013,
Franceschi et al., 2019, Liu et al., 2019] or assume knowledge of C [Kool et al., 2020]. We provide a
general-purpose framework that does not require access to the linear constraints and the corresponding
integer polytope C. Experiments in the next section show that while I-MLE only requires a MAP
solver, it is competitive and sometimes outperforms tailor-made relaxations. SparseMAP [Niculae
et al., 2018] is an approach to structured prediction and latent variables, replacing the exponential
distribution (specifically, the softmax) with a sparser distribution. Similar to our work, it only
presupposes the availability of a MAP oracle. LP-SparseMAP [Niculae and Martins, 2020] is an
extension that uses a relaxation of the optimization problem rather than a MAP solver. Sparsity can
also be exploited for efficient marginal inference in latent variable models [Correia et al., 2020].

A series of works about differentiating through CO problems [Wilder et al., 2019, Elmachtoub and
Grigas, 2020, Ferber et al., 2020, Mandi and Guns, 2020] relax ILPs by adding L1, L2 or log-barrier
regularization terms and differentiate through the KKT conditions deriving from the application
of the cutting plane or the interior-point methods. These approaches are conceptually linked to
techniques for differentiating through smooth programs [Amos and Kolter, 2017, Donti et al., 2017,
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Agrawal et al., 2019, Chen et al., 2020, Domke, 2012, Franceschi et al., 2018] that arise not only
in modelling but also in hyperparameter optimization and meta-learning. Pogančić et al. [2019],
Rolínek et al. [2020], Berthet et al. [2020] propose methods that are not tied to a specific ILP solver.
As we saw above, the former two, originally derived from a continuous interpolation argument,
may be interpreted as special instantiations of I-MLE. The latter addresses the theory of perturbed
optimizers and discusses perturb and MAP in the context of the Fenchel-Young loss. All the CO-
related works assume that either optimal costs or solutions are given as training data, while I-MLE
may be also applied in the absence of such supervision by making use of implicitly generated target
distributions. Other authors focus on devising differentiable relaxations for specific CO problems
such as SAT [Evans and Grefenstette, 2018] or MaxSAT [Wang et al., 2019]. Machine learning
intersects with CO also in other contexts, e.g. in learning heuristics to improve the performances of
CO solvers or differentiable models such as GNNs to “replace” them; see Bengio et al. [2020] and
references therein.

Direct Loss Minimization [DLM, McAllester et al., 2010, Song et al., 2016] is also related to our
work, but the assumption there is that examples of optimal states ẑ are given. Lorberbom et al.
[2019] extend the DLM framework to discrete VAEs using coupled perturbations. Their approach is
tailored to VAEs and not general-purpose. Under a methodological viewpoint, I-MLE inherits from
classical MLE [Wainwright and Jordan, 2008] and perturb-and-MAP [Papandreou and Yuille, 2011].
The theory of perturb-and-MAP was used to derive general-purpose upper bounds for log-partition
functions [Hazan and Jaakkola, 2012, Shpakova and Bach, 2016].

6 Experiments

The set of experiments can be divided into three parts. First, we analyze and compare the behavior of
I-MLE with (i) the score function and (ii) the straight-through estimator using a toy problem. Second,
we explore the latent variable setting where both hv and fu in Eq. (1) are neural networks and the
optimal structure is not available during training. Finally, we address the problem of differentiating
through black-box combinatorial optimization problems, where we use the target distribution derived
in Section 4. More experimental details for available in the appendix.

Synthetic Experiments. We conducted a series of experiments with a tractable 5-subset distribution
(see Example 2) where z ∈ {0, 1}10. We set the loss to L(θ) = Eẑ∼p(z;θ)[‖ẑ − b‖2], where b is
a fixed vector sampled from N (0, I). In Fig. 3 (Top), we plot optimization curves with means and
standard deviations, comparing the proposed estimator with the straight-through (STE) and the score
function (SFE) estimators. 8 For STE and I-MLE, we use Perturb-and-MAP (PaM) with Gumbel
and SoG(1, 5, 10) noise, respectively. The SFE uses faithful samples and exact marginals (which is
feasible only when m is very small) and converges much more slowly than the other methods, while
the STE converges to worse solutions than those found using I-MLE. Fig. 3 (Bottom) shows the
benefits of using SoG rather than Gumbel perturbations with I-MLE. While the best configurations
for both are comparable, SoG noise achieves in average (over 100 runs) strictly better final values of
L for more than 50% of the tested configurations (varying λ from Eq. (10) and the learning rate) and
exhibit smaller variance (see Fig. 6). Additional details and results in Appendix C.1.

Learning to Explain. The BEERADVOCATE dataset [McAuley et al., 2012] consists of free-text
reviews and ratings for 4 different aspects of beer: appearance, aroma, palate, and taste. Each sentence
in the test set has annotations providing the words that best describe the various aspects. Following
the experimental setup of recent work [Paulus et al., 2020], we address the problem introduced by the
L2X paper [Chen et al., 2018] of learning a distribution over k-subsets of words that best explain a
given aspect rating. The complexity of the MAP problem for the k-subset distribution is linear in k.
sThe training set has 80k reviews for the aspect APPEARANCE and 70k reviews for all other aspects.
Since the original dataset [McAuley et al., 2012] did not provide separate validation and test sets, we
compute 10 different evenly sized validation/test splits of the 10k held out set and compute mean
and standard deviation over 10 models, each trained on one split. Subset precision was computed
using a subset of 993 annotated reviews. We use pre-trained word embeddings from Lei et al. [2016].
Prior work used non-standard neural networks for which an implementation is not available [Paulus

8Hyperparameters are optimized against L for all methods independently. Statistics are over 100 runs. We
found STE slightly better with Gumbel rather than SoG noise. SFE failed with all tested PaM strategies.
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Figure 3: Top: Gradient-based optimiza-
tion of Lwith various estimators. Bottom:
Mean difference of the final value of L be-
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varying λ and the learning rate (blue =
better SoG).

Method
Test MSE Subset Precision

Mean Std. Dev. Mean Std. Dev.

k = 10

L2X (t = 0.1) 6.68 1.08 26.65 9.39
SoftSub (t = 0.5) 2.67 0.14 44.44 2.27

STE (τ = 30) 4.44 0.09 38.93 0.14
I-MLE MAP 4.08 0.91 14.55 0.04

I-MLE Gumbel 2.68 0.10 39.28 2.62
I-MLE (τ = 30) 2.71 0.10 47.98 2.26

k = 5

L2X (t = 0.1) 5.75 0.30 33.63 6.91
SoftSub (t = 0.5) 2.57 0.12 54.06 6.29

I-MLE (τ = 5) 2.62 0.05 54.76 2.50

k = 15

L2X (t = 0.1) 7.71 0.64 23.49 10.93
SoftSub (t = 0.5) 2.52 0.07 37.78 1.71
I-MLE (τ = 30) 2.91 0.18 39.56 2.07

Table 1: Detailed results for the aspect AROMA. Test MSE and
subset precision, both ×100, for k ∈ {5, 10, 15}.

et al., 2020]. Instead, we used the neural network from the L2X paper with 4 convolutional and
one dense layer. This neural network outputs the parameters θ of the distribution p(z;θ) over k-hot
binary latent masks with k ∈ {5, 10, 15}. We compare to relaxation-based baselines L2X [Chen
et al., 2018] and SoftSub [Xie and Ermon, 2019]. We also compare the straight-through estimator
(STE) with Sum-of-Gamma (SoG) perturbations. We used the standard hyperparameter settings of
Chen et al. [2018] and choose the temperature parameter t ∈ {0.1, 0.5, 1.0, 2.0}. For I-MLE we
choose λ ∈ {101, 102, 103}, while for both I-MLE and STE we choose τ ∈ {k, 2k, 3k} based on
the validation MSE. We used the standard Adam settings. We trained separate models for each aspect
using MSE as point-wise loss `.

Table 1 lists detailed results for the aspect AROMA. I-MLE’s MSE values are competitive with
those of the best baseline, and its subset precision is significantly higher than all other methods (for
τ = 30). Using only MAP as the approximation of the marginals leads to poor results. This shows
that using the tailored perturbations with tuned temperature is crucial to achieve state of the art results.
The Sum-of-Gamma perturbation introduced in this paper outperforms the standard local Gumbel
perturbations. More details and results can be found in the appendix.

Discrete Variational Auto-Encoder. We evaluate various perturbation strategies for a discrete
k-subset Variational Auto-Encoder (VAE) and compare them to the straight-through estimator (STE)
and the Gumbel-softmax trick. The latent variables model a probability distribution over k-subsets of
(or top-k assignments too) binary vectors of length 20. The special case of k = 1 is equivalent to
a categorical variable with 20 categories. For k > 1, we use I-MLE using the class of PID target
distributions of Eq. (10) and compare various perturb-and-MAP noise sampling strategies. The
experimental setup is similar to those used in prior work on the Gumbel softmax tricks [Jang et al.,
2017]. The loss is the sum of the reconstruction losses (binary cross-entropy loss on output pixels)
and the KL divergence between the marginals of the variables and the uniform distribution. The
encoding and decoding functions of the VAE consist of three dense layers (encoding: 512-256-20x20;
decoding: 256-512-784). We do not use temperature annealing. Using Eq. (9) with S = 1, we use
either Gumbel(0, 1) perturbations (the standard approach)9 or Sum-of-Gamma (SoG) perturbations
at a temperature of τ = 10. We run 100 epochs and record the loss on the test data. The difference
in training time is negligible. Fig. 4 shows that using the SoG noise distribution is beneficial. The
test loss using the SoG perturbations is lower despite the perturbations having higher variance and,
therefore, samples of the model being more diverse. This shows that using perturbations of the weights
that follow a proper Gumbel distribution is indeed beneficial. I-MLE significantly outperforms the

9Increasing the temperature τ of Gumbel(0, τ) samples increased the test loss.
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Figure 4: Plots of the sum of the binary reconstruction loss and the KL divergence as a function of the number
of epochs (lower is better). (Left) Discrete 10-subset VAE trained with I-MLE with λ = 10 (I-MLE). (Center)
Discrete 10-subset VAE trained with the straight-through estimator (STE). (Right) Discrete 1-subset VAE using
the Gumbel softmax trick (GSMT). The down-up-down artifact is due to temperature annealing. Sum-of-Gamma
(SoG) perturbations have the lowest test loss for the 10-subset VAEs. For λ = 10 and SoG perturbations, the
test loss is similar to that of the categorical (1-subset) VAE trained with the Gumbel softmax trick.

STE, which does not work in this setting and is competitive with the Gumbel-Softmax trick for the
1-subset (categorical) distribution where marginals can be computed in closed form.

Table 2: Results for the Warcraft shortest path task. Reported is the
accuracy, i.e. percentage of paths with the optimal costs. Standard
deviations are over five runs.

K I-MLE (µ-µ) I-MLE (M-M) BB DPO

12 97.2± 0.5 95.2± 0.3 95.2± 0.7 94.8± 0.3
18 95.8± 0.7 94.4± 0.5 94.7± 0.4 92.3± 0.8
24 94.3± 1.0 93.2± 0.2 93.8± 0.3 91.5± 0.4
30 93.6± 0.4 93.7± 0.6 93.6± 0.5 91.5± 0.8

Differentiating through Combi-
natorial Solvers. In these ex-
periments, proposed by Pogančić
et al. [2019], the training datasets
consists of 10,000 examples of
randomly generated images of ter-
rain maps from the Warcraft II tile
set [Guyomarch, 2017]. Each ex-
ample has an underlying K ×K
grid whose cells represent terrains
with a fixed cost. The shortest (minimum cost) path between the top-left and bottom-right cell in
the grid is encoded as an indicator matrix and serves as the target output. An image of the terrain
map is presented to a CNN, which produces a K ×K matrix of vertex costs. These costs are then
given to Dijkstra’s algorithm (the MAP solver) to compute the shortest path. We closely follow
the evaluation protocol of Pogančić et al. [2019]. We considered two instantiations of I-MLE: one
derived from Fact 1 (M-M in Table 2) using `H and one derived from Fact 2 (µ-µ) using `R, with
ρ(ε) = SoG(k, 1, 10) where k is the empirical mean of the path lengths (different for each grid size
K). We compare with the method proposed by Pogančić et al. [2019] (BB10) and Berthet et al. [2020]
(DPO). The results are listed in Table 2. I-MLE obtains results comparable to (BB) with M-M and is
more accurate with µ-µ. We believe that the µ-µ advantage may be partially due to an implicit form
of data augmentation since we know from Fact 2 that, by using I-MLE, we obtain samples from the
distribution whose parameters are the optimal cost. Training dynamics, showing faster convergence
of I-MLE (µ-µ), and additional details are available in Table 4.

7 Conclusions

I-MLE is an efficient, simple-to-implement, and general-purpose framework for learning hybrid
models. I-MLE is competitive with relaxation-based approaches for discrete latent-variable models
and with approaches to backpropagate through CO solvers. Moreover, we showed empirically that
I-MLE outperforms the straight-through estimator. A limitation of the work is its dependency on
computing MAP states which is, in general, an NP-hard problem (although for many interesting cases
there are efficient algorithms). Future work includes devising target distributions when∇zL is not
available, studying the properties (including the bias) of the proposed estimator, developing adaptive
strategies for τ and λ, and integrating and testing I-MLE in several challenging application domains.

10Note that this is the same as using I-MLE with PID target distribution form Eq. (10) and ρ(ε) = δ0.
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