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Abstract

The design of neural network architectures, despite remarkable empirical successes, resem-
bles an architecture zoo characterized by chance innovations and reliance on intuition rather
than systematic thinking. This approach limits our ability to deeply understand why ar-
chitectures succeed, efficiently explore the vast design space, and transfer knowledge across
different paradigms. We argue for a shift in how the machine learning community ap-
proaches neural architecture design: moving from an architecture-centric cataloging to a
dimensional-centric understanding. Building on prior taxonomic work and integrating in-
sights from recent architecture search approaches, we introduce a framework comprising
10 quasi-orthogonal structural dimensions that govern the capabilities of neural networks.
This dimensional approach facilitates deeper understanding by enabling the deconstruction
of complex architectures into their core design choices and their associated inductive biases.
This aims to enable more principled innovation by providing a modern map for system-
atic exploration of the design space and targeted design for specific problem characteristics.
We demonstrate the framework’s utility by mapping diverse, prominent architectures onto
these dimensions and call upon the community to adopt such systematic frameworks for
more principled and efficient advancement in neural network design.

1 Introduction

Neural networks have achieved transformative successes across diverse domains, from computer vision
(Krizhevsky et al., 2012) and natural language processing (Vaswani et al., |2017) to scientific discovery
(Jumper et al.l |2021)). This progress has been propelled by a Cambrian explosion of novel architectures,
with models like Convolutional Neural Networks (CNNs) (LeCun et al., [1989a)), Recurrent Neural Networks
(RNNs) with LSTMs (Hochreiter & Schmidhuber} |1997)), Transformers (Vaswani et al., [2017)), and more
recently, Kolmogorov-Arnold Networks (Liu et al., [2025]) as a distinct new class of architecture.

However, the process of architectural innovation often resembles a form of modern alchemy or artistry.
While frequently brilliant, it tends to rely on individual insight, extensive empirical trial-and-error, and
incremental modifications to successful precedents. The field currently lacks a modern, systematic language
for articulating and reasoning about core architectural decisions. This neural network architecture zoo
phenomenon (Leijnen & Veen) 2020) makes it challenging to transfer knowledge effectively, teach architectural
concepts systematically, or ensure comprehensive exploration of the design space. We often treat not only
the learned parameters but also the architectures themselves as opaque black boxes, making it difficult to
rigorously attribute observed performance gains to specific structural choices or to generalize design principles
beyond narrow contexts.

This prevailing ad-hoc approach presents several limitations to sustainable progress:

Inefficient Exploration: The vast space of possible neural architectures is explored somewhat opportunis-
tically, potentially leading to diminishing returns from tweaking dominant paradigms (e.g. the proliferation
of transformer variants) while neglecting potentially fruitful, uncharted territories.
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Obscured Understanding: Without a foundational framework to dissect and compare architectures, it
is difficult to build a cumulative science of why certain structural features confer advantages for particular
tasks or data modalities.

Barriers to Education and Communication: The lack of a standardized vocabulary for architectural
fundamentals complicates both the education of new researchers and clear communication about architectural
innovations.

We argue that for the field to mature and continue its trajectory of impactful innovation, neural network
design demands a more systematic, dimensional approach. This paper advocates for a shift: moving from
an architecture-centric view, which often focuses on specific named models, to a dimensional-
centric view, which emphasizes the underlying fundamental design choices that define what
any neural network can compute and represent.

Our Contribution: by formalizing implicit design dimensions, we introduce a framework comprised of 10
structural dimensions of neural network design, summarized in Table [1] (details in Section [3)). These dimen-
sions are chosen to be quasi-orthogonal and to capture the core architectural decisions a designer makes,
explicitly or implicitly. This framework is not intended to be prescriptive of which specific dimensional
choices are optimal for a given task, but rather to offer a conceptual map of the architectural design space
itself. While individual dimensions have been identified across disparate literature, our novel contribution
is their unification into a coherent framework and demonstration of its analytical power. We argue that
adopting such a dimensional perspective can catalyze progress by: (1) enabling deeper, more nuanced
understanding of existing and novel architectures; (2) facilitating more principled and efficient
innovation through systematic exploration and targeted design; and (3) fostering accelerated,
cumulative scientific advancement in the field.

Table 1: Dimensions of Neural Network Design
Brief Definition

Dimension Name Example Variations (Illustrative)

How information is transformed as it
passes along connections between nodes.
How aggregated inputs are processed at
each node after aggregation.

Edge Transformation Linear, Nonlinear, Identity

Node Activation Linear, Nonlinear, Identity /None

Bias Mechanism How an offset or bias term is determined Static Learned, Conditional/Dynamic,
and applied to shift a node’s operating Structured
point.

Normalization Strategy How activations within a layer are re- Batch-wise, Layer-wise, Instance-wise,

scaled and re-centered. Group-wise

Aggregation Mechanism
Connectivity Pattern
Information Flow Direction

Shortcut Strategy

Memory Structure

Parameter Sharing Pattern

How multiple inputs to a node are com-
bined.

Which nodes connect to which other nodes
in the network.

The overall directionality of information
propagation (acyclic vs. cyclic).

How direct alternative pathways are estab-
lished, bypassing intermediate transforma-
tions.

How the network retains and accesses in-
formation across processing steps.

How parameters are shared or reused
across different parts of the network.

Additive, Order-Sensitive, Statistical, At-
tentional
Dense, Sparse, Hierarchical, Dynamic

Acyclic (Feedforward), Cyclic (Recurrent)

No Shortcuts, Additive (Residual), Con-
catenative, Gated

Stateless, Stateful, External Memory

Independent, Shared, Conditional

2 A Dimensional View

A dimensional perspective offers an organizing lens for both reasoning through existing architectures and
guiding the creation of novel ones. By building on existing taxonomic approaches to neural networks and
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moving beyond monolithic model names to a set of fundamental design choices, we can cultivate a more
nuanced and systematic approach.

2.1 Deconstructing Complexity

The proposed framework (Table [I| guides the deconstruction of even highly complex architectures into a
more manageable set of explicit choices along these 10 fundamental axes.

Consider, for example, the Transformer (Vaswani et al., [2017). An encoder block within a transformer
can be understood through its specific configuration of dimensional choices: Information Flow is Acyclic
(Feedforward) enhanced by an Additive Shortcut Strategy (Residual connections); its core Aggregation
Mechanism is Attentional (self-attention); Normalization is Layer-wise; Edge Transformations are primarily
Linear (for query, key, value projections and within feed-forward networks), which are then followed by
Nonlinear Activations (Softmax for attention weights, GELU/ReLU in the FFN sub-layer). Bias Mechanisms
often include Static Learned biases in linear layers, and may incorporate Structured/Computed biases such
as positional encodings at the input stage. Connectivity within the self-attention mechanism is typically
Dense (all-to-all within the context window), while Parameter Sharing is employed for the feed-forward
network across positions.

This decomposition, illustrated for several prominent architectures in Table (with more detailed analyses in
Appendix |A)), clarifies which fundamental components and their interactions contribute to an architecture’s
observed capabilities. For transformers, this helps attribute its success in modeling long-range dependencies
to the Attentional Aggregation and unhindered information flow, and its scalability to great depths to the
effective use of Additive Shortcuts and Layer Normalization. Such analysis fosters a more principled under-
standing of why specific architectures work, moving beyond isolated empirical success towards a structural
rationale.

Table 2: Illustrative Dimensional Decomposition of Popular Model Architectures

Dimension MLP ResNet LSTM Transformer (Enc) KAN

Edge Transform. Linear Linear (Conv) Linear Linear Nonlinear (Spline)
Node Activation Nonlinear Nonlinear Nonlinear Nonlinear Linear/None

Bias Mechanism  Static Learned Static Learned Static Learned Static/Structural Implicit/None
Norm. Strategy Often None Batch Often None Layer Often None
Aggregation Additive Additive Additive/Gated* Attentional Additive
Connectivity Dense Sparse (Local) Specific (Gated) Dense (Attention) Dense

Info. Flow Dir. Acyclic Acyclic Cyclic Acyclic Acyclic

Shortcut Strat. No Shortcuts Additive (Res.) (Internal Gating) Additive (Res.) No Shortcuts
Memory Struct. Stateless Stateless Stateful Stateless Stateless

Param. Sharing Independent  Shared (Kernels) Shared (Time) Shared (Pos-wise FFN) Independent

*LSTM internal gating involves multiplicative interactions more complex than basic aggregation categories.
Bold indicates particularly notable or contrasting dimensional choices for the architecture listed.

2.2 Guiding Principled Architectural Discovery

Beyond enhancing understanding, a dimensional perspective fundamentally reshapes the process of architec-
tural innovation from serendipitous discovery to a more systematic and principled endeavor.

The value of systematic frameworks in neural network design has historical precedent. Earlier taxonomic de-
scriptions of neural networks (Gardner & Dorling, [1998; |Jain et al., (1996} |Juddl |1990; |Goodfellow et al.l|2016;
Raghu et al., |2016)) created a common vocabulary that helped researchers understand relationships between
seemingly disparate architectures. Similar systematic thinking has led to significant architectural break-
throughs: Hochreiter’s analysis of gradient flow led to LSTMs (Hochreiter & Schmidhuber, 1997} [Hochreiter,
1991)); structured understanding of layer degradation gave us ResNets (He et al., 2015); and neuroscientific
categorization of visual processing directly influenced CNN development alongside mathematical insights
and engineering solutions. Most recently, revisiting the Kolmogorov-Arnold theorem through a systematic
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lens produced KANs with nonlinear edge transformations (Liu et al., |2025)). While these advances often tar-
geted specific limitations rather than following a comprehensive framework, they demonstrate how structured
thinking about fundamental design choices can catalyze architectural innovation. Our proposed dimensional
framework builds on this tradition but offers a more comprehensive and principled approach to the entire
design space.

By conceptualizing the design space through fundamental dimensions such as those in Table several
avenues for more structured innovation emerge:

Mapping existing architectures (Table [2)) onto the high dimensional space inevitably reveals combinations
of dimensional variations that are currently under-explored or entirely uncharted. For instance, while Non-
linear Edge Transformations are gaining some initial traction with models like KANs (Liu et al., 2025) in
predominantly Acyclic (Feedforward) settings without explicit Shortcuts, their systematic integration with
Cyclic (Recurrent) information flow or advanced Shortcut Strategies like Gated Shortcuts represents a vast,
largely unexplored frontier. Similarly, the combination of highly Dynamic Connectivity with sophisticated
External Memory structures could unlock capabilities for adaptive, large-scale reasoning systems currently
beyond our reach. Our framework explicitly enumerates such research opportunities for each dimension,
effectively providing a roadmap for these "guided expeditions" into less-trodden regions of the design space,
potentially yielding architectures with unique and valuable properties.

Instead of defaulting to monolithic, general-purpose architectures, designers can leverage a dimensional
understanding to construct solutions. For a new task or dataset, one can reason about which dimensional
choices and their specific variations best embody the required inductive biases or computational properties.
For example, tasks requiring strict permutation invariance might favor specific Aggregation mechanisms with
appropriate Parameter Sharing, while problems involving fine-grained hierarchical feature understanding
would benefit from deliberate choices in Hierarchical Connectivity and suitable Normalization Strategies at
different scales. This allows for more hypothesis-driven architectural development.

Many Neural Architecture Search (NAS) approaches (Elsken et al.| 2019; [White et al., [2023; [Pham et al.,
2018) operate by searching over predefined, often complex, cells or a limited set of operations derived from
existing successful architectures. A dimensional framework offers a more fundamental and potentially much
richer search space. NAS could be reimagined to explore combinations of choices directly along these 10
dimensions. Such an approach could not only discover more radically novel architectures but also yield
discovered architectures that are inherently more interpretable, as their structure would be defined by a set
of explicit, fundamental dimensional choices rather than opaque, monolithic cells.

2.3 Towards More Principled and Cumulative Progress

The adoption of a common, dimensional language for describing and reasoning about neural network archi-
tectures could accelerate the field’s progress by addressing several systemic inefficiencies.

A shared vocabulary based on fundamental dimensions can help minimize the re-invention of the wheel under
different terminologies and facilitate clearer, unambiguous communication of architectural innovations, thus
reducing redundancy and fostering clarity.

By deconstructing architectures into comparable dimensional choices, insights gained from one architectural
family (e.g. the importance of skip connections in CNNs) can be more readily understood for comparison
and potentially transferred to others (e.g. Transformers). A structured, dimensional framework provides a
more systematic and less daunting way to teach the fundamentals of neural network design, moving beyond
a catalog of popular models.

Finally, isolating fundamental design dimensions creates a more tractable basis for theoretical analysis.
Instead of attempting to theorize about monolithic architectures, researchers can investigate the specific
impact of choices along each dimension, such as representational capacity, generalization properties, or
optimization landscape characteristics and their interplay.
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3 Framework Dimensions of Neural Network Design

Our proposed conceptual framework for systematic neural network design (summarized previously in Table/l)
is built upon 10 fundamental, quasi-orthogonal structural dimensions. Each dimension encapsulates a core
architectural decision point, profoundly influencing a network’s computational properties, inductive biases,
and overall representational capacity. Below, we provide a concise overview of each dimension and its
Variations.

3.1 Information Transformation Type (Edge Level)

Definition: This dimension specifies how information is transformed as it passes along individual connec-
tions (edges) between nodes or aggregated representations.

Motivation: The nature of edge-level transformations fundamentally dictates the functional complexity
the network can learn locally and how information is progressively refined or abstracted. Systematically
considering this moves beyond treating layers as monolithic blocks.

Variations:
o Linear Transformations: Information is modified via linear functions (e.g. y = Wz +b). Ex-

amples include weight matrices in Multi-Layer Perceptrons (MLPs) and convolutional kernels in
Convolutional Neural Networks (CNNs) (LeCun et al. |1989al).

e Nonlinear Transformations: Information is transformed directly via learnable nonlinear functions
along edges. An example includes the B-spline activation functions on edges in Kolmogorov-Arnold
Networks (KANs) (Liu et al. |2025]).

o Identity (No Transformation): Information passes through unchanged. This is fundamental to
various shortcut connections, such as those in Residual Networks (ResNets) (He et al., 2015)).

3.2 Activation Function Type (Node Level)

Definition: This dimension describes how aggregated information, received from incoming edges, is pro-
cessed (typically nonlinearly) at each node before being propagated.

Motivation: Node-level activations are critical for introducing nonlinearities that enable networks to learn
complex patterns and break linear dependencies between layers, thus increasing expressive power.

Variations:

o Linear Activation: The output is a linear function of the aggregated input, often the identity (e.g.
f(z) = z). Commonly used in output layers for regression tasks.

e Nonlinear Activation: The output is a nonlinear function of the aggregated input. Widespread
examples include ReLLU (Nair & Hinton, 2010, Sigmoid, Tanh, and more recent functions like
GELU (Hendrycks & Gimpel, 2023]).

o No Activation (Identity Passthrough): The aggregated input passes through entirely un-

changed after aggregation. Distinct from a linear activation if aggregation is complex.

3.3 Bias Mechanism (Node/Transformation Level)

Definition: This dimension outlines how an offset or bias term is determined and applied to shift the
operating point of a node or transformation.

Motivation: Biases provide learnable offsets, allowing activation functions to operate in different regimes
independently of input magnitudes, thereby enhancing function approximation.

Variations:
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o Static Learned Bias: A fixed, learnable parameter (scalar, vector, or tensor) added during trans-
formation (e.g. the "b" in y = Wz +b).

o Conditional/Dynamic Bias: The bias term is generated dynamically, often by another part of
the network or conditioned on external input (e.g. FiLM (Perez et al.| [2018)).

o Structured/Computed Bias: Bias is determined by a predefined, non-learned rule, often based on
input properties like position (e.g. additive sinusoidal positional encodings (Vaswani et all [2017)).

o No Bias (Zero Bias): Explicit omission of a bias term, constraining the transformation.

3.4 Normalization Strategy (Intra-Layer Level)

Definition: This dimension specifies how activations or pre-activations within a layer (or for a set of features)
are re-scaled and re-centered, typically based on their running statistics.

Motivation: Normalization techniques stabilize training dynamics in deep networks, mitigating internal
covariate shift, enabling higher learning rates, and sometimes providing regularization.

Variations:

« Batch-wise Normalization: Normalizes activations across the batch dimension for each feature
independently (e.g. Batch Normalization (loffe & Szegedy 2015)).

o Layer-wise Normalization: Normalizes activations across all features for a single instance within
a layer (e.g. Layer Normalization (Ba et al [2016])).

e Instance-wise Normalization: Normalizes across spatial dimensions for each feature and instance
independently (e.g. Instance Normalization (Ulyanov et al.l |2016])).

o Group-wise Normalization: Divides channels into groups and normalizes within each group (e.g.
Group Normalization (Wu & He, [2018])).

o No Explicit Normalization: Relies on other mechanisms (e.g. careful initialization, or simply
capriciously good fortune) to manage training dynamics.

3.5 Aggregation Mechanism (Node Input Level)

Definition: This dimension describes how multiple inputs arriving at a node (or a conceptual aggregation
point) are combined into a single representation.

Motivation: The choice of aggregation imposes strong inductive biases about how information from different
sources should interact or be summarized, significantly impacting pattern learning.

Variations:

o Additive (Sum, Weighted Sum): Inputs are typically multiplied by weights and then summed.
This is the standard operation in dense and convolutional layers.

o Order-Sensitive (Sequential): Inputs are processed in a specific order, with state carried forward.
Fundamental to RNNs like LSTMs (Hochreiter & Schmidhuber], [1997)).

o Statistical (Mean, Max, Min): Inputs are combined using a statistical function (e.g. MaxPooling
in CNNs (Ciresan et al.l [2011} [Scherer et all [2010)).

o Attentional (Similarity-Based Weighting): Inputs are weighted based on learned relevance or
similarity metrics, then combined (e.g. Self-Attention in transformers (Vaswani et all [2017; [Niu
et al., [2021)).
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3.6 Connectivity Pattern (Inter-Node Topology)

Definition: This dimension specifies which nodes or groups of nodes connect to which others, defining the
network’s graph structure and information flow paths.

Motivation: Connectivity dictates parameter count, computational cost, receptive field properties, and
imposes structural inductive biases reflecting assumed data properties (e.g. locality in images).

Variations:

e Dense (Fully Connected): Every node in one layer connects to every node in the next (e.g. layers
in MLPs).

o Sparse (Selected Connections): Only certain connections exist, often with a regular pattern
(e.g. local connectivity of kernels in CNNs).

o Hierarchical (Structured Sparsity): Connections form a multi-scale or hierarchical structure
(e.g. U-Net (Ronneberger et al., [2015) encoder-decoder).

o Dynamic (Input-Dependent Connections): Connections are determined or modulated during
execution based on the input (e.g. dynamic convolutions (Chen et al., 2019)).

o Stochastic (Train-Time Regularization): A subset of connections or entire units is randomly
and temporarily deactivated or "dropped" during each training iteration (e.g. Dropout (Srivastava
et al., [2014), DropConnect (Wan et al.| 2013)).

3.7 Information Flow Direction (Overall Graph Structure)

Definition: This dimension describes the overall directionality of information propagation through the
network graph, specifically whether cycles are permitted.

Motivation: The allowance of cycles fundamentally determines a network’s ability to model temporal
dependencies or processes requiring iterative refinement of internal state.

Variations:

o Acyclic (Feedforward): Information flows in one direction from input to output without forming
cycles. Most common architectures like CNNs and standard transformers are acyclic.

o Cyclic (Recurrent): Information can flow in cycles, allowing the network to maintain an internal
state updated based on current inputs and past states. Defining feature of RNNs (Elman) [1990;
Rumelhart et al., [1986; [Sherstinskyl, [2018]).

3.8 Shortcut Strategy (Intra-Network Pathway Modification)

Definition: This dimension describes how direct alternative pathways for information and gradients are
established, allowing signals to bypass one or more intermediate transformations.

Motivation: Shortcuts are crucial for training very deep networks by mitigating vanishing gradients and
enabling easier learning of identity mappings, enabling feature reuse and deeper hierarchies.

Variations:

o No Shortcuts (Sequential Path): Information flows strictly sequentially through layers without
bypass connections (e.g. traditional CNNs like VGGNet (Simonyan & Zisserman, 2014)).

o Additive Shortcuts (Residual): Output of an earlier layer is added element-wise to that of a
later layer (e.g. ResNets (He et al., 2015)).
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o Concatenative Shortcuts (Dense): Feature maps from earlier layers are concatenated with those
from later layers (e.g. DenseNets (Huang et al., 2016)).

o Gated Shortcuts (Highway): A gating mechanism controls information flow through main versus
shortcut paths (e.g. Highway Networks (Srivastava et al., 2015])).

3.9 Memory Structure (Information Retention Across Steps)

Definition: This dimension describes how the network retains, accesses, and utilizes information across
multiple processing steps or over extended contexts.

Motivation: Explicit memory mechanisms determine a network’s capacity for sequential reasoning, long-
term dependency modeling, and tasks requiring algorithmic manipulation of stored information.

Variations:

o Stateless (Pure Function of Current Input): Output depends only on the current input batch,
with no persistent internal state across batches or distinct processing steps (e.g. standard feedforward
CNNs).

o Stateful (Maintains Internal State): The network maintains an internal state that persists and
evolves between processing steps (e.g. hidden state in LSTMs (Hochreiter & Schmidhuberl, |1997))).

e« External Memory: The network can read from and write to an explicit, often differentiable,
memory structure (e.g. Neural Turing Machines (Graves et al., [2014)).

3.10 Parameter Sharing Pattern (Weight Re-utilization)

Definition: This dimension describes how parameters (weights and biases) are shared or reused across
different parts of the network.

Motivation: Parameter sharing drastically reduces model size, can enforce invariances (e.g. translation
equivariance in CNNs), and improves generalization by allowing features learned in one part to be applied
elsewhere.

Variations:

o Independent (Unique Parameters): Each connection or distinct processing unit uses its own
unique set of parameters (e.g. fully connected layers in an MLP).

o Shared (Parameters Reused): The same parameters are used for multiple connections or opera-
tions (e.g. convolutional kernels shared across spatial locations in CNNs; weights shared across time
steps in RNNs).

o Conditional (Input-Dependent Sharing/Selection): Parameter usage, sharing, or selection
depends on the input (e.g. Mixture of Experts (Shazeer et al., 2017)) where experts (sets of param-
eters) are conditionally activated).

4 Addressing Concerns

The proposition of a dimensional framework for neural network design undoubtedly invite understandable
reservations, which we address here:

"Is this framework not overly complex itself?" While encompassing 10 dimensions might appear
daunting, we argue that it brings explicit clarity to a complexity that is already inherent, yet often implicit,
in modern neural architectures. The framework does not add new layers of complexity but rather provides a
structured vocabulary to articulate and manage the existing multitude of design choices. While a map doesn’t
guarantee you’ll find El Dorado (or the next thing after the transformer), it beats wandering aimlessly, does
it not?
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"Current methods, however messy, are achieving remarkable success; why poke the bear?" We
fully acknowledge the empirical successes of current approaches. Our position is not at all to say that these
methods are invalid, but that their underlying principles can be better understood, their successes potentially
replicated more efficiently, and their limitations overcome more systematically with a dimensional lens. The
goal is to make sustained progress less reliant on serendipity and more on principled exploration, particularly
as low-hanging fruit becomes scarcer.

"Are these dimensions truly orthogonal when many co-occur in established architectures?"
This is like assuming carrots can only be used in mirepoix (onions, carrots, and celery) because that’s their
traditional context. A chef understands that carrots can function equally well in a soup or a carrot cake;
here, our framework recognizes that architectural dimensions that commonly co-occur can be separated and
recombined in novel ways. We term the dimensions "quasi-orthogonal" because while they represent distinct
axes of design, we recognize that choices along one dimension can influence the functional impact or even
the sensible options along another (e.g. network depth often necessitates shortcut strategies). The power of
the dimensional approach lies in deconstructing these complex interactions by first isolating the fundamental
choices.

"Will such a systematic approach stifle creativity and intuitive leaps?" To the contrary, a well-
defined map and a richer palette typically empower, rather than inhibit, creativity. Good science often arises
from a deep understanding of fundamental components and their possible interactions. This framework
aims to provide such an understanding, enabling researchers to make more informed intuitive leaps and
to creatively combine dimensional variations in truly novel ways, rather than constraining them to minor
variations of existing kitchen recipes.

5 Call to the Community

Realizing the full potential of a systematic, dimensional approach to neural network design requires a con-
certed effort from various stakeholders within the machine learning community. We call upon:

Researchers: To actively employ dimensional thinking not only when designing novel architectures but also
when analyzing and reporting on existing ones. Explicitly articulating dimensional choices in publications can
enhance clarity, reproducibility, and comparative understanding. Furthermore, we encourage the deliberate
probing of under-explored regions of this high dimensional design space.

Educators: To integrate such foundational frameworks into curricula, thereby equipping the next generation
of researchers with a deeper, more structural understanding of neural network design that transcends the
cataloging of popular model kitchen recipes.

Builders of ML Frameworks and NAS Platforms: To consider how their software tools and search
algorithms can better represent, support, and even automate the exploration of architectural design along
these fundamental dimensions, moving beyond fixed cell structures or operator lists.

Reviewers and Program Committees: To recognize and value contributions that advance systematic
understanding, propose well-justified novel dimensional choices, or thoroughly explore regions of the dimen-
sional design space, alongside traditional metrics of benchmark performance. Such an emphasis fosters a
research ecosystem that rewards foundational insights as well as empirical gains.

Adoption and refinement of such dimensional perspectives can transition our field towards a more robust,
principled, and ultimately more impactful paradigm for neural architecture innovation.

6 Conclusion

Neural network alchemy, characterized by remarkable but often serendipitous discoveries, has undeniably
propelled the field of deep learning to unprecedented heights. However, to sustain this momentum and tackle
increasingly complex challenges, we contend that a shift towards a more principled science of architectural
design is necessary. We have proposed an 10-dimensional framework as a step in this direction, aiming to
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equip researchers and practitioners with a systematic language and conceptual map for navigating the vast
neural network design space.

Where the community as of now actively explores the vast capabilities of current paradigms like attention
transformers, while also anticipating the next fundamental architectural shift, such a map becomes even
more viable. Rather than passively awaiting the emergence of a successor through a spark of genius, the
dimensional approach advocated here equips researchers with tools to proactively chart and explore the
design space, potentially leading to these novel breakthroughs or, at minimum, to rapidly understand and
integrate them into our cumulative knowledge.

Dimensional analysis can reveal potentially promising combinations that remain underexplored. For instance,
while nonlinear edge transformations have been explored in feedforward networks (KANs), their integration
with cyclic information flow presents interesting theoretical possibilities for modeling dynamic systems.
Similarly, the combination of dynamic connectivity with conditional parameter sharing could theoretically
allow for more adaptive computation paths without the overhead of fully dynamic architectures. We highlight
these not as empirically validated directions but as illustrations of how a dimensional perspective can guide
more systematic exploration of the design space.

By deconstructing architectures into their fundamental dimensional choices, this framework fosters deeper
understanding of current successes. While no single framework can be exhaustive or final, we believe that the
explicit consideration of these core structural dimensions and the collaborative effort to refine and expand
such systematic understandings offers a route beyond the current "architecture zoo." It paves the way for a
more mature, cumulative, and principled approach to neural network research and application, ultimately
accelerating the development of more capable, interpretable, and reliable intelligent systems.

While our dimensional framework focuses specifically on neural networks, we note that many of these di-
mensions could potentially characterize any computational function approximator that can be abstracted to
a graph structure (neural networks are, after all, computational graphs). The connection to graph theory
is particularly relevant; dimensions like Connectivity Pattern, Information Flow Direction, and Shortcut
Strategy have clear parallels in classical graph-theoretical concepts. However, other dimensions such as
Edge Transformation and Node Activation extend beyond standard graph theory to capture the specific
computational nature of neural networks.

The standard vocabulary from graph theory, while foundational, doesn’t inherently capture many of the
architectural design choices that make a ResNet a ResNet, a Transformer a Transformer, or a KAN a
KAN. This suggests the potential of what we could call "neural graph theory" as a specialized extension
of graph theory that incorporates the unique aspects of neural networks while maintaining connections
to the mathematical foundations of graph structures. Such a theoretical bridge might reveal why certain
combinations of these 10 dimensions are particularly powerful, or suggest entirely new dimensions based on
first principles, and potentially offer insights into how useful complexity arises from information flow within
discrete graph structures.
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A Appendix: Architectural Case Studies

Here we survey and provide detailed dimensional breakdowns for a handful of neural network architectures,
illustrating how the 10-dimensional framework (defined in Section [3| of the paper) can be used for analysis
and understanding existing models as a descriptive framework.

A.1 Ordinary Least Squares (OLS) Regression as a '""Neural Network"

For an illustrative, perhaps even funny, baseline and to demonstrate the framework’s ability to explain even
simple models, we can consider the Ordinary Least Squares (OLS) regression. An OLS model predicting y
from features X with y = X3 + € can be viewed as a very simple, single layer feedforward "neural network"
without hidden units.

o Dimension 1 (Information Transformation Type - Edge Level): Linear Transformations.
The core operation is the matrix multiplication X 3, which is a linear transformation of the input
features X by the learned coeflicients (weights) /.

o Dimension 2 (Activation Function Type - Node Level): Linear Activation (Identity). The
output X f is used directly; there is no nonlinear activation function applied. f(z) = z.

o Dimension 3 (Bias Mechanism - Node/Transformation Level): If an intercept term is
included in the OLS model (one column of X is all ones, or an explicit intercept §g is fit), this
corresponds to a Static Learned Bias. If no intercept is fit, it’'s No Bias.

o Dimension 4 (Normalization Strategy - Intra-Layer Level): No FEuplicit Normalization
within the model itself. (Feature scaling/normalization is a preprocessing step, not part of the
OLS model’s architecture).

16


https://proceedings.mlr.press/v28/wan13.html
https://proceedings.mlr.press/v28/wan13.html
https://api.semanticscholar.org/CorpusID:208910339
https://api.semanticscholar.org/CorpusID:208910339
https://api.semanticscholar.org/CorpusID:256080480
https://api.semanticscholar.org/CorpusID:7252503
https://api.semanticscholar.org/CorpusID:15276198
http://proceedings.mlr.press/v139/zbontar21a.html
http://proceedings.mlr.press/v139/zbontar21a.html

Under review as submission to TMLR

o Dimension 5 (Aggregation Mechanism - Node Input Level): Additive (Weighted Sum). The
prediction for each output (if y is multivariate) or the single output y is a weighted sum of the input
features X; with weights f;.

o Dimension 6 (Connectivity Pattern - Inter-Node Topology): Dense (Fully Connected) if
considering inputs to a single output node. Each input feature X; connects to the output.

o Dimension 7 (Information Flow Direction - Overall Graph Structure): Acyclic (Feedfor-
ward). A direct, one-step computation from input to output.

o Dimension 8 (Shortcut Strategy - Intra-Network Pathway Modification): No Shortcuts.
« Dimension 9 (Memory Structure - Information Retention Across Steps): Stateless.

o Dimension 10 (Parameter Sharing Pattern - Weight Re-utilization): Independent param-
eters (each §; is unique for each feature Xj).

Discussion: Viewing OLS through this dimensional lens reveals it as a minimal instance of a feedforward
neural network: it employs only linear edge transformations, linear activation, additive aggregation, and no
hidden layers or complex strategies for memory, shortcuts, or parameter sharing. Its "architecture" is about
as simple as possible while still structured as a learnable mapping.

This helps to ground the dimensional framework and illustrates that many more complex neural network
architectures build upon these very fundamental choices by introducing nonlinearities, depth, structural
priors (like sparsity or weight sharing), and more sophisticated mechanisms for information flow and memory.
Here, we highlight that our framework isn’t just for deep or complex networks but attempts to provide a
language for all function approximators structured as interconnected nodes and transformations.

A.2 Multi-Layer Perceptron (MLP)

The Multi-Layer Perceptron is one of the earliest neural network architectures (if you don’t count OLS),
consisting of a series of fully connected layers. It is a universal approximator for continuous functions under
certain conditions (Hornik et al. |1989)).

o Dimension 1 (Edge Transformation Type - Edge Level): Predominantly Linear Transfor-
mations. Fach neuron’s input is a weighted sum of outputs from the previous layer, y = Wz + b,
which is a linear transformation of the previous layer’s activations x.

o Dimension 2 (Activation Function Type - Node Level): Typically Nonlinear Activation. Af-
ter the linear transformation and aggregation, a nonlinear function (e.g. Sigmoid, Tanh, ReLU (Nair
& Hinton, 2010)) is applied element-wise. The output layer might use a Linear activation (for re-
gression) or a Softmax activation (for multi-class classification, often considered part of the activa-
tion/output mapping).

o Dimension 3 (Bias Mechanism - Node/Transformation Level): Static Learned Bias. The
b’ term in Wz + b is a learnable vector added to the weighted inputs of each layer.

o Dimension 4 (Normalization Strategy - Intra-Layer Level): Classic MLPs often used No Ez-
plicit Normalization. However, modern deep MLPs may incorporate Batch-wise Normalization (loffe
& Szegedy), 2015) or Layer-wise Normalization (Ba et all 2016 between layers to aid training.

o Dimension 5 (Aggregation Mechanism - Node Input Level): Additive (Weighted Sum). Each
neuron computes a weighted sum of its inputs from the preceding layer.

o Dimension 6 (Connectivity Pattern - Inter-Node Topology): Dense (Fully Connected).
Every neuron in one layer is connected to every neuron in the subsequent layer.
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o Dimension 7 (Information Flow Direction - Overall Graph Structure): Acyclic (Feedfor-
ward). Information propagates strictly from input layers, through hidden layers, to output layers
without cycles.

o Dimension 8 (Shortcut Strategy - Intra-Network Pathway Modification): Typically No
Shortcuts. Standard MLPs lack direct connections that bypass layers.

o Dimension 9 (Memory Structure - Information Retention Across Steps): Stateless. The
output for a given input depends solely on that input and the learned weights; no state is carried
over between distinct input samples.

o Dimension 10 (Parameter Sharing Pattern - Weight Reutilization): Independent. Each
layer has its own unique weight matrix (W) and bias vector (b). There is no sharing of parameters
across layers or within different parts of a layer (unlike CNNs or RNNs).

Discussion: The MLP’s dimensional choices (Dense Connectivity, Independent Parameters, No Shortcuts,
Stateless Memory) make it a general-purpose function approximator but limit its efficiency and effectiveness
for data with inherent structure like spatial locality (images) or sequential dependencies (time series), where
architectures with Sparse/Shared parameters and specialized flow/memory structures excel. Its simplicity,
however, illustrates the interplay of core linear transformations and nonlinear activations compared to the
Ordinary Least Squares regression.

A.3 Convolutional Neural Networks (LeNet, AlexNet, VGGNet)

LeNet (Lecun et al., [1998; Bottou et al., [1994; [LeCun et al., [1989b)), AlexNet (Krizhevsky et al., [2012)),
and VGGNet (Simonyan & Zisserman, 2014]) are early Convolutional Neural Networks designed for image
classification tasks, laying the groundwork for modern deep learning in computer vision.

o Dimension 1 (Edge Transformation): Primarily Linear Transformations. This occurs through
the convolutional operations (discrete convolutions, which are linear) and the linear transformations
in its fully connected layers.

o Dimension 2 (Activation): Nonlinear Activation. LeNet-5 originally used Sigmoid or Tanh
activation functions. AlexNet’s key innovation was popularizing ReLU activations, which enabled
training deeper networks by addressing vanishing gradient problems. VGGNet continued with ReLU
activation. Modern counterparts would typically use ReLU.

o Dimension 3 (Bias Mechanism): Static Learned Bias terms are added in both convolutional and
fully connected layers.

o Dimension 4 (Normalization): The original LeNet-5 had No Ezplicit Normalization of feature
maps. AlexNet introduced Local Response Normalization, while later CNNs after VGGNet moved
toward Batch Normalization, which became ubiquitous in modern CNNs.

o Dimension 5 (Aggregation): Additive (Weighted Sum) in convolutional layers. For pooling,
LeNet-5 used Average Pooling, while AlexNet shifted to Maz Pooling, which became standard in
subsequent architectures like VGGNet.

o Dimension 6 (Connectivity): Sparse (Selected Connections) due to the local receptive fields of
convolutional layers. Progresses to Dense connectivity in the final MLP-style layers. Also, Hierarchi-
cal structure emerges from the stacking of convolution/pooling layers, creating increasingly abstract
features.

o Dimension 7 (Info. Flow Dir.): Acyclic (Feedforward).
o Dimension 8 (Shortcut Strategy): No Shortcuts in the original LeNet-5 design.

o Dimension 9 (Memory Structure): Stateless.
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o Dimension 10 (Param. Sharing): Critically, Shared parameters are used via weight sharing in
convolutional kernels across spatial locations. The fully connected layers use Independent parame-
ters.

Discussion: The CNN family’s success stems from dimensional choices tailored for image data: Sparse local
connectivity and Shared parameters capture local features while providing translation equivariance efficiently.

The trajectory from LeNet to AlexNet to VGGNet primarily involved deeper networks (stack more layers),
improved activations (ReLU), and refined kernel sizes, while maintaining the same fundamental dimensional
architecture. AlexNet demonstrated that deeper networks with appropriate activations could significantly
improve performance, while VGGNet showed that simpler, more uniform architectures with smaller stacked
kernels could achieve better results with greater computational efficiency.

Notably, the core dimensional choices (Shared parameters, Sparse connectivity, Hierarchical structure) re-
mained consistent through CNN evolution until ResNets introduced a fundamental change along the Shortcut
Strategy dimension.

A.4 Residual Networks (ResNet, Wide ResNet)

ResNets (He et al., |2015; 2016; |Zagoruyko & Komodakis|, [2016) sparked a paradigm shift in deep learning
by training much deeper networks than previously was thought feasible, primarily through residual (skip)
connections.

o Dimension 1 (Edge Transformation): Predominantly Linear Transformations (convolutions
within residual blocks). The skip connection itself is often an Identity transformation if channel
dimensions match, or a Linear Transformation (1x1 convolution) if they need to be aligned.

o Dimension 2 (Activation): Nonlinear Activation (typically ReLU) is applied after the addition
of the main path’s output and the skip connection’s output, and also within the main path (e.g.
before a convolution if using pre-activation ResNet variant).

o Dimension 3 (Bias Mechanism): Static Learned Bias is typically used in the convolutional layers.
Often, biases are omitted in convolutional layers immediately followed by Batch Normalization as
the BN’s beta parameter can serve a similar role.

o Dimension 4 (Normalization): Batch-wise Normalization is a ubiquitous component within
ResNet blocks, typically applied after each convolution and before the activation.

o Dimension 5 (Aggregation): Additive (Sum). The core of the residual block is the element-wise
addition of the shortcut path’s output to the main transformation path’s output. Convolutional
layers also perform Additive (Weighted Sum) aggregation.

o Dimension 6 (Connectivity): Sparse (local convolutional receptive fields). Also Hierarchical as
layers are stacked and feature map dimensions change through strided convolutions or pooling.

e Dimension 7 (Info. Flow Dir.): Acyclic (Feedforward). Despite the "skip," the overall graph
remains feedforward.

o Dimension 8 (Shortcut Strategy): Additive Shortcuts (Residual). This is the defining charac-
teristic of ResNets.

o Dimension 9 (Memory Structure): Stateless.

o Dimension 10 (Param. Sharing): Shared parameters (convolutional kernels are shared across
spatial locations).

Discussion: ResNet’s key contribution comes from its Shortcut Strategy (Additive Residuals), which, com-
bined with appropriate Normalization (Batch Norm), drastically improves trainability of very deep acyclic
networks. This allows for richer hierarchical feature learning without falling prey to vanishing gradients.
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A.5 LSTMs (Long Short-Term Memory units in RNNs)

LSTMs (Hochreiter & Schmidhuber} {1997 |Graves & Schmidhuber| 2005; |Cho et al.,|2014; Beck et al., [2024)
are a type of Recurrent Neural Network (RNN) cell designed to overcome the vanishing gradient problem in
simple RNNs, allowing them to learn long-range temporal dependencies.

o Dimension 1 (Edge Transformation): Linear Transformations are applied to the concatenation
of the current input and the previous hidden state to compute values for the input, forget, output
gates, and the candidate cell state.

o Dimension 2 (Activation): Nonlinear Activation. Sigmoid functions are typically used for the
three gates (input, forget, output) to produce values between 0 and 1. Tanh is often used for the
candidate cell state ¢; and for the final output h; (after gating the cell state ¢;).

o Dimension 3 (Bias Mechanism): Static Learned Bias terms are included in the linear transfor-
mations for gates and cell state computation.

o Dimension 4 (Normalization): Traditionally, LSTMs had No Explicit Normalization within the
cell structure itself, though techniques like Layer Normalization can be applied to the outputs of an
LSTM layer. Some research explores normalizing recurrent connections.

o Dimension 5 (Aggregation): Quite complicated. Input for gates/cell candidates uses Additive
(Weighted Sum). The cell state update ¢; = f; ® ¢;—1 + iy © & involves element-wise multiplication
(gating) followed by addition. The output h; = o; ® tanh(c;) also uses element-wise multiplication.
These gating operations can be seen as a form of Learned Modulatory Aggregation not perfectly cap-
tured by basic categories but essential to LSTM function. It also implies Order-Sensitive processing
due to the sequential nature of RNNs.

e Dimension 6 (Connectivity): Specific, fixed internal connections define the gate structures. The
overall connectivity is driven by the sequential processing inherent in RNNs.

o Dimension 7 (Info. Flow Dir.): Cyclic (Recurrent) due to the feedback of the previous hidden
state h;_1 and cell state ¢;_1 into the computation for the current time step.

o Dimension 8 (Shortcut Strategy): The cell state ¢; provides a largely uninterrupted "information
highway" across time steps, modulated by the forget and input gates. This resembles a Gated
Shortcut through time for the cell state, mitigating vanishing gradients for long sequences. There
are typically no explicit shortcuts bypassing multiple unrolled time steps in a single leap (as in deep
feedforward nets).

o Dimension 9 (Memory Structure): Critically Stateful, maintaining both the hidden state h;
and the cell state ¢; across time steps. The cell state acts as the primary long-term memory.

o Dimension 10 (Param. Sharing): Shared parameters (the weight matrices for gates and cell
state computation are reused across all time steps).

Discussion: LSTMs are defined by their Stateful Memory (cell state), Cyclic Information Flow, and so-
phisticated internal Gating Aggregation (often described as having input, forget, and output gates). This
allows them to selectively read, write, and forget information, making them effective (if hard/slow to train)
for modeling long-range dependencies in sequential data. The cell state’s pathway behaves like a Gated
Shortcut across time.

A.6 Transformers (Encoder Block)

The Transformer architecture (Vaswani et al., 2017)), particularly its encoder block, became the dominant
model in NLP and is increasingly applied in other domains (Dosovitskiy et al., [2020)).
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o Dimension 1 (Edge Transformation): Primarily Linear Transformations. This includes the
linear projections used to create Query (Q), Key (K), and Value (V) matrices in the self-attention
mechanism, the output projection after attention, and the linear transformations within the position-
wise Feed-Forward Network (FFN) sub-layer.

o Dimension 2 (Activation): Nonlinear Activation. Softmax is applied to the scaled dot-product
scores in self-attention to obtain attention weights. The FFN sub-layer typically uses a nonlinear
activation like ReLU or GELU (Hendrycks & Gimpel, [2023) between its two linear transformations.

o Dimension 3 (Bias Mechanism): Typically Static Learned Bias in the linear layers of the FFN
and in the Q,K,V projections and output projection of self-attention (though sometimes omitted if
normalization follows closely). Positional encodings (sinusoidal or learned) are often added to input
embeddings, acting as a form of Structured/Computed Bias to provide positional information.

o Dimension 4 (Normalization): Layer-wise Normalization (Ba et all 2016]) is a key component,
typically applied after the self-attention sub-layer and after the FFN sub-layer (i.e., before adding
the residual connection’s output).

o Dimension 5 (Aggregation): Critically employs Attentional (Similarity-Based Weighting) via
the self-attention mechanism, where input token representations are aggregated based on learned,
context-dependent attention weights. The residual connections use Additive (Sum) aggregation.

o Dimension 6 (Connectivity): Dense (Fully Connected) within the self-attention mechanism, as
each token can attend to every other token in the input sequence (unless sparse attention variants
are used). The FFN is applied position-wise, meaning it doesn’t create new cross-token connections
beyond what attention established. Stacking encoder layers creates a Hierarchical representation.

o Dimension 7 (Info. Flow Dir.): Acyclic (Feedforward). Each encoder block processes information
without cycles.

o Dimension 8 (Shortcut Strategy): Employs Additive Shortcuts (Residual) around both the
self-attention sub-layer and the FFN sub-layer. These are vital for training deep Transformers.

o Dimension 9 (Memory Structure): Stateless for a single pass over a fixed-length input sequence.
Information about the sequence is contained within the activations and attention patterns for that
pass. Variants like Transformer-XL (Dai et al., 2019) introduce a notion of recurrence/state across
segments to handle longer contexts, which would then be classified as Stateful at that inter-segment
level.

o Dimension 10 (Param. Sharing): Shared parameters are used for the FFN, which is applied
independently at each position. Within multi-head attention, parameters are shared across positions
but are distinct per head before aggregation. Some research explores sharing parameters across
encoder layers.

Discussion: The Transformer’s usefulness comes from its unique combination of Attentional Aggregation
allowing global context modeling, Additive Shortcuts enabling great depth, and efficient Parameter Sharing
in its FFNs. Layer Normalization is crucial for stable training. Its Stateless nature for fixed contexts makes
it highly parallelizable for training but requires specific additions like positional encodings for sequence order.

A.7 Graph Convolutional Networks (GCN)
Graph Convolutional Networks are designed to perform learning directly on graph-structured data, extending

the concept of convolution to non-Euclidean domains. Here, we examine the variant by Kipf & Welling (Kipf
& Welling, 2016) as a common baseline.

o Dimension 1 (Edge Transformation): Linear Transformations. Each GCN layer applies a
shared linear transformation (weight matrix W) to the node features after they have been aggregated.
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o Dimension 2 (Activation): Nonlinear Activation (e.g. ReLU) is typically applied after the linear
transformation in each GCN layer, except possibly the final layer.

o Dimension 3 (Bias Mechanism): Static Learned Bias can be included with the linear transfor-
mation, although it’s sometimes omitted in simpler GCN formulations.

o Dimension 4 (Normalization): This is a nuanced point. Feature normalization like Batch Norm
is not standard in basic GCNs. However, a crucial aspect is the normalization of the graph structure
itself, typically by pre-multiplying the adjacency matrix A with powers of the degree matrix D (e.g.
A= D_%AD_%). This graph normalization acts as a form of "structural normalization" that directly
influences the aggregation step rather than being a feature-wise normalization post-aggregation. So,
for feature normalization: often No Fxplicit Normalization. For structural influence on aggregation:
specific graph normalization.

o Dimension 5 (Aggregation): Additive (Sum). In a GCN layer, features from neighboring nodes
(including the node itself, often by adding self-loops to A) are summed, weighted implicitly by
the normalized adjacency matrix, effectively performing a localized smoothing or message passing.
The formula AHW can be seen as neighbors’ features H being aggregated according to A, then
transformed by W. Graph Attention Networks (Velickovi¢ et al. |2018)), as a different example here,
use Attentional (Similarity-Based Weighting).

o Dimension 6 (Connectivity): Sparse (Selected Connections). The connectivity is explicitly de-
fined by the input graph’s adjacency matrix. Each node only connects to its direct neighbors as
defined by the graph edges.

e Dimension 7 (Info. Flow Dir.): Acyclic (Feedforward) across GCN layers.

o Dimension 8 (Shortcut Strategy): Basic GCNs typically have No Shortcuts, although GCN
variants (ResGCNs (Chen et al.,|2020al), GCNII (Chen et al.,2020b)) incorporate residual or identity
connections to deal with over-smoothing.

o Dimension 9 (Memory Structure): Stateless.

o Dimension 10 (Param. Sharing): Shared. The weight matrix W for the linear transformation
is shared across all nodes within a single GCN layer.

Discussion: GCNs leverage Sparse Connectivity (from the graph) and Shared Parameters to efficiently learn
from graph data. The aggregation based on the (normalized) graph structure is key to their message-
passing behavior. The lack of explicit shortcuts in basic GCNs can lead to over-smoothing in deeper models,
motivating extensions.

A.8 Kolmogorov-Arnold Networks (KAN)

Drawing inspiration from the Kolmogorov-Arnold representation theorem (Kurkova,|1991)), KANs (Liu et al.,
2025) place learnable activation functions (splines) on the edges rather than fixed activations on nodes.

o Dimension 1 (Edge Transformation): Nonlinear Transformations. Each edge in a KAN imple-

ments a learnable univariate function, typically parameterized as a B-spline. This is the defining
feature of KANs.

o Dimension 2 (Activation Function Type - Node Level): Often effectively Linear Activation
(Identity) or even No Activation (Passthrough) at the node if the node’s sole purpose is to sum the
outputs of the incoming nonlinear edge transformations. Some KAN interpretations might also place
a learnable univariate spline at the node after summation, which would make node activation also
Nonlinear. This dimension depends on the specific KAN layer formulation. For clarity, we consider
the primary learnable functions on edges, making node function minimal (summation).
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o Dimension 3 (Bias Mechanism): The expressiveness of the learnable spline functions on edges
can implicitly handle offsets, potentially making separate traditional bias terms unnecessary. Bias
can be considered Embedded within the edge transformation or effectively No (explicit) Bias.

o Dimension 4 (Normalization Strategy): Not an intrinsic part of the core KAN definition
proposed so far. Standard normalization techniques could potentially be applied to the outputs of
KAN layers if deemed beneficial for training deeper KANs. Thus, often No Ezplicit Normalization
as a core KAN component.

o Dimension 5 (Aggregation Mechanism): Additive (Sum). Nodes in a KAN layer sum the
outputs from all incoming edges, each of which has already applied its learnable nonlinear spline
function.

o Dimension 6 (Connectivity Pattern): Typically presented as Dense (Fully Connected) between
layers, where each connection is a learnable spline function. KANs also discuss making these splines
sparse dynamically.

o Dimension 7 (Info. Flow Dir.): Acyclic (Feedforward).

o Dimension 8 (Shortcut Strategy): The original KAN proposal does not focus on explicit short-
cuts, so typically No Shortcuts. However, shortcut strategies could be incorporated into KAN
architectures.

o Dimension 9 (Memory Structure): Stateless.

o Dimension 10 (Param. Sharing): Independent. Each edge has its own independently learnable
spline function, leading to a potentially large number of parameters compared to MLPs if the spline
grid is fine.

Discussion: KANs shift complexity by using Nonlinear Edge Transformations (learnable splines) while
simplifying node operations to mere summation. This design choice, contrasting with MLPs that have linear
edges and nonlinear nodes, offers potential advantages in interpretability and accuracy for certain function
classes. Their Independent parameterization of edge splines is a key characteristic affecting parameter count
and learning dynamics.

A.9 U-Net

U-Net (Ronneberger et al., [2015) is a convolutional network architecture designed originally for biomedical
image segmentation, characterized by its symmetric encoder-decoder structure and skip connections. Its
architecture has proven highly effective both in and outside of segmentation and is now a foundational
component in many diffusion models (Ho et al |2020; [Rombach et al., [2021) for generative tasks.

o Dimension 1 (Edge Transformation): Primarily Linear Transformations from convolutional
operations in both the encoder (contracting path) and decoder (expansive path). Upsampling oper-
ations in the decoder (e.g. transposed convolutions) are also linear.

o Dimension 2 (Activation): Nonlinear Activation (typically ReLU) applied after each convolution,
except possibly the final output layer which might use Sigmoid for binary segmentation or Softmax
for multi-class segmentation.

o Dimension 3 (Bias Mechanism): Static Learned Bias is typically used in convolutional layers,
subject to Batch Normalization.

o Dimension 4 (Normalization): Commonly uses Batch-wise Normalization after convolutional
layers in modern implementations to stabilize training. The original U-Net did not explicitly use it.
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o Dimension 5 (Aggregation): Additive (Weighted Sum) within convolutional operations. Feature
maps from the encoder path are often concatenated with upsampled feature maps in the decoder
path before further convolutions; this concatenation itself is a form of bringing features together,
though the subsequent convolution does the weighted sum.

o Dimension 6 (Connectivity): Sparse (local convolutions) and distinctly Hierarchical due to the
encoder’s downsampling (pooling or strided convolutions) and the decoder’s upsampling. The skip
connections provide direct links between corresponding levels of the encoder and decoder.

o Dimension 7 (Info. Flow Dir.): Acyclic (Feedforward).

o Dimension 8 (Shortcut Strategy): Critically employs Concatenative Shortcuts (though some-
times Additive after channel alignment) via its skip connections. These link feature maps from
the encoder path to the corresponding level in the decoder path, allowing the decoder to access
high-resolution features from the encoder that are lost during downsampling.

o Dimension 9 (Memory Structure): Stateless.

o Dimension 10 (Param. Sharing): Shared parameters (convolutional kernels are shared across
spatial locations within their respective layers).

Discussion: U-Net’s effectiveness in segmentation stems from its Hierarchical encoder-decoder structure
combined with Concatenative Shortcuts. These shortcuts allow the network to combine coarse, semantic
information from deeper layers with fine-grained, spatial information from shallower layers for precise local-
ization. These same structural properties that lets the U-Net progressively refine representations are applied
in diffusion models, where it iteratively denoises an input by effectively predicting and removing noise across
multiple feature scales.

A.10 Self-Supervised Learning

Models like SimCLR (Chen et al.l [2020c), MoCo (He et al., 2020), and other self-supervised learning (SSL)
methods (Chen & He| 2021} [Bardes et al., 2022; |[Zbontar et al., 2021} |Grill et al., 2020} [Balestriero et al.)
2023) have achieved remarkable success in learning visual representations without human-provided labels.
Here, we also analyze these through our dimensional framework to clarify the scope of architectural choices
versus training paradigms.

Consider that a typical SImCLR setup involves:
1. A base encoder network (e.g. a ResNet).
2. A small projection head (an MLP) attached to the encoder.
3. A specific data augmentation pipeline that creates two augmented "views"' of each image.

4. A contrastive loss function that pulls representations of positive pairs (two views of the same image)
together and pushes representations of negative pairs (views from different images) apart.

We can analyze the base encoder network and projection head using our dimensions, assuming a
ResNet encoder and a 2-layer MLP projector, as is common:

o Dimension 1-10 (for the ResNet encoder): The dimensional choices are identical to those
detailed in Section [A.4] for a standard ResNet.

o Dimension 1-10 (for the MLP projection head): The dimensional choices are identical to
those detailed in Section for a standard MLP.
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Discussion: The insight from this dimensional analysis is that the core architectural components of SImCLR,
(the encoder and projector) are constructed from well-understood architectural choices already covered by
our framework. The ResNet encoder’s capacity to learn good features is vital, as is the projector’s role in
mapping features to a space suitable for the contrastive loss.

However, the novelty and power of SimCLR do not primarily arise from a new fundamental architectural
dimension within the encoder or projector itself. Instead, they stem from:

o Data Processing and Augmentation: The specific augmentations used to create positive pairs
are critical. This is an input-level consideration, external to the core network structure that processes
those inputs.

e Training Objective and Loss Function: The contrastive loss (e.g. NT-Xent in SimCLR) is what
drives the representation learning. This defines the optimization goal, not an intrinsic structural
property of the processing network.

o Overall Training Framework: The setup where two views are processed (usually by the same
shared-weight encoder), and the mechanisms for defining positive/negative pairs (e.g. large batch
sizes for negatives in SimCLR, or a memory bank/momentum encoder in MoCo).

These aspects like data augmentation, loss functions, and specific training procedures (like momentum
updates for a key encoder in MoCo) are part of the broader learning paradigm rather than core, reusable
structural dimensions of the network module that transforms input z to representation h(z). Our framework
aims to systematically characterize the h(x) function’s structure itself.

Therefore, while SSL methods like SimCLR might employ networks with specific configurations of our di-
mensions (e.g. a deep ResNet for good feature capacity), the principles of SSL itself (contrastive learning,
data augmentation policies) are distinct considerations. This clarifies that our framework focuses on the
intrinsic building blocks and patterns of the neural network performing the information processing, separate
from, though often designed to be complementary to, the overarching training methodology and learning
objectives. This distinction is important for maintaining a focused and coherent taxonomy of architectural
design.

A.11 Neural Ordinary Differential Equations (Neural ODEs) (Chen et al., 2018; Kidger, [2022)

Neural ODEs introduce a continuous-depth perspective to neural networks, where the hidden state dynamics
are defined by an ordinary differential equation (ODE) parameterized by a neural network. Instead of
a discrete sequence of layers, a Neural ODE layer defines a vector field, and the output is computed by
integrating this vector field over a specified time interval.

Let h(t) be the hidden state at "depth" or "time" ¢. A Neural ODE layer is defined by:

dh(t)

7 = f(h(t)7t70)

where f is a neural network (often an MLP) with parameters 6. The output of the layer, h(t1), is obtained
by integrating this equation from an initial state h(tp) (which could be the input to the layer) to t:

h(t1) = h(to) +/t1 F(h(t),t,0)dt

This integration is typically performed by an adaptive numerical ODE solver.

Let’s analyze the dynamics function f(h(t),t,0) itself, and then consider the overall Neural ODE layer.

A.11.1 Dimensional Analysis of the Dynamics Function f

Assuming f is a standard MLP (as is common):
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o Dimension 1-6, 10 (for the MLP f): The dimensional choices for f are typically those of a
standard MLP (Section |A.2]).

o Within the context of parameterizing f, the choices are for a standard, discrete-depth network com-
ponent.

A.11.2 Dimensional Analysis of the Overall Neural ODE Layer

Now, we consider the entire construct h(t1) = ODESolve(f, h(to), [to, t1],0):

e Dimension 1 (Edge Transformation): This is abstract. The "transformation" from h(ty) to
h(t1) is via the ODE integration, driven by the learned vector field f. One could argue it’s a
highly Nonlinear Transformation, as ODE solutions are generally nonlinear functions of their initial
conditions and parameters, even if f has linear components. There are no discrete "edges" in the
traditional sense for the ODE solve itself.

o Dimension 2 (Activation): Not directly applicable to the ODE solve as a monolithic "node." The
nonlinearities are within the dynamics function f. The integration process itself is not a simple node
activation.

o Dimension 3 (Bias Mechanism): Biases are present within f. No overarching bias is typically
added after the ODE solve.

o Dimension 4 (Normalization): Normalization techniques are applied within f if anywhere, or to
h(to) before the solve, or to h(t1) after. The ODE solve itself doesn’t have an intrinsic normalization
strategy.

o Dimension 5 (Aggregation): Not directly applicable in the standard sense for the ODE inte-
gration. The "aggregation' of infinitesimal changes dh happens via the mathematical process of
integration. Another angle is that ODEs smooth out changes across the entire interval. This con-
tinuous nature is different from discrete aggregation (like pooling or attention), though related at a
high level.

e Dimension 6 (Connectivity): This applies to the structure of f. For the overall ODE layer,
connectivity is conceptual: the entire state h(t) is evolved. One might consider it Dense in the sense
that all components of h(t) influence all components of dh/dt through f.

o Dimension 7 (Info. Flow Dir.): This is interesting. The integration from #, to ¢; is a continuous,
directed evolution. If f does not depend on an external sequence input but only h(¢) and ¢, the
"depth" ¢ acts like a continuous feedforward direction. However, Neural ODEs can be viewed as the
continuous limit of a ResNet (where f is the residual block) or an RNN (if f also takes an external
input z(t) and describes dh/dt). This really depends on what the f is set up as. (w.r.t. the intended
use case and the structure of the arguments to f)

— If viewed as a continuous-depth feedforward network: Acyclic (Feedforward) (in continuous
"depth" ).

— If h(t) is an evolving state meant to model sequential data (like an RNN): then the "time" of
the ODE evolution maps to sequence time, and if it models h(t) based on h(t — dt) implicitly,
it is effectively Cyclic (Recurrent) in continuous time.

« Dimension 8 (Shortcut Strategy): The formulation h(t1) = h(to) + [ ... is inherently residual.
The output is the initial state plus the integral of changes. Thus, it embodies a continuous form of
an Additive Shortcut (Residual). This is a reason for their good gradient properties.

o Dimension 9 (Memory Structure): If processing a single input h(tg) to get h(t1) in one go:
Stateless (the parameters 6 are fixed). If used to model a sequence where h(t;) becomes the input
for the next segment evolution h(t;y1): Stateful.
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o Dimension 10 (Param. Sharing): The parameters 6 of the function f are Shared across the
entire continuous "depth" or integration interval [to, ¢1]. This is analogous to weight sharing across
layers in very deep ResNets or across time in RNNs.

Discussion: Neural ODEs provide a fascinating case for our dimensional framework. While the dynamics
function f itself is a standard neural network analyzable by our dimensions, the overall Neural ODE layer
reinterprets several dimensions in a continuous context:

non

o The discrete notions of "layers," "edges," and "node activations" become blurred into the continuous

evolution defined by the ODE.

o Information Flow Direction and Memory Structure depend on how the Neural ODE is utilized (as
a continuous-depth ResNet analogue vs. a continuous-time RNN analogue).

o The Shortcut Strategy (Additive/Residual) becomes an intrinsic property of the ODE formulation
itself (h(to) + [ ...).

o Parameter Sharing across the continuous "depth" (integration path) is fundamental.

This shows the framework’s adaptability: it can describe the components parameterizing unconventional
structures (like f) and also offer a lens to interpret the behavior of the larger, more abstract computational
block (the ODE solve), even if some dimensions apply more conceptually. The core idea is that f learns a
vector field, and the overall "layer" is an operation (ODE integration) on that field; the framework describes
f precisely, and the ODESolve implicitly defines others like the residual shortcut.

A.12 Energy-Based Models (EBMs)

Energy-Based Models (LeCun et al., |2006; Teh et al., 2003; Xie et al., 2016)) flexibly represents dependencies
by associating a scalar energy Fg(X) to a configuration of variables X. Learning involves shaping this
energy landscape such that desirable configurations (e.g. valid data points) have low energy and undesirable
ones have high energy. Inference often requires optimization or sampling procedures (e.g. MCMC) to find
low-energy configurations.

Our dimensional analysis will focus on the neural network that parameterizes the energy function
Ey(X) itself, which we refer to as the "Energy Network". This network takes X (which could be an image
x, a pair (x,y), etc.) as input and outputs a single scalar energy value. The architecture of this Energy
Network can vary greatly (e.g. a CNN for images, an MLP for structured data).

Assume for this study that the Energy Network is a ResNet-style CNN when X is an image x:

o Dimension 1-8, 10 (for the ResNet-style Energy Network, excluding final output): If the
core of the Energy Network is a ResNet that processes an input X to produce a high-dimensional
feature vector, its dimensional choices up to that point would be similar to those detailed in Sec-

tion [A4]

e Transformation to Scalar Energy: To produce the final scalar energy value, the feature vector
from the ResNet core is typically passed through:

— An Aggregation Mechanism (Dimension 5) like Global Average Pooling (a Statistical aggrega-
tion) if the features are spatial.

— Followed by one or more Dense (Fully Connected) Layers (Dimension 6) with Linear Edge
Transformations (Dimension 1) and possibly Nonlinear Activations (Dimension 2) in hidden
FC layers.

— The final output layer mapping to the scalar energy uses a Linear Edge Transformation and
critically, a Linear Activation (Dimension 2) or no activation, as energy is an unconstrained
scalar.
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— Parameter Sharing (Dimension 10) for these final FC layers is typically Independent.

o Dimension 9 (Memory Structure): The Energy Network itself, when computing Fy(X) for
a given X, is typically Stateless. The "memory" in EBMs might arise during inference if sampling
methods like MCMC maintain a state (the current sample), but this is part of the inference algorithm,
not the Energy Network’s intrinsic architecture for computing Fy(X).

Discussion: The dimensional analysis of an EBM primarily concerns the architecture of the "Energy Network"
that defines Fyp(X). This network itself can be any standard (or unconventional) architecture describable
by our framework. For instance, an EBM for images often uses a CNN (like a ResNet without the final
classification head, adapted to output a scalar).

Key points related to EBMs and the dimensional framework:

o Architecture of Ey(X): The dimensions fully apply to the design of the neural network component
that computes the energy function. The choice of this architecture (e.g. depth, width, connectivity,
normalization within the Energy Network) is crucial for the EBM’s ability to model a complex energy
landscape.

e Output is a Scalar: The final layers of the Energy Network are constrained to produce a single,
unnormalized scalar value. This typically means a final Linear Edge Transformation with a Linear
(Identity) Activation at the output node.

o Separation from Inference/Learning Algorithm: The architectural dimensions describe
Ep(X). The methods used to learn 6 (e.g. contrastive divergence, score matching) or to sample
from p(X) x exp(—FEy(X)) (e.g. Langevin dynamics, MCMC) are algorithms that use the Energy
Network but are not part of its intrinsic architectural structure as defined by our dimensions. For
instance, Langevin dynamics uses V x Eg(X), which requires Ey(X) to be differentiable with respect
to its inputs X, a property influenced by choices like Activation Function Type within the Energy
Network.

o No Direct "Flow" to Output Data (for unconditional EBMs): Unlike generative models
like GANs (Goodfellow et al., |2020) or VAEs (Kingma & Welling}, |2013) which have a network that
directly generates a sample, an unconditional EBM defines a landscape. "Generating" a sample
involves finding a low-energy configuration, often an iterative process. This contrasts with archi-
tectures defined primarily by their forward data transformation path from input to a structured
output.

Thus, the dimensional framework is effective in characterizing the structure of the neural network component
within EBMs, while also clarifying that the broader EBM paradigm involves distinct learning and inference
mechanisms that operate upon the energy function defined by this network.

A.13 Neural Networks in Reinforcement Learning Agents

Reinforcement Learning (RL) encompasses a broad class of problems and algorithms where an agent learns to
make decisions in an environment to maximize a cumulative reward signal (Sutton & Bartol [1998]). Neural
networks are widely used in Deep RL to approximate various components of an RL agent, such as the
policy, value function, or environment model. Our dimensional framework applies to these neural network
components themselves, rather than to the RL problem or learning algorithm (e.g. Q-learning (Watkins &
Dayanl, [1992), Policy Gradients (Sutton et al., [1999), Actor-Critic methods (Konda & Tsitsiklis, [1999)) as a
whole.

We can consider common neural network components in Deep RL:

A.13.1 1. Policy Networks (e.g. in A2C/A3C (Mnih et al., [2016)), PPO (Schulman et al., [2017))

A policy network 7y (als) maps an environment state s to a distribution over actions a (for discrete actions)
or to parameters of a continuous action distribution.
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o Input Processing (State Representation): If the state s is an image, the initial layers are often
a ONN (analyzable as per Section or[A4). If s is a feature vector, an MLP (Section [A.2)) is
common. Thus, Dimensions 1-6, 8, 10 specific to CNNs/MLPs apply.

e Output Head: The final layers typically transform the learned state representation into action
logits or distribution parameters.

— Dimension 1 (Edge Transformation): Linear Transformation for the final layer.

— Dimension 2 (Activation): For discrete actions, often No Activation (Identity Passthrough)
before a Softmax function (which normalizes logits to probabilities; Softmax itself can be seen
as a special activation or a post-processing step for distributions). For continuous actions,
activations like Tanh might be used to bound actions, or Linear if outputting means/std. devs.

— Other MLP-like dimensions apply for hidden layers in the output head.

o Dimension 7 (Info. Flow Dir.): Typically Acyclic (Feedforward) from state to action/action-
distribution parameters.

o Dimension 9 (Memory Structure): Often Stateless if operating on the current state. If recurrent
layers (e.g. LSTMs, Section [A.5)) are used to process a sequence of observations to form the current
effective state (e.g. in Partially observable Markov decision processes (POMDPs)), then it becomes
Stateful.

o Dimensions 3, 4 would be chosen based on the specific MLP/CNN backbone.

A.13.2 2. Value Networks / Q-Networks (e.g. in DQN (Mnih et al., 2015), A2C/A3C, SAC
(Haarnoja et al., 2018))

A Q-network Qy(s,a) estimates the expected cumulative reward for taking action a in state s. A value
network Vy(s) estimates the expected cumulative reward from state s.

e Input Processing:

— For Vp(s): Similar to policy networks, using a CNN/MLP backbone for state s.

— For Qy(s,a): If a is discrete, a common architecture processes s with a CNN/MLP backbone,
then has separate output heads (Linear Transformations) for each action’s Q-value. If a is
continuous, s and a might be concatenated and fed into an MLP.

o Output Head (for V(s) or each Q(s,a;)): A final Linear Edge Transformation with a Linear
Activation (Identity), as Q-values and state values are unconstrained scalars.

o Other dimensions for the backbone and any intermediate layers align with standard CNN/MLP
choices. For example, DQN often uses CNNs similar to LeNet/AlexNet for processing game screens.

A.13.3 3. Model-Based RL: Environment Models (Ha & Schmidhuber, 2018; Racaniére et al., 2017)

Some RL agents learn a model of the environment p(s’,7|s, a), which predicts the next state s’ and reward r
given the current state s and action a. The network parameterizing this model can again be an MLP, CNN
(if states are images), or a recurrent network if history is important. Its dimensional choices would align
with these architectures, with specific output heads for predicting s’ and r.

Discussion: The neural networks utilized within RL agents are generally constructed from standard archi-
tectural building blocks described by our dimensions. The choices for these dimensions (e.g. using a CNN
for image states, an LSTM for partial observability) are motivated by the nature of the state and action
spaces and the complexity of the function being approximated (policy, value, or model).

Key points regarding RL and the dimensional framework:
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e Architectural Components are Analyzable: The policy network, value network, and learned
environment models are all neural networks whose specific structures can be fully characterized by
the 10 dimensions.

o RL Algorithm is External: The learning algorithm (e.g. REINFORCE, DQN’s Bellman error
minimization, TRPO’s constrained policy updates) dictates how the network parameters 6 are up-
dated based on experience (trajectories of states, actions, rewards). This learning process is external
to the intrinsic static architecture of the network component.

o Input-Output Structure Driven by RL Task: The specific nature of inputs (states, state-action
pairs) and outputs (action probabilities, Q-values, next-state predictions) is determined by the RL
component being modeled. The network architecture is then chosen to effectively map these inputs
to outputs.

o Exploration vs. Exploitation: Strategies for exploration (e.g. epsilon-greedy, adding noise to
actions) are part of the agent’s decision-making process, not an architectural dimension of the policy
or value network itself (though some works explore architectural methods to intrinsically promote
exploration, these would still be describable components).

Therefore, our framework describes the "neural machinery" an RL agent employs, while the principles of
reinforcement learning itself govern how this "machine" is trained and used to interact with an environment.
For instance, an actor-critic method uses two networks (actor/policy, critic/value), each of which is a specific
configuration of our dimensions, and the actor-critic algorithm orchestrates their interaction and learning.
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