
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FIRA: CAN WE ACHIEVE FULL-RANK TRAINING OF
LLMS UNDER LOW-RANK CONSTRAINT?

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-rank training has emerged as a promising approach for reducing memory
usage in training Large Language Models (LLMs). Previous methods either rely
on decomposing weight matrices (e.g., LoRA), or seek to decompose gradient
matrices (e.g., GaLore) to ensure reduced memory consumption. However, both
of them constrain the training in a low-rank subspace, thus inevitably leading to
sub-optimal performance. This raises a question: whether it is possible to con-
sistently preserve the low-rank constraint for memory efficiency, while achieving
full-rank training (i.e., training with full-rank gradients of full-rank weights) to
avoid inferior outcomes? In this paper, we propose a new plug-and-play training
framework for LLMs called Fira, as the first attempt to achieve this goal. First,
we observe an interesting phenomenon during LLM training: the scaling impact
of adaptive optimizers (e.g., Adam) on the gradient norm remains similar from
low-rank to full-rank training. Based on this observation, we propose a norm-
based scaling method, which utilizes the scaling impact of low-rank optimizers as
substitutes for that of original full-rank optimizers to enable full-rank training. In
this way, we can preserve the low-rank constraint in the optimizer while achieving
full-rank training for better performance. Moreover, we find that there are sudden
gradient rises during the optimization process, potentially causing loss spikes. To
address this, we further put forward a norm-growth limiter to smooth the gradient
via regulating the relative increase of gradient norms. Extensive experiments on
the pre-training and fine-tuning of LLMs show that Fira outperforms both LoRA
and GaLore, achieving performance that is comparable to or even better than full-
rank training. For instance, our Fira can reduce the memory usage of optimizer
states by 61.1%, while achieving improved performance for pre-training on the
LLaMA 1B architecture. Notably, for pre-training on the LLaMA 7B architec-
ture, our method uses an 8× smaller rank than GaLore, yet outperforms it by a
large margin.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) have achieved remarkable advancements in various
domains (Achiam et al., 2023; Sima et al., 2023; Feng et al., 2024). While the substantial increase in
model size contributes significantly to these advancements, it also introduces considerable memory
bottlenecks, especially for optimizer states (Zhao et al., 2024a). For instance, pre-training a LLaMA-
7B model from scratch 1 requires at least 58 GB memory, allocated as follows: 14GB for loading
parameters, 14GB for weight gradients, 28GB for Adam (Kingma & Ba, 2014) optimizer states, and
2GB for activations (Zhao et al., 2024a). Notably, the optimizer states consume even more memory
than the parameters themselves. To address this, low-rank training has demonstrated its effectiveness
to reduce the memory usage of the optimizer states by conducting training in a low-rank subspace
(Zhao et al., 2024a; Hu et al., 2022).

The current low-rank training methods can be broadly divided into two categories: weight matrix-
based and gradient matrix-based low-rank decomposition. For the weight matrix decomposition
methods, the most representative one is Low-Rank Adaptation (LoRA) (Hu et al., 2022), where
its basic idea is to use low-rank matrices as decomposed representations of the pre-trained weights

1Training the model with a single batch size and maximum sequence length of 2048 under BF16 precision.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

full-gradient of full-parameter

Trainable
update

full-rank gradients of low-rank weights

Frozen
Trainable

Trainable update

(a) LoRA
full-gradient of full-parameter low-rank gradients of full-rank weights

Trainable Trainable

update
update

(b) GaLore
full-rank gradients of full-rank weights subspace-gradient of full-parameter

Trainable Trainable
updateupdate

full-gradient of subspace-parameter

Frozen
Trainable

Trainable update

(c) Fira (ours)

Figure 1: This analyses three types of memory-efficient approaches at a macro level.

during training, as shown in Figure 1 (a). However, the optimization of LoRA is constrained in a
low-rank subspace of the weights. This will inevitably cause the reduction of representation capac-
ity, leading to sub-optimal outcomes (Zhang et al., 2023b; Xia et al., 2024). Although the variant
ReLoRA (Lialin et al., 2024) attempts to extend the application of LoRA from fine-tuning to pre-
training, by periodically updating high-rank weights with multiple low-rank updates. It still requires
full-rank weight training as a warm-up before low-rank training, thus rendering memory efficiency
unachievable (Zhao et al., 2024a). For the gradient matrix decomposition based methods, the typ-
ical one is the gradient low-rank projection (GaLore) proposed recently (Zhao et al., 2024a). In
contrast to LoRA, GaLore attempts to reduce the memory usage in optimizer states via decompos-
ing the gradient matrix, as shown in Figure 1 (b). While GaLore supports the training of full-rank
weights, it leverages only low-rank gradients, restricting them to a low-rank subspace. Consequently,
any gradient information outside this subspace is lost, in contrast to training with full-rank gradi-
ents. Note that since these methods constrain LLM training to a low-rank subspace, this inevitably
leads to sub-optimal results compared to full-rank training (i.e., training with full-rank gradients and
full-rank weights). This raises the question: Can we achieve full-rank training for LLMs while
consistently maintaining a low-rank constraint?

In light of this, we propose a new memory-efficient training framework for LLMs, called Fira,
which, to the best of our knowledge, is the first to achieve full-rank training while consistently
maintaining a low-rank constraint. To achieve this goal, a significant challenge is that the low-
rank constraint makes it hard to preserve complete optimizer states (e.g., gradient momentum and
variance) of full-rank weights in the commonly-used adaptive optimizer (e.g., Adam). As a result,
the adaptive optimizer fails to correct the full-rank raw gradient according to the optimizer states.
Without this correction, adaptive optimization algorithms would degrade into simple SGD, leading
to significantly reduced optimization performance (Kingma & Ba, 2014; Zhang et al., 2020). This
point is further validated in Section 4.1 and Section 5.4. Fortunately, we observe an interesting
phenomenon during LLM training: the scaling factor 2 of the optimizer (e.g., Adam) is similar from
low-rank training to full-rank training. As illustrated in Figure 3, if we sort the weight matrices by
their average scaling factors, we can obtain a similar rank order. A detailed quantitative analysis of
this similarity is presented in Appendix A.5 and A.6.

Based on this observation, we put forward a norm-based scaling method that utilizes the scaling
factor of a weight matrix in low-rank training to replace the corresponding matrix’s scaling factor in
full-rank training. In this way, our scaling factor can also play a similar role in correcting the raw
gradient, as adaptive optimizers do. Therefore, we can enable full-rank training while preserving
the low-rank constraint. Additionally, we observe sudden increases in the gradient during training,
which results in a spike in training loss (as depicted in Figure 4). This issue could lead to substantial
parameter updates, causing the loss function to reach a much higher value and undermining prior op-
timization efforts (Goodfellow et al., 2016; Zhang et al., 2020). Despite the use of gradient clipping
techniques (Pascanu et al., 2013), this issue may not be adequately resolved, as shown in Figure 4.
To this end, we propose a norm-growth limiter, which aims to smooth the gradient by restricting
the magnitude of the gradient norm’s increase. By employing our limiter, we adaptively convert
sudden rises in gradients into gradual increases, thereby facilitating a smooth update that mitigates
the problem of loss spikes.

2The scaling factor ϕt(Rt) is defined as ||ψ(Rt)||
||Rt|| , where ||Rt|| is the norm of the raw gradient, ||ψ(Rt)|| is

the norm of the gradient corrected by the gradient correction function ψ of the optimizer (e.g., Adam).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Our main contributions can be summarized as follows:

1. We propose Fira, a plug-and-play memory-efficient training framework of LLMs, constitut-
ing the first attempt to enable full-rank training consistently under the low-rank constraint.
We will release the source code and package of our Fira into a Python library for easy use.

2. We design two components in Fira: a norm-based scaling strategy that leverages the scaling
effects of low-rank optimizers to facilitate full-rank training, and a norm-growth limiter to
address the issue of loss spikes by limiting the growth of gradient norm.

3. Extensive experiments across various parameter counts (60M, 130M, 350M, 1B, 7B) vali-
date the effectiveness of Fira in both pre-training and fine-tuning tasks. Our framework not
only outperforms both LoRA and GaLore, but also achieves performance comparable to or
better than full-rank training.

2 RELATED WORK

Low-rank Adaptation. Low-Rank Adaptation (LoRA) has been introduced by Hu et al. (2022)
as an efficient fine-tuning method for LLMs. The core idea of LoRA is to freeze the pre-trained
weights and introduce trainable low-rank matrices as decomposed representations of the pre-trained
weights. In this way, the memory usage of training LLMs could be saved. Recently, a variety
of methods by extending LoRA have been proposed to further improve the performance (Zhang
et al., 2023c; Wen & Chaudhuri, 2023; Xia et al., 2024; Zhang et al., 2023b; Dettmers et al., 2024).
For instance, ReLoRA (Lialin et al., 2024) is proposed to extend the application of LoRA from fine-
tuning to pre-training. However, it still requires full-rank warm-up training before low-rank training,
which prevents achieving memory efficiency. It is worth noting that while LoRA based methods
reduce memory usage by limiting training to a low-rank parameter subspace, they inevitably reduce
representation capacity (Xia et al., 2024).

Gradient Projection. Recent works (Zhang et al., 2023b; Xia et al., 2024; Valipour et al., 2022)
have indicated that LoRA may yield sub-optimal performance since its low-rank constraints in pa-
rameters. Inspired by traditional projected gradient descent methods (Chen & Wainwright, 2015;
Chen et al., 2019), GaLore (Zhao et al., 2024a) has been proposed recently to mitigate this prob-
lem. It enables full-parameter learning under low-rank constraints by projecting the gradient into
a low-rank subspace, reducing memory usage for optimizer states. However, while GaLore allows
memory-efficient full-parameter training, it confines the gradient to a low-rank subspace, discarding
the portion outside the subspace and resulting in significant information loss. Inspired by Galore,
several new memory-efficient methods have been developed. Flora (Hao et al., 2024) improves ef-
ficiency by randomly generating projection matrices as an alternative to the SVD method. Besides,
LISA (Pan et al., 2024) enhances memory efficiency by freezing certain layers during optimization.

System-Based Memory-Efficient Techniques. Many system-based techniques have been devel-
oped to reduce memory usage in LLM training (Chen et al., 2016; Ren et al., 2021). However, most
of these methods achieve memory efficiency by compromising either time or precision. Gradient
checkpointing (Chen et al., 2016) is proposed to reduce memory usage by trading increased com-
putational time for the re-computation of activations. Quantization (Dettmers et al., 2024) reduces
memory consumption by using lower-bit data types, but at the cost of model precision. Memory
offloading (Zhang et al., 2023a; Ren et al., 2021) reduces GPU memory usage by using non-GPU
memory (e.g., CPU) as an extension. However, it introduces additional communication overhead,
such as CPU-GPU transfer time. It’s important to note that our proposed method is complementary
to these approaches and can potentially be combined with them to further reduce memory usage.

3 PRELIMINARIES

3.1 REGULAR FULL-RANK TRAINING

At time step t, we denote the full-rank weight matrix as Wt ∈ Rm×n. The full-rank gradient can
be represented as Gt = ∇W ft(Wt) ∈ Rm×n, where f is the objective function. Then the regular
full-rank training can be expressed as follows:

Wt+1 =Wt − ηψt(Gt), (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where η is the learning rate, and ψt is the gradient correction function of the optimizer (for vanilla
SGD, ψt(Gt) = Gt). Instead of vanilla SGD, adaptive optimizers (e.g., Adam (Kingma & Ba,
2014), AdamW (Loshchilov & Hutter, 2019)) are usually employed to correct the raw gradient for
improving the training performance. However, this typically requires additional memory for storing
optimizer states used in gradient correction. For instance, Adam (Kingma & Ba, 2014) requires
storing the optimizer states M and V , which consume 2mn of memory. The gradient correction
process is as follows:

Mt = β1Mt−1 + (1− β1)Gt, (2)
Vt = β2Vt−1 + (1− β2)G2

t , (3)

ψt(Gt) =

√
1− βt2

1− βt1
· Mt√

Vt + ϵ
, (4)

where all matrix operations are element-wise. β1 and β2 are Adam’s hyper-parameters, and ϵ is a
small constant (e.g., 1 × 10−8) used for numerical stability. Since this regular full-rank training
typically consumes a large amount of memory for training LLMs, many representative low-rank
training methods, e.g., LoRA (Hu et al., 2022) and Galore (Zhao et al., 2024a), have been proposed
to reduce memory usage in recent years.

3.2 LOW-RANK ADAPTATION

The basic idea behind LoRA (Hu et al., 2022) is to use low-rank matrices as decomposed repre-
sentations of the pre-trained weights during training, in order to reduce memory usage. Formally,
LoRA freezes the full-rank weight matrix W0 ∈ Rm×n and incorporates two low-rank matrices At
and Bt for training as:

Wt =W0 +BtAt, (5)
where Bt ∈ Rm×r, At ∈ Rr×n, and the rank r < min(m,n). While LoRA reduces memory usage
by limiting training to a low-rank subspace of the weight, it inevitably diminishes the representation
capacity of the weight matrix Wt.

3.3 GRADIENT LOW-RANK PROJECTION

In contrast to LoRA, GaLore (Zhao et al., 2024a) utilizes a projection matrix Pt ∈ Rm×r to project
the full-rank gradient Gt ∈ Rm×n to a low-rank gradient Rt = P⊤

t Gt ∈ Rr×n (m ≤ n)3. By doing
so, the memory usage of optimizer states could be reduced. The parameter update in GaLore can be
formulated as:

Wt+1 =Wt − ηPtψt(Rt), (6)
where the projection matrix Pt can be obtained through singular value decomposition (SVD) of Gt
and can be updated every T steps:

Gt = UΣV ⊤ ≈
r∑
i=1

σiuiv
⊤
i , Pt = [u1, u2, . . . , ur], (7)

where ui is the i-th column vector of the left singular matrix U . By selecting the first r columns
of matrix U that correspond to the largest singular values, the projection matrix Pt effectively cap-
tures the most significant directions in the gradient space, leading to faster convergence (Zhao et al.,
2024a). The optimal switching frequency T is usually set to be between 50 to 1000, and the addi-
tional computational overhead introduced by SVD is negligible (< 10%), as stated in (Zhao et al.,
2024a). Since Galore restricts the gradient in the low-rank subspace, the gradient information out-
side this subspace is lost, leading to inferior performance.

4 PROPOSED METHOD

To achieve full-rank training under low-rank constraints, our framework, named Fira, consists of two
important components: (i) a norm-based scaling method, enabling full-rank training by leveraging
the scaling effects of adaptive optimizers; (ii) a norm-growth limiter, which restricts the growth of the
gradient norm to prevent spikes in training loss. Next, we will elaborate on these two components.

3For simplicity, we assume m ≤ n, following (Zhao et al., 2024a). If m > n, Rt = GtQt ∈ Rm×r, Qt ∈
Rn×r .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.1 NORM-BASED SCALING

The low-rank constraint makes it challenging to record complete optimizer states for correcting raw
gradients in full-rank training. Fortunately, we find an interesting phenomenon in LLM training: the
scaling factor at the matrix level remains similar from low-rank training to full-rank training. Based
on this observation, we propose a norm-based scaling strategy that approximately corrects the raw
gradient, similar to adaptive optimizers, thereby enabling full-rank training.

400 800 1200 1800 2400 3000
Iterations

4

5

6

7

8

Tr
ai

ni
ng

 lo
ss

Fira
GaLore
GaLore-add

2T 4T 9T

Figure 2: Training loss of different meth-
ods for pre-training LLaMA 60M on C4
dataset with r/dmodel = 16/256 and T =
200.

Challenge Analysis. Given the difficulty of incor-
porating trainable low-rank weights into LoRA to
achieve full-rank weight training (Zhao et al., 2024a),
we focus on investigating how to achieve full-rank
gradient training by extending the gradient projection
method, Galore, in this paper. In GaLore, the projec-
tion matrix Pt ∈ Rm×r projects the full-rank gradient
Gt ∈ Rm×n of the full-rank weight Wt ∈ Rm×n, to
the low-rank subspace gradient Rt = P⊤

t Gt ∈ Rr×n.
The gradient outside this subspace can be represented
as: (I − PtP⊤

t)Gt = Gt − PtRt. In other words, the
full-rank gradient Gt can be divided into two terms:
PtRt and (Gt − PtRt).
In GaLore, the optimizer states only store the infor-
mation of Rt instead of Gt to realize the low-rank
constraint. The term of (Gt − PtRt) is directly dis-
carded in Galore due to the lack of corresponding op-
timizer states of Gt for correction in optimizers. This
would lead to significant information loss especially
when r ≪ dmodel, where dmodel = min(m,n) is the
full-rank dimension of models (This point can be ver-
ified in our experiment section, as illustrated in Figure 6. In Figure 6, the validation perplexity of
GaLore significantly increases at r = 4 compared to r = 128 when dmodel = 256, indicating
a substantial loss of information and decreased training performance). Intuitively, to capture the
information of (Gt − PtRt), we can directly add it based on Eq. (6) as follows:

Wt+1 =Wt − ηPtψt(Rt)− η(Gt − PtRt). (8)

We denote the update strategy in Eq. (8) as GaLore-add. However, as illustrated in Figure 2, GaLore-
add exhibits almost no improvement compared to updates using Eq. (6) in GaLore. This phe-
nomenon primarily arises because the term of (Gt − PtRt) doesn’t have corresponding optimizer
states for gradient correction. As a result, the optimization of (Gt−PtRt) uses vanilla SGD, yielding
sub-optimal outputs. Besides, in GaLore-add, Ptψt(Rt) employs the Adam optimizer for training
while (Gt−PtRt) employs vanilla SGD. This gradient misalignment may also account for the lack
of noticeable improvement.

Similarity of Scaling Factor. To tackle this challenge, we propose the concept of the scaling factor,
which is defined as follows:

ϕt(Rt) =
||ψt(Rt)||
||Rt||

, (9)

where the scaling factor ϕt represents the magnitude of the correction applied by the adaptive opti-
mizer to the gradient norm. Based on the scaling factor ϕt, we observe an interesting phenomenon
during LLM training: the scaling factors at the matrix level exhibit a high degree of similarity
between low-rank and full-rank training. As shown in Figure 3, sorting weight matrices by their
average scaling factors results in an almost similar order.

Based on this observation, we can use the scaling factors in low-rank training to replace those in full-
rank training, even though the absolute magnitude of the scaling factors may vary between low-rank
and full-rank training. This is because the absolute magnitude can be regarded as the learning rate,
to which adaptive optimizers (e.g., Adam) are not sensitive (Zhao et al., 2024b; Liu et al., 2019).
Instead, the discrepancies (or relative orders) in the correction magnitudes of different parameters
(or weight matrices) are of greater significance.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

1
2
3
4
5
6
7
8
9

10

M
at

ric
es

 ID
 (1

-1
0)

7
6
1
2
4
8
5
10
9
3

Overall Average Magnification:1.20 × 10³

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

Steps (Every 20 Iterations)

1
2
3
4
5
6
7
8
9

10

M
at

ric
es

 ID
 (1

-1
0)

7

8

2

1

5

4

6

10

9

3

Overall Average Magnification:3.21 × 10³

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

Steps (Every 20 Iterations)

1
2
3
4
5
6
7
8
9

10

M
at

ric
es

 ID
 (1

-1
0)

6

8

2

1

5

4

7

10

9

3

Overall Average Magnification:4.41 × 10³

2

3

4

5

Lo
g

M
ag

ni
fic

at
io

n

2

3

4

5

Lo
g

M
ag

ni
fic

at
io

n

2

3

4

5

Lo
g

M
ag

ni
fic

at
io

n

Record Every 20 Steps

(a) r/dmodel = 16/256

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

Steps (Every 20 Iterations)

1
2
3
4
5
6
7
8
9

10

M
at

ric
es

 ID
 (1

-1
0)

7

6

1

2

4

8

5

10

9

3

Overall Average Magnification:1.20 × 10³

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

1
2
3
4
5
6
7
8
9

10

M
at

ric
es

 ID
 (1

-1
0)

7
8
2
1
5
4
6
10
9
3

Overall Average Magnification:3.21 × 10³

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

Steps (Every 20 Iterations)

1
2
3
4
5
6
7
8
9

10

M
at

ric
es

 ID
 (1

-1
0)

6

8

2

1

5

4

7

10

9

3

Overall Average Magnification:4.41 × 10³

2

3

4

5

Lo
g

M
ag

ni
fic

at
io

n

2

3

4

5

Lo
g

M
ag

ni
fic

at
io

n

2

3

4

5

Lo
g

M
ag

ni
fic

at
io

n

Record Every 20 Steps

(b) r/dmodel = 128/256

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

Steps (Every 20 Iterations)

1
2
3
4
5
6
7
8
9

10

M
at

ric
es

 ID
 (1

-1
0)

7

6

1

2

4

8

5

10

9

3

Overall Average Magnification:1.20 × 10³

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

Steps (Every 20 Iterations)

1
2
3
4
5
6
7
8
9

10

M
at

ric
es

 ID
 (1

-1
0)

7

8

2

1

5

4

6

10

9

3

Overall Average Magnification:3.21 × 10³

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

1
2
3
4
5
6
7
8
9

10

M
at

ric
es

 ID
 (1

-1
0)

6
8
2
1
5
4
7
10
9
3

Overall Average Magnification:4.41 × 10³

2

3

4

5

Lo
g

M
ag

ni
fic

at
io

n

2

3

4

5

Lo
g

M
ag

ni
fic

at
io

n

2

3

4

5

Lo
g

Sc
al

in
g

Fa
ct

or

Record Every 20 Steps

(c) r/dmodel = 256/256

Figure 3: Scaling factor ϕt(Rt) of different weight matrices for pre-training LLaMA 60M on the C4
dataset for 10K steps with varying ranks. Here x-axis is the number of recorded steps and y-axis is
the ID of the weight matrices. Each row is labeled according to the order of its average scaling factor
value. Case study and lager-scale quantitative analysis are provided in Appendix A.5 and Appendix
A.6, respectively.

Norm-based Scaling. Inspired by this, we propose a norm-based scaling method that utilizes the
scaling factor of a weight matrix in low-rank training as a substitute for the corresponding factor in
full-rank training:

Wt+1 =Wt − ηPtψt(Rt)− ηϕt(Rt)(Gt − PtRt). (10)

By Eq. (10), we can approximately correct (Gt − PtRt) as adaptive optimizers do, so as to achieve
full-rank training under low-rank constraints.

Furthermore, we can use a more fine-grained average of the scaling factor in Eq.(10), by considering
each column in the weight matrix:

ϕt(Rt)i =
||ψ(Rt,:,i)||
||Rt,:,i||

, i = 1, 2, . . . , n, (11)

where Rt,:,i is the i-th column of Rt, and ϕt(Rt)i is the i-th scaling factor.

4.2 NORM-GROWTH LIMITER

We find that there are suddenly sharp increases of the gradient during training, which could intro-
duce loss spikes. As shown in Figure 4, Fira-w.o.-limiter (our method without using the proposed
norm-growth limiter) experiences spikes in both gradient norm and training loss. In this section,
we analyze the reasons for this issue and propose a norm-growth limiter which transforms abrupt
gradient spikes into gradual, smooth increases.

Loss Spike Analysis. There are two main reasons for the spikes: (i) Switching the projection matrix
Pt in gradient projection methods would cause instability during training. As illustrated in Fig-
ure 2, both GaLore and GaLore-add exhibit significant training loss spikes at integer multiples of
T (i.e., the frequency of switching the projection matrix Pt). This instability occurs because, when
switching projection matrices Pt, the optimizer retains states linked to the previous matrix, while the
current input gradient uses a new projection matrix, leading to significant misalignment. Further-
more, as shown in Figure 2, GaLore-add also exhibits training spikes, reinforcing our earlier claim
that directly incorporating (Gt−PtRt) may introduce instability and hinder training; (ii) Maintain-
ing the original direction of the raw gradient (Gt−PtRt) may be insufficient for handling the sharp
loss landscapes in LLM training, unlike Adam (Zhang et al., 2020). Due to space constraints, further
analysis is provided in Appendix A.7.

Addressing Loss Spikes. To address this issue, a straightforward solution is to use gradient clipping
techniques (Pascanu et al., 2013) to avoid loss spikes. However, clipping based on the absolute norm
of gradient matrices fails to account for significant differences between them, leading to sub-optimal
results. This point can be also verified in Figure 4 and Table 4. To this end, we propose a norm-
growth limiter method that constrains the ratio of the current gradient norm to the previous step’s

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

500 1000 1500 2000

4.5

6.0

7.5

Loss

500 1000 1500 2000

60

120

180

Gradient Norm

Fira Fira-w.o.-limiter Fira-gradient-clipping

Spike 1

Spike 2

Spike 1

Spike 2

Figure 4: Training loss and gradient norm of three variants of Fira for pre-training LLaMA 60M on
C4 dataset.

norm to a fixed ratio γ when the gradient norm increases:

if
||St||
||St−1||

> γ then St ←
St
||St||

· γ||St−1||, (12)

where γ is a threshold ensuring that the rate of gradient growth does not exceed this value. St =
ϕt(Rt)(Gt − PtRt) is the corrected gradient by applying our norm-based scaling. This approach
limits the magnitude of gradient norm increases, converting sudden spikes into gradual rises and
thus preventing loss spikes. Moreover, by constraining the relative increase of each gradient matrix’s
norm, our method is more flexible than the absolute norm clipping. As illustrated in Figure 2 and
Figure 4, Fira with our proposed limiter improves the optimization performance without significant
spikes.

Algorithm 1 Fira with Adam
Input: η : step size, {β1, β2} : decay rates, W ∈ Rm×n with m ≤ n : weight matrices, r :
rank, T : switching frequency, α : hyper-parameter of Galore, γ : limiter threshold.
Output: Wt : resulting weight matrix

1: M0, V0 ∈ Rr×n ← 0, 0 t← 0 ▷ Initialize moving 1st, 2nd moment and step
2: repeat
3: Gt ∈ Rm×n ← ∇W ft(Wt) ▷ Calculate full-rank gradients of full-rank weights
4: if t mod T = 0 then
5: U,Σ, V ⊤ ← SVD(Gt) Pt ← U [:, : r] ▷ Initialize the projection matrix every T steps
6: else Pt ← Pt−1 ▷ Reuse the previous projection matrix
7: end if
8: Rt, St ← P⊤

t Gt, (I − PtP⊤
t)Gt ▷ Divide gradients into two terms by gradient projection

9: Mt ← β1Mt−1 + (1− β1)Rt ▷ ψt(Rt): Apply Adam with low-rank gradients Rt
10: Vt ← β2Vt−1 + (1− β2)R2

t

11: Nt ←
√

1−βt
2

1−βt
1
· Mt√

Vt+ϵ

12: K ← [
||Nt[:, 1]||
||Rt[:, 1]||+ ϵ

,
||Nt[:, 2]||
||Rt[:, 2]||+ ϵ

, · · · , ||Nt[:, n]||||Rt[:, n]||+ ϵ
] ▷ Norm-Based Scaling

13: St ← [k1St[:, 1], k2St[:, 2], · · · , knSt[:, n]]
14: St ← St · γ/max{ ||St||

||St−1||+ ϵ
, γ} ▷ Norm-Growth Limiter

15: G̃t ← α · (PtNt + St) ▷ Project back and complete full-rank gradients
16: Wt ←Wt−1 − η · G̃t t← t+ 1 ▷ Update the weight matrix
17: until convergence criteria met
18: return WT

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Comparison of different methods for pre-training LLaMA models of various sizes on the
C4 dataset. We report validation perplexity (↓) with a memory estimate of total parameters and
optimizer states. Results and memory estimates of all baselines are taken from Zhao et al. (2024a).
r refers to the rank and dmodel is the full-rank dimension of models.

60M 130M 350M 1B
Full-Rank 34.06 (0.36G) 25.08 (0.76G) 18.80 (2.06G) 15.56 (7.80G)

Fira 31.06 (0.24G) 22.73 (0.52G) 16.85 (1.22G) 14.31 (4.38G)
GaLore 34.88 (0.24G) 25.36 (0.52G) 18.95 (1.22G) 15.64 (4.38G)
LoRA 34.99 (0.36G) 33.92 (0.80G) 25.58 (1.76G) 19.21 (6.17G)
ReLoRA 37.04 (0.36G) 29.37 (0.80G) 29.08 (1.76G) 18.33 (6.17G)

r/dmodel 128 / 256 256 / 768 256 / 1024 512 / 2048
Training Tokens 1.1B 2.2B 6.4B 13.1B

4.3 OVERALL ALGORITHM
Table 1: Comparison between Fira, GaLore, and LoRA. De-
note Wt ∈ Rm×n (m ≤ n), rank r.

Fira GaLore LoRA

Weights mn mn mn+mr + nr
Optimizer States mr + 2nr + 1 mr + 2nr 2mr + 2nr

Full-Rank Gradients ! % !

Full-Rank Weights ! ! %

Pre-Training ! ! %

Fine-Tuning ! ! !

We present the overall algorithm of
Fira with Adam in Algorithm 1. Our
main components, the norm-based
scaling method and the norm-growth
limiter, are straightforward to im-
plement, requiring only 3 additional
lines of code. Moreover, Fira is a
plug-and-play framework which can
be easily integrated into the train-
ing process without requiring signif-
icant modifications. The plug-and-
play Pytorch-like pseudo-code of Fira is provided in Appendix A.4.

It’s worth noting that Fira only introduces one parameter ||St−1|| for each weight matrix in the
optimizer state, which is negligible, as shown in Table 1. Besides, in addition to the original hyper-
parameters of optimizers and gradient projection methods, Fira only adds one hyper-parameter γ
in the norm-growth limiter. The hyper-parameter γ is set to 1.01 across all experiments, which
consistently yields satisfactory results.

5 EXPERIMENTS

In this section, we validate the effectiveness of Fira in pre-training and fine-tuning tasks of LLMs.
In our experiments, we denote our method using the strategy of Eq. (10) as Fira-matrix, and denote
our method additionally using the column-wise strategy of Eq. (11) as Fira.

5.1 MEMORY-EFFICIENT PRE-TRAINING

Experimental Setup. We follow the settings in Galore (Zhao et al., 2024a) to conduct the pre-
training experiments. We compare Fira with GaLore (Zhao et al., 2024a), LoRA (Hu et al., 2022),
ReLoRA (Lialin et al., 2024), and full-rank training baselines. Adam optimizer is used for training
all baselines and our method on the C4 dataset in the BF16 format. The settings of these baselines
can be found in Zhao et al. (2024a). The dataset C4 is a colossal, cleaned version of Common
Crawl’s web crawl corpus, which is widely used in LLM pre-training (Raffel et al., 2020). Fol-
lowing Zhao et al. (2024a), we utilize LLaMA-based architectures equipped with RMSNorm and
SwiGLU activations (Zhang & Sennrich, 2019; Shazeer, 2020; Touvron et al., 2023). As in Zhao
et al. (2024a), our training protocol excludes data repetition and spans a sufficiently large dataset,
encompassing a diverse array of model sizes (60M, 130M, 350M, 1B). To guarantee a fair compar-
ison, we employ the same learning rate 0.01 as used in GaLore and maintain the same rank r for
each model size. The detailed settings of pre-training are provided in Appendix A.2. We use 8 A100
80G GPUs to conduct pre-training experiments.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Result Analysis. As shown in Table 2, Fira consistently outperforms low-rank training baselines
by a large margin under the same rank constraint, and even surpasses full-rank training. Following
Zhao et al. (2024a), we estimate the memory reduction of the optimizer states via the same memory
estimation method introduced in Zhao et al. (2024a). From Table 2, our Fira saves 61.1% memory
usage of the optimizer states when pre-training the LLaMA 1B architecture compared to full-rank
training, while Fira achieving better results. Compared to full-rank training, Fira’s superior perfor-
mance may be attributed to the following reason: the gradient direction in the norm-based scaling
method is determined by the current state, rather than by historical gradients in Adam. Therefore,
Fira introduces a higher degree of randomness in training, which can enhance the model’s ability to
escape the local optima, leading to better training performance (Zhou et al., 2020).

5.2 SCALING UP TO LLAMA 7B PRE-TRAINING.

2K 4K 6K 8K 10K
Training Iterations

20

40

60

80

100

120

Pe
rp

le
xi

ty
 (

)

GaLore
Fira

GaLore

Rank=64

Rank=64
Rank=512

Figure 5: Pre-training LLaMA 7B with dif-
ferent methods on the C4 dataset.

To validate the scalability of our method, we scale up
by pre-training the LLaMA 7B model with the full-
rank dimension dmodel = 4096. We compare Fira
with the GaLore baseline, which generally achieves
the best performance among low-rank training base-
lines, as shown in Table 2. As illustrated in Figure
5, our method demonstrates a significant improvement
over GaLore for pre-training LLaMA 7B, while using
an 8× smaller rank. This highlights Fira’s effective-
ness, suggesting it could be a viable solution for large-
scale LLM pre-training.

5.3 MEMORY-EFFICIENT FINE-TUNING

Experimental Setup. Following Hu et al. (2023), we perform the fine-tuning task to compare Fira
with LoRA, GaLore, Flora, ReLoRA, Full-rank training, and other baseline methods, including
Prefix-tuning (Prefix) (Li & Liang, 2021), Series Adapter (Series) (Houlsby et al., 2019), and Paral-
lel Adapter (Parallel) (He et al., 2021), on the LLaMA-7B model for commonsense reasoning tasks.
This task consists of eight sub-tasks, each with its own designated training and testing sets. Follow-
ing the approach of Hu et al. (2023), we combine the training datasets from all eight sub-tasks into a
unified training set, while evaluating each sub-task individually using its respective testing dataset.
In the fine-tuning task, the rank r is set to 32 and the learning rate is set to 1e-4. The detailed
settings of fine-tuning are provided in Appendix A.3. We adopt RTX 4090 GPUs for fine-tuning
experiments.

Result Analysis. As shown in Table 3, our Fira achieves the highest performance on 4 out of 8
datasets, demonstrating better or comparable performance compared to the baseline methods. No-
tably, GaLore struggles to adapt to the HellaSwag and WinoGrande datasets, resulting in a significant
decline in scores. In contrast, our Fira adapts to these tasks well and achieves the highest scores on
WinoGrande. In terms of memory efficiency, our method uses comparable or even less memory than
the low-rank training methods LoRA and GaLore. These results illustrate the effectiveness of our
method for the fine-tuning of LLMs.

Table 3: Accuracy (↑) of various fine-tuning methods on eight commonsense reasoning datasets with
LLaMA 7B. Results for all baseline methods, except GaLore, are taken from Hu et al. (2023).

Method Memory BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg

Fira 14.26G 69.4 82.6 78.0 76.8 81.2 82.2 64.4 80.8 76.9
Prefix 14.05G 64.3 76.8 73.9 42.1 72.1 72.9 54.0 60.6 64.6
Series 14.42G 63.0 79.2 76.3 67.9 75.7 74.5 57.1 72.4 70.8
Parallel 15.49G 67.9 76.4 78.8 69.8 78.9 73.7 57.3 75.2 72.2
LoRA 14.35G 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.7
ReLoRA 14.35G 68.9 81.2 77.8 46.0 79.4 80.2 64.2 79.6 72.2
Flora 14.26G 50.1 77.5 74.2 53.8 45.5 79 64.6 74.8 64.9
GaLore 14.26G 69.5 82.0 75.1 32.2 18.0 80.7 65.8 78.0 62.7
Full-rank 42.00G 64.2 68.1 68.0 42.3 66.5 55.6 43.9 60.0 58.6

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.4 ABLATION STUDY

In this section, we conduct an ablation study to assess the effectiveness of each component in our
method. We adopt the same settings in Section 5.1 for pre-training the LLaMA 60M model. We
design four variants of our method for the ablation study: (1) Fira-w.o.-scaling: our Fira without
using the scaling factor to correct the gradient (i.e., setting ϕt(Rt) to a fixed value of 1). (2) Fira-
matrix: our Fira using the scaling factor at the matrix level instead of at the column level. (3) Fira-
w.o.-limiter: our Fira without using norm-growth limiter to avoid training loss spikes. (4) Fira-
gradient-clipping: our Fira using gradient clipping to avoid loss spikes instead of our proposed
norm-growth limiter.

Table 4: Ablation study on the C4 dataset.

Method Perplexity (↓)

Fira-w.o.-scaling 37.06
Fira-matrix 31.52

Fira-w.o.-limiter 32.22
Fira-gradient-clipping 31.22

Fira 31.06

Table 4 presents the results. It can be found that Fira
outperforms Fira-w.o.-scaling, thereby demonstrating
the effectiveness of our proposed norm-based scaling
method for gradient correction. This also suggests
that directly incorporating the raw gradient outside the
subspace without correction will lead to sub-optimal
results. Besides, Fira yields better performance than
Fira-matrix, illustrating that a more fine-grained con-
sideration of the scaling factor is beneficial. Further-
more, Fira demonstrates improved performance over
Fira-w.o.-limiter and Fira-gradient-clipping, indicating the effectiveness of our proposed norm-
growth limiter in addressing the issue of training loss spikes.

5.5 PERFORMANCE UNDER VARYING RANKS

4 16 64 128
rank r

30

40

50

60

70

Pe
rp

le
xi

ty
 (

)

(+51.4%)

(+22.0%)

Fira
GaLore
Full-rank

Figure 6: Validation perplexity of Fira
and GaLore for varying ranks when pre-
training LLaMA 60M on the C4 dataset
with dmodel = 256.

In this section, we illustrate the advantages of our Fira
over Galore under a lower rank. We adjust various
rank configurations within the set {4, 16, 64, 128} and
dmodel = 256, and then assess the performance of pre-
training the LLaMA 60M model on the C4 dataset as
outlined in Section 5.1. The validation perplexity of
Fira and GaLore after 10K steps across different ranks
is depicted in Figure 6. From Figure 6, we can ob-
serve that Fira consistently surpasses GaLore across
all rank configurations. Notably, even when the ranks
are set very low (4 and 16), Fira still achieves perfor-
mance comparable to full-rank training. In contrast,
the performance of GaLore significantly declines in
these cases. These results highlight the superiority of
our proposed Fira at lower ranks and its effectiveness
in reducing memory usage.

6 CONCLUSION

In this paper, we present a plug-and-play memory-efficient training framework for LLMs, called
Fira, as the first attempt to facilitate full-rank training consistently under low-rank constraints. First,
we find a notable phenomenon in LLM training: the scaling effect of adaptive optimizers on the gra-
dient norm remains similar between low-rank and full-rank training. Building on this observation,
we propose a norm-based scaling method that applies the scaling effect of low-rank optimizers in
place of full-rank optimizers to facilitate full-rank training. This allows us to maintain the low-rank
constraint within the optimizer while still benefiting from the advantages of full-rank training for
improved performance. Additionally, we observe there are sudden spikes in gradient values during
optimization, which could lead to spikes in loss. To mitigate this, we propose a norm-growth limiter
that smooths gradients by regulating the relative increase in gradient norms. Extensive experiments
in both pre-training and fine-tuning of LLMs demonstrate the effectiveness of our proposed Fira.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Hervé Abdi. The kendall rank correlation coefficient. Encyclopedia of measurement and statistics,
2:508–510, 2007.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, Kurt Wan-Duo Ma, and Brian McWilliams.
The shattered gradients problem: If resnets are the answer, then what is the question? In Interna-
tional conference on machine learning, pp. 342–350. PMLR, 2017.

Han Chen, Garvesh Raskutti, and Ming Yuan. Non-convex projected gradient descent for general-
ized low-rank tensor regression. Journal of Machine Learning Research, 20(5):1–37, 2019.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Yudong Chen and Martin J Wainwright. Fast low-rank estimation by projected gradient descent:
General statistical and algorithmic guarantees. arXiv preprint arXiv:1509.03025, 2015.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=shpkpVXzo3h.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Kaituo Feng, Changsheng Li, Xiaolu Zhang, JUN ZHOU, Ye Yuan, and Guoren Wang. Keypoint-
based progressive chain-of-thought distillation for llms. In International Conference on Machine
Learning, 2024.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors. In Forty-first International Conference on Machine Learning, 2024.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
of large language models. In The 2023 Conference on Empirical Methods in Natural Language
Processing, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Teven Le Scao, Thomas Wang, Daniel Hesslow, Stas Bekman, M Saiful Bari, Stella Biderman,
Hady Elsahar, Niklas Muennighoff, Jason Phang, Ofir Press, et al. What language model to train
if you have one million gpu hours? In Findings of the Association for Computational Linguistics:
EMNLP 2022, pp. 765–782, 2022.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

11

https://openreview.net/forum?id=shpkpVXzo3h
https://openreview.net/forum?id=shpkpVXzo3h

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. Relora: High-
rank training through low-rank updates. In The Twelfth International Conference on Learning
Representations, 2024.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. In International Conference on
Learning Representations, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Robert Nau. Forecasting with moving averages. Fuqua School of Business, Duke University, pp.
1–3, 2014.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. LISA:
Layerwise importance sampling for memory-efficient large language model fine-tuning. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=L8ifDX5XNq.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pp. 1310–1318. Pmlr, 2013.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Min-
jia Zhang, Dong Li, and Yuxiong He. {Zero-offload}: Democratizing {billion-scale} model
training. In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pp. 551–564, 2021.

Philip Sedgwick. Spearman’s rank correlation coefficient. Bmj, 349, 2014.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Chonghao Sima, Katrin Renz, Kashyap Chitta, Li Chen, Hanxue Zhang, Chengen Xie, Ping Luo,
Andreas Geiger, and Hongyang Li. Drivelm: Driving with graph visual question answering. arXiv
preprint arXiv:2312.14150, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter effi-
cient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv preprint
arXiv:2210.07558, 2022.

Yeming Wen and Swarat Chaudhuri. Batched low-rank adaptation of foundation models. arXiv
preprint arXiv:2312.05677, 2023.

Kirk M Wolter and Kirk M Wolter. Introduction to variance estimation, volume 53. Springer, 2007.

Wenhan Xia, Chengwei Qin, and Elad Hazan. Chain of lora: Efficient fine-tuning of language
models via residual learning. arXiv preprint arXiv:2401.04151, 2024.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan
Xu, Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma, Yufei Xue, Jidong Zhai, Wenguang
Chen, Zhiyuan Liu, Peng Zhang, Yuxiao Dong, and Jie Tang. GLM-130b: An open bilingual
pre-trained model. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=-Aw0rrrPUF.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

12

https://openreview.net/forum?id=L8ifDX5XNq
https://openreview.net/forum?id=-Aw0rrrPUF

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Haoyang Zhang, Yirui Zhou, Yuqi Xue, Yiqi Liu, and Jian Huang. G10: Enabling an efficient unified
gpu memory and storage architecture with smart tensor migrations. In Proceedings of the 56th
Annual IEEE/ACM International Symposium on Microarchitecture, pp. 395–410, 2023a.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. In International Conference on Learning Rep-
resentations, 2020.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-tuning. arXiv preprint arXiv:2308.03303,
2023b.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023c.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. In International
Conference on Machine Learning, 2024a.

Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. Deconstruct-
ing what makes a good optimizer for language models. arXiv preprint arXiv:2407.07972, 2024b.

Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Chu Hong Hoi, et al. Towards theoreti-
cally understanding why sgd generalizes better than adam in deep learning. Advances in Neural
Information Processing Systems, 33:21285–21296, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 THEORETICAL ANALYSIS

Error Upper Bound for the Approximation of Scaling Factors. In Section 4.1, we use the scaling
factors of low-rank gradients to approximate that of full-rank gradients. To quantify the effectiveness
of this approximation, we will derive its error upper bound theoretically, and verify our analysis
experimentally. The error of the approximation κ(r) can be written as:

κ(r) =
∣∣ϕ2t (Gt)− ϕ2t (Rt)∣∣ , (13)

where rank r ≤ n, and Rt = P⊤
t Gt ∈ Rr×n. To simplify the proof, we consider that r components

(g1, . . . , gr) of low-rank gradients are directly sampled from n components (g1, . . . , gn) of full-rank
gradients. Under these conditions, the error can be rewritten as:

κ(r) =

∣∣∣∣∑n
i=1 ψ

2
i (gi)∑n

i=1 g
2
i

−
∑r
i=1 ψ

2
i (gi)∑r

i=1 g
2
i

∣∣∣∣ . (14)

Assumption 1. (Bounded Scaling Factors): we assume that the adaptive optimizer scales each
gradient component gi by the scaling factor that lies within known bounds. Specifically, there exist
constants cmin and cmax such that for all i:

cmin ≤
∣∣∣∣ψi(gi)gi

∣∣∣∣ ≤ cmax. (15)

This implies:

c2min ≤
ψ2
i (gi)

g2i
≤ c2max. (16)

Theorem 1. (Error Upper Bound for Approximation) Under the assumption that ψ
2
i (gi)

g2i
are bounded

between constants c2min and c2max for all components i, the approximation error κ(r) satisfies:

κ(r) ≤ (c2max − c2min) · (1−
∑r
i=1 g

2
i∑n

i=1 g
2
i

). (17)

Proof. We first define the following quantities: Total Gradient Norm sn =
∑n
i=1 g

2
i , Partial Gra-

dient Norm (first r components) sr =
∑r
i=1 g

2
i , Remaining Gradient Norm sn−r = sn − sr =∑n

i=r+1 g
2
i , Total Corrected Gradient Norm Sn =

∑n
i=1 ψ

2
i (gi), Partial Adjusted Gradient Norm

(first r components) Sr =
∑r
i=1 ψ

2
i (gi), Remaining Adjusted Gradient Norm Sn−r = Sn − Sr =∑n

i=r+1 ψ
2
i (gi).

Then, our estimation error κ(r) can be rewritten using these definitions:

κ(r) =

∣∣∣∣Snsn − Sr
sr

∣∣∣∣ . (18)

First, we rewrite the estimation error κ(r) in terms of Sr, Sn−r, sr, and sn−r:

κ(r) =

∣∣∣∣Sr + Sn−r
sr + sn−r

− Sr
sr

∣∣∣∣ . (19)

Then, compute the difference in the numerator:

κ(r) =

∣∣∣∣ (Sr + Sn−r)sr − Sr(sr + sn−r)

(sr + sn−r)sr

∣∣∣∣ . (20)

Simplify the numerator, thus, the estimation error becomes:

κ(r) =
|Sn−rsr − Srsn−r|

snsr
. (21)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

After that, we factor out sn−r:

κ(r) =
sn−r
sn
·
∣∣∣∣Sn−rsn−r

− Sr
sr

∣∣∣∣ . (22)

From our bounded assumption, we have:

c2min ≤
Sr
sr
≤ c2max and c2min ≤

Sn−r
sn−r

≤ c2max. (23)

Therefore, the maximum possible difference between Sn−r

sn−r
and Sr

sr
is:∣∣∣∣Sn−rsn−r

− Sr
sr

∣∣∣∣ ≤ c2max − c2min. (24)

Finally, since sn−r

sn
= (1−

∑r
i=1 g

2
i∑n

i=1 g
2
i
), the approximation error κ(r) is bounded above by:

κ(r) ≤ (c2max − c2min) · (1−
∑r
i=1 g

2
i∑n

i=1 g
2
i

). (25)

From this theory, we can find that the error upper bound on the approximation of scaling factors is
mainly determined by two aspects, and we can verify them experimentally:

• Variability of Scaling Factor (c2max − c2min): This term represents the maximum varia-
tion in the scaling factors of different gradient components. For further validation, we
designed Fira-only-scaling, a variant of Fira. It directly applies the low-rank scaling fac-
tors to the full-rank gradients by changing the Eq. (10) from Wt+1 = Wt − ηPtψt(Rt)−
ηϕt(Rt)(Gt −PtRt) to Wt+1 =Wt − ηϕt(Rt)Gt. In this way, we are able to exclude the
influence of the original Adam term Ptψt(Rt) and better analyze the effectiveness of our
approximation. As shown in Table 5, Fira-only-scaling (column-level) gains better perfor-
mance than Fira-only-scaling (matrix-level) for its more fine-grained consideration of the
scaling factor, which also means a smaller maximum variation (c2max − c2min).

• Effectiveness of Gradient Sampling (1 −
∑r

i=1 g
2
i∑n

i=1 g
2
i
): This term represents the proportion of

the gradients norm contributed by the sampled low-rank r components from full-rank n
components. As shown in Table 6, we conducted ablation experiments Fira-only-scaling-
w.o.-svd, i.e., Fira-only-scaling without SVD in low-rank gradient sampling. As we can
see, SVD is capable of sampling more prominent low-rank gradients, which leads to a
reduction in the upper bound of error and enhanced performance. Similarly, as shown
in Table 7, employing a higher rank enables the sampling of a greater proportion of the
gradients norm, resulting in reducing error upper bound and improved performance.

Table 5: Ablation on the level of scaling factors for the variant Fira-only-scaling.

Level Perplexity (↓)
Column 31.68
Matrix 32.05

Table 6: Ablation on SVD for the variant Fira-only-scaling.

Method Perplexity (↓)
Fira-only-scaling 31.68

Fira-only-scaling-w.o.-svd 32.22

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 7: Ablation on rank for the variant Fira-only-scaling.

Rank 4 16 64 128

Perplexity (↓) 35.91 32.90 31.93 31.68

Variance of Scaling Factors. The variance of adaptive learning rates is significantly elevated dur-
ing the early stage of training, often necessitating a warm-up to mitigate this variance and stabilize
training (Liu et al., 2019). As illustrated in Figure 7, the scaling factor in Fira exhibits a similar
pattern, characterized by substantial variance during the early stage of training, which also neces-
sitates a warm-up. However, the addition of an extra warm-up hyper-parameter for Fira would be
inefficient. Therefore, it is crucial to investigate whether the original warm-up would have mitigated
the variance in Fira efficiently. In the subsequent theoretical analysis, we show that, during the early
training phase, the variance of the scaling factor of Fira is less than or equal to that of the adaptive
learning rate. This finding suggests that the existing warm-up strategy is sufficient to mitigate the
variance of Fira, thereby eliminating the need for an additional warm-up hyper-parameter.

Consider independent random vectors {g(i)}ni=1, where each g(i) = (g
(i)
1 , g

(i)
2 , . . . , g

(i)
t). Here,

the superscript i indicates the index of the weight matrix to which the vector belongs, while the
subscript j (where j ranges from 1 to t) denotes training iterations with each parameter. Follow-

ing (Liu et al., 2019), we assume the adaptive learning rate of Adam ψ(.) =
√

1−βt
2

(1−β2)
∑t

i=1
β
t−i
2 g2

i

,

and g
(i)
j ∼ N (0, σ2) for all i and j in the early stage. Additionally, approximate the distri-

bution of the exponential moving average as the distribution of the simple average, p(ψ(.)) =

p(
√

1−βt
2

(1−β2)
∑t

i=1
β
t−i
2 g2

i

)≈ p(
√

t∑t
i=1 g

2
i
) (Nau, 2014), and then ψ2(.) ∼ Scale-inv-X 2(ρ, 1

σ2).

Theorem 2. (Variance of Scaling Factors) In the early stages of training, if ψ2(·) ∼
Scale-inv-X 2(ρ, 1

σ2), and g
(i)
j ∼ N (0, σ2)4 for all i, j, then for all ρ > 4, the scaling factor

ϕ2 =
∑n

i=1 ψ
2
i (g

(i)
t)2∑n

i=1(g
(i)
t)2

satisfies Var[ϕ2] ≤ Var[ψ2]. If we approximate
√
ψ2 and

√
ϕ2 to the first

order, we have Var[ϕ] ≤ Var[ψ].

Proof. We express ϕ2 as a weighted sum:

ϕ2 =

n∑
i=1

wiψ
2
i , (26)

where the weights are defined as:

wi =
(g

(i)
t)2∑n

j=1(g
(j)
t)2

. (27)

Each wi is a non-negative random variable satisfying
∑n
i=1 wi = 1.

In the context of adaptive optimization algorithms like Adam, the squared gradients ψ2
i accumulate

information from past iterations to adapt the learning rate for each parameter. With β2 = 0.999,
the moving average of the squared gradients places significant weight on historical data, making ψ2

i
dependent mainly on past gradients, yielding:

ψ2
i ≈ ψ2

i (g
(i)
1 , . . . , g

(i)
t−1). (28)

Since ψ2
i primarily depend on past gradients g(i)1 , . . . , g

(i)
t−1, and wi depend solely on the current

gradients g(i)t , we can consider ψ2
i and wi to be independent random variables.

4The assumption of a mean-zero normal distribution is valid at the outset of training, as the weights are
sampled from normal distributions with a mean of zero (Balduzzi et al., 2017)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 500 1000
0

10000

20000

30000
Weight matrix ID 1
Weight matrix ID 2
Weight matrix ID 3

Figure 7: Scaling factor ϕt(Rt) during the
early stage of training (1K iterations of total
10K iterations).

0 500 1000

10 4

10 2

100

102

104

rank = 1
rank = 5
rank = 10
rank = 50
rank = 100

Figure 8: The simulation of variance of the
scaling factor Var[ϕ] across different rank
settings. The adaptive learning rate ψ is
equivalent to ϕ when the rank equals 1.

Consequently, we can express the variance of ϕ2 as:

Var[ϕ2] = Var

[
n∑
i=1

wiψ
2
i

]
. (29)

Using the law of total variance, we have:

Var[ϕ2] = E

[
Var

[
n∑
i=1

wiψ
2
i | w1, . . . , wn

]]
+Var

(
E

[
n∑
i=1

wiψ
2
i | w1, . . . , wn

])
. (30)

Since ψ2
i are independent of the wi, we find:

E

[
n∑
i=1

wiψ
2
i | w1, . . . , wn

]
= E[ψ2

i]

n∑
i=1

wi = E[ψ2
i], (31)

Var

[
n∑
i=1

wiψ
2
i | w1, . . . , wn

]
=

n∑
i=1

w2
i Var[ψ

2
i]. (32)

Thus, the variance simplifies to:

Var[ϕ2] = Var[ψ2] E

[
n∑
i=1

w2
i

]
. (33)

The second term, Var
(
E
[∑n

i=1 wiψ
2
i | wi

])
, is zero since E[ϕ2 | wi] = E[ψ2

i] is constant.

Let Xi = (g
(i)
t)2, where each Xi ∼ σ2χ2

1. Then, we can express the weights as:

wi =
Xi∑n
j=1Xj

. (34)

Since Xi/σ
2 ∼ χ2

1, and each wi is the ratio of Xi to the sum of all Xj , the vector (w1, . . . , wn)
follows a Dirichlet distribution with parameters αi = νi

2 = 1
2 , where νi = 1 is the degrees of

freedom of χ2
1.

For a Dirichlet distribution, the expected value of w2
i is given by:

E[w2
i] =

αi(αi + 1)

(
∑n
k=1 αk) (

∑n
k=1 αk + 1)

. (35)

Substituting αi = 1
2 and

∑n
k=1 αk = n

2 yields:

E[w2
i] =

1
2 ·

3
2

n
2 ·
(
n
2 + 1

) =
3

4
· 4

n(n+ 2)
=

3

n(n+ 2)
. (36)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Thus, summing over all i gives:

E

[
n∑
i=1

w2
i

]
= n · E[w2

i] =
3

n+ 2
. (37)

Finally, substituting this result back into the variance expression:

Var[ϕ2] = Var[ψ2] · 3

n+ 2
. (38)

Since n ≥ 1, it follows that:
3

n+ 2
≤ 1, (39)

which implies:
Var[ϕ2] ≤ Var[ψ2]. (40)

Given ρ > 4 and ψ2(·) ∼ Scale-inv-X 2(ρ, 1
σ2), the variance of ψ2(·) exists (Liu et al., 2019).

Since ψ2
i and wi are independent and

∑n
i=1 E[wi] = 1:

E[ϕ2] = E

[
n∑
i=1

wiψ
2
i

]
=

n∑
i=1

E[wi] E[ψ
2
i] = E[ψ2

i]

n∑
i=1

E[wi] = E[ψ2
i], (41)

Thus, we have shown that:

Var[ϕ2] ≤ Var[ψ2], and E[ϕ2] = E[ψ2
i]. (42)

Follow Liu et al. (2019), we approximate
√
ψ2 and

√
ϕ2 to the first order (Wolter & Wolter, 2007)

Var[ψ] ≈ Var[ψ2]

4 E[ψ2]
, and Var[ϕ] ≈ Var[ϕ2]

4 E[ϕ2]
. (43)

which implies:
Var[ϕ] ≤ Var[ψ]. (44)

To further examine our theorem, we conduct simulations to calculate the variance of the scaling
factor ϕ at ranks within the set {1, 5, 10, 50, 100}. The adaptive learning rate ψ is equivalent to that
of ϕ when the rank equals 1. As shown in Figure 8, the variance decreases as the rank increases,
supporting our above theorem Var[ϕ] ≤ Var[ψ]. Furthermore, we observe a surprisingly large vari-
ance during the early stage, which corroborated our initial experiments. Consequently, we conclude
that our method is efficient without requiring an additional warm-up.

A.2 DETAILED PRE-TRAINING SETTING

This section provides an overview of the LLaMA architectures and the hyper-parameters employed
during pre-training. To ensure a fair comparison, we adopt the same settings as Zhao et al. (2024a).
Table 8 presents the hyper-parameters of the LLaMA architectures across various sizes. For all
architectures, we utilize a maximum sequence length of 256 and a batch size of 131K tokens. Fur-
thermore, we implement a learning rate warm-up during the initial 10% of training steps and employ
cosine annealing for the learning rate schedule, which decreases to 10% of the initial learning rate.

For all methods except Fira and GaLore, we tune the optimal learning rate from the set {0.01, 0.005,
0.001, 0.0005, 0.0001} across model sizes ranging from 60M to 1B, selecting their best validation
perplexity to report. In contrast, both Fira and GaLore employ the same learning rate 0.01 and a
subspace change frequency T of 200 without tuning. Additionally, the scale factor α is considered a
fractional learning rate (Zhao et al., 2024a). Furthermore, a relatively large learning rate may result
in spikes of the training loss (Zhao et al., 2024a). To address this issue, for models with a size of
less than 1B, we set α to 0.25, while for models exceeding 1B, we adjust α to 0.0625.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 8: Hyper-parameters of LLaMA architectures for pre-training.

Params Hidden Intermediate Heads Layers Steps Data Amount (Tokens)

60M 512 1376 8 8 10K 1.3 B
130M 768 2048 12 12 20K 2.6 B
350M 1024 2736 16 24 60K 7.8 B
1 B 2048 5461 24 32 100K 13.1 B
7 B 4096 11008 32 32 150K 19.7 B

Table 9: Hyper-parameter configurations of fine-tuning LLaMA-7B for Fira.

Hyper-parameters Setting

Rank r 32
α 64
Dropout 0.05
Base optimizer AdamW
LR 1e-4
LR Scheduler Linear
Batch size 16
warm-up Steps 100
Epochs 3
Where Q,K,V,Up,Down

A.3 DETAILED FINE-TUNING SETTING

We fine-tune the pre-trained LLaMA-7B model for commonsense reasoning tasks benchmark de-
signed for LLM fine-tuning, which include eight sub-tasks (Hu et al., 2023). Table 9 shows the
hyper-parameter configurations.

A.4 PLUG-AND-PLAY FRAMEWORK FOR FIRA

Algorithm 2 Plug-and-play framework for Fira, Pytorch-like.
1: for weight in model.parameters() do
2: grad = weight.grad
3: sub grad, outer grad = project(grad) ▷ Gradient projection.
4: sub adapt = adapt(sub grad) ▷ Adaptive optimizer, e.g., Adam, RMSProp.
5: outer Fira = Fira(sub grad, sub adapt, outer grad) ▷ Apply Fira to outer grad.
6: weight update = project back(sub grad) + outer Fira ▷ full-rank training
7: weight.data += weight update
8: end for

A.5 CASE QUANTITATIVE ANALYSIS OF SCALING FACTOR SIMILARITIES

In this section, we analyze the similarities among the three ranking (i.e., order) sequences R1, R2,
and R3 depicted in Figure 3, which highlight the discrepancies in scaling factors across different
weight matrices. Each ranking comprises ten distinct items. We will employ Kendall’s Tau cor-
relation coefficient (Abdi, 2007) and Spearman’s rank correlation coefficient (Sedgwick, 2014) to
evaluate their concordance and divergence.

The three ranking sequences are defined as follows:

R1 = (7, 6, 1, 2, 4, 8, 5, 10, 9, 3) (45)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

R2 = (7, 8, 2, 1, 5, 4, 6, 10, 9, 3) (46)

R3 = (6, 8, 2, 1, 5, 4, 7, 10, 9, 3) (47)

A.5.1 KENDALL’S TAU CORRELATION COEFFICIENT

Kendall’s Tau, a non-parametric statistic, measures the ordinal association between two rankings. It
quantifies the degree to which the presence of one ranking implies a similar ranking in another. The
formula for Kendall’s Tau is given by:

τ =
C −D
n(n−1)

2

(48)

where:

• C is the number of concordant pairs, which are pairs of observations where the ranks for
both items agree,

• D is the number of discordant pairs, where the ranks disagree,

• n is the total number of observations.

Kendall’s Tau ranges from -1 to +1, with 1 indicating perfect agreement between the rankings,
0 indicating no correlation, and -1 indicating perfect disagreement. This measure is particularly
robust against outliers, making it useful for assessing the strength of relationships in ordinal data. A
p-value, calculated to evaluate the statistical significance of the observed correlation, tests the null
hypothesis that there is no association between the two variables. A low p-value (typically less than
0.05) suggests rejecting the null hypothesis, indicating that the observed correlation is statistically
significant.

A.5.2 SPEARMAN RANK CORRELATION COEFFICIENT

The Spearman rank correlation coefficient is another non-parametric measure that assesses the
strength and direction of association between two ranked variables. It is calculated as follows:

ρ = 1− 6
∑
d2i

n(n2 − 1)
(49)

where:

• di represents the differences between the ranks of each observation,

• n is the number of observations.

Spearman’s coefficient also ranges from -1 to +1, with similar interpretations as Kendall’s Tau. A
coefficient of 1 indicates perfect positive correlation, -1 indicates perfect negative correlation, and
0 indicates no correlation. Spearman’s method excels when analyzing datasets that fail to meet
the normality assumptions requisite for parametric tests. To assess the significance of the Spearman
correlation, a p-value is calculated alongside the coefficient. This p-value tests the null hypothesis of
no correlation between the rankings of the variables. A small p-value (often less than 0.05) indicates
a statistically significant correlation, providing strong evidence against the null hypothesis.

A.5.3 RESULTS

The results of the Spearman and Kendall correlation coefficients are summarized in Table 10:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 10: Spearman and Kendall correlation coefficients with corresponding p-values.

Sample Spearman Kendall

Coefficient P-value Coefficient P-value

R1R2 0.8545 0.0016 0.7333 0.0022
R1R3 0.8303 0.0029 0.6889 0.0047
R2R3 0.9879 9.31e-08 0.9556 5.51e-06

A.5.4 ANALYSIS AND CONCLUSIONS

The correlation analysis indicates strong positive relationships among the samples, as summarized
below:

• For R1R2: The Spearman coefficient is 0.8545 (p = 0.0016) and the Kendall coefficient is
0.7333 (p = 0.0022), both indicating strong and statistically significant correlations.

• For R1R3: The Spearman coefficient of 0.8303 (p = 0.0029) and the Kendall coefficient of
0.6889 (p = 0.0047) further confirm significant positive associations.

• For R2R3: The Spearman coefficient of 0.9879 (p = 9.31e-08) and the Kendall coefficient
of 0.9556 (p = 5.51e-06) suggest an almost perfect correlation, accompanied by high sta-
tistical significance.

In general, a p-value less than 0.05 indicates strong evidence against the null hypothesis, suggesting
that the observed correlations are statistically significant and unlikely to have occurred by chance.

Overall, all samples exhibit strong correlations. The consistency across both correlation methods
underscores the reliability of these findings, suggesting robust relationships that warrant further
exploration.

A.6 LARGE-SCALE QUANTITATIVE ANALYSIS OF SCALING FACTOR SIMILARITIES

In the previous section, we conduct a case quantitative analysis of the similarity of scaling factors
between low-rank and full-rank training across 10 weight matrices of the LLaMA 60M model. To
further substantiate our findings, we expand the scope of our experiment to include all matrices of
LLaMA models ranging from 60M to 1B. Additionally, we add value-based metrics of similarity
(e.g., cosine similarity, mean squared error (MSE), and Pearson’s correlation coefficient), beyond
original order-based metrics. We use the same low-rank setup as in Table 2. Then, we train these
models and assess the similarity of scaling factors averaged over 10,000 steps. Additionally, to
evaluate the effectiveness of a column-level fine-grained strategy for scaling factors, we perform
a column-level quantitative similarity analysis. Due to the computational challenges posed by the
large number of columns, we randomly sample 100 columns for each matrix for analysis. Specifi-
cally, in the LLaMA 1B model, over 10,000 columns are sampled.

Both Spearman, Kendall, and Pearson correlation coefficients range from -1 to +1. A coefficient of
1 signifies a perfect positive correlation, and -1 signifies a perfect negative correlation. The p-value
helps us determine whether the observed correlation is statistically significant or if it could have
occurred by random chance. For instance, a p-value less than 0.05 means there is less than a 5%
probability that the observed correlation happened by chance if there was actually no correlation.
Generally, a p-value below 0.05 suggests that a significant correlation exists. The cosine similarity
score also ranges from -1 to 1. Vectors with scores close to 1 are very similar. As for MSE, the
smaller the value the higher similarity. As shown in Table 11 and 12, we can observe the significant
similarity of scaling factors between low-rank and full-rank LLM training (all coefficient and cosine
similarity close to 1, while p-value and MSE close to 0). Thus, it is likely that the observed behavior
is an inherent feature of LLM training, manifesting across a broad range of scenarios. This insight
provides a robust experimental basis for our proposed norm-based scaling in Fira and helps explain
its effectiveness.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 11: Spearman, Kendall, and Pearson correlation coefficients (p-values) at both the Matrix and
Column levels for pre-training LLaMA models ranging from 60M to 1B parameters, averaged over
10,000 steps.

Size Matrix Level Column Level

Spearman Kendall Pearson Spearman Kendall Pearson

60M 0.9972 (2e-62) 0.9662 (7e-26) 0.9891 (1e-46) 0.9372 (0.0) 0.7942 (0.0) 0.8723 (0.0)

130M 0.9925 (2e-76) 0.9409 (9e-37) 0.9813 (2e-60) 0.8698 (0.0) 0.6830 (0.0) 0.7805 (0.0)

350M 0.9770 (3e-113) 0.8848 (5e-65) 0.9766 (1e-112) 0.9091 (0.0) 0.7400 (0.0) 0.8272 (0.0)

1B 0.9469 (1e-83) 0.8249 (1e-56) 0.9457 (6e-83) 0.8331 (0.0) 0.6513 (0.0) 0.8112 (0.0)

Table 12: Cosine Similarity and MSE at both the Matrix and Column levels for pre-training LLaMA
models ranging from 60M to 1B parameters, averaged over 10,000 steps.

Size Matrix Level Column Level

Cosine Similarity MSE Cosine Similarity MSE

60M 0.9922 3e-04 0.9273 3e-05

130M 0.9901 2e-04 0.9046 2e-05

350M 0.9893 1e-04 0.9174 1e-05

1B 0.9795 2e-04 0.9229 1e-05

A.7 ADDITIONAL ANALYSIS OF SPIKES

Maintaining the direction of the raw gradient without correction might be unable to effectively deal
with the steep loss landscapes of LLM training like Adam (Zhang et al., 2020). The steep loss
landscapes are likely to cause abrupt increases in raw gradients. When the raw gradients increase
abruptly, the gradients’ norm after norm-based scaling may also increase abruptly, as illustrated in
Figure 4. This arises from the fact that the norm-based scaling method only adjusts the average
gradient norm of the gradient at the matrix level, failing to make fine-grained adjustments to each
parameter, unlike the optimizer Adam. As a result, a significant parameter update may occur, under-
mining previous optimization efforts, i.e. training loss spikes (Goodfellow et al., 2016; Zhang et al.,
2020).

There are a lot of methods also proposed to solve loss spiking and stabilize training, e.g., embed-
ding normalization (Le Scao et al., 2022), gradient shrink (Zeng et al., 2023), tensor-wise scaling
(Dettmers et al., 2022). However, it is crucial to clarify that our Fira does not conflict these stabiliza-
tion methods. For instance, when training the LLaMA model with Fira, it inherently incorporates
stabilization methods like RMSNorm. Our norm-growth limiter is mainly aimed at addressing the
gradient stability capability that our norm-based scaling method lacks compared to Adam. As shown
in Figure 9, when we directly use Adam to pre-train the llama model, there will be no loss spike.
However, since Fira maintains the original direction of the raw gradient (Gt − PtRt), similar to
SGD, it may lack the capability to navigate the sharp loss landscapes in LLM training, thus leading
to an additional loss spike.

In addition, for more comprehensive comparisons of our norm-growth limiter, we design two ad-
ditional gradient stabilization variants to solve the loss spike: Gradient Shrink (|St| = |St| · α +
|St−1| · (1 − α)), and Tensor-Wise Scaling (|St| = |St| · α), where St = ϕt(Rt)(Gt − PtRt) is
the corrected gradient by applying our norm-based scaling. As shown in Figure 10 and Table 13,
Fira outperforms other gradient stabilization methods. For further analysis, Gradient Shrink fails to
solve the loss spike, while Tensor-Wise Scaling solves the loss spike but led to sub-optimal results.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 13: Validation perplexity (↓) of Fira across different gradient stabilization methods.

Method Ours Gradient Shrink Tensor-Wise Scaling Gradient Clipping Without Limiter

Perplexity (↓) 31.06 33.98 33.81 31.22 32.22

500 1000 1500 2000 2500 3000
Iterations

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

Tr
ai

ni
ng

 lo
ss

Fira
Fira-w.o.-limiter
Adam

Figure 9: Training loss comparison of Adam,
Fira, and Fira without limiter.

500 1000 1500 2000 2500 3000
Iterations

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Tr
ai

ni
ng

 lo
ss

Fira
Fira-gradient-shrink
Fira-tensor-wised-scaling

Figure 10: Training loss comparison of dif-
ferent gradient stabilization variant of Fira.

A.8 MEMORY ESTIMATES.

Due to the difficulties associated with directly measuring GPU memory usage for a specific com-
ponent, we estimate the memory requirements for weight parameters and optimizer states across
various methods and model sizes (Zhao et al., 2024a). This estimate is derived from the number of
parameters and optimizer states in BF16 format. In particular, for the memory of parameters, we
multiply the total number of parameters by 2; for the memory of optimizer states, we first calculate
the total number of optimizer states according to Table 1 and then multiply this total number by 2.

A.9 ADDITIONAL EXPERIMENTS ON OVERHEAD.

We conduct additional comparisons regarding real memory usage and throughput of different
memory-efficient training methods for both pre-training and fine-tuning. As illustrated in Tables
14 and 15, Fira achieves superior memory efficiency compared to full-rank training without signifi-
cantly reducing throughput. Although Fira’s throughput is slightly lower than that of other memory-
efficient methods, it delivers exceptional performance. During pre-training, methods like LoRA
necessitate maintaining higher-rank adapters compared to full-rank training. In practice, maintain-
ing these higher-rank adapters outweighs the benefits of fewer trainable parameters, thus leading to
more memory and less throughput. Furthermore, since full fine-tuning of LLaMA 7B’s memory re-
quirements exceeds the A100’s 80GB capacity, we utilize DeepSeed’s Zero2 technology to mitigate
its memory usage.

Table 14: Real memory usage and normalized throughput when pre-training LLaMA 1B on the C4
dataset.

Method Fira Galore Flora LoRA ReLoRA Full-rank

Memory (GB) 54.6 54.6 54.5 59.0 59.0 58.5
Normalized Throughput (%) 94.2 95.9 95.9 67.4 67.4 100

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 15: Real memory usage and normalized throughput when fine-tuning LLaMA 7B on com-
monsense reasoning datasets.

Method Fira Galore Flora LoRA ReLoRA Full-rank

Memory (GB) 23.4 23.4 23.3 23.7 23.7 >80
Normalized Throughput (%) 156.1 201.1 210.3 232.8 232.8 100

0 2000 4000 6000 8000 10000
Iterations

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

Eu
cl

id
ea

n
di

st
an

ce

t(Rt) vs t(Gt)
t(Rt) vs t(Gt PtRt)
t(Gt) vs t(Gt PtRt)

Figure 11: Euclidean distance trends over
training iterations (r/dmodel = 128/256).

0 2000 4000 6000 8000 10000
Iterations

0.00

0.02

0.04

0.06

0.08

0.10

Eu
cl

id
ea

n
di

st
an

ce

t(Rt) vs t(Gt)
t(Rt) vs t(Gt PtRt)
t(Gt) vs t(Gt PtRt)

Figure 12: Euclidean distance trends over
training iterations (r/dmodel = 16/256).

0 2000 4000 6000 8000 10000
Iterations

0.9990

0.9992

0.9994

0.9996

0.9998

1.0000

C
os

in
e

si
m

ila
rit

y

t(Rt) vs t(Gt)
t(Rt) vs t(Gt PtRt)
t(Gt) vs t(Gt PtRt)

Figure 13: Cosine similarity trends over
training iterations (r/dmodel = 128/256).

0 2000 4000 6000 8000 10000
Iterations

0.996

0.997

0.998

0.999

1.000

C
os

in
e

si
m

ila
rit

y

t(Rt) vs t(Gt)
t(Rt) vs t(Gt PtRt)
t(Gt) vs t(Gt PtRt)

Figure 14: Cosine similarity trends over
training iterations (r/dmodel = 16/256).

A.10 ADDITIONAL EXPERIMENTS ON THE SIMILARITY TRENDS.

We conduct additional experiments on similarity trends of scaling factors from the same full-rank
Adam dynamic using two rank settings: 16/256 and 128/256.

As shown in Figure 11, 12, 13, and 14, the similarity exhibits fluctuations during the initial training
phase but achieves a relatively steady pattern with high similarity in the later iterations. Under lower
rank setting r/dmodel = 16/256, there is negligible reduction in similarity. Besides, ϕt(Gt) and
ϕt(Gt−PtRt) demonstrate significantly higher similarity owing to their closely aligned dimensions.

This observation further validates that ϕt(Rt) ≈ ϕt(Gt) ≈ ϕt(Gt − PtRt).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

A.11 ADDITIONAL COMPARISONS OF PERPLEXITY TRENDS.

In this section, we compare the perplexity trends of Fira, Fira-only-scaling, SGD, and Adam. As
illustrated in 15 (a), the performance of vanilla SGD is significantly inferior, highlighting its inad-
equacy for directly training LLMs. As depicted in 15 (b) and (c), while Adam demonstrates faster
convergence during the initial stages, both Fira and Fira-only-scaling achieve superior performance
in the later stages. This maybe because Fira applies an adaptive strategy only at the matrix-level
while maintaining the original gradient direction within a weight matrix. In this way, Fira may
introduce a higher degree of randomness in training and a better ability to escape the local optima.

2K 4K 6K 8K 10K
Iterations

102

103

Fira
SGD

(a) Fira v.s. SGD

2K 4K 6K 8K 10K
Iterations

102

3 × 101

4 × 101

6 × 101

Fira
Adam

(b) Fira v.s. Adam

2K 4K 6K 8K 10K
Iterations

102

3 × 101

4 × 101

6 × 101

Fira-only-scaling
Adam

(c) Fira-only-scaling v.s. Adam

Figure 15: Comparisons of perplexity (↓) trends for pre-training LLaMA 60M on C4 dataset.

25

	Introduction
	Related Work
	Preliminaries
	Regular full-rank training
	Low-Rank Adaptation
	Gradient Low-Rank Projection

	Proposed Method
	Norm-Based Scaling
	Norm-Growth Limiter
	Overall Algorithm

	Experiments
	Memory-Efficient Pre-training
	Scaling up to LLaMA 7B Pre-training.
	Memory-Efficient Fine-Tuning
	Ablation Study
	Performance under varying ranks

	Conclusion
	Appendix
	Theoretical Analysis
	Detailed Pre-Training Setting
	Detailed Fine-tuning Setting
	Plug-and-play framework for Fira
	Case Quantitative Analysis of Scaling Factor Similarities
	Kendall's Tau Correlation Coefficient
	Spearman Rank Correlation Coefficient
	Results
	Analysis and Conclusions

	Large-Scale Quantitative Analysis of Scaling Factor Similarities
	Additional Analysis of Spikes
	Memory Estimates.
	Additional Experiments on Overhead.
	Additional Experiments on the Similarity Trends.
	Additional Comparisons of Perplexity Trends.

