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ABSTRACT

A common recipe to improve diffusion models at test-time so that samples score
highly against a user-specified reward is to introduce the gradient of the reward
into the dynamics of the diffusion itself. This procedure is often ill posed, as
user-specified rewards are usually only well defined on the data distribution at the
end of generation. While common workarounds to this problem are to use a de-
noiser to estimate what a sample would have been at the end of generation, we
propose a simple solution to this problem by working directly with a flow map.
By exploiting a relationship between the flow map and velocity field governing the
instantaneous transport, we construct an algorithm, Flow Map Trajectory Tilting
(FMTT), which provably performs better ascent on the reward than standard test-
time methods involving the gradient of the reward. The approach can be used to
either perform exact sampling via importance weighting or principled search that
identifies local maximizers of the reward-tilted distribution. We demonstrate the
efficacy of our approach against other lookahead techniques, and show how the
flow map enables engagement with complicated reward functions that make pos-
sible new forms of image editing, e.g. by interfacing with vision language models.
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Prompt: “An analog clock showing exactly 4:45”

Figure 1: Test-time search can overcome model biases and reliably sample from regions of the distribution
(e.g., precise clock times) that baselines fail to capture.

1 INTRODUCTION

Large scale foundation models built out of diffusions (Ho et al., 2020; Song et al., 2020) or flow-
based transport (Lipman et al., 2022; Albergo & Vanden-Eijnden, 2022; Albergo et al., 2023; Liu
et al., 2022) have become highly successful tools across computer vision and scientific domains.
In this paradigm, performing generation amounts to numerically solving an ordinary or stochastic
differential equation (ODE/SDE), the coefficients of which are learned neural networks. An active
area of current research is how to best adapt these dynamical equations at inference time to extract
samples from the model that align well with a user-specified reward. For example, as shown in
Figure 1, a user may want to generate an image of a clock with a precise time displayed on it,
which is often generated inaccurately without suitable adaptation of the generative process. These
approaches, often collectively referred to as guidance, do not require additional re-training and as a
result are orthogonal to the class of fine-tuning methods, which instead attempt to adjust the model
itself via an additional learning procedure to modify the quality of generated samples.

While guidance-based approaches can often be made to work well in practice, most methods are
somewhat ad-hoc, and proceed by postulating a term that may drive the generative equations towards
the desired goal. To this end, a common approach is to incorporate the gradient of the reward model,
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which imposes a gradient ascent-like structure on the reward throughout generation. Despite the
intuitive appeal of this approach, typical rewards are defined only at the terminal point of generation
— i.e., over a clean image — rather than over the entire generative process. This creates a need to
“predict” where the current trajectory will land, in principle necessitating an expensive additional
differential equation solve per step of generation. To avoid the associated computational expense
of this nested solve, common practice is to employ a heuristic approximation of the terminal point,
such as leveraging a one-step denoiser that can be derived from a learned score or flow-based model.

In this paper, we revisit the reward guidance problem from the perspective of flow maps, a recently-
introduced methodology for flow-based generative modeling that learns the solution operator of
a probability flow ODE directly rather than the associated drift (Boffi et al., 2024; 2025; Sabour
et al., 2025). By leveraging a simple identity of the flow map, we show that an implicit flow can
be used to define a reward-guided generative process as in the case of standard flow-based models.
With access to the flow map in addition to the implicit flow, we can predict the terminal point
of a trajectory in a single or a few function evaluations, vastly improving the prediction relative
to denoiser-based techniques and leading to significantly improved optimization of the reward. In
addition, we highlight how to incorporate time-dependent weights throughout the generative process
to account for the gradient ascent’s failure to equilibrate on the timescale of generation, leading to
several new and effective ways to sample high-reward outputs.

Contributions. (i) We introduce Flow Map Trajectory Tilting (FMTT), a principled inference time
adaptation procedure for flow maps that effectively uses their look-ahead capabilities to accurately
incorporate learned and complex reward functions in Monte Carlo and search algorithms. (if) Using
conditions that characterize the flow map, we show that the importance weights for this Jarzyn-
ski/SMC scheme reduce to a remarkably simple formula. Our approach is theoretically grounded in
controlling the thermodynamic length of the process over baselines, a measure of the efficiency of
the guidance in sampling the tilted distribution. (iif) We empirically show that FMTT has favorable
test-time scaling characteristics that outperform standard ways of embedding rewards into diffu-
sion sampling setups. (iv) To our knowledge, we demonstrate the first successful use of pretrained
vision-language models (VLMs) as reward functions for test-time scaling, allowing rewards to be
specified entirely in natural language. We further show that the flow map is crucial for their success,
substantially boosting the effectiveness of the search process when using these rewards.

1.1 RELATED WORK

Flows and diffusions. Diffusion models (Song et al., 2020; Ho et al., 2020) and flow models (Lip-
man et al., 2022; Albergo & Vanden-Eijnden, 2022; Liu et al., 2022) are the backbone of efficient,
state-of-the-art generative model for continuous data. They are learned by regressing the coefficients
that appear in ordinary or stochastic differential equations that fulfill the transport of samples from
one distribution to samples from another. Dual to the instantaneous picture of transport is the flow
map (Song et al., 2023; Kim et al., 2024; Boffi et al., 2024; Geng et al., 2025; Sabour et al., 2025;
Boffi et al., 2025), in which we learn not the coefficients in a differential equation that needs to be
integrated, but the arbitrary integrator itself. This enables few-step sampling. Our approach in this
paper is to combine these perspectives to modify diffusions using the flow map.

Test-time scaling for diffusions. Test-time scaling in diffusions refers to the line of work that
tradeoff compute at inference time to improve the performance of a model or align the generation
with a user specified reward (Ma et al., 2025). Certain works use the denoiser associated with the
score model to perform this look-ahead on the dynamics (Wu et al., 2024; Singhal et al., 2025; Zhang
et al., 2025). However, as discussed later, there is little signal from the denoiser at early times in the
generative trajectory. Other works rely on Monte Carlo search algorithms (Lee et al., 2025; Ramesh
& Mardani, 2025), which monotonically increase the reward but reduce sample diversity. As we
will see, many of these approaches are compatible with the flow map approach presented here.

2 METHODOLOGY

We consider the task of generative modeling via continuous-time flow maps, wherein samples
ro € R from a base distribution with probability density function (PDF) py are mapped via a
diffeomorphism to samples z; from the target PDF p; known through empirical data. From there,
we will detail how the instantaneous dynamics of this map can be directly adapted (without retrain-
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ing) to sample a tilted distribution favoring a reward, i.e. to sample p1 (z) = p1 er@+F where r(x)

is a user specified reward function and F=—In Jga p1 (x)e"®) dx is a normalization factor.

2.1 BACKGROUND ON DYNAMICAL GENERATIVE MODELING

An effective means of instantiating the transport from the base PDF pj to the target PDF p; relies
on formulating it as the solution to an ordinary differential equation (ODE) of the form

&y = by(xy) Ty=0 ~ Pt=0, (D

where b; : [0, 1] x R? — R9 is a velocity field that governs the transport and is adjusted so that the
solutions to the ODE (1) satisfy x;—1 ~ p;. Since the time dependent PDF p,(z) of the solutions to
(1) at time ¢ satisfies the continuity equation

Orpr = =V - (bept) Pt=0 = Po 2)

this requirement on b; implies that the solution to (2) is such that p;—1 = p;.
Associated with these dynamics is the two-time flow map X ; : [0,1]2 x RY — R9, which satisfies
Xst(zs) = @y Vs, t € [0,1]. 3)

That is, the map jumps along solutions of (1) from time s to time ¢. Notably, if s = 0 and ¢ = 1, we
could produce a sample under p; in a single step, though we have the freedom to use more if we so
choose. This property, and the relation between the flow map and b; will be exploited below to devise
a principled adaptation procedure for X ;. Importantly, the flow map satisfies the Eulerian equation

05 X1 () + bs(x) - VX 1(x) =0, 4

which will play a role in simplifying our analysis later. Equation (4) can be obtained by taking the
total derivative of (3) with respect to s, using the ODE (1), and evaluating the result at z, = .

Stochastic Interpolants. One way to instantiate the generative models above is to construct a
PDF p; that connects pg to p; and then learn the associated the velocity field b; that gives rise to this
evolution. A common strategy to construct such a path and regress b; is that of stochastic interpolants
(Albergo & Vanden-Eijnden, 2022; Albergo et al., 2023; Lipman et al., 2022; Liu et al., 2022), in
which p; is defined as the law of the stochastic process It(xo,x1) = iz + SBrxy with (xg, z1) ~
p(zo, 1), where p(xg,x1) is some coupling from which ¢, z; are drawn that marginalizes onto
po, p1 and oy, By are scalar coefficients that satisfy ag = 81 = 1 and a3 = Sy = 0. A common
choice is to use a; = 1 — ¢t and B; = ¢, which we will use throughout for simplicity. Importantly,
using these coefficients, the law of this process satisfies (2) with the velocity field

by(z) = E[L|I; = 2] = E[z1|L] — E[zo|1], (5)
where we used I, = x; — x¢ and E[-|I; = z] denotes expectation over p(zq,x1) conditional on
I, = z. By Stein’s identity, the score is given by s;(z) = Vlog p;(z) = —15E[xo|l; = ], and
using x = E[L;|I; = 2] = (1 — t)E[xo|I;] + tE[z1|I¢], it can be expressed in terms of b; as

se(z) = (thy(z) —z)(1 — )% (6)

The velocity field b;(z) is also the minimizer of a simple quadratic objective (Lipman et al., 2022;
Albergo & Vanden-Eijnden, 2022) which, once learned, can be translated into a function for the
score via (6). Using the score, the deterministic ODE can be converted to a stochastic dynamics

dxy = [be(x1) + €r5¢(z4)] dt + V26, dW, (7)

where €; > 0 is an arbitrarily tunable diffusion coefficient and dW; is an incremental Brownian
motion (Albergo et al., 2023). The solutions to (7) sample the same PDF p; as (1), as can be seen
from the fact that the PDF of (7) satisfies the Fokker-Planck equation

3tpt = —V . (btpt) + etV . [—Stpt + th] (8)

which reduces to (2) since s;p; = Vp;. The velocity field given in (5) is related to the two-time
flow map X ; via the tangent identity (Kim et al., 2024; Boffi et al., 2025)

llg}t 01 Xs1(z) = by(), ©))
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Figure 2: Schematic overview of test-time adaptation of diffusions with flow map tilting. Using the look-ahead
map X¢,1(x¢) in the diffusion inside the reward, reward information can be principly used through the tilted
trajectories (green lines). This allows us to perform better ascent on the reward, and the importance weights A
take on a remarkably simple form that can be used for both exactly sampling p: and search for maximizers of p.

which says that for infinitesimally small steps, the variation of the flow map output in time is
characterized by the velocity. To automatically enforce the boundary condition X (z) = z, we
can express the flow map as

Xsi(z) =24 (t — s)vs (), (10)

where v () : [0,1]2 x RY — R is a function of s, ¢, and z defined through this relation.
Importantly, the velocity field is accessible directly from the flow map by using (9) on (10):

Ut’t(x) = bt(l') (11)

As such, training a flow map model instead of just a velocity model gives access to both the drifts
in (1) and (7) as well as the any step model, i.e. the ability to look ahead our trajectory.

2.2  FIXING INFERENCE-TIME ADAPTATION OF DIFFUSIONS WITH FLOW MAPS

A contemporary question is how best to adapt the SDE (7) to tilt toward samples that score highly
against a time-dependent reward r(z) satisfying 7o = 0 and 7,—; = r so that so that the time-
dependent tilted PDF p;, = pye”(*)+F satisfies pr—g = po and py—1 = p1 = p1e”TF. One may
want to sample exactly under the tilted PDF p; = p.e”(®)+F for scientific applications, or one may
want to track local maximizers of p, for example in image generation procedures. This is useful for
ensuring user prompts align with image content.

Tilting the diffusion. A natural way to modify the SDE (7) is to add the gradient of the time-
dependent reward 7; to the score, i.e. use

di’t = [bt(fgt) -+ EtSt(ft) -+ etVTt(it)]dt -+ vV 26tth, .i() ~ Po (12)
To implement this change in practice, however, we face an issue:

A meaningful r+(x) is not readily available, as user-specified rewards are usually learned only on
the data-distribution, i.e. at time t = 1.

One could think of several solutions to this problem: Naive look-ahead: This amounts to using
e.g. ri(x) = tr(zr). Unfortunately, the gradient dynamics from ¢Vr(z) provides no clear signal
at small times when Z; is still far from the region where the reward r(x) is meaningful. Denoiser
look-ahead: A common workaround for the fact that the reward has no signal for most of the
trajectory is to use the denoiser D;(x) = E[z1|[; = z] to estimate where the sample would have
gone. That is, instead of r;(x) = tr(x), we could instead use r¢(x) = tr(D(z)). This strategy
is tractable because the denoiser is readily available from the score. However, this still does not
provide useful information early on in the dynamics, as the denoiser is only effective at producing
samples close to the data distribution later in the evolution. Flow map look-ahead: Intuitively, the
above dynamics are better if one works instead with the flow map defined in the previous section.
Because the flow allows us to look ahead at any point on the trajectory, e.g. by taking z; at time ¢
and computing X 1 (Z;), and because the velocity field associated to the flow map is accessible via
limg_; 0, X ¢ (x) = vy, (), we can instead sample with the following SDE:
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Prompt: “A man reading a book that shows a picture of Prompt: “A bicycle with square wheels”
the same man reading the same book”

Figure 3: Qualitative results using VLM-based rewards. Prompts where the base model fails to generate
aligned outputs are corrected by FMTT, with flowmap look-ahead producing the most reliable improvements.

dr; = Ut’t(.i‘t)dt + € [St(jt) + tvitT(XtJ(i‘t))] + V2€e,dWy, To ~ Po (13)

where 7 (z) = tr(Xy,1)(z) makes use of the exact look-ahead to properly evaluate the reward for
any t, even t = 0. The above could be interpreted as a continuous deformation of how the 1-step
flow map would evolve under ascent on the reward.

2.3 CORRECTING THE DYNAMICS FOR UNBIASED SAMPLING

While using the flow map composed with the reward makes possible the precise use of the reward
for all times in the diffusion trajectory, in applications where it is important to exactly sample the
tilted distribution j;, the dynamics in (13) are not sufficient to fulfill this. This gives rise to the
second issue, for any version of (), with or without the flow map:

The PDF associated with (12) is not the tilted density py.
To see why this is true, note that we can explicitly compare the PDF g, of 2, to that of p;. Indeed,
the PDF j,(x) of Z, satisfies:

Oipr +V - (bipr) = &V - (=5t — Vi) pr + V), (14)
and we can show explicitly that p; satisfies a different, imbalanced equation which can be obtained
by expanding 9;p; + V - (bsp1):

Oupr + V- (bepr) = Ou(e" ) + V- (bye™ e py) = (Opry + OuFy) pr + by - Vrapy (15)

where we used the FPE (8) with ¢; = 0 to get the last equality. Since Vj; = (s; + Vr,)p: we can
add the diffusion term €,V - (—(s¢ + Vry)pe + Vi) = 0 to (15) to arrive at

Opr + V- (bepe) = &V - (=5 + Vre)py + Vo) + (be - Vre + Opre + 0uFy) py. (16)

As we can see, the extra term (b - Vry + 0y + 8,513}) p¢ on the RHS of this equation differentiates it
from being the law of (12). Nonetheless, we can account for this term with weights A; emerging as
the solution of a different differential equation coming from an adaptation of the Jarzynski equality
(Jarzynski, 1997; Vaikuntanathan & Jarzynski, 2008):

N

Proposition 2.1 (Jarzynski’s estimator). Assume that ro = 0 so that py = po. Let Iy solve the
SDE (12) with o ~ pg and define

t
A, :/ (Ba (Ba) - Vs (s e Bora (5]l (17)
0
Then for all t € [0, 1] and any test function h : R — R, we have
. _ Ele?th(2,)]
/Rd h(z)pe(z)dz = TEA] (18)

where the expectations at the right-hand side are taken over the law of & = (Z+)se[o,1)-
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Figure 4: Qualitative comparison on three basic geometric rewards (Symmetry, anti-symmetry, rotation invari-
ance). The gradient-based methods that change the generative dynamics produce sharper images that satisfy
the constraints more reliably than prior methods.

The proof of this statement in Appendix A.l relies on manipulating the augmented FPE of the joint
PDF f;(x,a) of (Z;, A;). This relation ensures that the lag associated to naively using the gradient of
the reward in the diffusion can be compensated for by reweighting the trajectories, and, in addition,
these weights can be used to perform resampling of the trajectories as is done in Sequential Monte
Carlo (SMC) and birth/death processes, as is depicted in Figure 2. Here, as the trajectories walk out,
the walkers can be resampled using the importance weights, removing some and duplicating others.

Simplicity of importance weights with the flow map. Interestingly, the importance weights in
(17) take on a remarkably simple form when we use as r;(x) the reward composed with the flow
map, as stated in the following proposition

Proposition 2.2 (Unbiased Flow Map Trajectory Tilting). Using the same notations as in Propo-
sition 2.1, if re(x) = tr(X¢,1(x)), then the importance weights defined (17) reduce to

¢
At:/ r(Xs1(Zs))ds. 19)
0

This result is proven in Appendix A.2, and relies on a simple modification of the proof of Proposi-
tion 2.1 and the Eulerian equation (4). Thanks to the flow map, the complicated derivatives appearing
in (17) reduce to simply compounding the reward over the look-ahead trajectory.

Reward-modified drift. A variant of Proposition 3.2 makes use of not only augmenting the score
with the gradient of the reward with the look-ahead, but also the drift itself. Because vy, is the
velocity field of a stochastic interpolant and is related to the score via (6), we can replace the SDE
given in (13) with

Aty = [V, () +0eVre(Ze)] dt + €4 [5¢(T4) + Ve (Ty)] dt 4 2€,dW; Zo ~ po, (20
where 1, = (1 — t)/t, and the weights with

dA; = ”(xt)

e (V7P 4+ Vre - s¢) (24)

Nt ~ _
Z¢) - (d7 W —dW, 21

26 (Z) - ( t ) 2D

where d~ W, is the backward Itd differential and Ay = 0. It is proven in Appendix A.2 that these

equations also provide an unbiased sampler of the tilted distribution by ensuring (18) holds. This

further augments the sampling process toward the tilt and will prove useful in the experiments below.
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Figure 5: Comparison of MNIST tilted sampling to generate digits that would be classified as zeros. Left:
using (20) with no look-ahead. Center: Doing the same with the denoiser composed with the reward. Right:
Doing the same with the flow map i.e. our method FMTT. FMTT most consistently generates zeros, has the
lowest total discrepancy, and the smallest thermodynamic length.
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Characterizing the effectiveness of the flow map trajectory tilting As discussed above, the
dynamics (13)-(19) and (20)-(21) are simulated via SMC, which involves a system of N particles,
a time discretization (¢j)%_, and a (random) number of resampling steps R < K. SMC algorithms

naturally yield an unbiased estimate Zsy;c of the normalization constant E[e*], and a low variance
Var[Zsmc] is a proxy for an efficient sampling schedule, as it signals that the empirical distribution

of the N particles is close to p;. However, Var[ZSMc] often takes exponentially high values, making
it hard to approximate, and it depends on N, K, and R. The following proposition introduces the
thermodynamic length, a quantity related to Var[Zsy¢] which does not suffer from these issues.

e N

Proposition 2.3 (Total discrepancy and thermodynamic length, informal). The variance

Var[ZSMC] can be expressed in terms of the number of particles N, discretization steps K,
and resampling steps R, and the total discrepancy D(T) which depends on discretization sched-

ule T = (tx)E_, and is computable in practice. For optimal T, K+/D(T) can be replaced by
thermodynamic length A, which can be computed from the A; updates and that is agnostic to T,
N and R, and satisfies that A < K+/D(T).

From sampling to search: making the most of rewards in practice. Notably, the importance
weights defined in either (19) or (21) do not need to be used to perform exact sampling. They can
also be used to perform various greedy search algorithms that search for samples with high reward.
That is, we are free to use top-n sampling approaches in place of the resampling we’d usually do in
SMC. Unlike (Ma et al., 2025), this use of top-n still makes use of the gradient of the reward along
the trajectory, while also making use of better signal thanks to the flow map.

3 NUMERICAL EXPERIMENTS

Algorithm 1 details all the inference-time adaption techniques that we introduce: The base algorithm
described in Proposition 2.2 corresponds to the choice €, = ¢, andny = Oforall k = 0 : K, and
Sampling = True.The reward-modified algorithm described in Proposition A.1 amounts to setting

€ =€, and n =N, = Btk_(%ﬁtk — ﬁtk) forall kK = 0: K, and Sampling = True.

3.1 THERMODYNAMIC LENGTH CONTROL ON MNIST

To demonstrate that the thermodynamic length is a meaningful diagnostic of the performance of
the tilt, we compute the thermodynamic length on the problem of tilting an unconditional image
generation model to a class conditional one. This will allow us to show that the process driven by
FMTT more efficiently samples the tilted distribution of interest. For sake of expediency to make the
computation of the thermodynamic discrepancies and length calculable, we measure and compare
these quantities on an MNIST experiment where the reward model is for a classifier to assign high
likelihood to the unconditionally generated image being a zero. In Figure 5 we compare the three
setups specified below (12) to show that higher performance on the classification task aligns with
lower total discrepancy and lower thermodynamic length. This is precisely what we see, showing
that FMTT, our flow map method using (13) and the weights (19) in an SMC procedure, achieves
perfect classification accuracy along with the lowest total discrepancy and thermodynamics length.
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Prompt: “A tiny desert landscape with sand dunes, a crescent moon above, and a lone camel silhouette, all
inside a transparent glass orb located in the top right of the image on a black background”

Prompt: “A miniature forest with tall pine trees, a glowing campfire, and fireflies drifting in the night sky, all
inside a keyhole on a black background”

Figure 6: Qualitative comparison on masked rewards. Only our flow map-based FMTT reliably satisfies the
constraints, concentrating content in the unmasked regions.

3.2 TEXT-TO-IMAGE EXPERIMENTS

We evaluate our approach on text-to-image generation using the 4-step distilled flow map from Align
Your Flow (Sabour et al., 2025), trained by distilling the open-source FLUX.1-dev model (Labs,
2024). We consider three categories of reward functions: 1) Human preference rewards capturing
visual quality and text alignment, 2) Geometric rewards enforcing structural constraints such as
symmetry or rotation invariance, 3) VLM-based rewards defined through natural language queries.

As baselines, we compare against gradient-free and gradient-based methods. Gradient-free ap-
proaches such as Best-of-N (Chatterjee & Diaconis, 2018), Multi-Best-of-N (Lee et al., 2025), and
beam search (Fernandes et al., 2025) rely on sampling and selection, and remain confined to the
base model’s distribution. Gradient-based methods use reward gradients, but differ in how they
apply them: ReNO (Eyring et al., 2024) performs gradient ascent in the initial noise latent space,
keeping samples tied to the base distribution, whereas our FMTT algorithm (and its ablations) use
the gradient to modify the generative process itself, enabling exploration beyond the model’s support
and generation of out-of-distribution samples. Notably, the gradient of the reward used in FMTT
efficiently gives meaningful signal for the whole trajectory thanks to the flow map, enably OOD
sample generation for highly nuanced rewards.

Human Preference Rewards. To quantitatively benchmark FMTT, we follow prior work (Eyring
et al., 2024) and use a linear combination of PickScore (Kirstain et al., 2023), HPSv2 (Wu et al.,
2023), ImageReward (Xu et al., 2023), and CLIPScore (Radford et al., 2021) as the reward and
perform evaluation on GenEval (Ghosh et al., 2023), which consists of /=550 object-centric prompts
and measures the quality of generated images using a pre-trained object detector. Results in Table 1.

The base model, FLUX.1-dev, achieves strong scores due to its training on large amounts of object-
centric data. Distillation into a 4-step flowmap slightly reduces performance but significantly accel-
erates generation. A simple best-of-/V search on top of the flowmap recovers this drop and surpasses
the base diffusion model while remaining about 30% faster. More advanced search methods, such
as multi-best-of- N or beam search, yield additional but modest gains. Using reward gradients with
FMTT provides a further small improvement. It is important to note that the base FLUX model has
already been post-trained with human preference data. As a result, optimizing for the same types
of reward during inference cannot substantially shift its output distribution, which explains why
improvements across methods remain limited.

Finally, we ablate the use of the 4-step flowmap look-ahead by comparing FMTT against variants
using either a 1-step denoiser or a 4-step diffusion sampler. The flowmap look-ahead consistently
performs best, in line with our earlier findings.
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Table 1: Quantitative results on GenEval.

Method Mean T Single Obj. T Two Obj. T Counting? Colors T Position T Attr. Binding t NFE
Diffusions + Flowmaps

FLUX.1 [dev] 0.65 0.99 0.78 0.70 0.78 0.18 0.45 180
Flowmap 0.62 0.99 0.72 0.63 0.80 0.19 0.39 16
Gradient-Free Search

FLUX.1 [dev] + Best-of-N' 0.75 0.99 0.94 0.83 0.86 0.26 0.57 1440
Flowmap + Best-of-N 0.73 1.00 0.88 0.82 0.85 0.25 0.59 128
Flowmap + Multi-best-of-N 0.76 1.00 0.95 0.84 0.85 0.26 0.69 1280
Flowmap + Beam Search 0.75 1.00 0.92 0.86 0.85 0.29 0.58 1200
Gradient-Based Search

Flowmap + ReNO 0.71 0.98 0.89 0.79 0.89 0.20 0.57 1280
EMTT (Ours) 0.79 1.0 0.97 0.90 0.91 0.30 0.64 1400
EMTT - 1-step denoiser lookahead 0.75 0.99 0.90 0.87 0.87 0.26 0.59 350
FMTT - 4-step diffusion lookahead 0.75 0.99 0.93 0.86 0.89 0.27 0.57 1400

Geometric Transformation Rewards. Recall that FLUX.1-dev has already been trained on hu-
man preference data, so its output distribution is already biased toward high preference rewards. This
explains why much of the improvement in the previous experiments could be achieved with a simple
best-of-N search, with a slight additional boost being obtained when using gradient-based methods.
This changes when the reward function is more specialized and achieves high values only in the long
tails of the base model’s output distribution. An example is a reward that enforces invariance under
simple geometric transformations, defined as r(z) = —d(x,T(x)) where T(z) : R — R is a
transformation function and d(+, -) is a distance metric. For example, if 7" is a masking operator, this
reward incentivizes blackening the masked regions which can be used as a way to position elements
in the scene. Similar rewards can be defined for symmetry, anti-symmetry, rotation, and so on.

Figure 4 shows that the base model roughly aligns with these objectives but does not fully satisfy
them (the small planets break symmetry, the cats eyes aren’t anti-symmetric, and the koi fish have
different colors so is not rotation invariant). Prior methods such as multi-best-of-N (Lee et al.,
2025) and ReNO (Eyring et al., 2024) also fail, either breaking constraints or producing blurry
images. In contrast, our gradient-based variants directly modify the dynamics, producing sharper
outputs that more reliably satisfy the constraints. For a harder case, we evaluate the masked reward
in Figure 6. FMTT with a denoiser look-ahead produces darker images with higher rewards than
the base model, but fails to move all content to the unmasked region. Using a flowmap look-ahead,
however, successfully maximizes the reward, generating images that fully satisfy the constraint.

VLMs as a Judge. We explore using pretrained VLMs to judge our images. The setup is straight-
forward: we provide the generated image along with a binary yes/no question, and define the reward
as the difference between the log-probabilities of the answers “Yes” and “No”. This formulation al-
lows rewards to be expressed entirely in natural language. Since some VLMs accept multiple image
inputs, we can also define rewards that depend on comparisons between the generated image and
additional context images. In our experiments, we use Skywork-VL Reward (Wang et al., 2025) for
single-image settings and Qwen2.5-VL-7B-Instruct (Bai et al., 2025) for multi-image applications.

Qualitative results are shown in Figure 3. The figure highlights two prompts where the base model
fails to produce text-aligned outputs. When the VLM is used as a reward to judge whether the
prompt is a correct caption for the image, our FMTT algorithm generates outputs that match the
input text much more accurately. While FMTT with a denoiser look-ahead improves text alignment
in some cases, its success rate is low (only 1/4 images match the prompt). By contrast, FMTT
with a flowmap look-ahead consistently produces better-aligned images, such as correctly repeating
characters in the book example, and does so with a higher success rate and average final reward. For
additional VLM-based experiments, including multi-image settings, please see Appendix D.

The reward here is based on the question: “Is {PROMPT} a correct caption for the image? Please
answer no if the image is not in high definition (i.e., clear, sharp, not pixelated, and not blurry).”

One caveat is the possibility of reward hacking (Amodei et al., 2016), as the search procedure explic-
itly maximizes the VLM reward. To mitigate this, the yes/no questions must be written with enough
detail to prevent the algorithm from exploiting loopholes. Discussion and examples in Appendix E.

Conclusions. We have presented FMTT, using flow maps for improved test-time scaling of
diffusions. We envision that FMTT can overcome the limitations of common image generation
systems when nuanced control is required or challenging rewards are given, for instance by VLMs.
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A PROOFS

A.1 PROOF OF PROPOSITION 2.1

Consider the coupled SDE/ODE:

dit = (bt(.i‘t) + EtSt(.ft) =+ etVrt(it))dt + vV 2€tth7 i’o ~ P0,

y N ) (22)
dA; = (be(T1) - Vre(Z:) + Opre(@0)) dt, Ao = 0.

Let f;(z, a) be the joint probability density of (Z;, A;). Then, it satisfies the Fokker-Planck equation

Ofi(x,a) ==V ((bi(z) + esi(@) + & Vri(2)) fi(z, ) — Oa((be(2) - Vri(z) + Opri(a)) fi(w, a))
+€tAzft(xaa)a

fi(z,a) = po(z)do(a).
(23)

Observe that if we let p;(x fR fi(x,a)e® da, p satisfies

O¢pe(x /&gft z,a)e® da
= /]R ( — V- ((bt(x) + ese(x) + etVrt(z))ft(z, a)) - ((bt(x) -Vri(x) + 8t7‘t(x))8aft(as, a)
+ et Ay fi(x, a))e“ da
=-V,- ((bt(m) + ese(z) + etVrt(x)) / fi(x,a)e” da)

— (be(2) - Vry(z) + Opre(z /8ftma)e da + ;A </ft eda)
:—V;E' ((bt( )+6t8t< )—i—etVrt( ))Pt( )) (bt( )'V?"t( )“!‘6{/}( )) t(l')‘i‘QAwﬁt(.’E).

(24
where the fourth inequality holds through integration by parts:
/aftxaeda—[ft(a:a /ftacaaeda— /ftxaeda——pt()
(25)
We can reinterpret equation (24) as stating that for any test function h,
h(z)p(x) dv = / / fi(@,a)e®h(z) dadx = Ele™ h(i,)). (26)
Rd Rd JR

However, p; is not a normalized density for t > 0: if we integrate both sides of (24) over R, and
we use the divergence theorem, we obtain that

Oy /Rd pe(xz) de = /Rd (be(z) - Vre(z) + 0pri(x)) pi () dax, /Rd po(x)de =1 (27)

If we define F} = fRd pt(x) dz, and we define p;(x) = p:(x)/Fy, we obtain that

Oupn(x) = —Vo - (be(@) + er50(2) + €1 Vi) ﬁtg)) + (be(x) - Vre(x) + Oyri(a) ﬁtg) FaA, ﬁ;gf)
_ O pu()
O
(28)
and by (27), if we define Ft = log F}, we have that
 O,F 5
o, = Lt _ / (be(a) - Vo) + Oy () P2 e — / (be(x) - Vri() + Oyre(@)) () da.
Ft Rd Ft Rd (29)
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Plugging this into the right-hand side of (28) and substituting p;(z) = p;(x)/F} yields a PDE for p;
which matches (16):

Bipr(x) = =V - ((be(2) + e50(x) + € Vre(x)) pe(@)) + (be(2) - Vrg(a) + By () — atFt)ﬁg(Ox) + €t Qg pi().
(30)

To show that equation (??) holds, we rely on (26) and the fact that F}, = [o, [5 fi(x,a)e® dadx =
E[e]:

R 1 _ _ Ele?th(i)]
[ n@itayds = & [ nantede = S50 (1)

A.2 PROOF OF PROPOSITION 2.2

When 74 (z) = tr(X¢ 1(z)), the log-weight A; defined in (17) satisfies the ODE

dC%t = tby (%) - Vi, r(Xe1(20)) + 0 (tr( X1 (1))
= thy(Zy) - VXt,l(:%t)TVT(Xm(:Et)) +7(Xe1(3) + 10 X1 (34) - V(X 1(34)) (32)
=tVr(X1(2,)) - (8,5Xt71(i‘t) + VXt,l(jt)bt(jt)) (X (7)),

The Eulerian identity states that
O Xi1(x) + VX, 1(x)b(x) = 0. (33)

To prove (33), we write 0 = 05(X51 0 Xy.5)(x) = 05 X5.1(X15(2)) + VX1 (Xt 5(2))0s Xt s (),
we use that 0,X; s(z) = b(X, s(z)), and we set s = ¢. Plugging (33) into the right-hand side of
(32) yields

dA;

ar = T(Xt,l(i’t))a 34

which concludes the proof.

A.3 MODIFYING THE DRIFT WITH THE FLOW MAP REWARD

When the dynamics (1) has been learned using stochastic interpolants, the score s;(z) and the vector
field b.(z), or equivalently v .(z), are related to each other via (6). Since the score of the tilted
distribution at time ¢ = 1 is 1 (z) = Vlog p1(x) = s1(x) + Vry(z), we obtain that the vector field
01,1 () for the tilted distribution reads
A B . B B .
b11(z) = a1 (Stan — )81 (z) + Sha = vy 1 (@) + o (B — 69) Vi (), (35)
1

B B B1

and we can define 0, ; analogously replacing 1 by t. As we show in the following proposition, we
can substitute in 9, + for v ; in the SDE (13), and adjust the dynamics of A* appropriately such that
the same result holds.

Proposition A.1 (Unbiased Map Tilting with reward-modified vector field). Letn; = oy (%at —
&y) and ry(z) = tr(X,1(2)), and Ty, A, be the solution to (20) and (21) respectively. Then for

all t € [0, 1] and any test function h : R? — R, we have

Az,
h()po(w)de = B PE] (36)

R E[eA]

where the expectations at the right-hand side are taken over the law of T = (T+)e0,1)-
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When we replace by () by by (x) = by () + 1;Vr(z), the analog of equation (15) is:

Qupe + V- (bupe) = 0u(e" ) + V- (bre™+ 2 py)
= (Oyre + O F) py + e, py 4 (be +meVre) - Vrepe + etiy. (bt +neVre)pe)
= (O¢re + 8uF3) e+ be - Vrope + mel| Vre|2pe + mee” TV - (Vrepy)

= (bt -V + Oy + 77t(HV7"t||2 + Ary 4 (Vry, 3t>) + atﬁt>ﬁt
(37)
where the third equality holds because d;p; + V - (b;p;) = 0 by the FPE (8) with ¢; = 0, and in the
fourth equality we used the definition s;(z) = V log p:(x). Hence, when we replace b; by b, the
terms by - Vry + 9yry get replaced by by - Vry 4 0yry 4 e (| V|2 + Ary + (Vry, s4)).

And in analogy with Proposition 2.1, if (Z;, A;) is a solution of

d.ft = (Bt(i‘t) + €t5t(-;i:t) + etVrt(fct))dt + vV 26tth, jo ~ 0, (38)
dAt = (bt(i‘t) . V’I“t(.i‘t) + at’l"t(.’i?t) + nt(||V7“t(§ét)H2 + A’I"t(.’f?t) + (Vn(fét), St(.’i‘t»)) dt, AO = O,
(39)
then for all ¢t € [0, 1] and any test function h : R? — R, we have
X _ E[eh(@)]
e h(m)pt(a:)da: = W (40)

We omit a full proof of this statement, as it is analogous to the proof of Proposition 2.1 in Ap-
pendix A.1, simply replacing b, by by, and by - Vry 4 0,1y by by - Vry + 9yry + e (|| V|2 + Ary +
<V7‘t, St>) .

It only remains to show that the ODE (39) is equal to the ODE (21) in the statement of the result.
Since r¢(x) = tr(X: 1(x)) as in Proposition 2.2, using the argument in Appendix A.2 yields

ri(x) .

b(x) - Vri(z) + Ore(x) = r(Xyq(2)) = "

Thus, the solution of equation (39) is
e (&, ~ N - -
A, :/ ( (T ) o, (195 @) |2 + Ay (@) + <vr7(zf),57(x7)>)) dt. (42
0

Next, we handle the term Vr;. Applying Lemma A.2, we obtain that

¢ ¢
/ N Ar (Z,)dr = / N A(r o X 1)(Z,)dr
0 0

(41)

(43)

’

¢ TNr g s
- XT ~‘r 'd_W‘r - X‘r ~7' 'dW‘r;
| =vee X | =vee X))

And plugging this back into (42) concludes the proof:

(T N - _ N
dAt = |: t(t t) +’l7t(||v’f‘t||2+v’l"t . St)(l't):| dt—&-\/%Vrt(xt) . d Wt—\/%Vrt(xt) . th
(44)

Lemma A.2. Assume that (T)¢c(o,1) satisfies the SDE (38). We have that

t’ t’ t/
/ mTA(roXﬂl)(gsT)de/ (o X,a)(E,) - d” W, —/ N (r o Xr1)(E,) - AWy,
t t t

V26, V26,
(45)
where the forward and backward Ito integrals are defined respectively as

t n—1

Hy-dW, = lim Y H, - (W, — W), (46)
t ‘Trl—)O k=0
t n—1

Hy-d“Wy = lim > Hir s (Wi, —Way). (47)
t T k=0

14



Under review as a conference paper at ICLR 2026

Here, (Hy)i<s<w is a process adapted to the filtration induced by the Brownian motion W such that
E[ftt |Hs||?ds] < +oo, m = {t =ty < t; < -+ < t, = t'} is a partition of [t,t'] with mesh
|7| = maxy,(tg+1 — tx), and the limits are L? limits.

Proof. By definition of the forward and backward It6 integrals,

t t n—1
/ Hrd“Wr = Hr W = ‘h|11>10 Z (Htk+1 - Htk) ’ (Wtk+1 - Wtk) = [H’ W]t7 (48)
0 0 =0 =
where [H, W], is known as the quadratic variation of H and W. Let us set H, = —=V/(r o

V2er

X:1)(&r) =4 V(roX,1)(&,), where we defined v, = \7’4 By It6’s lemma,
d(vr - V(ro X'r,l))(i‘r)
=Vt <8tV(7‘ o} Xt’l)(.’i-,—) + V2(r e} Xt71)(fi'7-) . (i)t + €tSt — etVrt)(ch) + etV . V2(7" o Xtyl)(fi",-)> dt

+ ’%V(T O Xt71)(.i‘r) dt + 2€t’ytV2(T o Xt,l)(.’i‘-,—)th.
(49)

When we simplify the quadratic variation, only the stochastic term survives:

[H, W] = lim Z V2e0,70, (V" (r o Xo, 1) (Ze,) (Wepy = Wi ), Weyy — Way)

|| —0

t
= lim Z,/2etk%kTr(v2(roth,l)(;ﬁtk))(tkﬂ—tk):/ V2e v A(r o X, 1) (2,) dr
= 0

|| —0 o
t
= / ™ A(r o X 1)(Z;) dr,
0
(50)
which concludes the proof. O

Remark A.3 (On the factor 7). Observe that the proof of Proposition A.1 would also go through
if we had defined by a different factor multiplying Vr, instead of n.. The rationale for choosing n,
is that the flow matching vector field b;(x) can be written in terms of the score function s;(x) as
follows:

be(x) %erat(%at fo'zt)st(x) = %x+nt5t(x). (51)
Thus,
be(z) = %x o (s1(x) + V(). (52)

Hence, in replacing by (x) by l;t(x) we are substituting the score of the base process by the score of
the tilted process.

Remark A.4 (Computing It6 integrals vs. the Laplacian Ar;). The log-weight A; could be com-
puted by solving the ODE (39), but that would require approximating the Laplacian Vr; using the
Hutchinson trace estimator, which would increase variance and add substantial computational cost.
By rewriting the integral of Vry in terms of forward and backward Ité integrals, we are able to
obtain low error ODE solutions without additional overhead.

B ANALYZING THE PERFORMANCE OF TEST-TIME SAMPLING ALGORITHMS

B.1 SIMULATING THE DYNAMICS WITH SMC

The natural approach to handle the weights e“* in Proposition 2.2 and in Proposition A.1 is sequen-
tial Monte Carlo (SMC), which is implemented in Algorithm 1. Let 7 = (tk)szo be an annealing
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schedule satisfying 0 =ty < -+ < tx = 1. The SMC sampling procedure starts with N particles
Xo = (X{§)nepny drawn from the reference, X' ~ po, and initial weights wo = (w(),en] With
wf = 1. For each subsequent iteration k € [K], we produce X, and wy, by propagating, reweight-
ing, and optionally resampling”. In what follows, we use a notation similar to the one of Syed et al.
(2024).

Propagate. Evolve X;_; forward with the Markov transition kernel My, |+ (zx—1) to obtain
X = (X} )ne[n)> Where

X}? ~ Mtk—lytk(X]?—l)' (53)

For the dynamics of Proposition 2.2 and Proposition A.1, the Markov transition kernels are the
Euler-Maruyama updates for the SDEs (13) and (20), respectively:

XI? = X]?,1 + [btk—l(X]:Zlfl)—"_etk—l(Stk—l(X]:ZL*I)_‘_VTtk—l(Xlgfl))](tk_tkfl)

+ \/m 2—17 EI?—l ~ N(OaI)v

Xp= Xpq 4 by (X)) + e, Ve, (X)) ey (St (X)) + Ve, (X)) (e —tk—1)

+ \/m 1?717 51?71 ~ N(Oa I)v

(54)

(55)
Reweight. Update the weights using the incremental weight function gy, _, ¢, (Tk—1, Z1):
Wi = (wg)ne[N]’ wl? = w2,1 Gt_1,te (XIZLD XI?)’ (56)

where for the dynamics of Proposition A.1 and Proposition A.1, the expression of g;, , , is, re-
spectively,

Gtrrtn (X1, X)) = exp ((tk — toe1)r (X, 1 (X71))) + otk — te—1]), (57)

n n Tty (XT/L— ) n
Gt_1,tx (Xk—lek) = exp ( |:k1k1+77tk1 (”vrtk—l H2+V7ntk71 ! Stkl)(Xk—l):| (tk - tk—l)

th—1
b —tk—1 te—tr—1
+771‘4@ Vrfk(Xl:L) '52—1*77&4 vrtkq(XI?—l) '51?—1
2€tk 26tk—1
+o(|ty — tr—1l),

(58)

The terms o(|tx — tx—1|) account for the higher-order numerical errors that we incur by simulating
the coupled SDE-ODE using the Euler-Maruyama and Euler schemes. In practice, we disregard
them, but they must be included for a rigorous theoretical treatment.

Resample (optional). On a (possibly random) subset of iterations R C [K] determined by a crite-
rion depending on (X, wy), apply a resampling step
Xy + resample(Xy, wy),

to stabilize wy, and favor propagation of particles with higher relative weight. Concretely, set X} <—
X ¥, where a;, = (a})ne[n) is a random ancestor index vector with a}' € [N] and

m
Wy

—r m € [N].
Zje[N] wy,

Play =m|wyg) =

After resampling, reset the weights via wi < 1 for all n. See (Chopin et al., 2022) for annealed-
SMC-specific resampling schemes, and (Dai et al., 2020) for a recent review of SMC samplers.

The SMC procedure yields an unbiased estimate of the expectation [, h(x)py, (x)dx for any test
function h and any k € [K]. Namely, if we let p; be the unnormalized density as defined in

“While in Algorithm | we allow for a number of clones C' greater than one, for simplicity, the analysis we
perform in this section is with C' = 1.
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Appendix A.1, recall that R N [k] denotes the subset of iterations where a resampling step happens,
and for r € R we let w,. be the weight prior to resetting to 1, we have that

/}Rd h(:v)Ptk,(x)dszK 11 Z );Vniwg (X,g)}, (59)

reRNk— 1] n=1

Setting h = 1 and recalling that p“t,c( = pt,(x)/ [ga Pr, (x)dz, we obtain that

: N N
5 _ n1 Wi, ] Sk) 1 n 1 n
/Rd h(@)py, (x)dx = E[Z(k) . v Zsme = ( H N Zwr> X (N Zwk)

SMC] reRNk—1] n=1 n=1
(60)
If we set £ = K, we obtain that
E [ZSMC N =l K= K0 o Zl wKZ(XK)} X
h(x)p1(z)dx = iv — ) where Zgyic = —» w;.  (61)
L v 1SS

ZSMC is known as the SMC normalization constant. Observe that E[ZSMC fRd p1(z)dx == Z.
Thus, low Var[ZSMC /Z] is a proxy for good performance of the SMC procedure. In Appendix B.3

we reproduce a result by Syed et al. (2024) that expresses Var[ZSMC /Z] in terms of the parameters
of the SMC procedure, using the concept of total discrepancy from Appendix B.2.

B.2 THE INCREMENTAL AND TOTAL DISCREPANCIES

Following Syed et al. (2024), we define the normalized incremental weight function G 4 as
grp(z,2')
E(x, X" )~pr@M, 4 (g2, (X, X7)]

where g; - is the unnormalized incremental weight function defined in (56) and M, 4 is the Markov
transition kernel defined in (53).

Gt t/(ﬂf X ) (62)

Given G v from time ¢ to time t/, the incremental discrepancy D(t,t') is defined as
D(t,t ) IOg (1+V&T(X X’)Npt®Mf o (Gt tl(X X/))) (63)

Given a sequence of timesteps 7 = (t;)&_ with tg = 0, tx = 1, tor k < k', define D(T, ty, t))
as the accumulated discrepancy between iterations k and k' and D(T) as the rotal discrepancy:

D(Tatkatk’) = Z D(tk”flatk”)v D(T) = D(T,O,l) (64)
k" =k+1

Observe that the incremental discrepancy can be expressed in terms of the first and second moments
of ge.t (X, X/):

ge.o (X, X')
D(t,t') =1o (1+Var Ny ,{ :
( ) g (X, X")~p: @M, , E(X”,X’”)wﬁ,,@Mtyt/ [gt,t’(XH,X/H)]
2
— IOg (1 + E(X7X')Nﬁt®]\/[t,t/ [gtvt/ (X’ X/)Q] . E(X:X,)Nﬁt‘X’Mt,t’ [gtvt/(X’ X/)] )
Exr xmympom, o 9o (X7, X2 Exr xmapien, 9t (X7 X7)]?

=logE(x x/~poM, [9e,0 (X, X")?] —2log Ex,x~p@M, (900 (X, X")]
(65)

We want to obtain a consistent estimator for D(¢,t'). Following (Syed et al., 2024, Sec. 5.1), if
we are using a single SMC run with N particles, and we let g7 = g4, ¢, (X,’;_17 X,?) then the
following estimator is consistent:

Dy, =1log g2 — 2log g1 —log gr.o, wherefori € {0,1,2}, gri= »_ wi_i(gr)" (66)
n€[N]
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To get a consistent estimator using Nz SMC runs, each with N particles, we compute the normal-

ization constant ZéMC in (60) for each SMC run j = 1 : Npg, and define Dk as in (66), but where
Jxi takes the form

(n,5)
ZZSMQZ Sl k 1< u ) ) where gl(c 9 :gtkfhtk(X]E: ’{)’X( j))a (67)
ZnE[N] (L

and X ,(C"’] ), w,&"’] ) is the n-th particle and weight of j-th SMC run at iteration k.

B.3 THE VARIANCE OF THE SMC NORMALIZATION CONSTANT

The total discrepancy defined in equation (64) is related to the variance of the SMC normalization
constant Zgyic via the following result, which was proven by Syed et al. (2024) as a generalization
of a result of Dai et al. (2020):

Theorem B.1 (Theorem 1, Syed et al. (2024)). Suppose that the following assumptions on the
normalized incremental weights G = Gy, _, 1, (X7, X}!) defined in (62) hold:

* Assumption 1 (Integrability). For all n € [N], k € [K], G} has finite variance with respect to
[)tk ® Mtk—lytk‘

* Assumption 2 (Temporal indep.). For n € [N}, (G})c[r] are independent.
* Assumption 3 (Particle indep.). For k € [K], (G})nc|n] are independent.

 Assumption 4 (Efficient local moves). For eachn € [N] and k € [k],
n d
Gk = Gtk,l,tk (kala Xk)v (kalv Xk) ~ Ty ® Mtkflqtk'

Assume also that N > 1, D(T) > 0. For every resample schedule Tr = (t,)E, there exists a
unique 1 < R < E[R)] such that

Var (ZSZMC> = % (exp([])%(;>> - 1) Reg — 1. 3)
Moreover, Regg = 1 if and only if D(T ,t,—1,t ) a;s' D(T) for some r € [R], and Rex = E[R] if
and only if R is a.s. constant and D(T ,t,_1,t,) = D(T)/R for some r € [R).
Remark B.2. As remarked by Syed et al. (2024), Assumptions 1—4 constitute an idealized model
similar to the one considered by other works in the area (Grosse et al., 2013; Dai et al., 2020).
While Assumption 1 is weak, Assumptions 2—4 are not. Assumption 3 only holds when no resampling
is performed, and Assumptions 2—4 only hold (approximately) when a number of MCMC steps are

interleaved with the SMC updates. However, Syed et al. (2024, Sec. 6.1) show that empirically, the
scaling (3) is consistent with empirical observation.

B.4 OPTIMIZING THE ANNEALING SCHEDULE TO MINIMIZE THE TOTAL DISCREPANCY

As defined in (64), the total discrepancy depends not only on the continuous time dynamics for

positions and weights, but also on the specific annealing schedule 7 = (tk)kK:O. For a fixed K, it is
possible to characterize and find the annealing schedule that minimizes the total discrepancy.

Under technical regularity assumptions (see (Syed et al., 2024, Sec. 4.1)), the incremental discrep-
ancy admits the asymptotic expansion

Giirar =14 Sy At + o(At),
and hence the local changes and variance of the incremental discrepancy G 4 a: are encoded in S;
and its variance 0(t), defined as

0
St = %Gt,t’ s 5(t) = Vart_,t[St].

t=t
Using this expansion, we can expand the incremental discrepancy as follows:

D(t,t + At) = 6(t) At + O(AL?). (68)
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Scheduler generators A schedule generator is a continuously twice-differentiable function ¢ :
[0,1] — [0,1] such that ¢(0) = 0, ¢(1) = 1, and p(u) = %g@(u) > 0. Given K € N, ¢ generates
an annealing schedule 7 = (tx)&_, where

k
tr = p(ug), Ul = e
In the following, without loss of generality, we restrict our attention to schedules generated by
schedule generator.
By the mean value theorem, we have

plur)

ty —te_1 ~
Combining this with equation (68), we obtain
S(p(ur)) p(ur)®
K2 '

By summing over k and using Riemann approximations, we can approximate D(T,t,tx ) and
D(T) in terms of E(p,uy, ,us,,) and E(¢p), defined as the integral of 6(p(u)) ¢(u)?,

D(tk_l,tk) ~ (69)

Bg.ui) = | " (o) g du,  E() = E(p.0,1).

Proposition B.3 (Proposition 1, Syed et al. (2024)). Suppose Assumptions 5 to 8 hold. There exists
Cp () > 0 such that, for k, k' € [K],

1 C t — 1t
’D(T’t’“tk/) - EE(%ukaukf) < W.

An immediate consequence of Proposition 1 is that, in the dense schedule limit as ' — oo, the total

discrepancy D(T) is asymptotically equivalent to %. Hence, for a fixed K, optimizing D(T)

with respect to T is asymptotically equivalent to the following problem:

1 1
min / §(p(u)) @(u)*du, st / o(u) du = 1. (70)
[0,1] 0 0

©:[0,1]—

Jensen’s inequality implies that

/Olé(w(u))sb(u)Qdu > (/01 V(p(u) ¢(u) du>2, 1)

with equality if and only if there exists a constant A > 0 such that \/5(¢*(u)) ¢*(u) = A for u a.e.
in [0, 1]. Defining

A) = /0 /50w du, (72)

by the chain rule, we have equivalently that

A= N(g*(1) g*(t) = %A(so*(t)) = A@"(t) =AMt = () =AT(A).  (73)

Setting ¢t = 1in A(¢*(t)) = At also implies that A = A(p*(1)) = A(1) = fol /0 (u) du. Syed
et al. (2024) refer to A(t) and A as the local barrier and the global barrier associated to the SMC
algorithm. We refer to it as the thermodynamic length.

A change of the integration variable implies that for any schedule generator ¢,

(1) t
Ap(t)) = / /3(a) du = / V(o) (u) du,
g k VY S k
— ) = Alplun)) = [ ViGNl dun Yo VI S/,

k'=1 k'=1

(74)
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where the last equality holds by (69). This allows us to approximate the local and global barriers
using (65) to compute the incremental discrepancy. Once we have an estimate A of the barrier, Syed
et al. (2024) propose to iteratively refine the annealing schedule by resetting ¢, < A~1(Ak/K).

Observe that given the quantities ZZ,:l D(tg—1,tx) and Z:,:l D(t—1,tx), we have that

k

1 1
Z D(tk_l,tk) = D(T,O,tk/) ~ EE((p,uk,uk./) ?A ( Z D tk 1, Lk >
k'=1 k'=1
(75)
Thus, the quantity
2
(22/_1 \/D(tklatlc)>
(76)

K S5y D(tr-1,t)

should fall in [0, 1] and close to 1 when the annealing schedule T is close to the optimal one.

C IMPLEMENTATION DETAILS

The complete pseudocode of FMTT is given in Algorithm 1.

Algorithm 1 Inference-time adaptation of flow maps

1: Input: # simulation steps K, # resampling steps R, # particles IV, # particle clones C', time
sequence (tx)k—o:x sequences (€x)r—o.x and (Ng)k=o: 5

2: for i = 1: N, initialize ¥ = N(0,1) ii.d. Let X° = (29);=1.n.
3: Clone the particles: X° = (x ?j)l 1:N,j=1:c, Where (z %)3:1 :C" are equal copies of 2.
4: if Sampling thenfor i =1 : N and j = 1 : C, initialize AO- =0.
5:fork=0: K —1do
6: At +— tp+1 — tk
7. fori=1:Nandj=1:Cdo > Update particles
8: et =2k 4 o (@) + Ve, (28) 4 en(se (2F) + Vi (af)]AL +
I A ko €h ~ N(0,1).
9: if Sampling then
10: AR = Ak [”k(’””) ([ |2+ Ty - s00) (@) A 4 (TP 007D
: i = AT Mk te te " Sty )\ Ty ey
re, (¥
L)) /Rl
11: end if
12:  end for
13:  if k =0 (mod K/R) and k > 0 then > Resample / select particles
14: if Sampling then
15: Define the probabilities pk = softmax(A¥) =
(exp(Afj)/ Zi/j’ eXp(Af’j’))i’:lzN,j’:l:C
16: Resample Xk = (azf),;:hN ~ 22:1 = 1pl, ,5 E i.i.d., or using Quasi-Monte
Carlo
17: Set Affj =0.
18: else if Searching then
19: Select X* = (z¥);_1.y as the top-n samples among X* with respect to 7, (xfj)
20: end if ]
21: Clone the particles: X% < (xfj)f;lg, where (z};)7=" are equal copies of x}.
22:  endif
23: end for

24: return x
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D ADDITIONAL VLM-AS-JUDGE EXAMPLES

As described in the paper, we use Qwen2.5-VL-7B-Instruct to define rewards expressed as yes/no
questions over one or more context images. This makes it possible to cast diverse objectives as
test-time search problems, including style consistency, character consistency, and multi-subject gen-
eration.

Here, we demonstrate the style consistency case. The VLM receives both a reference image and
a generated image and is asked whether they share the same art style. FMTT then optimizes this
reward, producing generations more closely aligned with the reference style. Qualitative results are
shown in Figure 7.

Prompt: “a cute grumpy cartoon mushroom character walking his dog”

Figure 7: Style consistency via VLM-based rewards. Given a reference image, FMTT produces images that
better match its art style than the base model.
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E VLM REWARD HACKING

As discussed in the paper, a challenge of using VLMs (or any non-verifiable reward model) is the
risk of the search process exploiting loopholes. This happens when the algorithm produces images
that either act as adversarial examples for the VLM or satisfy the literal question without achieving
the intended effect. Figure 8 shows such a case.

Prompt: “An analog clock showing exactly 4:45”
VLM question: “Is the analog clock showing 4:45?”

Figure 8: VLM reward hacking. Instead of the clock being at 4:45, the search process finds a way to “cheat”
by writing the text 4 : 45 on the clock face and achieving high rewards from the VLM.

We explored two solutions. The first is to craft the VLM prompt to be as verbose and unambiguous
as possible, explicitly discouraging potential “cheats”. This works when only a few edge cases exist,
but becomes brittle when many (4+) conditions are needed, at which point the reward model grows
opaque and the search converges to local maxima. The second approach is to decompose the binary
question into several simpler sub-questions and define the reward as their sum. While this adds
computational overhead by requiring multiple VLM inferences, it proved more robust in practice.

For reference, to achieve the results in Figure 1, we used the following three questions:
* Is the hour hand pointing between 4 and 57

* Is the minute hand pointing at 9?
* Is the second hand pointing at 12?

LLM USAGE

In preparing this paper, we used large language models (LLMs) as assistive tools. Specifically,
LLMs were used for (i) editing and polishing the text for clarity and readability, and (ii) generating
some reference images that appear in some figures. All research ideas, experiments, and analysis
were conducted by the authors. The authors take full responsibility for the content of this paper.
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