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Abstract

Geocoding is the task of converting location001
mentions in text into structured geospatial data.002
We propose a new architecture for geocoding,003
SSPART, that first uses information retrieval004
techniques to generate a list of candidate entries005
from the geospatial ontology, and then reranks006
the candidates using a transformer-based neural007
network. The reranker compares the location008
mention to each candidate entry, while incorpo-009
rating additional information such as the entry’s010
population, the entry’s type of location, and the011
sentences surrounding the mention in the text.012
Our proposed toponym resolution framework013
achieves state-of-the-art performance on multi-014
ple datasets. Code and models are available at015
https://<anonymized>.016

1 Introduction017

Geospatial information extraction has seen a recent018

surge in interest from the natural language pro-019

cessing community due to its critical role in tasks020

such as geographical document classification and021

retrieval (Bhargava et al., 2017), historical event022

analysis based on location data (Tateosian et al.,023

2017), tracking the evolution and emergence of024

infectious diseases (Hay et al., 2013), and disas-025

ter response mechanisms (Ashktorab et al., 2014;026

de Bruijn et al., 2018). Such information extraction027

can be challenging because different geographical028

locations can be referred to by the same place name029

(e.g., San Jose in Costa Rica vs. San Jose in Cali-030

fornia, USA), and different place names can refer031

to the same geographical location (e.g., Leeuwar-032

den and Ljouwert are two names for the same city033

in the Netherlands). It is thus critical to resolve034

these place names by linking them with their cor-035

responding coordinates from a geospatial ontology036

or knowledge base.037

Geocoding, also called toponym resolution or038

toponym disambiguation, is the subtask of geop-039

arsing that disambiguates place names (known as040

toponyms) in text. The goal of geocoding is, given 041

a textual mention of a location, to choose the corre- 042

sponding geospatial coordinates, geospatial poly- 043

gon, or entry in a geospatial database. Most exist- 044

ing geocoding systems produce geospatial ontology 045

entries by first generating candidate entries with 046

an information retrieval system and then reranking 047

those entries with a supervised feature-based clas- 048

sifier using a variety of hand-engineered heuristics 049

(Speriosu and Baldridge, 2013; Zhang and Gelern- 050

ter, 2014; DeLozier et al., 2015; Kamalloo and 051

Rafiei, 2018; Wang et al., 2019). More recently, 052

deep neural network approaches to geocoding have 053

been introduced that predict small tiles of the map 054

rather than ontology entries (Gritta et al., 2018; Car- 055

doso et al., 2019; Kulkarni et al., 2021). The neural 056

network approaches have been generally more suc- 057

cessful, but because of their output encoding, they 058

do not naturally produce an ontology entry, which 059

may contain a variety of metadata needed by a user. 060

We propose a new architecture SSPART (Search, 061

Sort by Population, And Rerank by Transformer), 062

shown in Figure 1, which has the advantages of 063

both: it uses pre-trained deep neural networks for 064

the improved robustness in matching place names, 065

while leveraging a generate-then-rank architecture 066

to produce ontology entries as output instead of 067

map tiles. SSPART generates candidate ontology 068

entries with an information retrieval system cou- 069

pled with a simple population heuristic, and then 070

uses a pre-trained transformer-based classifier to 071

rerank the candidate entries based on analyzing 072

the place name, candidate ontology entry, lexical 073

context, and geospatial ontology features. 074

Our work makes the following contributions: 075

• Our proposed architecture for geocoding 076

achieves new state-of-the-art performance on 077

multiple datasets. 078

• Our candidate generator, based on simple in- 079

formation retrieval techniques, outperforms 080

recent more complex neural models. 081
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Figure 1: The architecture of our model: Search, Sort by Population, And Rerank by Transformer (SSPART).

• Our reranker is the first application of pre-082

trained transformers for encoding location083

mentions and context for toponym resolution.084

• Our evaluation includes a wider variety of085

geocoding evaluation metrics than prior work,086

applying both database entry correctness met-087

rics and point distance metrics.088

2 Related Work089

The geocoding task can be classified into two dis-090

tinct categories: document level and mention level.091

The objective of document-level geocoding is to092

match an entire text to a corresponding location,093

such as geolocating Twitter users or microblog094

posts (Roller et al., 2012; Rahimi et al., 2015; Lee095

et al., 2015; Rahimi et al., 2017; Hoang and Mothe,096

2018; Kumar and Singh, 2019; Luo et al., 2020)097

and geographic document retrieval and classifica-098

tion (Gey et al., 2005; Adams and McKenzie, 2018).099

The objective of mention-level geocoding is to100

match phrases within a text to their corresponding101

locations. While this task is conceptually related to102

Wikipedia linking, it differs in that geospatial on-103

tologies include only the geospatial concepts, not104

in-text examples. (See also appendix C). Mention-105

level geocoding is typically preceded by geotag-106

ging, a named entity recognition task that finds107

location mentions in a text. The current work fo-108

cuses on mention-level geocoding, not geotagging.109

Many systems for geocoding used hand-crafted110

rules and heuristics to predict geospatial labels for111

place name. Examples include the Edinburgh geop-112

arser (Grover et al., 2010), Tobin et al. (2010),113

Lieberman et al. (2010), Lieberman and Samet114

(2011), CLAVIN (Berico Technologies, 2012),115

GeoTxt (Karimzadeh et al., 2013), and Laparra116

and Bethard (2020). The most common features 117

and heuristics were based on string matching, pop- 118

ulation count, and type of place (city, country, etc.). 119

As more shared tasks and annotated datasets 120

were proposed, geocoding systems began to take 121

the heuristics of rule-based systems and use them as 122

features in supervised machine learning models, in- 123

cluding logistic regression (WISTR, Speriosu and 124

Baldridge, 2013), support vector machines (Mar- 125

tins et al., 2010; Zhang and Gelernter, 2014), ran- 126

dom forests (MG, Freire et al., 2011; Lieberman 127

and Samet, 2012), stacked LightGBMs (DM_NLP, 128

Wang et al., 2019) and other statistical learning 129

methods (Topocluster, DeLozier et al., 2015; CBH, 130

SHS, Kamalloo and Rafiei, 2018). These sys- 131

tems typically operated in a two-step generate-then- 132

rerank framework, where first an information re- 133

trieval system produced candidate geospatial ontol- 134

ogy entries, a supervised machine-learning model 135

produced a score for each candidate, and the candi- 136

dates were reranked by those scores. 137

Recently, deep learning methods have been in- 138

troduced for toponym resolution. Some such mod- 139

els perform only the generation step, converting 140

mentions and entities into vectors and measuring 141

vector similarity, but ignoring the context around 142

the mentions (Hosseini et al., 2020; Ardanuy et al., 143

2020). We show that simple information retrieval 144

techniques outperform such models. 145

Other deep learning models approach geocoding 146

as a one-step classification problem by dividing the 147

Earth’s surface into an N ×N grid, where the neu- 148

ral network attempts to map place names and their 149

features to one of these N ×N categories (Cam- 150

Coder, Gritta et al., 2018; Cardoso et al., 2019; 151

MLG, Kulkarni et al., 2021). Each system has a 152

unique neural architecture for combining inputs to 153
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make predictions, based on convolutional neural154

networks (CNNs) (CamCoder, Gritta et al., 2018;155

MLG, Kulkarni et al., 2021) or recurrent neural156

networks (RNNs) (Cardoso et al., 2019). Though157

the grid-based output formulation results in a large158

label space for classification, the neural network159

models are able to more flexibly encode location160

mentions and the nearby context, leading to per-161

formance gains in distance-based metrics across162

several corpora.163

Our proposed approach combines the tight ontol-164

ogy integration of the generate-and-rerank systems165

with the robust text encoding of the deep neural166

network grid-classification systems.167

3 Proposed Methods168

We define the task of toponym resolution as fol-169

lows. We are given an ontology or knowledge170

base with a set of entries E = {e1, e2, ..., e|E|}.171

Each input is a text made up of sentences T =172

{t1, t2, . . . , t|T |} and a list of location mentions173

M = {m1,m2, ...,m|M |} in the text. The goal is174

to find a mapping function ej = f(mi) that maps175

each location mention in the text to its correspond-176

ing entry in the ontology.177

We approach toponym resolution using a can-178

didate generator followed by a candidate reranker.179

The candidate generator, G(m,E) → Em, takes180

a mention m and ontology E as input, and gener-181

ates a list of candidate entries Em, where Em ⊆ E182

and |Em| ≪ |E|. As the candidate generator must183

search a large ontology and produce only a short184

list of candidates, the goal for G will be high re-185

call and high runtime efficiency. The candidate186

reranker, R(m,Em) → Êm, takes a mention m187

and the list of candidate ontology entries Em, and188

sorts them by their relevance or importance to pro-189

duce a new list, Êm. As the candidate ranker needs190

to work only with a short list of candidates, the191

goal for R will be high precision, especially at rank192

1, with less of a focus on runtime efficiency.193

3.1 Candidate Generator194

Our candidate generator is inspired by prior work195

on geocoding in using information retrieval tech-196

niques to search for candidates in the ontology197

(Grover et al., 2010; Berico Technologies, 2012).198

Accurate candidate generation is essential, since199

the generator’s recall is the ceiling performance200

for the reranker. As we will see in section 5, our201

proposed candidate generator alone is competitive202

Algorithm 1: Candidate generator.
Input: a location mention, m

a maximum number of candidates, k
the GeoNames ontology, E

Output: a list of candidate entries Em

// Index ontology
I ← ∅
for e ∈ E do

name← CANONICALNAME(E, e)
synonyms← SYNONYMS(E, e)
for n ∈ {name} ∪ synonyms do

I ← I ∪ {CREATEDOCUMENT(e, n)}
// Search for candidates
Em ← ∅
for t ∈ { EXACT, FUZZY, CHARACTERNGRAM,

TOKEN, ABBREVIATION, COUNTRYCODE } do
Em ← SEARCH(index,m, t)
if Em ̸= ∅ then

break
// Sort by population
key ← (e→ POPULATION(E, e))
Em ← SORT(Em, key)
// Select top entries
return top k elements of Em

with complex end-to-end systems from prior work. 203

Our sieve-based approach, detailed in alg. 1, tries 204

searches ordered from least precise to most precise 205

until we find ontology entries that match the loca- 206

tion mention. We create one document in the index 207

for each name ne of an entry e in the GeoNames 208

ontology. A location mention m is matched to a 209

name ne by attempting a search with each of the 210

following matching strategies, in order: 211

EXACT m exactly matches (ignoring whitespace) 212

the string ne 213

FUZZY m is within a 2 character Levenshtein edit 214

distance (ignoring whitespace) of ne 215

CHARACTERNGRAM m has at least one charac- 216

ter 3-gram overlap with ne 217

TOKEN m has at least one token (according to the 218

Lucene StandardAnalyzer) overlap with ne 219

ABBREVIATION m exactly matches the capital 220

letters of ne 221

COUNTRYCODE e is a country and m exactly 222

matches a e’s country code 223

Once one of the searches has retrieved a list of 224

matching names, we recover the ontology entry 225

for each name, sort those ontology entries by their 226

population in the GeoNames ontology, and return 227

the k most populous ontology entries. This list, 228

Em is then the input to the candidate reranker. 229

3.2 Candidate Reranker 230

Our candidate reranker is inspired by prior work 231

on medical concept normalization (Xu et al., 2020; 232
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Ji et al., 2020), extended to incorporate aspects233

uniquely important for geocoding. Similar to prior234

work, and as shown in fig. 1, the candidate reranker235

takes a mention to be classified, m, and the list236

of candidate entities from the candidate genera-237

tor, Em, encodes them with a transformer neural238

network, and uses these encoded representations239

to perform classification over the list to select the240

most probable entry. For each candidate e = Emi ,241

the input to the transformer is of the form [CLS]242

m [SEP] Ce [SEP] Se
1 [SEP] . . . [SEP] Se

|Se|243

[SEP], where Ce = CANONICALNAME(E, e) is244

the canonical name of e in the ontology, and245

Se = SYNONYMS(E, e) is the list of alternate246

names of e in the ontology. We then represent247

each candidate with the contextualized representa-248

tion of its [CLS] token from the last layer of the249

transformer, a vector we will refer to as [CLS]Emi
.250

Note that [CLS]Emi
∈ RH , where H is the size of251

the transformer’s contextualized representations.252

We extend this architecture with three features253

that are important for geocoding: population, type254

of geographical feature, and mention context.255

Population: Locations in text are more likely to256

refer to high population places than low population257

places (e.g., Paris, France vs. Paris, Texas, USA).258

We look up the population of Emi in the ontology,259

and take the logarithm of that population. We refer260

to this scalar as log(POPEmi
).261

Feature Code: Locations in text are more likely262

to refer to some types of geographical features than263

others (e.g., San José, the capital of Costa Rica, vs.264

San José, the province). We look up the feature265

code1 of Emi in the ontology, and transform the266

feature code into a one-hot vector FCEmi
∈ RN267

where N is the total number of feature codes in the268

GeoNames ontology269

Mention context: The text around a mention270

may provide clues (e.g., the context Minnesota271

State Patrol urges motorists to drive with cau-272

tion. . . in Becker, Clay, and Douglas suggests that273

Clay refers to Clay County, Minnesota, even though274

Clay County, Missouri is more populous). We find275

the sentence in the text T containing m, TSENT(m),276

and encode the c-sentence window including it277

with the same transformer as was used to encode278

1In GeoNames, for example, the feature code PPLC means
capital of a political entity. GeoNames feature codes are
listed in detail at http://download.geonames.org/
export/dump/featureCodes_en.txt
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LGL 3112 411 419 58 931 119
GeoWebNews 1641 140 281 20 477 40
TR-News 925 82 68 11 282 25

Table 1: Numbers of articles and manually annotated
toponyms in the train, development, and test splits of
the toponym resolution corpora.

m. The input is of the form [CLS] TSENT(m)−c . . . 279

TSENT(m)+c [SEP]. We take the contextualized rep- 280

resentation of the [CLS] token from the last layer 281

of the transformer, [CLS]SENT(m)±c ∈ RH . 282

To combine all of these new features with the tra- 283

ditional representation of the candidate from prior 284

work, [CLS]Emi
, we concatenate all the vectors 285

before the classification layers. So the concate- 286

nated vector for each candidate entry Emi would 287

be VEmi
= [CLS]Emi

⊕log(POPEmi
)⊕FCEmi

⊕ 288

[CLS]SENT(m)±c with VEmi
∈ R2H+N+1. Aggre- 289

gating across the k candidates, we form a ma- 290

trix MEm ∈ Rk×(2H+N+1). We then feed this 291

matrix into two linear layers with the weights 292

W1 ∈ R150×(2H+1+N) and W2 ∈ R1×150, and 293

compute a standard classification loss: 294

LR = y · log(softmax((MEmW
T
1 )W T

2 )) (1) 295

where y is a one-hot vector, and |y| = |Em|. At 296

prediction time, the model predicts the entry with 297

the highest probability in the softmax. 298

4 Experiments 299

4.1 Datasets 300

We conduct experiments on three toponym resolu- 301

tion datasets2. Local Global Lexicon (LGL; Lieber- 302

man et al., 2010) was constructed from 588 news 303

articles from local and small U.S. news sources. 304

GeoWebNews (Gritta et al., 2019) was constructed 305

from 200 articles from 200 globally distributed 306

news sites. TR-News (Kamalloo and Rafiei, 2018) 307

was constructed from 118 articles from various 308

global and local news sources. As there are no 309

standard publicly available splits for these datasets, 310

we split each dataset into a train, development, and 311

2We also considered Weissenbacher et al. (2019), but the
test set was never released (we requested it from the authors),
making comparison to prior work on that dataset difficult.
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Figure 2: An entry for Tucson in GeoNames

test set according to a 70%, 10% , and 20% ratio.312

To enable replicability, we will release these splits313

upon publication. The statistics of all datasets are314

shown in table 1.315

4.2 Database316

GeoNames is a crowdsourced database of geospa-317

tial locations, with almost 7 million entries and a318

variety of information such as geographic coordi-319

nates (latitude and longitude), alternative names,320

feature type (country, city, river, mountain, etc.),321

population, elevation, and positions within a politi-322

cal geographic hierarchy. An example entry from323

GeoNames is shown in fig. 2. The data in Geo-324

Names comes from multiple sources3, such as pub-325

lic and open gazetteers, which can vary in quality,326

scope, resolution, or age (Ahlers, 2013). Users can327

edit data in a wiki-like interface.328

In our experiments, the GeoNames ontology329

plays an important role in both the candidate gen-330

erator and the candidate reranker. The candidate331

generator produces a list of candidate entries from332

GeoNames and the candidate reranker selects the333

best entry by utilizing multiple meta-data obtained334

from GeoNames, including canonical names, alter-335

nate names, populations, and feature codes.336

4.3 Evaluation Metrics337

There is not yet agreement in the field of toponym338

resolution on a single evaluation metric. Therefore,339

we gather several metrics from prior work and use340

all of them for evaluation. We consider metrics341

both measuring matching of ontology entry IDs and342

measuring geographical distance between system343

predictions and human annotations.344

Accuracy is the number of location mentions345

where the system predicted the correct database en-346

3http://www.geonames.org/data-sources.
html

try ID, divided by the number of location mentions. 347

Higher is better, and a perfect model would have 348

accuracy of 1.0. 349

Accuracy@161km measures the fraction of 350

system-predicted (latitude, longitude) points that 351

were less than 161 km away from the human- 352

annotated (latitude, longitude) points. Higher is 353

better, and a perfect model would have Accu- 354

racy@161km of 1.0. 355

Mean error distance calculates the mean over 356

all predictions of the distance between each system- 357

predicted and human-annotated (latitude, longi- 358

tude) point. Lower is better, and a perfect model 359

would have a mean error distance of 0.0. 360

Area Under the Curve (AUC) calculates the 361

area under the curve of the distribution of geocod- 362

ing error distances. Lower is better, and a perfect 363

model would have a mean error distance of 0.0. 364

4.4 Implementation details 365

We implement the candidate reranker with Lucene4 366

v8.4.1 under Java 1.8. When indexing Geo- 367

Names, we also index countries under their ad- 368

jectival forms in Wikipedia5. We implement 369

the candidate reranker with the PyTorch6 v1.7.0 370

APIs in Huggingface Transformers v2.11.0 (Wolf 371

et al., 2020), using either bert-base-uncased or 372

bert-multilingual-uncased. We train with the 373

Adam optimizer, a learning rate of 1e-5, a maxi- 374

mum sequence length of 128 tokens, and a number 375

of epochs of 30. We explored a small number of 376

learning rates (1e-5, 1e-6, 5e-6) and epoch numbers 377

(10, 20, 30, 40). When training without context, we 378

use one Tesla V100 GPU with 32GB memory and 379

a batch size of 8. When training with context, we 380

use four Tesla V100 GPU with 32GB memory and 381

a batch size of 32. The total number of parameters 382

in our model is 168M and the training time is about 383

3 hours. 384

4.5 Systems 385

We compare a variety of geocoding systems: 386

SSPART is our proposed Search, Sort by Pop- 387

ulation, And Rerank by Transformer architecture. 388

4https://lucene.apache.org/
5https://en.wikipedia.org/wiki/List_

of_adjectival_and_demonymic_forms_for_
countries_and_nations

6https://pytorch.org/
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We consider several variants of SSPART, compar-389

ing English vs. multilingual versions of BERT,390

and comparing no context sentences vs. with391

c ∈ {0, 1, 2} (i.e., just the sentence containing m392

up to the 5 sentences around m).393

SSP is the Search-and-Sort-by-Population candi-394

date generator of SPART, without the transformer-395

based candidate reranker.396

CamCoder Gritta et al. (2018) introduced an ap-397

proach, CamCoder, where the model predicts one398

of 7823 classes, each a 2x2 degree tile representing399

part of the world’s surface. CamCoder’s lexical400

input combines context words, location mentions,401

and the target mention, encoding them with convo-402

lutional neural network layers. CamCoder’s geo-403

graphic input is a map vector that encodes a popu-404

lation distribution over the 7823 map tiles based on405

the location mentions in the target mention’s con-406

text7. The two kinds of inputs are concatenated and407

fed into dense layers and a final softmax layer to408

make the prediction. CamCoder is the state-of-the-409

art on several geocoding datasets (including LGL),410

and its code is publicly available8.411

Edinburgh Grover et al. (2010) introduced a412

rule-based system that uses heuristics such as popu-413

lation count, clustering (spatial minimization), type414

and country and some contextual information (con-415

tainment, proximity, locality, clustering) to score,416

rank, and choose a candidate. While this is an417

older system, it was still state-of-the-art on LGL418

before CamCoder, and as we will see below, it still419

outperforms recent techniques on several datasets.420

Mordecai Halterman (2017) introduced an ap-421

proach, Mordecai, that uses Elasticsearch to gen-422

erate candidates and neural networks based on423

word2vec (Mikolov et al., 2013) to rank those can-424

didates. Its models are trained on proprietary data.425

DeezyMatch Hosseini et al. (2020) introduced an426

approach, DeezyMatch, for fuzzy string matching427

and candidate ranking. DeezyMatch uses only the428

7The original CamCoder code, when querying GeoNames
to construct its input population vector from location mentions
in the context, assumes it has been given canonical names
for those locations. Since canonical names are not known
before locations have been resolved to entries in the ontology,
we have CamCoder use mention strings instead of canonical
names for querying GeoNames.

8We also wanted to compare against MLG (Kulkarni et al.,
2021), which slightly outperforms CamCoder on two datasets
(while being slightly worse on LGL), but this was impossible
as neither its code nor its data splits are available.

Dataset Models test

R@1 R@20

LGL
DeezyMatch 0.172 0.538
SAPBERT 0.245 0.742
SSP 0.606 0.962

GeoWebNews
DeezyMatch 0.262 0.671
SAPBERT 0.428 0.746
SSP 0.694 0.866

TR-News
DeezyMatch 0.206 0.702
SAPBERT 0.355 0.780
SSP 0.716 0.965

Table 2: Performance of candidate generators on the
test sets. R@1 is useful for measuring the performance
(Accuracy) of the candidate generator when used di-
rectly as a geocoder. R@20 is useful for estimating the
ceiling performance of a top-20 reranker based on that
candidate generator.

mention and entry names; it does not use context or 429

other database information. The approach first pre- 430

trains an LSTM-based classifier on the database 431

taking string pairs as input, and then fine-tunes the 432

pair classifier on the target dataset. The trained 433

DeezyMatch model is then used to generate vector 434

representations for all known variations of entity 435

names in the database. Given a mention, the same 436

DeezyMatch model is used to generate its vector 437

representation, and entries are ranked by comparing 438

the mention vector to all entry vectors using L2- 439

norm distance or cosine similarity. 440

SAPBERT Liu et al. (2021) introduced a 441

pre-train-then-finetune approach, SAPBERT, for 442

biomedical entity linking. SAPBERT uses only the 443

mention and entry names; it does not use context 444

or other database information. The approach pre- 445

trains a transformer-based language model on the 446

database using a self-alignment metric learning ob- 447

jective and an online hard pairs mining mechanism 448

to cluster synonyms of the same concept together 449

and move different concepts further away. The pre- 450

trained SAPBERT is then fine-tuned on the target 451

dataset. SAPBERT was trained for the biomedical 452

domain, but is easily retrained for other domains. 453

We pretrain SAPBERT on the geospatial database 454

and finetune it on the toponym resolution datasets. 455

5 Results 456

We first evaluate our Lucene-based candidate gen- 457

erator, SSP. We compare it with the recent context- 458

free candidate generators, SAPBERT and Deezy- 459

Match. Table 2 shows that SSP outperforms both 460
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Model LGL (test) GeoWebNews (test) TR-News (test)
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Edinburgh .611 .632 119 .290 .738 .773 146 .203 .750 .756 149 .218
CamCoder .580 .651 82 .288 .572 .665 155 .290 .660 .778 89 .196
Mordecai .322 .375 926 .594 .291 .333 1072 .633 .472 .553 6558 .427
DeezyMatch .172 .182 654 .704 .262 .323 537 .601 .206 .220 741 .705
SAPBERT .245 .260 566 .630 .428 .499 357 .446 .355 .362 595 .568
SSPART ✓ 1 .759 .783 67 .166 – – – – – – – –
SSPART ✓ 0 – – – – .782 .832 60 .131 – – – –
SSPART ✓ 1 – – – – – – – – .777 .798 92 .166
SSPART ✓ 1 ✓ .740 .771 73 .182 .818 .855 50 .113 .805 .812 97 .158

Table 3: Performance on the test sets. Higher is better for Accuracy and Accuracy@161km. Lower is better for
Mean Error and AUC. Edinburgh made no predictions for 28, 49, and 106 toponyms in LGL, GeoWebNews, and
TR-News, respectively. It is impossible to calculate distance-based metrics without coordinates, so we skip those
toponyms. As a result, distance-based metrics are overestimated for Edinburgh while the Accuracy metric is not.

of these approaches by large margins, both in accu-461

racy of the top entry (R@1) and whether the correct462

entry is in the top 20 (R@20).463

We next evaluate our complete generate-and-464

rank system, SSPART, against other geocoders.465

We first performed model selection on the devel-466

opment set as described in appendix A, selecting467

the best models for LGL (multilingual transformer468

and three sentence context c = 1), GeoWebNews469

(multilingual transformer and one sentence context470

c = 0), and TR-News (multilingual transformer471

and three sentence context c = 1). We also trained472

a model where we combined the LGL, GeoWeb-473

News, and TR-News training sets, and used the474

setting that achieved the best average rank across475

all metrics and development datasets (multilingual476

transformer and three sentence context c = 1). The477

first three models represent systems tuned to spe-478

cific datasets, while the last model represents a479

system trained for more general use.480

Table 3 shows that our proposed model, SSPART,481

outperforms Edinburgh, CamCoder, Mordecai,482

DeezyMatch, and SAPBERT across all three pub-483

lic toponym resolution test sets on all metrics ex-484

cept for mean error on TR-News9. The more485

general SSPART model trained on the combined486

LGL, GeoWebNews, and TR-News outperforms487

the dataset-specific models on GeoWebNews and488

TR-News, though not on LGL. We release the gen-489

9The Friedman test for comparing system average ranks is
only reliable when comparing more than 6 systems, so we do
not report p-values here.

eral model for English geocoding under the Apache 490

License v2.0, for off-the-shelf use at https:// 491

<anonymized>. 492

6 Qualitative Analysis 493

We qualitatively analyzed some of the errors that 494

CamCoder and different variants of SSPART made. 495

Example 1 from table 4 shows an example where 496

CamCoder fails but SSPART succeeds, by more 497

effectively using geospatial metadata, such as the 498

population and an alternate name for District of 499

Columbia in GeoNames, Washington, D.C.. Exam- 500

ple 2 from table 4 shows an example where Lucene 501

search fails but SSPART without context succeeds, 502

by not relying too heavily on population alone and 503

instead jointly considering the name, population, 504

and feature code information (ADM2 represents a 505

county, PPLA2 represents a city). Example 3 from 506

table 4 shows an example where SSPART without 507

context fails but SSPART with context succeeds, by 508

taking advantage of the Minnesota in the context to 509

select the Clay County that would otherwise seem 510

implausible due to its lower population. 511

Finally, example 4 from table 4 shows an ex- 512

ample where our best SSPART model still fails. 513

Though the candidate generator finds the correct on- 514

tology entry in its top-k list, the candidate reranker 515

is unable to sort that entry to the top. Neither the 516

name, population, nor feature code would suggest 517

the correct candidate, and the nearby context is also 518

insufficient to disambiguate. Looking at the entire 519

document, many of the other toponym mentions 520
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1 Ahlstrom said that the results found at the
Washington Latin Public Charter School in
Washington, D.C.

District of Columbia 552433 1
Washington County 147430 1

2
It was Los Angeles police officers she at-
tempted to blow up.

Los Angeles County 9818605 ADM2 1 2
Los Angeles 3971883 PPLA2 2 1
Los Angeles 125430 PPLA2 3 3
Los Angeles 4217 PPL 4 4

3 the Minnesota State Patrol urges motorists to
drive with caution as flooding continues to
affect area highways. Water over the road-
way is currently affecting the following areas
in Becker, Clay, and Douglas

Clay County 221939 Missouri 1 4
Clay County 190865 Florida 2 3
Clay County 58999 Minnesota 3 1
Clay County 26890 Indiana 4 2

4
he writes, as do my efforts to insure
New London is a safe community.

New London County 274055 ADM2 1 3
New London 27179 PPL 2 1
New London 7172 PPL 3 2
New London 1882 PPL 4 4

Table 4: Examples of predictions from CamCoder, our candidate generator with no reranking (SSP), our generate-
and-rerank system without context (SSPART c = -), and our full system including context (SSPART). Target
location mentions are underlined. Human annotated ontology entries are in bold.

are located in the same state, but even if we ex-521

panded SSPART’s context window, it would not be522

able to tell they were in the same state without first523

resolving them to ontology entries.524

7 Limitations and future research525

SSPART’s context window is currently limited to526

five sentences, and thus cannot take advantage of527

document-level signals. In the future, we will528

explore integrating document-level features into529

SSPART, such as spatial minimality (Grover et al.,530

2010) which assumes that place names in a text531

tend to refer to geospatial regions that are in close532

spatial proximity to each other. This might be533

achieved by jointly reasoning over the candidate534

entries of all location mentions in a document, or535

by a strategy of resolving easy location mentions536

before hard ones.537

SSPART’s candidate generator is currently based538

on information retrieval. This is efficient but not539

very flexible in string matching, and when the can-540

didate generator fails to produce the correct candi-541

date entry, the candidate reranker also necessarily542

fails. In the future, we will explore whether it is543

possible to replace this generator with a neural net-544

work candidate generator to provide more robust545

string matching while still retraining reasonable ef-546

ficiency. We are also interested in architectures for 547

combining the candidate generator and candidate 548

reranker into a single model, which would avoid 549

the problems of a candidate generator that fails. 550

SSPART is limited by its training and evaluation 551

data, which covers only thousands of English to- 552

ponyms from news articles, while there are many 553

millions of toponyms across the world. It is likely 554

that there are regional differences in SSPART’s 555

accuracy that will need to be addressed by future 556

research. 557

8 Conclusion 558

We propose a new toponym resolution architec- 559

ture – Search, Sort by Population, And Rerank by 560

Transformer (SSPART) – that combines the tight 561

ontology integration of generate-and-rerank sys- 562

tems with the robust text encoding of deep neu- 563

ral networks. SSPART consists of an information 564

retrieval-based candidate generator and a BERT- 565

based reranker that incorporates features important 566

to toponym resolution such as population, type of 567

location, and textual context around the toponym. 568

We evaluate our proposed architecture against prior 569

state-of-the-art, using multiple evaluation metrics 570

and multiple datasets. SSPART achieves new state- 571

of-the-art performance on all datasets. 572
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A Model selection815

We performed model selection on the development816

sets, comparing the SSPART model variants de-817

scribed in section 4.5. Results are shown in table 5.818

Because we have many different evaluation metrics819

that do not always tell exactly the same story, we820

include an average rank metric that calculates a821

ranking of all SSPART models according to that822

metric, and scores each SSPART model as the av-823

erage over its ranks across all metrics. So, for824

example, the best model, SSPART with a multilin-825

gual transformer and context of the three sentences826

around the mention (c = 1), achieves average rank827

of 2.0 on LGL because it was rank 3 for Accuracy,828

rank 1 for Accuracy@161km, rank 3 for Mean829

Error, and rank 1 for AUC.830

All of our SSPART models outperform both831

CamCoder and Edinburgh on all development832

sets and across all metrics. The average rank of833

SSPART is consistently above CamCoder and Ed-834

inburgh (p values between 0.0000 and 0.0066), ac-835

cording to the Friedman test with the Conover post836

hoc test for pairwise comparisons. All SSPART837

models also outperform the candidate generator838

alone (SSP), with the candidate reranker substan-839

tially improving performance (p values between840

0.0000 and 0.0024). For monolingual SSPART841

models, adding context slightly worsened their av-842

erage rank, while for multilingual models, adding843

context slightly improved their average rank. The844

impact of population and feature code were small;845

see appendix D for details. Overall, we conclude846

that the main driver of increased performance is847

the transformer-based reranker.848

B Artifact intended use and coverage 849

The intended use of bert-base-uncased and 850

bert-multilingual-uncased is to be “fine-tuned 851

on tasks that use the whole sentence”10. We have 852

used them for that purpose when encoding the con- 853

text, but also for the related task of encoding place 854

names, which are usually short phrases. These ar- 855

tifacts are trained on English books and English 856

Wikipedia and released under an Apache 2.0 li- 857

cense which is compatible with our use. 858

The intended use of our geocoding model is 859

matching English place names in text to the Geo- 860

Names ontology. Though GeoNames covers mil- 861

lions of place names, our evaluation corpora cover 862

only English news articles, and thus the perfor- 863

mance we report is only predictive of performance 864

in that domain. 865

C Difference between Toponym 866

resolution and Wikipedia linking 867

Wikipedia includes in-text examples for all its con- 868

cepts, while GeoNames is an ontology only; it has 869

no in-text examples for its concepts. The only in- 870

text examples come from small-scale training cor- 871

pora like LGL, GeoWebNews, or TR-News, which, 872

as shown in table 1, include only a tiny fraction 873

of GeoNames’s 7 million geographical concepts. 874

As a result, many approaches to Wikipedia linking 875

are difficult to apply to geocoding. For example, 876

Yamada et al. (2022)’s approach of jointly training 877

token and concept embeddings assumes there are 878

text examples of all concepts. 879

D Feature ablation 880

Table 6 shows performance when the feature code 881

and population features are removed from the 882

SSPART model. The features help slightly on LGL 883

and GeoWebNews and hurt slightly on TR-News. 884

10https://huggingface.co/
bert-base-uncased

11
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Edinburgh .666 .676 147 .260 .687 .721 174 .250 .662 .676 183 .273
CamCoder .604 .695 144 .285 .509 .712 174 .293 .824 .882 128 .119
Mordecai .303 .341 999 .621 .356 .480 943 .528 .530 .559 605 .419
DeezyMatch .239 .279 531 .626 .260 .299 480 .617 .250 .250 1005 .719
SAPBERT .279 .327 474 .584 .434 .480 375 .463 .324 .324 917 .649

SSP .594 .671 201 .289 .644 .858 73 .165 .677 .735 187 .242
SSPART - .797 .821 57 .140 4.8 .886 .940 29.8 .060 1.8 .882 .897 63.5 .090 2.8 3.0
SSPART 0 .807 .823 55 .132 3.0 .865 .915 39.3 .075 5.5 .882 .882 110 .109 5.5 4.7
SSPART 1 .807 .816 65 .142 6.0 .868 .918 40.3 .073 4.8 .882 .897 64.9 .092 4.0 4.9
SSPART 2 .802 .814 68 .145 7.0 .865 .911 42.8 .078 6.5 .897 .912 64.0 .081 2.3 5.3
SSPART ✓ - .814 .828 60 .132 2.8 .879 .922 43.2 .072 4.0 .882 .897 65.0 .092 4.3 3.7
SSPART ✓ 0 .816 .831 62 .133 3.3 .872 .940 23.5 .057 1.8 .882 .897 64.6 .090 3.5 2.8
SSPART ✓ 1 .809 .833 59 .129 2.0 .875 .922 35.4 .073 3.8 .912 .927 40.6 .063 1.0 2.3
SSPART ✓ 2 .807 .823 61 .137 4.5 .872 .940 29.4 .060 2.5 .868 .882 72.6 .103 5.3 4.1

Table 5: Performance on the development sets. Higher is better for Accuracy and Accuracy@161km. Lower is
better for Mean Error and AUC. Edinburgh made no predictions for 24, 16, and 0 toponyms in LGL, GeoWebNews,
and TR-News, respectively. Since it is impossible to calculate distance-based metrics without coordinates, we skip
those toponyms, and as a result overestimate the distance-based metrics for Edinburgh.
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SSPART -fc -pop .802 .819 64 .141 .865 .925 39.5 .072 .897 .912 64.0 .081
SSPART -fc .792 .819 68 .141 .861 .918 34.7 .072 .868 .882 65.7 .100
SSPART -pop .807 .828 61 .134 .865 .915 31.9 .073 .897 .912 42.7 .074
SSPART .809 .831 56 .133 .886 .932 29.9 .062 .882 .897 86.0 .096

Table 6: Performance on the development sets when ablating the feature code (-fc) and population (-pop) features.
Higher is better for Accuracy and Accuracy@161km. Lower is better for Mean Error and AUC.
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