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Abstract—We propose CLIP-Fields, an implicit scene model
that can be used for a variety of tasks, such as segmentation,
instance identification, semantic search over space, and view
localization. CLIP-Fields learns a mapping from spatial locations
to semantic embedding vectors. Importantly, we show that this
mapping can be trained with supervision coming only from web-
image and web-text trained models such as CLIP, Detic, and
Sentence-BERT without any direct human supervision. When
compared to baselines like Mask-RCNN, our method outperforms
on few-shot instance identification or semantic segmentation on
the HM3D dataset with only a fraction of the examples. Finally,
we show that using CLIP-Fields as a scene memory, robots
can perform semantic navigation in real-world environments.
Our code and demonstration videos are available here: https:
//clip-fields.github.io

I. INTRODUCTION

In order to perform a variety of complex tasks in human
environments, robots often rely on a spatial semantic mem-
ory [2, 19, 11]. Ideally, this spatial memory should not be
restricted to particular labels or semantic concepts, would
not rely on human annotation for each scene, and would be
easily learnable from commodity sensors like RGB-D cameras
and IMUs. However, existing representations are coarse, often
relying on a preset list of classes and capturing minimal
semantics [2, 11]. As a solution, we propose CLIP-Fields,
which builds an implicit spatial semantic memory using web-
scale pretrained models as weak supervision.

Recently, representations of 3D scenes via neural implicit
mappings have become practical [29, 28]. Neural Radiance
Fields (NeRFs) [18], and implicit neural representations more
generally [21] can serve as differentiable databases of spatio-
temporal information that can be used by robots for scene
understanding, SLAM, and planning [17, 27, 6, 9, 21].

Concurrently, web-scale weakly-supervised vision-language
models like CLIP [22] have shown that the ability to capture
powerful semantic abstractions from individual 2D images.
These have proven useful for a range of robotics applications,
including object understanding [30] and multi-task learning
from demonstration [26]. Their applications have been limited,
however, by the fact that these trained representations assume
a single 2D image as input; it is an open question how to use
these together with 3D reasoning.

In this work, we introduce a method for building weakly
supervised semantic neural fields, called CLIP-Fields, which
combines the advantages of both of these lines of work.
CLIP-Fields is intended to serve as a queryable 3D scene
representation, capable of acting as a spatial-semantic memory
for a mobile robot. We show that CLIP-Fields is capable of
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Fig. 1: Our approach, CLIP-Fields, integrates multiple views of a
scene and can capture 3D semantics from relatively few examples.
This results in a scalable 3D semantic representation that can be used
to infer information about the world from relatively few examples and
functions as a 3D spatial memory for a mobile robot.

open-vocabulary segmentation and object navigation in a real
world scene using only pretrained models as supervision.

Our key idea is to build a mapping from locations in space
g(x, y, z) : R3 ! Rd that serves as a generic differentiable
spatial database. This dataset is trained to predict features
from a set of off-the-shelf vision-language models trained on
web-scale data, which give us weak supervision. This map
is trained on RGB-D data using a contrastive loss which
encourages similarity between features predicted at specific
spatial locations.

Thus, from the point of view of a robot using CLIP-Fields
as a spatial database for scene-understanding, training g itself
can be entirely self-supervised: the full pipeline, including
training the underlying image models, need not use any
explicit supervision. On the other hand, as we show in our
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experiments, even without any explicit supervision, the spatial
database g can naturally capture scene-specific information.

We demonstrate our method on tasks such as instance
segmentation and identification. Furthermore, we give qual-
itative examples of image-view localization, where we need
to find the spatial coordinates corresponding to an image and
localizing text descriptions in space. Finally, we demonstrate
CLIP-Fields on a real robot by having the robot move to look
at various objects in 3D given natural language commands.
These experiments show how CLIP-Fields could be used to
power a range of real-world applications by capturing rich 3D
semantic information in an accessible way.

II. APPROACH

In this section, we describe our concrete problem statement,
the components of our semantic scene model, and how those
components connect with each other.

A. Problem Statement

We aim to build a system that can connect points of a
3D scene with their visual and semantic meaning. Concretely,
we design CLIP-Fields to provide an interface with a pair
of scene-dependent implicit functions f, h : R3 ! Rn such
that for the coordinates of any point P in our scene, f(P )
is a vector representing its semantic features, and h(P ) is
another vector representing its visual features. For ease of
decoding, we constrain the output spaces of f, h to match the
embedding space of pre-trained language and vision-language
models, respectively. For the rest of this paper, we refer to such
functions as “spatial memory” or “geometric database” since
they connect the scene coordinates with scene information.

Given such a pair of functions, we can solve multiple
downstream problems in the following way:

• Segmentation: For a pixel in a scene, find the corre-
sponding point Pi in space. Use the alignment between
a label embedding and f(Pi) to find the label with the
highest probability for that pixel. Segment a scene image
by doing so for each pixel.

• Object navigation: For a given semantic query qs (or
a visual query qv) find the associated embeddings from
our pretrained models, es (respectively, ev), and find the
point in space that maximizes es · f(P ⇤) (or ev · h(P ⇤)).
Navigate to P ⇤ using classic navigation stack.

• View localization: Given a view v from the scene, find
the image embedding ev of v using the same vision-
language model. Find the set of points with highest
alignment ev · h(P ) in the scene.

While such a pair of scene-dependent functions f, h would
be straightforward to construct if we were given a dataset
{(P, f(P ), h(P ) | P 2 scene}, to make it broadly applicable,
we create CLIP-Fields to be able to construct f, h from easily
collectable RGB-D videos and odometry data.

B. Dataset Creation

We assume that we have a series of RGB-D images of a
scene alongside odometry information, i.e. the approximate

6D camera poses while capturing the images. As described
in III, we captured such a dataset using accessible consumer
devices such as an iPhone Pro or iPads. To train our model,
we first preprocess this set of RGB-D frames into a scene
dataset (Fig. 4). We convert each of our depth images to
pointclouds in world coordinates using the camera’s intrinsic
and extrinsic matrices. Next, we label each of the points P
in the pointcloud with their possible representation vectors,
f(P ), h(P ). When no human annotations are available, we
use web-image trained object detection models on our RGB
images. We choose Detic [37] as our detection model since it
can perform object detection with an open label set. However,
this model can freely be swapped out for any other pretrained
detection or segmentation model. When available, we can also
use human annotations for semantic or instance segmentations.

In both cases, we derive a set of detected objects with
language labels in the image, along with their label masks
and confidence scores. We back-project the pixels included
in the the label mask to the world coordinates using our
point cloud. We label each back-projected point in the world
with the associated language label and label confidence score.
Additionally, we label each back-projected point with the CLIP
embedding of the view it was back-projected from as well as
the distance between camera and the point in that particular
point. Note that each point can appear multiple times in the
dataset from different training images.

Thereby, we get a dataset with two sets of labels from
our collected RGB-D frames and odometry information. One
set of label captures primarily semantic information, Dlabel =
{(P, labelP , confP )} where labelP and confP are just detector-
given label and the confidence score to such label for each
point. The second set of labels captures primarily visual
information, Dimage = {(P, clipP , distP )}, where clipP is the
CLIP embedding of the image point P was back-projected
from, and distP is the distance between P and the camera in
that image. We then train CLIP-Fields to efficiently combine
the representations, encoding the points’ semantic and visual
properties in g.

C. Model Architecture

CLIP-Fields can be divided into two components: a trunk
g : R3 ! Rd, which maps each location (x, y, z) to a
representation vector, and individual heads, one for each one of
our objectives, like language or visual representation retrieval.
See Figure 2 for an overview.

We can parameterize g with any neural field architecture;
in CLIP-Fields we use multi-resolution hash encoding (MHE)
as introduced in Instant-NGP [20], with d = 144. MHEs build
an implicit representation over coordinates with a feature-
pyramid like structure, which can flexibly maintain both local
and global information, unlike purely voxel-based encodings
which focuses on local structures only. We primarily use
the MHE over other implicit field representations because
we found that they train significantly faster in our datasets.
The objective-specific heads are simple two-layer MLPs with
ReLU nonlinearities that map the 144 dimensional outputs
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Fig. 2: Model architecture for CLIP-Fields. We use a Multi-resolution
Hash Encoder [20] to learn a low level spatial representation mapping
R3 ! Rd, which is then mapped to higher dimensions and trained
with contrastive objectives.

of g into higher dimensions which depend on the associated
objective. These include heads that outputs a vector that
matches a natural language description of what is at the
point in space, and headv that matches the visual appearance
of the object occupying that point in space. Optionally, we
can include an instance identification head if we have the
appropriate labels to train it.

D. Objectives

The functions f, h in our implicit scene model can be si-
multaneously trained with multiple objectives. Each objective
trains an implicit function that maps from real world locations
in R3 to the objective space. CLIP-Fields are trained on a
specific scene with a contrastive loss, similar to CLIP [22].
While training the contrastive loss objective, we also take into
consideration the associated label weights. For the contrastive
loss calculation, the loss is weighted by the label confidence
(for semantic labels, like label embeddings from Sentence-
BERT [23]), or negative exponential of distance from camera
to point (for visual labels from CLIP [22] embeddings).
Additionally, as is standard practice, we scale the dot product
of the predicted and the ground truth embeddings by a learned
temperature value. We use the following training objectives:
Semantic Label Embedding: This objective trains the func-
tion encoding the semantic information of a 3D point as
a n-dimensional representation vector. We train this using
the assigned natural language labels to each point. We first
convert each label to a semantic vector using a pre-trained
language model trained to compare semantic similarity, such
as CLIP [22] or Sentence-BERT [23]. In this paper we used
Sentence-BERT for these language features with n = 768.

Mathematically, let us assume that P is the point where
we are calculating the loss, P� are points with a different
semantic label, f = heads � g is the associated semantic
encoding function, F is a pre-trained semantic language
encoder, c is the confidence associated with the label at P ,
and ⌧ is a temperature term, then the semantic label loss is:

LL(P, f(P )) = �c log
exp

�
f(P )TF(labelP )/⌧

�
P

P� exp (f(P )TF(labelP�)/⌧)

Visual Feature Embedding: This objective trains the embed-
ding of the language-aligned visual context of each scene point
into a single vector, akin to CLIP [22]. We define the visual
context of each point as a composite of the CLIP embedding

of each RGB frame this point was included in, weighted by
the distance from camera to the point in that frame. If it is
possible to do so from the given annotation, we limit the image
embedding to only encode what is in the associated object’s
bounding box. Detic [37], for example, produces embeddings
for region proposals for each detected objects, which we use.
In this paper’s experiments, we use the CLIP ViT-B/32 model
embeddings, giving the visual features 512 dimensions.

Similar to the previous objective, given CLIP visual embed-
ding Cs associated with the points, the mapping h = headv�g,
the distance between camera and the positive point dP , and
temperature term ⌧ , the visual context loss LC, is:

LC(P, h(P )) = �e�dP log
exp

�
h(P )T CP /⌧

�
P

P� exp (h(P )T CP�/⌧)
,

Auxilary objectives like Instance Identification: This op-
tional head projects the point representation to a one-hot vector
identifying its instance. We use this projection head only in
the cases where we have human labeled instance identification
data from the scene, and the projection dimension is number
of identified instances, plus one for unidentified instances.
Instance identification one-hot vectors are trained with a
simple cross-entropy loss LI .

Then, the final loss for CLIP-Fields becomes

L = LL + LC + ↵LI

where ↵ is a normalizing hyper-parameter to bring the cross-
entropy loss to a comparable scale of the contrastive losses.

III. REAL-WORLD EXPERIMENTAL EVALUATION

In Appendix VI, we evaluate CLIP-Fields in terms of
instance and semantic segmentation in images first – to show
that given ground truth data, it can learn meaningful scene
representations. In this section, we show that, only using
weak web-model supervision, CLIP-Fields can be used as a
robot’s spatial memory with semantic information. Our robot
experiments were performed on a Hello Robot Stretch using
Hector SLAM [15].

Training CLIP-Fields on available data, labeled by either
humans or pretrained models, gives us a mapping from real
world coordinates to a vector representation trained to contain
their semantic and visual properties (Section II-D). In this
section, we evaluate the quality of the learned representations
by using the learned model for downstream robot semantic
navigation tasks.

1) Task setup: We define our robot task in a 3D environ-
ment as a “Go and look at X” task, where X is a natural
language query defined by the user. To test CLIP-Fields’s
semantic understanding capabilities, we formulate the queries
from three different categories:

• Literal queries: At this level, we choose X to be the literal
and unambiguous name of an object present in the scene,
such as “the refrigerator” or “the typewriter”.

• Visual queries: At this level, we add references to objects
by their visual properties, such as “the red fruit bowl” or
“the blue book with a house on the cover”.
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Fig. 3: Examples of the robot’s semantic navigation in two different testing environments, looking at objects given different queries. The
images show the robot’s POV given the associated query, with color coded borders showing approximate correctness. The rows show different
two different scenes, top being in a lab kitchen and the bottom in our lab’s library/lounge space, shown in detail in figure 5.

• Semantic queries: At this level, we add references to
objects by their semantic properties, such as “warm my
lunch” (microwave), or “something to read” (a book).

2) Data collection and training: We ran our robot exper-
iment in two different scenes, one in the lab kitchen, and
another in the lab library (Figure 5). For each of the scenes,
we collected the RGB-D and odometry data with an iPhone
13 Pro with LiDAR sensors. The iPhone recording gave us a
sequence of RGB-D images as well as the approximate camera
poses in real world coordinate. On each of these scenes, we
labelled a subset of the collected RGB images with Detic [37]
model using ScanNet200 [24] labels. Then, we created a
training dataset with 3D world coordinates and their associated
semantic and visual embeddings using the method described
in Section II-B. On this dataset, we trained a CLIP-Fields to
synthesize all the views and their associated labels.

3) Robot execution: Next, on our robot, we load the CLIP-
Field to help with the localization and navigation of the robot.
When the robot gets a new text query, we first convert it to a
representation vector. We use Sentence-BERT to retrieve the
semantic part of the query representation and CLIP text model
to retrieve the vision-aligned part of the query representation.
Then, we find the coordinates of the point P in space that
has the highest alignment with the query representations, as
described in Section II-A and Figure 6. We use the robot’s
Hector SLAM [15] navigation stack to navigate to that region,
and point the robot camera to an XYZ coordinate where the
dot product was highest. We consider the navigation task
successful if the robot can navigate to and point the camera
at an object that satisfies the query. We run twenty queries in
the kitchen and fifteen queries in the library environment.

4) Experiment results: In our experiments (Figure 3), we
see that CLIP-Fields let the robot navigate to different points in

the environment from semantic natural language queries. We
generally observe that if an object was correctly identified by
the web-image models during data preparation, when queried
literally CLIP-Fields can easily understand and navigate to it,
even with intentional misspellings in the query. However, if an
object was misidentified during data preparation, CLIP-Fields
fails to correctly identify it as well. For example, in row two,
column two of Figure 3, the part of the floor that is identified
as a “table” was identified as a “table” by our web-image
model earlier. This observation lines up with our simulated
experiments in Section VI-A4 where we saw that CLIP-Fields
performance has a linear relationship with the base models’
performance. For semantic queries, CLIP-Fields sometimes
confuses two related concepts; for example, it retrieves the
dishwasher for both “place to wash my hand” and “place to
wash my dishes”. Finally, the visual queries sometimes put a
higher weight on the semantic match rather than visual match,
such as retrieving a white fruit bowl for ”red fruit bowl”
instead of the red bowl in the scene. However, the right object
is retrieved if we query for ”red plastic bowl”.

We have presented detailed logs of running CLIP-Fields on
the robot in the kitchen environment in Appendix VII-A.

IV. CONCLUSIONS AND FUTURE WORK

CLIP-Fields allow us to answer queries of varying levels
of complexity when trained on real-world data. We expect
this kind of 3D representation to be generally useful for
robotics. For example, it may be enriched with affordances
for planning; the geometric database can be combined with
end-to-end differentiable planners. In future work, we hope to
explore models that share parameters across scenes, and can
handle dynamic scenes and objects.
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APPENDIX

V. ADDITIONAL FIGURES
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Fig. 4: Dataset creation process for CLIP-Fields by processing
each frame of a collected RGB-D video. Models highlighted by
dashed lines are off-the-shelf pre-trained models, showing that we
can train a real world CLIP-Fields using no direct human supervision
beyond pre-trained open label object detectors, large language models
(LLMs) and visual language models (VLMs).

VI. EVALUATING CLIP-FIELDS IN SIMULATION

Our visual segmentation experiments in simulation are per-
formed on a subset of Habitat-Matterport 3D Semantic (HM3D
semantics) [35] dataset. We chose HM3D semantics as our sim
testing ground because in this dataset, each scene comes with
a different set of labels derived from free-form annotations.

A. Instance and semantic segmentation in scene images

The first task that we evaluate our model on is learning
instance and semantic segmentation of 3D environments. We
assume that we have access to a scene, a collection of RGB-D
images in it from different viewpoints, and a limited number
of them are annotated either by humans, or by a model. We
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Fig. 5: Scenes for our real-world semantic navigation experiments.
The top scene is a lab kitchen and the bottom is a library/lounge.

Natural language 

semantic and visual queries

CLIP-Field

The shelf

The brown couch

Place for burning wood

Fig. 6: Running semantic queries against a trained CLIP-Fields. We
encode our queries with language encoders, and compare the encoded
representation with the stored representation in CLIP-Fields to then
extract the best matches.

consider two cases in this scenario: one where there are some
human annotation data available, and in another where we are
completely reliant on large, web-image trained models.

Baselines: In our semantic and instance segmentation tasks,
we use 2D RGB based segmentation models as our baselines.
In all of the few-shot segmentation experiments, we take a
Mask-RCNN model with a ResNet50 FPN backbone, and a
DeepLabV3 model with a ResNet50 backbone. All baseline
models were pre-trained on ImageNet-1K and then the COCO
dataset. We fine-tune the final layers of these pretrained models
on each of our limited datasets, and then evaluate them on the
held-out set. For the RN50 FPN model, we report the mAP
at [0.5-0.95] IoU range. Detic is absent from the first two
evaluations since it is a detection model and thus cannot be
fine-tuned on segmentation labels.

Evaluating CLIP-Fields: Since CLIP-Fields defines a func-
tion that maps from 3D coordinates, rather than from pixels,
to representation vectors, to evaluate this model’s learned rep-
resentations we also have to use the depth and odometry infor-
mation associated with the image. To get semantic or instance
segmentation, we take the depth image, using the camera
matrix and odometry project it back to world coordinates,
and then query the associated points in world coordinate from



���

���

���

���
8Q
QR
UP
DO
L]
HG
�P
$3

&/,3�)LHOGV
5HV1HW���)31
'HHS1HW9�

� � � �� �� �� ��
1XPEHU�RI�ODEHOHG�LPDJHV

���

���

���

���

1
RU
P
DO
L]
HG
�P
$3

Fig. 7: Mean average precision in instance segmentation on the
Habitat-Matterport 3D (HM3D) Semantic dataset, (top) calculated
over only seen instances, and (bottom) calculated over all instances.

CLIP-Fields to retrieve the associated representations with
the points. These representations can once again be projected
back into the camera frame to reconstruct the segmentation
map predicted by CLIP-Fields. Back-projecting to 3D world
coordinates also lets CLIP-Fields correctly identify visually
occluded and obstructed instances in images, which is not easy
for RGB-only models.

1) Low-shot instance identification: In this setting, we
assume that we have access to a few images densely annotated
with an instance segmentation with associated instance IDs.
Such annotations are difficult for a human to provide, and
thus it is crucial in this setting to perform well with very few
(1-5) examples.

On this setting, we train CLIP-Fields with the provided
instance segmented RGB-D images and the associated odom-
etry data, and compare with the baseline pretrained 2D RGB
models fine-tuned on the same data.

As we can see in Figure 7, the average precision of the
predictions retrieved from CLIP-Fields largely outperforms the
RGB-models. This statement holds true whether we normalize
by the number of seen instances in the training set or by the
total number of instances in the scene.

2) Low-shot semantic segmentation: Next, we focus on a
similar setting on semantically segmenting the views from the
scene from a few annotations.

In Figure 8, we see once again that CLIP-Fields outperforms
the RGB-based models significantly, to the point where even
with three labelled views, CLIP-Fields has a higher AP than
any of the baseline RGB models.

3) Zero-shot semantic segmentation: To examine the bene-
fits derived purely from imposing multi-view consistency and
a 3D structure over 2D model predictions, we experiment with
CLIP-Fields trained solely with labels from large web-image
trained models in a zero-shot settings. In this experiment, we
train CLIP-Fields only with labels given to us by such large
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Fig. 8: Mean average precision in semantic segmentation on the
Habitat-Matterport 3D (HM3D) Semantic dataset. Here, the average
precision numbers are averaged over all semantic classes.
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Fig. 9: Mean average precision in zero-shot semantic segmentation
on the Habitat-Matterport 3D (HM3D) Semantic dataset.

web models, namely Detic [37]. We get the labels by using
Detic on the unlabeled training images, and then train CLIP-
Fields on it. Besides text labels from Detic, we also use the
CLIP visual representations to augment the implicit model, as
described in Section II-D.

As a baseline, we compare the trained CLIP-Fields with
performance of the same Detic model used to label the scene
images. Both CLIP-Fields and the baseline had access to the
list of semantic labels in each scene with no extra annotations.
We see in Figure 9 that enforcing 3D structure and multi-view
consistency in our segmentation predictions improves the test-
time predictions considerably.

In all our visual segmentation experiments, we see that en-
forcing 3D consistency and structure using CLIP-Fields helps
identifying scene properties from images. Back-projecting the
rays can also help CLIP-Fields correctly identify objects which
are occluded and partially visible. This property can be ex-
tremely helpful in a busy indoor setting where not every object
can be visible from every angle. Ability to work with occluded
views and partial information can be a strong advantage for
any embodied intelligent agent.

4) CLIP-Fields’s robustness to label errors: In real-world
applications, CLIP-Fields relies on labels given by large-
scale web-data trained models, which rarely (if ever) have
perfect accuracy. In this section, we examine the robustness
of CLIP-Fields to such label errors. In this experiment, we
simulate label errors by taking ground truth semantic labels
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Fig. 10: Mean average accuracy on the semantic segmentation task
on the HM3D Semantic dataset with label noise simulating errors in
base labelling models. Different lines show performance of models
trained with a different number of labeled training frames.

in simulation, and for each frame and each object in that
frame, flipping that object’s label to another random label with
probability p. By doing so, we simulate labelling our training
data by a model whose mean accuracy is 1� p.

We see from Figure 10 that as the base model’s semantic
label prediction accuracy increases, CLIP-Fields’s label pre-
diction accuracy increases almost linearly. Importantly, there is
no dramatic accuracy decrease when the base model accuracy
goes below 1. Thus, we can see that CLIP-Fields maintain
reasonable accuracy as long as the base models are also
reasonably accurate, which is the case for the state-of-the-
art detection and segmentation models. As the base models
naturally improve over time with continuous efforts in the
computer vision and natural language processing fields, we
expect CLIP-Fields’s performance to improve correspondingly.

5) View Localization: Since CLIP-Fields is trained with
CLIP embeddings at each coordinate, we can use such embed-
dings to localize an arbitrary view from the scene. To do so,
we simply find the CLIP embedding of the query image. Then,
we query the visual representation of the points in the scene,
and take the dot product between the query representation and
the point representations. Due to the contrastive loss that CLIP
was trained with, points that have similar embeddings to the
query embedding will have the highest dot product. We can
use this principle to localize any view in the scene, as shown
in Figure 11.

VII. ADDITIONAL TRAINING DETAILS

Our models are trained with the datasets described in
Sec. II-B. We train the implicit maps simultaneously with
the contrastive losses described in Sec. II-D. Under this loss,
each embedding is pushed closer to positive labels and further
away from negative labels. For the label embedding head,
the positive example is the semantic embedding of the label
associated with that point, while negative examples are se-
mantic embeddings of any other labels. For the visual context
embedding head, the positive examples are the embeddings

Image localizationImage query through 

CLIP embedding

Trained CLIP-Field

Fig. 11: View localization using a trained CLIP-Fields. We encode
the query image on the bottom left to its CLIP representation, and
visualize the locations whose CLIP-Fields representations have the
highest (more red) dot product with the embedded image. Lower dot
products are blue; and below a threshold are uncolored.

of all images and image patches that contain the point under
consideration, while the negative examples are embeddings of
images that do not contain that point. Similar to CLIP [22],
we also note that a larger batch size helps reduce the variance
in the contrastive loss function. We use a batch size of 12, 544
everywhere since that is the maximum batch size we could fit
in our VRAM of an NVIDIA Quadro GP100 GPU.

We release our open source code at the Github repo https:
//github.com/clip-fields/clip-fields.github.io with full details
about how to train a new CLIP-Fields on any environment. The
code is also shared in the attached supplementary information
zip file. While the published code should be sufficient to
reproduce our work and experiments, we are describing the
most important training details and hyperparameters here for
reproducibility purposes.

TABLE I: Optimization hyperparameters

Parameter Value

Optimizer Adam
Learning rate 10�4

Weight decay 3⇥ 10�3

� (0.9, 0.999)
Learning rate schedule None
Epochs 100
Per epoch iters 3⇥ 106

Batch size 12, 544
↵ (Sec. II-D, when applicable) 100.0

https://github.com/clip-fields/clip-fields.github.io
https://github.com/clip-fields/clip-fields.github.io


TABLE II: Architecture and Instant-NGP hyperparameters

Parameter Value

Intermediate representation dimension 144
NGP grid levels 18
NGP per-level scale 2
NGP level dimension 8
NGP log2 hash map size 20
MLP number of hidden layers 1
MLP hidden layer size 600

TABLE III: External model configurations

Task Model Instance

Object detector Detic CLIP + SwinB
Vision-language model CLIP ViT-B/32
Language model Sentence-BERT all-mpnet-base-v2

A. Real world experiment logs

In this section, we reproduce the exact real-world qualitative
observations that we made by running our robot on the Kitchen
scenario. We present this for the readers to get a full picture of
what the robot queries looked like, and how the CLIP-Fields
responded to each of the queries.

1) Literal queries:
a) Stack of plates: success, found the dishwashing

rack with plates in it.
b) Microwave: success, found the microwave oven in

the lab kitchen.
c) The fridghe (misspelling intentional): success,

found the large standing fridge in the corner.
d) Coffee machine (ambiguous query): success, found

the silver coffee maker.
e) Sink: success, found the sink.
f) Toaster oven: failure, found the microwave oven

instead of the toaster oven.
2) Visual queries:

a) White ceramic bowl: success, found the bowl by
the dishwashing rack.

b) Red plastic bowl: success, found the red bowl
above the trash cabinets.

c) Red fruit bowl: failure, found the white bowl by
the dishwashing rack.

d) Espresso machine: success, found the nespresso
machine by the coffee machine.

e) Blue gargabe bin: success, found one of the two
blue recycling bins in the kitchen.

f) Potted plant in a black pot: success, ambiguous,
found the potted plants in a shelf. Isolating the
black flower pot was ambiguous since the robot
doesn’t get too close to scene objects.

g) Purple poster: success, found the poster above the
sink.

3) Semantic queries:
a) Wash my dishes: success, finds the dishwasher as

intended.

b) Wash my hand: failure, finds the dishwasher in-
stead of the sink.

c) Throw my trash: success, finds the recycling bins
(although not entirely climate friendly behavior.)

d) Put away my leftovers: failure, pointed the camera
at the trash cabinet instead of the fridge or the
cabinets. Potentially because the trash cabinets got
identified as “cabinets” by our detectors.

e) Fill out my water bottle: success, finds the glass
bottles at the corner of the kitchen. While the
original intention was to find the water cooler, the
response is reasonable.

f) Make some coffee: success, found the coffee maker
and grinders.

g) Warm up my lunch: success, found the microwave
oven.

VIII. RELATED WORK

Vision-Language Navigation. Much recent progress on
vision-language navigation problems such as ALFRED [25] or
RXR [16] has used spatial representations or structured mem-
ory as a key component to solving the problem [19, 2, 33, 10].
HLSM [2] and FiLM [19] are built as the agent moves
through the environment, and rely on a fixed set of classes
and a discretization of the world that is inherently limiting.
By contrast, CLIP-Fields creates an embedding-dependant
implicit representation of a scene, removing dependency on a
fixed set of labels and hyperparameters related to environment
discretization. Other representations [33] do not allow for 3D
spatial queries, or rely on dense annotations, or accurate object
detection and segmentation [10, 5, 1].

Concurrently with our work, NLMap-SayCan [4] and
VLMaps [13] proposed two approaches for real-world vision-
language navigation. NLMap-SayCan uses a 2D grid-based
map and a discrete set of objects predicted by a region-
proposal network [4], while CLIP-Fields can make predictions
at different granularities. VLMaps [13] use a 2D grid-based
representation and operate on a specific, pre-selected set of
object classes. By contrast, CLIP-Fields can operate on 3D
data, allowing the agent to look up or down to find objects.
All three methods assume the environment has been explored,
but both [4] and [13] look at predicting action sequences,
while we focus on the problem of building an open-vocabulary,
queryable 3D scene representation.

Pretrained Representations. Effective use of pretrained
representations like CLIP [22] seems crucial to deploying
robots with semantic knowledge in the real world. Recent
works have shown that it is possible to use supervised web
image data for self-supervised learning of spatial representa-
tions. Our work is closely related to [3], where the authors
show that a web-trained detection model, along with spatial
consistency heuristics, can be used to annotate a 3D voxel
map. That voxel map can then be used to propagate labels
from one image to another. Other works, for example [8], use
models specifically trained on indoor semantic segmentation
to build semantic scene data-structures.



Cohen et al. [7] looks at personalizing CLIP for specific
users and rare queries, but does not build 3D spatial representa-
tions conducive to robotics applications, and instead functions
on the level of individual images.

Implicit Representations. There is a recent trend towards
using NeRF-inspired representations as the spatial knowledge
base for robotic manipulation problems [27, 9], but so far this
has not been applied to open-vocabulary object search. As in
[36, 29, 32, 14, 31], we use a mapping (parameterized by a
neural network) that associates to an (x, y, z) point in space a
vector with semantic information. In those works, the labels
are given as explicit (but perhaps sparse) human annotation,
whereas, in this work, the annotation for the semantic vector
are derived from weakly-supervised web image data.

Language-based Robotics. Several works [26, 30] have
shown how features from weakly-supervised web-image
trained models like CLIP [22] can be used for robotic scene
understanding. Most closely related to this work is [12], which
uses CLIP embeddings to label points in a single-view 3D
space via back-projection. In that work, text descriptions are
associated with locations in space in a two step process. In
the first step, using an ViT-CLIP attention-based relevancy
extractor, a given text description is localized in a region on
an image; and that region is back-projected to locations in
space (via depth information). In the second step, a separately
trained model decoupled from the semantics converts the back-
projected points into an occupancy map. In contrast, in our
work, CLIP embeddings are used to directly train an implicit
map that outputs a semantic vector corresponding to each
point in space. One notable consequence is that our approach
integrates semantic information from multiple views into the
spatial memory; for example in Figure 9 we see that more
views of the scene lead to better zero-shot detections.

IX. BACKGROUND

In this section, we provide descriptions of the recent ad-
vances in machine learning that makes CLIP-Fields possible.

a) Contrastive Image-Language Pretraining: This pre-
training method, colloquially known as CLIP [22], is based
on training a pair of image and language embedding networks
such that an image and text strings describing that image
have similar embeddings. The CLIP model in [22] is trained
with a large corpus of paired image and text captions with
a contrastive loss objective predicting which caption goes
with which image. The resultant pair of models are able to
embed images and texts into the same latent space with a
meaningful cosine similarity metric between the embeddings.
We use CLIP models and embeddings heavily in this work
because they can work as a shared representation between an
object’s visual features and its possible language labels.

b) Open-label Object Detection and Image Segmenta-

tion: Traditionally, the objective of object detection and se-
mantic segmentation tasks has been to assign a label to each
detected object or pixels. Generally, these labels are chosen
out of a set of predefined labels fixed during training or fine-
tuning. Recently, the advent of open-label models have taken

this task to a step further by allowing the user to define
the set of labels during run-time with no extra training or
fine-tuning. Such models instead generally predict a CLIP
embedding for each detected object or pixel, which is then
compared against the label-embeddings to assign labels. In
our work, we use Detic [37] pretrained on ImageNet-20k as
our open-label object detector. We take advantage of the fact
that besides the proposed labels, Detic also reports the CLIP
image embedding for each proposed region in the image.

c) Sentence Embedding Networks for Text Similarity:

CLIP models are pretrained with image-text pairs, but not with
image-image or text-text pairs. As a result, sometimes CLIP
embeddings can be ambiguous when comparing similarities
between two image images or pieces of texts. To improve
CLIP-Fields’ performance on language queries, we also utilize
language model pretrained for semantic-similarity tasks such
as Sentence-BERT [23]. Such models are pretrained on a
large number of question-answer datasets. Thus, they are also
good candidates for generating embeddings that are relevant
to answering imperative queries.

d) Neural Fields: Generally, Neural Fields refer to a
class of methods using coordinate based neural networks
which parametrize physical properties of scenes or objects
across space and time [34]. Namely, they build a map from
space (and potentially time) coordinates to some physical
properties, such as RGB color and density in the case of
neural radiance fields [18], or a signed distance in the case
of instant signed distance fields [21]. While there are many
popular architectures for learning a neural field, in this paper
we used Instant-NGP [20] as in preliminary experiments we
found it to be an order of magnitude faster than the original
architecture in [18].

Note that a major focus of our work is using models
pretrained on large datasets as-is – to make sure CLIP-Fields
can take advantage of the latest advances in the diverse fields
it draws from. At the same time, while in our setup we
haven’t found a need to fine-tune any of the pretrained models
mentioned here, we do not believe there is any barrier to do
so if such is necessary.
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