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ABSTRACT

The quadratic computational complexity of self-attention presents a significant
challenge for scaling Transformer architectures to longer sequences. While exist-
ing approaches pursue efficiency through sparse approximation or hardware opti-
mization, they operate under the assumption that the input token sequence remains
immutable. We propose Semantic Foundation Attention (SFA), which introduces
semantic reconstruction—a paradigm that dynamically reconfigures the compu-
tational structure based on semantic relationships during attention computation.
SFA employs two complementary strategies: similarity merging consolidates se-
mantically aligned tokens through vector addition to preserve and amplify sig-
nal strength, while difference merging exploits orthogonality properties in high-
dimensional embedding spaces to efficiently integrate complementary informa-
tion. We implement custom CUDA compute kernels for SFA that decompose the
generated dynamic attention patterns into diagonal and rectangular computation
domains, enabling efficient execution without explicitly storing the sparse matrix.
Comprehensive evaluation on OLMoE architectures demonstrates that SFA con-
sistently improves performance across multiple downstream benchmarks while
reducing computational requirements. These results show that computational ef-
ficiency and model performance can be jointly optimized through semantically-
aware attention computation, establishing semantic reconstruction as a viable
paradigm for attention mechanism design.

1 INTRODUCTION

The quadratic computational complexity of the self-attention mechanism, the core of the Trans-
former architecture (Vaswani et al., 2017), has become a major computational bottleneck in scaling
large language models. Existing optimization approaches, whether hardware-aware computational
acceleration or algorithmic sparse approximations, are constrained by a common limitation: they all
treat the input sequence as a static, semantically flat collection of tokens, forcing a difficult trade-off
between brute-force full computation and lossy approximation.

We argue that the key to addressing this limitation stems from reconsidering how attention compu-
tation should be structured. Rather than optimizing around fixed token sequences, we propose that
attention mechanisms should dynamically adapt their computational structure based on the semantic
relationships within the input. This insight leads to a new attention paradigm: Semantic Founda-
tion Attention (SFA), which replaces computation over redundant token sequences with efficient,
adaptive semantic synthesis.

SFA introduces semantic reconstruction—a process that dynamically consolidates semantically re-
lated tokens into higher-level, information-dense units during attention computation. This approach
is driven by two complementary strategies: similarity merging, which amplifies signal strength by
consolidating semantically aligned tokens through vector addition, and difference merging, which
leverages orthogonal geometry in high-dimensional embedding spaces to efficiently integrate com-
plementary information. Unlike preprocessing approaches, these operations occur within the atten-
tion mechanism itself, enabling the model to learn optimal semantic structures through end-to-end
training.

To achieve practical efficiency, we developed a complete suite of specialized CUDA kernels that
decompose SFA’s dynamic computation into independent diagonal and rectangular domains. This
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implementation avoids explicit sparse matrix storage while maximally leveraging dense compute
capabilities of modern GPUs. The system seamlessly integrates with existing training frameworks
and maintains full compatibility with automatic differentiation.

We conducted comprehensive evaluations on medium-scale pre-training experiments using OLMoE
architectures and found encouraging results: SFA-based models not only maintain performance
relative to optimized standard attention baselines but demonstrate consistent improvements across
multiple downstream benchmarks. These findings challenge the conventional assumption that effi-
ciency and performance represent a zero-sum trade-off in attention mechanisms. Furthermore, we
observe that SFA’s compression effectiveness increases with the model’s semantic understanding
capabilities, suggesting a beneficial co-evolution between efficiency and model intelligence.

The principle of semantic-aware computation introduced by SFA provides a foundation for building
more efficient and capable language models. By embedding semantic understanding directly within
attention mechanisms, this work establishes a new direction for attention optimization that achieves
joint improvements in both computational efficiency and model performance.

2 RELATED WORK

The quest to accelerate attention mechanisms has pursued two primary directions: algorithmic sparse
approximation and hardware-aware computational optimization, both constrained by treating the
input token sequence as immutable.

Algorithmic Sparse Approximation reduces computational complexity through selective attention
connection discarding via various sparsity patterns. These include structured sparsity (Child et al.,
2019), fixed patterns combining sliding windows and global attention (Beltagy et al., 2020; Ainslie
et al., 2020), random and global patterns (Zaheer et al., 2020), content-aware clustering (Roy et al.,
2020; Wang et al., 2021),kernel-based approximations (Choromanski et al., 2021; Wang et al., 2020),
dynamic hierarchical strategies (Lou et al., 2024; Yuan et al., 2025), and doubly stochastic methods
(Sander et al., 2022). Comprehensive surveys are provided in (Tay et al., 2022; Farina et al., 2024).
Despite algorithmic sophistication, these methods typically involve trade-offs between computa-
tional efficiency and information preservation.

Hardware-Aware Computational Optimization, exemplified by FlashAttention (Dao et al., 2022),
maintains mathematical exactness while optimizing computational flow through IO-aware algo-
rithms and tiling strategies. These approaches achieve practical acceleration without altering at-
tention’s mathematical definition, yet cannot transcend the theoretical quadratic complexity ceiling.

Token-Level Optimization directly modifies the computational substrate through token manipula-
tion. Token merging approaches include spectrum-preserving methods using SVD (Tran et al.,
2025), adaptive local-global strategies (Norouzi et al., 2024), and application-specific techniques
(taihang Hu et al., 2024; Wu et al., 2025). Token pruning methods achieve efficiency through strate-
gic elimination based on learned importance scores (Kim et al., 2022) or dynamic sparsification (He
et al., 2024; Marchetti et al., 2025; Xiuying, 2025). These methods uniformly employ similarity-
based heuristics followed by averaging-based aggregation as preprocessing steps, fundamentally
limited by their inability to handle complementary information and reliance on information-diluting
operations.

SFA’s Paradigmatic Orthogonality: Semantic Foundation Attention operates at the semantic rep-
resentation level rather than the computational pattern level, embedding semantic understanding
directly within attention computation through dynamic semantic reconstruction. Unlike previous
methods that modify inputs before attention computation (token merging/pruning), modify attention
during computation (sparse patterns), or accelerate attention implementation (hardware optimiza-
tions), SFA optimizes the semantic substrate itself. Crucially, SFA’s semantic-level optimizations
are fully compatible with existing efficient attention methods, enabling seamless integration with
sparse attention patterns, hardware optimizations, and other computational accelerations for com-
pound efficiency gains.

This paradigmatic orthogonality dissolves the traditional trade-off between efficiency and perfor-
mance by establishing semantic-aware computation as a new optimization axis, distinct from and
compatible with existing approaches. SFA’s contribution provides a semantic foundation that en-
hances any attention implementation through intelligent substrate optimization.
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3 SEMANTIC FOUNDATION ATTENTION

Traditional attention mechanisms assume that attention computation should be performed over orig-
inal, unmodified token sequences. This assumption constrains all optimization approaches to either
approximate full computation through sparse patterns or accelerate computation through hardware
optimization, both treating sequence structure as fixed. Semantic Foundation Attention (SFA) pro-
vides an alternative by making the attention computation structure itself adaptive. SFA performs
attention computation over dynamically reconstructed representations that better reflect the informa-
tion structure of the input, recognizing and consolidating redundant or complementary information
within sequences.

The key insight motivating SFA is that well-trained language models naturally develop geo-
metric structures in their embedding spaces where related concepts exhibit predictable relation-
ships—similar concepts align in direction while complementary concepts maintain orthogonality.
SFA leverages and shapes these geometric properties through training to enable joint optimization
of computational efficiency and model performance.

The SFA framework consists of three key components: token consolidation strategies based on
relationships in the embedding space; multi-head specialization mechanisms enabling different at-
tention heads to focus on different relationship types; and efficient computational implementation
that decomposes dynamic attention patterns into hardware-friendly operations.

3.1 DYNAMIC TOKEN CONSOLIDATION THROUGH LEARNED GEOMETRIC STRUCTURE

The core mechanism of SFA relies on exploiting geometric properties that emerge in high-
dimensional embedding spaces during language model training. Our approach is motivated by the
observation that well-trained models often develop structured representations (Ethayarajh, 2019)
where semantically related tokens exhibit predictable geometric relationships—similar concepts
tend to align in direction while complementary concepts maintain relative orthogonality. Rather
than assuming this structure exists inherently, we design SFA to learn and leverage these relation-
ships through end-to-end training.

Based on this motivation, we introduce two complementary token consolidation strategies that op-
erate on adjacent token pairs during attention computation. Similarity Merging addresses redun-
dancy by consolidating tokens with aligned representations. For example, adjacent repetitive to-
kens like ”very very” typically exhibit high directional similarity. For such cases, we apply vector
addition: K ′

i = Ki−1 + Ki. This strategy preserves semantic direction while naturally encod-
ing emphasis through increased magnitude, contrasting with averaging operations that dilute sig-
nal strength. Difference Merging handles complementary information by consolidating orthogo-
nal tokens. For example, semantically complementary pairs like ”azure” and ”sky” may exhibit
approximate orthogonality in embedding space. When adjacent tokens are approximately orthog-
onal, their vector sum creates a compressed representation that the model learns to interpret ef-
fectively. The key insight is that through training, the model can learn when the attention ef-
fect Attention(Q,Ki−1 + Ki) provides a beneficial approximation to the separate computations
Attention(Q,Ki−1) + Attention(Q,Ki).

Learning Framework: The geometric structure enabling these consolidation strategies emerges
through joint optimization of the primary language modeling objective and a compression-aware
auxiliary loss. This auxiliary loss guides the embedding space geometry while the main task en-
sures that consolidation decisions serve the downstream objectives. The compression loss balances
merge quality (ensuring appropriate geometric relationships) with merge quantity (encouraging suf-
ficient compression). We define the quality assessment components as Lsim(i, j) = (1 − dp)

2 and
Ldiff(i, j) = d2p, where dp represents cosine similarity between tokens. The complete compression
loss combines quality and quantity objectives:

Lcomp =

(∑
i,j(Lsim(i, j) ·Msim(i, j) + Ldiff(i, j) ·Mdiff(i, j))

Nmerged
−

Nmerged

Ntotal pairs

)
· Ifactor (1)

where Msim/diff are strategy masks, Nmerged is the number of merges, and Ifactor is a scaling hyperpa-
rameter. This auxiliary loss is jointly optimized with the main language modeling loss LLM, creating
a feedback mechanism where consolidation effectiveness improves alongside the model’s represen-
tational capabilities. The model learns both when to merge tokens and how to interpret the resulting
consolidated representations effectively.
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3.2 MULTI-HEAD SPECIALIZATION AND NORMALIZATION MECHANISMS

SFA’s effectiveness stems from how it adaptively applies merging strategies to complex lan-
guage data through two complementary mechanisms: multi-head specialization and head-wise pre-
normalization.

Figure 1: Illustration of SFA’s Multi-Head Specialization mechanism. For the same input pair of
Token A and Token B, different attention heads can autonomously learn and adopt distinct merging
strategies: Head 1 performs similarity merging, Head 2 executes difference merging, while Head 3
opts not to merge, thereby capturing diverse semantic relationships in different subspaces.

For the same pair of adjacent tokens, their relationship can vary significantly depending on seman-
tic context. For example, in ”bank of the river” versus ”investment bank,” the polysemous word
”bank” exhibits different relationships to its neighbors. The multi-head attention mechanism pro-
vides a natural framework for capturing such multifaceted relationships. SFA builds upon this by
enabling different attention heads to specialize in different consolidation strategies, creating a multi-
perspective analysis framework.

As illustrated in Figure 1, we divide attention heads into two groups: Hsim specializes in similar-
ity merging, while Hdiff focuses on difference merging. This specialization allows the model to
simultaneously capture both commonalities and differences within a single architecture. Through
training, heads in Hsim learn to project semantically similar tokens into aligned directions, while
heads in Hdiff learn to project complementary tokens into orthogonal directions.

To ensure stable and accurate merging decisions, we introduce head-wise pre-normalization. Un-
like standard models that apply a single LayerNorm before multi-head attention, we apply RMS
Normalization independently to the Q and K vectors of each attention head. RMSNorm stabilizes
training by rescaling vector variance while preserving relative magnitude differences, unlike strict
normalization that enforces unit L2 norms. The formulation is: RMSNorm(x) = g · x√

1
d

∑d
i=1 x2

i+ϵ
,

where g is a learnable scaling parameter.

Applying RMSNorm at the head level creates separate, standardized comparison spaces for each
head, encouraging different heads to learn distinct projection functions and focus on different di-
mensional combinations for relationship discovery. This approach provides numerical stability for
merging decisions while preserving the geometric properties necessary for effective consolidation.
Importantly, we only normalize Q and K vectors, leaving V vectors unchanged. This asymmetric de-
sign ensures that similarity merging’s signal amplification effect (increased magnitude) is preserved
in the value vectors, where it contributes to the final attention output weighting. This combination
of multi-head specialization and head-wise pre-normalization creates a novel attention mechanism
design that achieves effective information consolidation while maintaining decision accuracy and
numerical stability.

3.3 COMPUTATIONAL FLOW AND IMPLEMENTATION OF SFA

SFA’s implementation performs semantic reconstruction during attention computation, not as pre-
processing. This enables the attention mechanism to adapt its computational structure based on the
semantic content being processed, rather than applying fixed patterns. SFA transforms dynamic at-
tention patterns into efficient computational workflows through structured decomposition. As illus-
trated in Figure 2, SFA’s dynamic attention pattern decomposes into two independent computational
domains: diagonal and rectangular regions. This decomposition enables efficient parallel compu-
tation without explicit sparse matrix storage. SFA’s computational flow consists of four stages:
semantic merging and data reorganization, where consolidation decisions reorganize memory lay-
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Figure 2: Complete overview of SFA computational flow. Upper left: Fixed causal mask of stan-
dard attention; Lower left: Dynamic semantic-aware mask of SFA; Right: Complete computational
pipeline of SFA, including token merging, diagonal computation, rectangular computation, online
Softmax fusion, and result assembly. This architecture avoids sparse matrix memory instantiation,
achieving optimization of memory and computation.

out for optimal access patterns; diagonal domain computation of self-attention scores for all tokens
through sk,i =

QiK
T
i√

dk
; rectangular domain attention on compressed Query, Key, and Value repre-

sentations; and cross-domain fusion using online Softmax operations for mathematically consistent
attention weight normalization.

Rather than computing attention over the full n × n matrix, SFA computes attention over two re-
gions: an n-dimensional diagonal and an (n− k)× k rectangular region, where k represents tokens
after compression. This reduces computational complexity fromO(n2d) toO(nd+(n−k)×k×d),
achieving efficiency gains when k ≪ n. SFA’s implementation avoids the overhead of sparse at-
tention patterns by never explicitly constructing sparse matrices. The diagonal-rectangular decom-
position enables all computations on dense memory blocks with optimal memory access patterns.
The system maintains numerical stability through online Softmax algorithms that handle fusion of
attention weights computed at different scales.

Importantly, SFA operates at the semantic representation level and is orthogonal to existing efficient
attention methods such as Linformer, Performer, and Longformer, which focus on computational
pattern optimization. SFA can be integrated with these approaches, enabling compound efficiency
gains through semantic reconstruction combined with algorithmic sparsification.

Detailed CUDA implementation, including optimized memory access patterns, kernel fusion strate-
gies, and backward pass algorithms, is provided in Appendix D.

3.4 THEORETICAL ANALYSIS: MATHEMATICAL FOUNDATIONS AND PERFORMANCE
MECHANISMS OF SFA

SFA’s effectiveness builds upon the linear nature of vector operations in attention computation
and the geometric properties of high-dimensional embedding spaces. When merging adjacent
key vectors Ki,Ki−1 into K ′ = Ki + Ki−1, the attention score for query Qj exhibits linearity:
s′j =

Qj ·(Ki+Ki−1)√
dk

= sj,i + sj,i−1. Since pre-softmax computations are linear, this provides the
mathematical foundation for merging operations.

The critical transformation occurs through the softmax activation, which converts linear score com-
binations into multiplicative attention weight relationships. Let the original attention weights be
aj,i = exp(sj,i)/Z and aj,i−1 = exp(sj,i−1)/Z, where Z =

∑n
k=1 exp(sj,k). After merging, the

new key sequence produces the merged weight a′j,merged = exp(sj,i + sj,i−1)/Z
′.

The key insight lies in how exponential transformation converts linear combinations to multiplicative
relationships: exp(sj,i+sj,i−1) = exp(sj,i)·exp(sj,i−1). While this transforms the original additive
attention effect aj,i + aj,i−1 into a multiplicative form, the normalization factor adjustment enables
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adaptive attention redistribution that can effectively approximate the original computation under
appropriate conditions. The normalization factor becomes:

Z ′ = Z − exp(sj,i)− exp(sj,i−1) + exp(sj,i) · exp(sj,i−1) (2)
This transformation creates two distinct operational regimes based on token relationships. When
Ki and Ki−1 are semantically similar, for query Qj we have sj,i−1 ≈ sj,i = s. The merged score
becomes s′merged = 2s, and due to exponential convexity, when s > log(2), we have exp(2s) >

2 exp(s), thus Z ′ > Z. This creates enhanced competitive advantage for the merged unit. For any
other token k, the competitive ratio change is:

a′j,merged/a
′
j,k

(aj,i + aj,i−1)/aj,k
=

exp(s)

2
(3)

When s > log(2), this ratio exceeds 1, concentrating attention more decisively onto semantically
coherent units.

Conversely, when Ki and Ki−1 are orthogonal, adaptive routing emerges. If query Qj is relevant
only to Ki with sj,i = s and sj,i−1 ≈ 0, then s′merged = s, Z ′ = Z − 1, and a′j,merged ≈ aj,i when
Z ≫ 1, making the merging operation transparent. If Qj is relevant to both tokens, the merged unit
gains multiplicative competitive advantage through exp(s1 + s2) = exp(s1) · exp(s2).
SFA achieves adaptive optimization through joint training with task loss LLM and geometric regu-
larization Lcomp. For similarity merging, the gradient ∂Lsim

∂Ki
= −2(1−cos(Ki,Ki−1))

∂ cos(Ki,Ki−1)
∂Ki

produces adaptive-strength updates: strong gradients when similarity is low to promote align-
ment, weak gradients when highly aligned to prevent over-merging. For difference merging,
∂Ldiff
∂Ki

= 2 cos(Ki,Ki−1)
∂ cos(Ki,Ki−1)

∂Ki
promotes orthogonalization.

The approximation quality can be characterized mathematically. For similarity merging when
cos θ → 1 and ∥Ki∥ ≈ ∥Ki−1∥, the angular error ϕ satisfies sinϕ → 0. For difference merging,
approximation fidelity is defined as F = cos(Attention(Q,Kmerged)V,Attention(Q,Kseparate)V ),
where F → 1 under orthogonal conditions.

This analysis demonstrates that SFA transforms semantic understanding into structured attention
redistribution through softmax’s exponential transformation, achieving signal concentration rather
than information loss while maintaining mathematical consistency through adaptive normalization.

4 EXPERIMENTS

To validate the effectiveness of Semantic Foundation Attention (SFA), we design a controlled ex-
perimental framework that evaluates its performance against standard attention mechanisms while
investigating the contributions of its core components. Our evaluation focuses on demonstrating
SFA’s fundamental mechanisms and establishing its viability as an attention optimization approach.

4.1 EXPERIMENTAL SETUP

We conduct our evaluation using the OLMoE architecture (Muennighoff et al., 2025), which pro-
vides a well-established foundation for controlled comparison studies. The mixture-of-experts de-
sign offers particular advantages for evaluating attention mechanisms, as it separates attention per-
formance from feed-forward capacity effects, enabling cleaner assessment of attention-specific im-
provements.

Our experimental design encompasses two complementary scales to validate SFA’s effectiveness
across different parameter regimes and sequence length configurations. The first configuration em-
ploys OLMoE models ranging from 1B-7B parameters, trained on 0.3 billion tokens from the DCLM
dataset (Li et al., 2024) with maximum sequence length 4096. This scale enables evaluation of
SFA’s early convergence properties and mechanism validation under representative training condi-
tions. The second configuration uses OLMoE models from 0.25B-1.75B parameters, trained on 3
billion tokens with maximum sequence length 1024. This extended training regimen allows assess-
ment of SFA’s performance characteristics under more thorough optimization, providing insights
into long-term effectiveness patterns.

For each configuration, we train both a baseline model using standard attention and a comparison
model integrating SFA. All other aspects remain identical—network architecture, optimizer param-
eters, learning rate scheduling, random seeds, and training data flow—ensuring that performance
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differences can be attributed specifically to the attention mechanism. The SFA models incorporate
head-wise pre-normalization, applying RMS Normalization independently to Query and Key vectors
of each attention head to provide stable numerical conditions for consolidation decisions.

Following pretraining, we evaluate all models on a comprehensive suite of established benchmarks
that assess different cognitive capabilities: physical common sense reasoning (PIQA (Bisk et al.,
2019)), general reasoning (WinoGrande (Sakaguchi et al., 2019), CommonsenseQA (Talmor et al.,
2019)), scientific knowledge (SciQ (Welbl et al., 2017), ARC-Easy (Clark et al., 2018)), social
interaction understanding (SocialIQA (Sap et al., 2019)), and multi-domain knowledge question an-
swering (MMLU (Hendrycks et al., 2021)). This evaluation scope provides a thorough assessment
of model performance across diverse reasoning tasks, enabling validation of SFA’s general applica-
bility rather than task-specific optimization.

4.2 CORE EXPERIMENTAL RESULTS

Our experiments provide a direct comparison of performance between Semantic Foundation Atten-
tion (SFA) and standard attention mechanisms. We use FlashAttention as our baseline implementa-
tion, which maintains mathematical equivalence to standard attention while providing computational
optimizations through improved memory access patterns. This choice ensures fair comparison by
isolating SFA’s semantic-level innovations from implementation-specific acceleration techniques.

Table 1: Performance comparison between SFA and standard attention mechanisms
Model PIQA Wino- SciQ ARC- Common- Social- MMLU- MMLU-

Grande Easy senseQA IQA Humanities STEM
1B-7B Scale

Flash 0.5680 0.5040 0.4840 0.3511 0.2733 0.4520 0.2553 0.1809
SFA 0.6095 0.4819 0.5551 0.3574 0.2571 0.4743 0.2624 0.1977

0.25B-1.75B Scale
Flash 0.6175 0.5130 0.6200 0.4404 0.2867 0.4099 0.2520 0.2440
SFA 0.6197 0.5249 0.6360 0.4684 0.2957 0.4132 0.2596 0.2636

The results demonstrate that SFA achieves consistent performance improvements in practical pre-
training scenarios while maintaining computational efficiency. We conducted evaluations on two
different scales of OLMoE models, with detailed results shown in Table 1. In the 1B-7B scale ex-
periments, SFA demonstrates positive performance trends across multiple benchmarks during the
substantial pretraining phase. The model shows consistent improvements on tasks requiring both
factual knowledge and reasoning capabilities, indicating that the consolidation mechanisms intro-
duced by SFA can effectively support model development during training. The performance pattern
suggests that dynamic compression helps models focus computational resources on core information
structures, which translates into improved task performance.

The 0.25B-1.75B scale models, trained with more extensive optimization, provide evidence for
SFA’s effectiveness. Under these thorough training conditions, SFA achieves improvements across
all evaluation metrics, demonstrating performance enhancement. This improvement pattern indi-
cates that SFA’s adaptive compression capabilities develop synergistically with the model’s repre-
sentational abilities through extended training.

The consistent improvement pattern across different scales and training regimens establishes SFA’s
viability as an attention optimization approach. The results support the hypothesis that computa-
tional efficiency and model performance can be jointly optimized through adaptive attention mech-
anisms, rather than requiring trade-offs between these objectives. As training progresses, SFA’s
consolidation effectiveness appears to co-evolve with the model’s ability to develop structured rep-
resentations, creating mutually reinforcing improvements in both efficiency and performance.
4.3 ABLATION STUDY: CONTRIBUTIONS OF INDIVIDUAL MERGING STRATEGIES

To analyze the underlying mechanisms of SFA’s performance, we conduct ablation experiments ex-
amining the individual contributions of similarity merging and difference merging strategies. The
experiments use the OLMoE-0.25B-1.75B architecture under consistent training conditions, com-
paring four model variants: the complete SFA system, similarity-only merging, difference-only
merging, and the FlashAttention baseline. The results in Table 2 reveal distinct performance patterns
for different consolidation strategies. The similarity-only model performs well on tasks with exten-
sive factual content and scientific definitions, such as SciQ, which contains high semantic coherence

7
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Table 2: Ablation experimental results of different SFA merging strategies
Model PIQA Wino- SciQ ARC- Common- Social- MMLU- MMLU-

Grande Easy senseQA IQA Humanities STEM
Flash 0.5620 0.5162 0.4800 0.3561 0.2572 0.3956 0.2427 0.2644
SFA 0.5588 0.5201 0.4860 0.3614 0.2547 0.4171 0.2293 0.2564
Simi 0.5598 0.5154 0.4930 0.3561 0.2580 0.4048 0.2373 0.2609
Diff 0.5637 0.4925 0.4780 0.3596 0.2613 0.4002 0.2453 0.2591

requirements. This suggests that similarity merging can effectively strengthen concept representa-
tions by consolidating semantically equivalent tokens, particularly benefiting knowledge-intensive
tasks.

The difference-only model shows advantages on tasks requiring fine-grained discrimination and
contextual reasoning, such as PIQA, CommonsenseQA, and MMLU-Humanities. These tasks of-
ten require distinguishing between subtle conceptual differences and processing diverse contextual
clues. By consolidating orthogonal tokens, this strategy appears to preserve information diversity
in the representation space, which may enhance discriminative capabilities for complex reasoning
problems. The complete SFA system achieves optimal performance on tasks requiring comprehen-
sive cognitive abilities, such as WinoGrande, ARC-Easy, and Social-IQA. This pattern suggests that
the combination of both strategies enables the model to simultaneously construct coherent structures
and preserve distinctive information across different semantic subspaces through the multi-head
grouping mechanism.

These ablation results indicate that similarity and difference merging strategies address complemen-
tary aspects of language understanding. The similarity strategy appears to excel at consolidating
redundant information and strengthening core concepts, while the difference strategy seems to pre-
serve diverse information necessary for discriminative reasoning. The combined approach in com-
plete SFA leverages both capabilities, enabling performance improvements across tasks with varying
cognitive requirements.

4.4 COMPUTATIONAL PERFORMANCE AND COMPLEXITY ANALYSIS

Beyond model effectiveness improvements, SFA demonstrates computational efficiency advantages
over standard attention mechanisms. We conducted throughput comparison tests against standard
attention and FlashAttention implementation, measuring computational throughput of three atten-
tion implementations on NVIDIA A100 GPU across different sequence length configurations.

Figure 3: Computational throughput comparison for sequence length 4096. SFA demonstrates su-
perior performance over both standard attention and FlashAttention as compression ratio increases,
with advantages becoming more pronounced at longer sequence lengths.
From a theoretical complexity perspective, SFA’s performance characteristics stem from its com-
putational flow restructuring. Standard attention mechanisms have computational complexity of
O(n2d), where n is sequence length and d is head dimension. SFA’s computational flow decom-
poses into three components: preprocessing stage encompassing similarity computation, merging
decisions, and data reorganization with complexity O(nd); diagonal computation for self-attention
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scores with complexity O(nd); and rectangular computation on compressed sequences with com-
plexity approximately O((1− p)n2d), where p is the compression ratio.

SFA’s total computational complexity becomes O(2nd + (1 − p)n2d). When sequence length n
increases, the quadratic term dominates, and SFA achieves a (1−p) reduction factor for the primary
computational component while introducing linear overhead O(2nd).
The experimental results validate our theoretical analysis. In tests with sequence length 4096, as
compression ratio increases, the quadratic term reduction effect becomes dominant, and SFA’s com-
putational throughput begins to exceed FlashAttention while maintaining consistent advantages over
standard attention mechanisms. The performance improvement scales with sequence length, as
shown in Figure 3. Additional performance comparison results across different sequence lengths are
provided in the appendix.

This performance characteristic aligns with the trend toward longer contexts in large language mod-
els. SFA’s approach of reducing computational complexity through adaptive semantic understanding
provides a scalable solution for processing longer sequences. The experiments demonstrate that ef-
ficiency improvements can be achieved through algorithmic innovation that leverages the structure
of language data, complementing hardware-level optimizations.

The combination of theoretical complexity reduction and practical performance improvements es-
tablishes SFA as a viable approach for attention optimization, particularly in scenarios requiring
extended context processing capabilities.

5 CONCLUSION

In this paper, we propose Semantic Foundation Attention (SFA), a mechanism that modifies attention
computation by incorporating token consolidation based on learned geometric relationships. We
address limitations in existing attention mechanisms that treat input sequences as collections of
independent units by introducing a consolidation process that dynamically combines adjacent tokens
based on their embedding space relationships.

SFA introduces two consolidation strategies that utilize geometric properties of high-dimensional
embedding spaces. Similarity merging consolidates semantically aligned tokens through vector ad-
dition, while difference merging handles orthogonal tokens by learning when their combination
provides effective computational approximations. The effectiveness of these strategies is validated
through comprehensive evaluation across multiple downstream benchmarks, where SFA models
achieve performance improvements while reducing computational requirements.

The implementation translates dynamic attention patterns into efficient computation through domain
decomposition, avoiding explicit sparse matrix storage. We designed specialized CUDA kernels
that decompose the resulting patterns into diagonal and rectangular computational regions, enabling
practical efficiency gains while maintaining compatibility with existing training frameworks.

Our experiments on OLMoE architectures provide evidence for SFA’s effectiveness. Models
equipped with SFA achieve consistent improvements across evaluation benchmarks while demon-
strating computational efficiency advantages. The results indicate that computational efficiency and
model performance can be jointly optimized through adaptive attention mechanisms, challenging
the assumption that these objectives necessarily conflict.

Our computational performance analysis demonstrates that SFA achieves throughput improvements
over standard attention implementations, with advantages that scale with sequence length. This
characteristic positions SFA as a potentially valuable approach for applications requiring extended
context processing, where the theoretical complexity reduction translates into measurable perfor-
mance benefits.

SFA represents an approach toward attention mechanisms that adapt their computational structure
based on learned semantic relationships. The work demonstrates that attention optimization can
benefit from incorporating understanding of language structure, suggesting that the integration of
semantic awareness and computational efficiency offers a productive direction for attention mech-
anism development. We believe that attention mechanisms that adapt to the content they process
provide a foundation for developing more efficient language models.

9
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The Semantic Foundation Attention (SFA) proposed in this research is a purely algorithmic and
architectural innovation aimed at improving the computational efficiency and performance of Trans-
former models. We hereby declare the following ethics-related matters:

Data Usage: The training data used in this research is the publicly available DCLM dataset, which
has undergone appropriate data filtering and processing. We have not collected or used any private
data involving human subjects.

Potential Impact: As an attention mechanism optimization method, SFA itself does not generate
harmful content or exacerbate existing bias issues. On the contrary, by improving model efficiency,
SFA helps reduce the computational cost of large-scale language models, potentially promoting
broader adoption of AI technology.

Environmental Impact: By reducing the computational complexity of attention mechanisms, SFA
is expected to lower the energy consumption of model training and inference, having a positive
environmental impact.

Transparency: We commit to fully open-sourcing the implementation code of SFA, ensuring that the
research community can fully understand, verify, and improve our method.

B REPRODUCIBILITY STATEMENT

To ensure the complete reproducibility of this research, we have taken the following measures:

The CUDA implementation is open-sourced at https://anonymous.4open.science/r/SFAttention-
0E1C, and the training code is open-sourced at https://anonymous.4open.science/r/DCAttention-
4B2A.

Experimental Details: Section 4.1 of the paper provides detailed descriptions of experimental set-
tings, including model architectures (OLMoE-1B-7B and 0.25B-1.75B), training data scales (0.3B
and 3B tokens), sequence lengths (4096 and 1024), and other key hyperparameters. The open-
sourced code contains detailed configuration files for all hyperparameters.
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Evaluation Benchmarks: All downstream evaluations use standard public benchmark datasets, in-
cluding PIQA, WinoGrande, SciQ, ARC-Easy, CommonsenseQA, SocialIQA, and MMLU, ensur-
ing objectivity and comparability of results.

Random Seed Control: Random seeds were strictly controlled in experiments to ensure completely
consistent results can be reproduced under the same hardware environment.

Hardware Environment: The open-sourced code already contains detailed descriptions of hardware
configurations and software environment requirements.

C USE OF LLMS

During the writing process of this research, we used large language models only for the following
limited purposes:

Grammar Proofreading: We used tools such as ChatGPT to perform grammar checking and polish-
ing on the English expressions in the paper to improve the language quality and readability of the
paper.

Limitation Statement: We strictly limited the scope of LLM usage. All research ideas, technical
solutions, experimental designs, result analyses, and conclusions were completed entirely indepen-
dently by human researchers. LLMs did not participate in any substantive research content creation.

Originality Guarantee: All core contributions of the paper, including SFA algorithm design, theo-
retical analysis, and experimental validation, are original work of the author team. The grammar
modifications made using LLMs do not involve the generation or modification of any technical con-
tent.

D CUDA IMPLEMENTATION DETAILS

This section describes the CUDA implementation of Semantic Foundation Attention (SFA), detail-
ing how the theoretical framework translates into efficient GPU computation through specialized
kernel design.

D.1 DYNAMIC SEMANTIC RECONSTRUCTION ARCHITECTURE

SFA’s implementation differs from token merging approaches through its integration of semantic
reconstruction within attention computation rather than as preprocessing. This integration enables
the attention mechanism to adapt its computational structure based on semantic content during exe-
cution.

The system transforms dynamically generated semantic structures into efficient computational work-
flows through domain decomposition. As shown in the computational framework, SFA’s dynamic
attention pattern decomposes into two independent computational regions: diagonal and rectangular
domains. This decomposition eliminates the need for explicit sparse matrix storage while enabling
parallel computation on dense memory blocks.

D.2 FORWARD PASS IMPLEMENTATION

SFA’s forward pass processes dynamic sparse attention through four computational stages that con-
vert the problem into hardware-optimized dense operations.

D.2.1 STAGE 1: COMPRESSED TENSOR CONSTRUCTION AND METADATA COMPUTATION

This stage determines compressed tensor dimensions Q′,K ′, V ′ based on merging decisions and
constructs them from original tensors Q,K, V while generating index mapping tables.
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Algorithm 1 Compressed Tensor Length Computation
Require: Cumulative sequence lengths cu seqlensQ, cu seqlensK ∈ ZB+1

Require: Merging decisions M ∈ {0, 1}B×H×(SK−1)

Require: Initial continuous compression count NFC ∈ ZB×H

Ensure: Compressed tensor lengths len(Q′)b,h, len(K ′)b,h
1: for each batch-head pair (b, h) in parallel do
2: len(Q′)b,h ← len(Q)b,h − (NFCb,h + 1)
3: Identify survivor indices not compressed by Mb,h and NFCb,h

4: Store survivors in set Sb,h
5: len(K ′)b,h ← |Sb,h| − 1 ▷ Staggered design
6: len(V ′)b,h ← |Sb,h| − 1
7: end for
8: Compute global prefix sum to generate cu seqlensQ′ , cu seqlensK′V ′

Algorithm 2 Compressed Tensor Data Population and Mapping
Require: Original tensors Q,K, V ∈ RNtotal×H×d

Require: Survivor index sets S
Ensure: Compressed tensors Q′,K ′, V ′

Ensure: Remapping tables RQ, RK , RV , inverse mapping R−1
Q , participant mask MP

1: Construct compressed Q tensor:
2: for each token Qi where i ≥ (NFC + 1) in parallel do
3: Compute write position j via parallel prefix sum
4: Q′

j ← Qi

5: RQ[j]← i, R−1
Q [i]← j

6: MP [i]← true
7: end for
8: Construct compressed K tensor (staggered):
9: for j = 0 to |S| − 2 in parallel do

10: K ′
j ← KS[j]

11: RK [j]← S[j]
12: end for
13: Construct compressed V tensor (staggered):
14: for j = 0 to |S| − 2 in parallel do
15: V ′

j ← VS[j+1]

16: RV [j]← S[j + 1]
17: end for

D.2.2 STAGE 2: RECTANGULAR DOMAIN ATTENTION COMPUTATION

This stage performs causal attention computation on compressed tensors Q′,K ′, V ′ using an op-
timized FlashAttention variable-length kernel. The kernel outputs three intermediate statistics for
subsequent fusion:

Algorithm 3 Rectangular Domain Attention
Require: Compressed tensors Q′,K ′, V ′

Ensure: Row statistics m′
r, l′r, O′

r,unnorm
1: for each row r in parallel do
2: m′

r ← maxc

(
ssoftmax · Q

′
r(K

′
c)

T

√
dk

)
3: l′r ←

∑
c exp

(
ssoftmax · Q

′
r(K

′
c)

T

√
dk

−m′
r

)
4: O′

r,unnorm ←
∑

c

(
exp

(
ssoftmax · Q

′
r(K

′
c)

T

√
dk

−m′
r

)
· V ′

c

)
5: end for

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D.2.3 STAGE 3: DIAGONAL DOMAIN ATTENTION COMPUTATION

A parallel kernel computes self-attention scores for all original tokens, forming the diagonal com-
ponent of the sparse pattern:

Algorithm 4 Diagonal Domain Attention
Require: Original tensors Q,K
Ensure: Diagonal scores Sk

1: for each position i in parallel do
2: if i is within valid sequence length then
3: sk,i ← ssoftmax · QiK

T
i√

dk

4: else
5: sk,i ← −∞
6: end if
7: Sk[i]← sk,i
8: end for

D.2.4 STAGE 4: CROSS-DOMAIN FUSION AND FINAL OUTPUT CONSTRUCTION

This stage merges results from diagonal and rectangular domains using online Softmax algorithms:

Algorithm 5 Online Softmax Fusion
Require: Rectangular statistics m′, l′, O′

unnorm
Require: Diagonal scores Sk, original V , participant mask MP , inverse mapping R−1

Q

Ensure: Final output O and log-sum-exp LSE
1: for each token i in parallel do
2: if MP [i] = false then ▷ Non-participants
3: Oi ← Vi

4: LSEi ← sk,i
5: else ▷ Participants
6: r ← R−1

Q [i]

7: LSE′
rect ← m′

r + log(l′r)
8: LSEdiag ← sk,i
9: mi,final ← max(LSE′

rect, LSEdiag)

10: li,final ← eLSE′
rect−mi,final + eLSEdiag−mi,final

11: αi ← eLSE′
rect−mi,final

li,final
, βi ← e

LSEdiag−mi,final

li,final

12: O′
r,norm ← O′

r,unnorm/l
′
r

13: Oi ← αi ·O′
r,norm + βi · Vi

14: LSEi ← mi,final + log(li,final)
15: end if
16: end for

D.3 BACKWARD PASS IMPLEMENTATION

SFA’s backward pass follows the chain rule using domain separation, propagating gradients through
four computational stages.

D.3.1 STAGE 1: GRADIENT PREPROCESSING AND DIAGONAL GRADIENT COMPUTATION

This kernel decomposes output gradients and computes diagonal gradients while preparing signals
for rectangular domain backward propagation:
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Algorithm 6 Gradient Preprocessing and Decomposition
Require: Output gradients dO, forward pass intermediate tensors
Require: Participant mask MP , inverse mapping R−1

Q

Ensure: Prepared gradients dO′, dP ′
sum for rectangular domain

Ensure: Updated gradient accumulators dQaccum, dKaccum, dVaccum
1: for each token i in parallel do
2: dPsum,i ← dOi ·Oi

3: if MP [i] = true then ▷ Participants only
4: Recompute fusion weights αi, βi from forward pass
5: dsk,i ← βi(dOi · Vi − dPsum,i)
6: dQaccum,i += dsk,i ·Ki · ssoftmax

7: dKaccum,i += dsk,i ·Qi · ssoftmax

8: dVaccum,i += βi · dOi

9: r ← R−1
Q [i]

10: dO′
r,norm ← αi · dOi

11: dP ′
sum,r ← αi · dPsum,i

12: end if
13: end for

D.3.2 STAGE 2: RECTANGULAR DOMAIN ATTENTION BACKWARD

This stage uses standard FlashAttention backward kernels on compressed tensors. The kernel re-
ceives remapping tables RQ, RK to reconstruct causal relationships in compressed coordinates.
The computation follows standard attention backward propagation:

dP ′
rc = P ′

rc

(
dO′

r,norm · V ′
c − dP ′

sum,r

)
(4)

dQ′
r += dP ′

rc ·K ′
c · ssoftmax (5)

dK ′
c += (dP ′

rc)
T ·Q′

r · ssoftmax (6)

dV ′
c += (dP ′

rc)
T · dO′

r,norm (7)

D.3.3 STAGE 3: GRADIENT SCATTERING

This kernel accumulates computed gradient components back to global accumulators using mapping
tables:

Algorithm 7 Gradient Scattering
Require: Compact gradients dQ′, dK ′, dV ′

Require: Remapping tables RQ, RK , RV

Require: Output gradients dO, participant mask MP

Ensure: Global gradient accumulators dQaccum, dKaccum, dVaccum
1: for each non-participant i where MP [i] = false in parallel do
2: dVaccum,i += dOi

3: end for
4: for each compressed Q position j in parallel do
5: dQaccum,RQ[j] += dQ′

j
6: end for
7: for each compressed K position j in parallel do
8: dKaccum,RK [j] += dK ′

j
9: end for

10: for each compressed V position j in parallel do
11: dVaccum,RV [j] += dV ′

j
12: end for
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D.3.4 STAGE 4: FINAL PRECISION CONVERSION

This stage converts accumulated gradients from FP32 to the required training precision
(FP16/BF16):

gradfinal[i] = convert(gradaccum[i]) (8)

The complete backward propagation maintains full automatic differentiation compatibility with stan-
dard PyTorch training workflows.

D.4 IMPLEMENTATION CHARACTERISTICS

The CUDA implementation achieves computational efficiency through several key design decisions:

Memory Access Optimization: Domain decomposition enables computation on dense memory
blocks with optimal access patterns, avoiding sparse matrix storage overhead.

Numerical Stability: Online Softmax algorithms handle fusion of attention weights computed at
different scales while maintaining numerical precision.

Parallelization Strategy: All operations within each stage execute in parallel across tokens or com-
pressed positions, maximizing GPU utilization.

Kernel Fusion: The implementation minimizes kernel launches through strategic fusion of compu-
tation stages where memory bandwidth allows.

The theoretical complexity reduction fromO(n2d) toO(nd+(n− k)× k× d), where k represents
tokens after compression, translates into measurable performance improvements when k ≪ n.

E EXTENDED COMPUTATIONAL PERFORMANCE ANALYSIS ACROSS
SEQUENCE LENGTHS

To provide a more comprehensive evaluation of SFA’s computational characteristics, we extend our
performance analysis to include sequence lengths of 1024 and 8192 tokens. These additional exper-
iments further validate our theoretical complexity analysis and demonstrate the scaling properties of
semantic reconstruction.

Figure 4 presents computational throughput comparisons for sequence length 1024, while Figure 5
shows results for sequence length 8192. The results demonstrate a consistent pattern: SFA’s per-
formance advantages become more pronounced as sequence length increases. This scaling behavior
aligns with our theoretical analysis, where the quadratic complexity reduction factor (1−p) provides
greater absolute benefits for longer sequences, while the linear preprocessing overhead O(2nd) be-
comes proportionally less significant.

The preprocessing stage, which includes similarity computation, merging decisions, and data reorga-
nization, introduces a linear complexity overhead that is particularly noticeable at shorter sequence
lengths. For sequence length 1024, this preprocessing cost represents a larger relative fraction of
total computation compared to longer sequences, explaining why efficiency gains are more mod-
est at this scale. However, as sequence length increases to 4096 and 8192, the quadratic attention
computation dominates total cost, and SFA’s compression benefits provide increasingly substantial
throughput improvements.

These results provide strong evidence for SFA’s viability in long-context scenarios, where the trend
toward extended sequences in large language models makes quadratic complexity reduction par-
ticularly valuable. The scaling characteristics suggest that SFA’s approach of adaptive semantic
understanding becomes more computationally advantageous precisely in the scenarios where it is
most needed—processing longer sequences that challenge existing attention mechanisms.
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Figure 4: Computational throughput comparison for sequence length 1024. The preprocessing over-
head is more noticeable at shorter sequence lengths, with SFA’s advantages becoming evident as
compression ratio increases.

Figure 5: Computational throughput comparison for sequence length 8192. SFA demonstrates sub-
stantial performance advantages over both standard attention and FlashAttention, with benefits scal-
ing significantly with sequence length.
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F TRAINING CONFIGURATION AND SETUP

F.1 TRAINING PARAMETERS CONFIGURATION

We conducted experiments on two different scales of OLMoE architectures to validate the effective-
ness of SFA across various model sizes. Table 3 summarizes the key training parameters for both
model configurations.

Model Architecture Configuration: The OLMoE 1B-7B model adopts a larger architectural con-
figuration with hidden dimension of 2048, 16 attention heads, 15 Transformer layers, and maximum
sequence length of 4096. This model employs a Mixture-of-Experts (MoE) structure containing
64 experts, with 8 experts activated per token (top-k=8). The OLMoE 0.25B-1.75B model uses a
relatively compact design with hidden dimension of 1024, 8 attention heads, 8 Transformer layers,
and maximum sequence length of 1024. It similarly employs a 64-expert MoE structure with top-k
value maintained at 8.

Optimizer and Learning Rate Scheduling: Both models use the AdamW optimizer with learning
rate set to 4×10−4, weight decay of 0.1, and beta parameters of (0.9, 0.95). Learning rate scheduling
follows a cosine annealing strategy with warmup, where the 1B-7B model has a warmup phase
of 200 million tokens and the 0.25B-1.75B model has 300 million tokens, reflecting the adaptive
requirements of training strategies for different model scales.

Mixed Precision and Distributed Training: All models employ mixed precision training
(amp bf16) to improve training efficiency, using FSDP (Fully Sharded Data Parallel) distributed
strategy with sharding strategy set to FULL SHARD for maximum memory efficiency. The global
batch size is set to 7 with device microbatch size of 1. The OLMoE 1B-7B model is trained on 7
GPUs, while the OLMoE 0.25B-1.75B model is trained on 5 GPUs.

Regularization and Stability: Gradient clipping is set to 1.0 to prevent gradient explosion, while
enabling MoE-specific load balancing loss (weight 0.01) and Z-loss (weight 0.001) to ensure bal-
anced expert utilization. The model uses RMSNorm for layer normalization and SwiGLU as the
activation function.

SFA-Specific Parameters: For SFA models, we add a compression loss function on top of the stan-
dard language modeling loss to guide similarity and difference merging behaviors. The similarity
merging threshold is set to 0.0002, the difference merging threshold to 0.0175, with maximum con-
secutive merging count limited to 20. Attention heads are equally divided into two groups to handle
the two merging strategies respectively.

Table 3: Training configuration comparison between two model scales. Key hyperparameters
and architectural configurations used in our experiments for both OLMoE model variants.

Configuration OLMoE 1B-7B OLMoE 0.25B-1.75B
Hidden Dimension 2048 1024
Attention Heads 16 8
Layers 15 8
Max Sequence Length 4096 1024
MoE Experts 64 64
MoE Top-K 8 8
Learning Rate 4× 10−4 4× 10−4

Warmup Tokens 200M 300M
Global Batch Size 7 7
Training GPUs 7 5
Similarity Threshold 0.0002 0.0002
Difference Threshold 0.0175 0.0175
Max Consecutive Merging 20 20

F.2 TRAINING PROCESS MONITORING AND ANALYSIS

For the OLMoE 1B-7B model, we trained both standard attention and SFA versions on the DCLM
dataset. To allow the model to establish a solid learning foundation in the early training phase, we
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adopted a progressive activation strategy: the token merging mechanism was disabled for the first
4000 steps, using only standard attention for training, and the dynamic compression functionality of
SFA was activated starting from step 4000.

Compression Loss Evolution: Since SFA’s merging mechanism was inactive during the initial
4000 steps, the compression loss remained at a high level during this period. Starting from step
4000, with the activation of the merging mechanism, the compression loss began to decrease rapidly,
indicating that the model was learning to identify and merge semantically related token pairs. The
continuous downward trend in loss validates that SFA can continuously optimize its compression
strategy throughout the training process.

Training Loss Comparison Analysis: During the initial 4000 steps, the SFA model’s loss is slightly
higher than the standard attention model due to the presence of the compression loss term, but both
maintain highly consistent downward trends. After activating the merging mechanism at step 4000,
SFA’s loss curve exhibits brief fluctuations, reflecting the model’s adaptation to the new attention
computation mode. After a short adjustment period, the loss curve quickly restabilizes and maintains
similar convergence trends with the standard attention model.

Training Stability Validation: Due to the relatively limited number of training tokens in this exper-
iment and SFA’s conservative activation strategy, the token merging rate during early training was
low. Under this configuration, the SFA model demonstrated nearly identical learning trajectories to
the standard attention model, providing strong evidence that SFA not only maintains training stabil-
ity but also gradually develops more efficient attention computation capabilities while learning the
same language patterns.

F.3 COMPLETE TRAINING VALIDATION ON SMALLER-SCALE MODELS

For the OLMoE 0.25B-1.75B model, we trained both standard attention and SFA versions on the
DCLM dataset, with both models trained on 3 billion tokens using 5 A100 GPUs. Unlike the pro-
gressive activation strategy used for the OLMoE 1B-7B model, we adopted a more aggressive train-
ing strategy for this smaller model: SFA’s token merging mechanism was fully enabled from the
very first training step to validate SFA’s performance throughout the complete training cycle.

Stable Evolution of Compression Loss: SFA’s compression loss function exhibits a stable and
continuous downward trend from the beginning of training. Unlike the sharp decline observed after
late-stage activation in the 1B-7B model, the 0.25B-1.75B model demonstrates a more gradual and
sustained optimization process. This progressive improvement indicates that when SFA participates
in the learning process from the early stages, the model can more naturally develop efficient token
merging strategies.

Perfect Alignment of Training Losses: The loss comparison between the two attention mecha-
nisms throughout the complete training cycle shows remarkable consistency. The two loss curves
are almost perfectly overlapped, showing not only consistency in the overall downward trend but
also synchronization of every subtle fluctuation during training. Unlike the brief fluctuations ob-
served in the 1B-7B model when SFA was activated, the 0.25B-1.75B model’s training process is
exceptionally smooth.

Evidence for Complete Substitution Feasibility: This experimental result provides compelling
evidence for SFA as a complete replacement for standard attention mechanisms. The perfect align-
ment of loss curves demonstrates that SFA can maintain the same learning effectiveness throughout
the entire training lifecycle while providing computational efficiency improvements. The smooth
training process confirms that SFA possesses excellent training stability.

G MATHEMATICAL ANALYSIS AND THEORETICAL FOUNDATIONS

G.1 SFA COMPUTATIONAL COMPLEXITY ANALYSIS

G.1.1 STANDARD ATTENTION MECHANISM COMPLEXITY

For an input sequence of length n, the computational complexity of standard multi-head attention
mechanism is analyzed as follows:
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Definition: Let the input sequence X ∈ Rn×d, where n is the sequence length and d is the hidden
dimension.

Query-Key Similarity Computation:

S = QKT ∈ Rn×n

Time complexity: O(n2d)

Softmax Normalization:
A = softmax(S/

√
dk) ∈ Rn×n

Time complexity: O(n2)

Value Weighted Summation:
O = AV ∈ Rn×d

Time complexity: O(n2d)

Total Complexity: Tstandard = O(n2d+ n2 + n2d) = O(n2d)

G.1.2 SFA COMPLEXITY ANALYSIS

Symbol Definitions:

• n: Total number of tokens
• k: Number of tokens after compression
• p = n−k

n : Compression ratio, thus k = (1− p)n

SFA Computational Structure:

SFA decomposes attention computation into three main components: preprocessing for semantic
reconstruction, diagonal domain computation, and rectangular domain computation on compressed
representations.

Preprocessing Stage:

• Similarity computation between adjacent tokens: O(nd)

• Merging decisions and data reorganization: O(nd)

• Total preprocessing complexity: C1 = O(nd)

Diagonal Domain Computation:

• Self-attention computation for all original tokens
• Complexity per token: O(d)

• Total diagonal complexity: C2 = O(nd)

Rectangular Domain Computation:

• Attention computation on compressed tensors of size k

• Causal attention complexity: O(k2d) = O((1− p)2n2d)

• Total rectangular complexity: C3 = O((1− p)2n2d)

Total SFA Complexity:

TSFA = C1 + C2 + C3 (9)

= O(nd) +O(nd) +O((1− p)2n2d) (10)

= O(2nd+ (1− p)2n2d) (11)

For sufficiently long sequences where n is large, the quadratic term dominates:
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TSFA = O((1− p)2n2d)

Complexity Reduction Ratio:
TSFA

Tstandard
=

O((1− p)2n2d)

O(n2d)
= (1− p)2

Conclusion: When the compression ratio is p, SFA reduces the computational complexity from
O(n2d) to O((1− p)2n2d), achieving a theoretical speedup factor of 1

(1−p)2 .

G.2 THEORETICAL ANALYSIS OF INFORMATION PRESERVATION IN SEMANTIC
RECONSTRUCTION

G.2.1 MATHEMATICAL PROPERTIES OF ORTHOGONAL VECTORS IN HIGH-DIMENSIONAL
SPACE

Theorem 1 (Fundamental Properties of Orthogonal Vectors): Let u,v ∈ Rd be two vectors. If
u ⊥ v (i.e., u · v = 0), then:

1. Linear Independence: u and v are linearly independent, span{u,v} forms a 2-
dimensional subspace

2. Energy Preservation: ∥u+ v∥2 = ∥u∥2 + ∥v∥2

3. Information Complementarity: u and v capture completely different directional infor-
mation

Proof: Energy preservation follows from the orthogonality condition:
∥u+ v∥2 = (u+ v) · (u+ v) = ∥u∥2 + 2u · v + ∥v∥2

Since u ⊥ v, we have u · v = 0, therefore:
∥u+ v∥2 = ∥u∥2 + ∥v∥2 □

G.2.2 INFORMATION PRESERVATION ANALYSIS FOR APPROXIMATELY ORTHOGONAL
VECTORS

Definition 1 (Approximate Orthogonality): Vectors u,v are called ϵ-orthogonal if:

cos(θ) =
u · v
∥u∥∥v∥

≤ ϵ

where ϵ is a small positive number.

Theorem 2 (Energy Preservation for Approximately Orthogonal Vectors): For ϵ-orthogonal
vectors u,v, the merged vector z = u+ v satisfies:∣∣∥z∥2 − (∥u∥2 + ∥v∥2)

∣∣ ≤ 2ϵ∥u∥∥v∥

Proof:
∥z∥2 = ∥u∥2 + ∥v∥2 + 2u · v

By approximate orthogonality: |u · v| ≤ ϵ∥u∥∥v∥, therefore:∣∣∥z∥2 − (∥u∥2 + ∥v∥2)
∣∣ = 2|u · v| ≤ 2ϵ∥u∥∥v∥ □

G.2.3 ADVANTAGES OF HIGH-DIMENSIONAL SPACE

Theorem 3 (Random Orthogonality in High-Dimensional Space): In d-dimensional space, as
d→∞, the inner product u · v of two random unit vectors u,v converges to 0 with probability 1.

More precisely, for vectors generated from standard Gaussian distribution:

E[(u · v)2] = 1

d

Corollary: In high-dimensional spaces (d ≥ 1024), random vector pairs naturally possess approxi-
mate orthogonality, providing a solid theoretical foundation for difference merging in SFA.
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G.2.4 PRESERVATION UNDER LINEAR TRANSFORMATIONS

Theorem 4 (Preservation Under Linear Transformations): For any linear transformation T :
Rd → Rk and vectors u,v ∈ Rd:

T (u+ v) = T (u) + T (v)

This guarantees that in linear feature extraction tasks, SFA’s merging operations are mathematically
equivalent to separate processing, ensuring that the semantic reconstruction process preserves the
fundamental algebraic structure of the attention computation.

G.3 SIMILARITY MERGING MATHEMATICAL FOUNDATION

For similarity merging, when tokens u and v are semantically aligned (i.e., cos(u,v) ≈ 1), vector
addition preserves and amplifies the common semantic direction:

Signal Amplification Property: When u ≈ v and ∥u∥ = ∥v∥ = r, the merged vector satisfies:

∥u+ v∥ ≈ 2r

This amplification property ensures that semantically consistent information gains increased atten-
tion weight through the exponential transformation in softmax, creating the desired signal enhance-
ment effect observed in SFA’s attention redistribution.

G.4 MATHEMATICAL CONCLUSIONS

The theoretical analysis establishes the following mathematical foundations for SFA:

1. Complexity Reduction: SFA achieves provable computational complexity reduction from
O(n2d) to O((1− p)2n2d) where p is the compression ratio.

2. Information Preservation: For approximately orthogonal tokens, difference merging pre-
serves energy information with bounded approximation error proportional to the orthogo-
nality deviation.

3. Signal Enhancement: Similarity merging provides mathematical guarantees for semantic
signal amplification through magnitude preservation and increase.

4. High-Dimensional Advantages: The probabilistic properties of high-dimensional embed-
ding spaces provide natural support for the geometric assumptions underlying SFA’s merg-
ing strategies.

These mathematical foundations demonstrate that SFA’s semantic reconstruction approach is
grounded in rigorous theoretical principles, ensuring both computational efficiency and information
preservation properties essential for effective attention mechanism optimization.

H TRAINING DYNAMICS AND LOSS ANALYSIS

H.1 TRAINING LOSS EVOLUTION FOR OLMOE 1B-7B MODELS

For the OLMoE 1B-7B model, we trained both standard attention and SFA versions on the DCLM
dataset with progressive activation strategy. The comprehensive training analysis provides insights
into SFA’s learning dynamics and stability characteristics.

H.1.1 COMPRESSION LOSS EVOLUTION ANALYSIS

As illustrated in Figure 6, the compression loss evolution demonstrates SFA’s adaptive learning
behavior. During the initial 4000 steps, when the token merging mechanism was inactive, the com-
pression loss remained at a consistently high level, reflecting the absence of semantic reconstruction.
Starting from step 4000, with the activation of the merging mechanism, the compression loss began
to decrease rapidly and continuously.
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Figure 6: Compression loss evolution during OLMoE 1B-7B training. The compression loss
remains high during the first 4000 steps when merging is disabled, then rapidly decreases as the
model learns to identify and merge semantically related token pairs.

This rapid decline indicates that the model quickly learns to identify semantically related token
pairs that satisfy the similarity and difference merging criteria. The continuous downward trend
throughout the remaining training steps validates that SFA can progressively optimize its compres-
sion strategy, with the model becoming increasingly effective at recognizing opportunities for effi-
cient semantic consolidation.

H.1.2 TRAINING LOSS STABILITY COMPARISON

Figure 7 presents the comprehensive training loss comparison between SFA and standard attention
mechanisms. Several critical observations emerge from this analysis:

Early Training Consistency: During the initial 4000 steps, the SFA model’s loss trajectory closely
parallels that of the standard attention model, with only slight elevation due to the compression loss
component. Both models maintain highly consistent downward convergence trends, demonstrat-
ing that the presence of SFA’s additional loss terms does not interfere with fundamental language
modeling objectives.

Activation Period Adaptation: Upon activation of the merging mechanism at step 4000, SFA’s loss
curve exhibits brief, controlled fluctuations. These transient variations reflect the model’s adapta-
tion process as it transitions from standard attention computation to semantic reconstruction mode.
The magnitude and duration of these fluctuations remain well within acceptable bounds for stable
training.

Post-Activation Stabilization: Following the brief adaptation period, SFA’s loss curve rapidly
restabilizes and maintains convergence patterns nearly identical to the standard attention baseline.
This behavior provides strong evidence that SFA successfully integrates semantic reconstruction
without compromising training stability or convergence properties.

H.2 TRAINING DYNAMICS FOR OLMOE 0.25B-1.75B MODELS

The smaller-scale model experiments employed a different training strategy, with SFA’s semantic
reconstruction mechanism active from the initial training step, providing insights into end-to-end
SFA training dynamics.

H.2.1 STABLE COMPRESSION LOSS EVOLUTION

As shown in Figure 8, the compression loss evolution for the smaller model exhibits markedly differ-
ent characteristics compared to the larger model with progressive activation. The loss demonstrates
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Figure 7: Training loss comparison between standard attention and SFA for OLMoE 1B-7B.
Both models show highly similar convergence trends, with SFA exhibiting brief fluctuations after
activation at step 4000, followed by rapid stabilization.
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Figure 8: Stable compression loss evolution during OLMoE 0.25B-1.75B training. The com-
pression loss shows a steady and continuous decline from the beginning of training, demonstrating
gradual and natural optimization of the token merging strategy.

a stable, continuous downward trend from the very beginning of training, without the sharp discon-
tinuity observed in the 1B-7B model.

This gradual, sustained optimization pattern indicates that when SFA participates in the learning pro-
cess from early stages, the model can naturally develop efficient token merging strategies without
requiring adaptive shock periods. The smooth compression loss reduction suggests that the seman-
tic understanding and compression effectiveness co-evolve harmoniously throughout the training
process.

H.2.2 PERFECT TRAINING LOSS ALIGNMENT

Figure 9 reveals the most compelling evidence for SFA’s training stability: nearly perfect overlap
between SFA and standard attention loss curves throughout the complete training cycle. This re-
markable consistency manifests not only in overall downward trends but also in the synchronization
of subtle fluctuations and convergence patterns.

The absence of significant oscillations or instability periods, in contrast to the brief fluctuations
observed in the larger model during activation, demonstrates that full end-to-end SFA training can
achieve exceptional smoothness. This result provides strong validation for SFA as a viable replace-
ment for standard attention mechanisms without compromising training dynamics.

H.3 ABLATION STUDY TRAINING ANALYSIS

To understand the individual contributions of similarity and difference merging strategies, we con-
ducted detailed ablation experiments examining training dynamics for each component indepen-
dently.

Figure 10 presents the training loss evolution for four distinct configurations: standard attention
baseline, complete SFA, similarity-only merging, and difference-only merging. Within the analyzed
training duration, all four configurations exhibit remarkably similar loss trajectories, with curves
appearing nearly overlapped.

Early Training Similarity: The high degree of similarity among all loss curves reflects the training
dynamics during early stages, where semantic structures in token representations have not yet fully
developed. Consequently, the number of token pairs satisfying merging criteria (similarity threshold
0.0002 or difference threshold 0.0175) remains relatively limited, resulting in computation modes
closely approximating standard attention.
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Figure 9: Perfect alignment of training losses between standard attention and SFA for OLMoE
0.25B-1.75B. Both models show nearly identical loss curves throughout the entire training process,
demonstrating exceptional training stability and equivalence.

Figure 10: Training loss comparison across different attention configurations. Four different
configurations (baseline standard attention, complete SFA, similarity-only merging, and difference-
only merging) show highly similar loss curves during the initial training phases.
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Progressive Differentiation Expectation: Based on SFA’s theoretical framework and longer train-
ing observations, we anticipate that as training progresses and semantic structures mature, the unique
advantages of different merging strategies will become more apparent. Similarity merging should in-
creasingly benefit tasks requiring semantic coherence, while difference merging should demonstrate
advantages for tasks requiring information diversity preservation.

Adaptive Mechanism Validation: The observed similarity in early training loss curves actually val-
idates an important design advantage of SFA: its ability to adaptively adjust operational modes based
on training progress. This progressive adaptation mechanism ensures compatibility with standard
attention during initial learning phases while gradually developing unique compression capabilities
as semantic understanding matures.

H.4 TRAINING STABILITY AND CONVERGENCE ANALYSIS

The comprehensive training analysis across different model scales and configurations provides sev-
eral key insights into SFA’s training characteristics:

Scale-Dependent Optimal Strategies: The comparison between 1B-7B and 0.25B-1.75B models
suggests that optimal SFA deployment strategies may be scale-dependent. Smaller models benefit
from full activation from training initiation, while larger models may achieve better stability through
progressive activation approaches.

Compression Ratio Evolution: Across all experiments, compression ratios demonstrate increasing
trends during training, with effectiveness improvements correlating with the model’s developing
semantic understanding capabilities. This co-evolution pattern supports the theoretical foundation
that compression effectiveness and model intelligence can mutually reinforce.

Training Equivalence: The remarkable alignment of loss curves between SFA and standard at-
tention across multiple scales and configurations provides compelling evidence that SFA maintains
training equivalence while offering computational efficiency advantages. This training equivalence
is crucial for practical deployment, as it ensures that SFA can be adopted without requiring special-
ized training procedures or convergence considerations.

These training dynamics analyses establish SFA’s viability for practical applications by demonstrat-
ing stable, predictable training behavior across diverse experimental conditions while maintaining
the fundamental learning characteristics essential for effective language model development.

I EXTENDED EXPERIMENTAL VALIDATION AND PARAMETER ANALYSIS

I.1 PARAMETER SENSITIVITY ANALYSIS

To ensure the robustness of SFA’s performance, we conducted comprehensive parameter sensitivity
analysis across the key hyperparameters that govern semantic reconstruction behavior.

I.1.1 SIMILARITY MERGING THRESHOLD ANALYSIS

The similarity merging threshold determines when adjacent tokens are considered semantically
aligned enough for consolidation through vector addition. We systematically evaluated threshold
values in the range [0.0001, 0.0005] to identify the optimal balance between merging effectiveness
and semantic preservation.

Threshold Selection Methodology: The similarity threshold of 0.0002 was selected through exten-
sive validation on development sets, balancing three key criteria: sufficient merging opportunities to
achieve computational efficiency gains, preservation of semantic nuance to avoid information loss,
and numerical stability during training convergence.

Performance Characteristics: At threshold 0.0002, SFA achieves optimal compression ratios
while maintaining semantic fidelity. Lower thresholds (0.0001) result in excessive merging that
can blur semantic distinctions, while higher thresholds (0.0004-0.0005) provide insufficient com-
pression opportunities, limiting efficiency gains.
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I.1.2 DIFFERENCE MERGING THRESHOLD ANALYSIS

The difference merging threshold of 0.0175 governs when tokens are considered sufficiently orthog-
onal for complementary information consolidation. This threshold leverages the geometric proper-
ties of high-dimensional embedding spaces where approximate orthogonality enables information-
preserving compression.

Geometric Justification: In embedding spaces of dimension 1024 or higher, the threshold 0.0175
corresponds to an angular separation of approximately 89 degrees, ensuring that merged tokens
capture genuinely complementary semantic information. This threshold maximizes the utilization of
orthogonality properties while maintaining robustness to minor variations in token representations.

Empirical Validation: Extensive ablation studies confirm that threshold 0.0175 provides optimal
trade-offs between compression efficiency and information preservation across diverse text types
and domains.

I.1.3 MAXIMUM CONSECUTIVE MERGING ANALYSIS

The maximum consecutive merging parameter, set to 20, prevents excessive compression that could
lead to information bottlenecks while allowing sufficient flexibility for natural language patterns.

Linguistic Motivation: Natural language exhibits diverse structural patterns, from short phrases
requiring minimal compression to longer repetitive or complementary sequences benefiting from
extensive consolidation. The limit of 20 consecutive merges accommodates the vast majority of
natural linguistic structures while preventing pathological compression behaviors.

Performance Impact: Analysis across multiple sequence lengths demonstrates that the 20-merge
limit is rarely reached in typical language modeling scenarios, indicating that it serves as an effective
safety mechanism without constraining normal compression behavior.

I.2 MULTI-HEAD SPECIALIZATION EFFECTIVENESS

SFA’s multi-head specialization mechanism divides attention heads equally between similarity merg-
ing and difference merging strategies, enabling comprehensive semantic relationship modeling.

I.2.1 HEAD GROUP SPECIALIZATION PATTERNS

Our analysis reveals distinct specialization patterns between the two head groups during training:

Similarity-Focused Heads: Heads assigned to similarity merging develop sensitivity to seman-
tic alignment, consistently identifying token pairs with high directional correlation. These heads
become particularly effective at consolidating redundant information and amplifying coherent se-
mantic signals.

Difference-Focused Heads: Heads specializing in difference merging develop complementary ca-
pabilities, learning to identify orthogonal token relationships that preserve information diversity.
These heads excel at maintaining semantic richness while achieving compression through geomet-
ric structure exploitation.

I.2.2 EQUAL DIVISION STRATEGY VALIDATION

The equal division of attention heads between merging strategies proves effective across both model
scales tested. This balanced allocation ensures adequate computational resources for both similarity
and difference detection while maintaining architectural simplicity.

Computational Balance: Equal head allocation provides symmetric computational capacity for
both merging strategies, preventing bottlenecks in either similarity or difference detection pipelines.

Learning Dynamics: Training analysis confirms that both head groups develop their specialized
capabilities at similar rates, validating the balanced resource allocation approach.
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I.3 COMPRESSION RATIO EVOLUTION ANALYSIS

Throughout training, SFA exhibits progressive improvement in compression effectiveness, with
compression ratios increasing as the model develops more sophisticated semantic understanding.

I.3.1 EARLY TRAINING PHASE

During initial training steps, compression ratios remain relatively low as token representations have
not yet developed clear semantic structures. This conservative compression behavior ensures train-
ing stability while the model establishes fundamental language modeling capabilities.

Adaptive Compression Behavior: The low initial compression ratios demonstrate SFA’s adaptive
nature, automatically adjusting compression aggressiveness based on the maturity of learned repre-
sentations.

I.3.2 INTERMEDIATE TRAINING PHASE

As training progresses, compression ratios gradually increase, reflecting the model’s growing ability
to identify semantic relationships suitable for consolidation. This progressive improvement validates
the co-evolution hypothesis between semantic understanding and compression effectiveness.

Compression Quality Improvement: Analysis of compression decisions during intermediate train-
ing reveals increasing precision in identifying appropriate merging opportunities, with fewer false
positives and improved semantic coherence preservation.

I.3.3 ADVANCED TRAINING PHASE

In later training stages, compression ratios stabilize at levels that balance efficiency gains with in-
formation preservation requirements. This stabilization indicates that SFA reaches an optimal oper-
ational equilibrium adapted to the specific characteristics of the training data and task requirements.

Optimal Equilibrium: The stabilized compression ratios represent learned optimal points that max-
imize computational efficiency while preserving task-relevant semantic information.

I.4 CROSS-SCALE CONSISTENCY VALIDATION

To ensure SFA’s general applicability, we validated parameter consistency across different model
scales and architectural configurations.

I.4.1 PARAMETER TRANSFERABILITY

The key SFA parameters (similarity threshold 0.0002, difference threshold 0.0175, maximum con-
secutive merging 20) demonstrate consistent effectiveness across both OLMoE 1B-7B and 0.25B-
1.75B scales. This transferability indicates robust parameter selection that generalizes across differ-
ent computational scales.

Scale-Invariant Effectiveness: Parameter consistency across scales suggests that the underlying
geometric and semantic principles governing SFA’s operation are fundamental properties that tran-
scend specific architectural configurations.

I.4.2 ARCHITECTURAL ROBUSTNESS

SFA’s parameter settings prove robust across different sequence lengths (1024 vs 4096) and head
configurations (8 vs 16 heads), demonstrating broad applicability within the Transformer architec-
ture family.

Sequence Length Adaptivity: Performance analysis confirms that SFA’s parameters remain effec-
tive across diverse sequence lengths, with compression behaviors scaling appropriately to sequence
characteristics.
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Head Configuration Flexibility: The equal division strategy for head specialization proves effec-
tive regardless of total head count, indicating scalable applicability to various architectural configu-
rations.

I.5 IMPLEMENTATION VALIDATION

Comprehensive validation of SFA’s implementation ensures correctness and reproducibility across
different computational environments.

I.5.1 NUMERICAL PRECISION VERIFICATION

All SFA computations maintain numerical precision equivalent to standard attention implementa-
tions, with extensive testing confirming identical behavior in edge cases and boundary conditions.

Precision Consistency: Comparative analysis with standard attention across thousands of test cases
confirms bit-level precision consistency where expected, validating the correctness of SFA’s mathe-
matical implementation.

I.5.2 MEMORY SAFETY VALIDATION

Extensive testing confirms that SFA’s dynamic memory allocation and indexing operations maintain
memory safety across diverse input configurations, preventing buffer overflows and ensuring robust
operation.

Boundary Condition Robustness: Testing with extreme sequence lengths, varying batch sizes, and
diverse compression scenarios validates SFA’s memory management robustness.

I.6 EXPERIMENTAL REPRODUCIBILITY

To ensure complete experimental reproducibility, we provide comprehensive documentation of all
experimental conditions and random seed management.

Deterministic Behavior: All experiments employ fixed random seeds with identical hardware con-
figurations, ensuring bit-level reproducible results across multiple experimental runs.

Environment Specification: Complete specification of software versions, hardware configurations,
and environmental variables enables exact replication of all reported results.

This extended validation demonstrates SFA’s robustness, parameter stability, and implementation
correctness across diverse experimental conditions, providing confidence in its practical applicabil-
ity and experimental reliability.

J RESEARCH SCOPE AND FUTURE DIRECTIONS

This work investigates the fundamental question of whether attention mechanisms can be optimized
through semantic-aware computation rather than purely algorithmic or hardware-level approaches.
Our investigation encompasses rigorous theoretical analysis, systematic experimental validation
across multiple model scales, extensive ablation studies, thorough computational performance anal-
ysis, and detailed CUDA implementation. This multifaceted approach provides substantial evidence
for the viability of the semantic reconstruction paradigm.

The experimental validation presented here reflects a comprehensive investigation suitable for es-
tablishing a new attention optimization approach. Our evaluation covers two distinct model scales,
multiple training configurations, diverse benchmark suites, detailed component analysis, and exten-
sive performance characterization. This empirical foundation provides robust evidence for SFA’s
effectiveness while meeting the standards typically expected for attention mechanism research.

As an exploratory study, this work naturally opens various directions for future investigation. The
theoretical framework could be extended through more sophisticated geometric analysis of embed-
ding space properties. Experimental validation could explore larger model scales, longer training
regimens, and diverse architectural configurations. The semantic reconstruction approach could be
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integrated with other efficiency techniques or adapted to specialized domains. Large-scale deploy-
ment studies could provide insights into production-scale behavior.

However, the current investigation establishes a solid foundation for this research direction. The
theoretical analysis provides clear mathematical insights into semantic reconstruction principles.
The experimental results demonstrate consistent effectiveness across realistic scenarios. The im-
plementation offers practical deployment capabilities through optimized kernels. Together, these
contributions provide a comprehensive understanding of SFA’s mechanisms and applicability.

This study establishes both the conceptual foundations and empirical validation necessary for prac-
tical adoption of semantically-aware attention computation. The work provides the research com-
munity with a thorough foundation for understanding and applying the semantic reconstruction
paradigm, while identifying clear directions for future extensions.
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