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Abstract Many ML applications and products train on medium amounts of input data but get bot-

tlenecked in real-time inference. When implementing ML systems, conventional wisdom

favors segregating ML code into services queried by product code via Remote Procedure

Call (RPC) APIs. This approach clarifies the overall software architecture and simplifies

product code by abstracting away ML internals. However, the separation adds network

latency and entails additional CPU overhead. Hence, we simplify inference algorithms and

embed them into the product code to reduce network communication. For public datasets

and a high-performance real-time platform that deals with tabular data, we show that over

half of the inputs are often amenable to such optimization, while the remainder can be

handled by the original model. By applying our optimization with AutoML to both training

and inference, we reduce inference latency by 1.3x, CPU resources by 30%, and network

communication between application front-end and ML back-end by about 50% for a com-

mercial end-to-end ML platform that serves millions of real-time decisions per second. The

crucial role of AutoML is in configuring first-stage inference and balancing the two stages.

1 Introduction

The recent availability of sophisticated ML tools [29; 1] fueled the development of many new data-

driven applications, but considerable efforts are required to engineer robust high-performance ML

systems with sufficient throughput to make a practical impact [7; 20; 2; 17; 19; 27]. Other than newer

systems designed with ML in mind, a greater variety of existing production systems can be enriched

with ML capabilities by modeling the operating environment when closed-form descriptions are not

available, helping avoid redundant work and optimizing interactions between system components,

also predicting user behaviors and preferences to enhance user experience [25]. As data patterns

change, regular retraining, monitoring, and alerts add significant software complexity, but this

ML complexity should not overburden product code. To ensure SW development velocity and

enable performance optimizations, ML code is often separated into libraries and services — data

collection, model training and offline evaluation, real-time inference [26; 17], etc — invoked from

product code via RPC APIs.
1
Unlike the well-publicized large language models (e.g., GPT-3[5])

and image-understanding models (e.g., CNN models such as ResNet [18] or attention models [34]),

many applications must retrain models before data trends change, often on an hourly or daily basis.

With dozens to low thousands of features, these models often train on 100K-10M rows of data.

Unlike image pixels, video frames, or audio samples, features in tabular data often exhibit different

scales and do not correlate [16]. Surprisingly enough, ML competitions with tabular data have been

dominated not by deep learning models, but by gradient boosting models [8] such as XGBoost [9],

LightGBM [22], and CatBoost [30]
2
, or ensembles including both deep neural networks and gradient

boosted decision trees. Even though deep models can be optimized for tabular data [3] for improved

performance, gradient boosted decision trees still outperform on tabular datasets and structured

1
RPC calls within our data center are comfortably within the constraints of real-time inference in the deployed ML

platform we work with (see Table 3). Therefore we optimize the mean latency and the overall CPU usage.

2
The popularity of these packages is affected by training efficiency and support for various hardware accelerators.
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data in general [33]. Researchers are still working on improving DNNs for tabular data, and have

recently shown great progress [21; 15]. Despite this ongoing progress, DNN models consistently

suffer known limitations [16], such as struggling with uninformative features. A recent work [4]

investigating the black-box nature of neural networks proved that feed-forward networks with

piecewise-linear activation functions can be represented exactly by decision trees. The claim is then

extended to arbitrary continuous activation functions via piecewise-linear approximation. Practical

aspects aside, this suggests viewing neural networks as a collection of subtrees and subnetworks

that are optimized to handle different inputs.

We now focus on the bottleneck of many high-performance production ML systems — real-time

inference, which dominates resource usage in industry applications (such as recommendation

systems, ranking, ads, caching, UI optimizations, etc.) by 1-2 orders of magnitude compared

to training [25]. Such applications often require inference latency below the human cognitive

threshold of 300 ms, while minimizing CPU latency helps minimizing total CPU resources (network

latency can also contribute to CPU resources, but indirectly via network buffers). As noted earlier,

deep learning tends to lose out to XGBoost on structured data and, additionally, batch-processing

efficiencies available for DNNs are not helpful for real-time inference. Running on CPUs, inference

for XGBoost models can be an order of magnitude faster than for DNNs and more compact in

memory, and this shifts the inference bottleneck to RPC API calls issued by product code to ML

services. The idea explored in our work is to process at least some inferences quickly with a

simple model embedded into product code to bring down mean latency when possible and fall

back on RPC APIs when necessary. We develop such multistage inference in detail and show that

it produces consistently good results for various tabular datasets. To reduce API latency and

avoid CPU overhead of network communications, it is important to make the first-stage model

dramatically simpler than the second-stage model (accessed via RPC), rather than just instantiate

the second-stage model with fewer features as done in [24]. In our environment, product code

happens to be written in PHP and the first-stage model embedded into it does not rely on any

ML packages.
3
Note that first-stage model training does not need to be simple, and here we do

use existing high-performance ML packages for this purpose [6]. Another critical aspect of our

work is how to determine which inputs are served by which-stage model. multistage inference

has been explored in [32] which uses a lightweight classifier on computationally constrained IoT

devices to decide where to perform inference, in [28] which tries to be energy-efficient by executing

"little" deep neural networks as often as possible while reverting to "big" DNNs when necessary, in

[11] which decides between a decision tree and a CNN operating on and embedded device, and in

[10] which straddles a tradeoff between accuracy and energy consumption by limiting the size of

random forest models on low-power embedded devices. For tabular data used in our work, CNNs

would be irrelevant and random-forest models would be inferior to SOTA. Our applications have

high accuracy requirements as well as much greater available DRAM and much lower latency than

networking with low-power embedded devices can allow. We validate our proposed multistage

inference in two ways. First, we show that inference quality is largely preserved across diverse

public tabular datasets, and that the decline in ROC AUC and accuracy is minor compared to the

large performance gain by handling a large fraction of inputs within the product code. Second, we

evaluate actual improvements in a high-performance production system [25] and observe a 1.3x

speedup in inference latency and a 30% reduction in CPU resource usage.

In Section 2, we outline the rationale behind our approach, key insights, and three implied

tradeoffs. In Section 3, we propose the first-stage model called Logistic Regression with Bins

(LRwBins) as well as the approach to allocate the inferences between the stages of the model. In

Section 4, we discuss implementation of this multistage system. In Section 5, we evaluate this

3
Inference for the first-stage model can also be implemented in hardware.
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approach for public datasets as well as in a commercially-deployed ML platform that performs

millions of inferences per second. Conclusions and perspectives are given in Section 6.

2 ML Rationale and Tradeoffs

Our proposal provisions for the first-stage model to use simple and fast inference algorithms

that can be embedded in product code without significantly increasing complexity. This way, we

maximize improvements in latency and CPU usage. There is no reason to simplify training, and if

we do, the simple model might significantly underperform the more sophisticated model behind the

RPC API calls. This tradeoff between the sophistication of training and inference leads us to consider
Logistic Regression (LR) as an ML component.

4
Indeed, the formula for LR can be implemented

directly in any popular programming language without using ML libraries

(
ℎ𝜃 (𝑥) = 1

1+𝑒−𝜃𝑇 𝑥

)
but

bare LR is too limited to serve as the first-stage model.

A second tradeoff is between ML performance and efficiency of inference: a small sacrifice in

model quality (ROC AUC) may bring large gains in inference efficiency. By training the first-stage

model on a subset of the (most important) features of the sophisticated model, we can additionally

reduce CPU usage — both in the model itself and during feature fetching, which can also be a CPU

bottleneck in practice [25]. To address the performance-efficiency tradeoff, we use a third tradeoff

— between performance and input coverage. In other words, we limit the first-stage model to only

some inputs to keep its performance drop (vs the second-stage model) negligible. The fraction

of inputs served by the first-stage model (coverage) must be sufficiently large to ensure efficiency

gains — in practice, 50% is a reasonable target.

To determine which inferences can be handled by a simpler model, we are motivated by linear

approximations to high-dimensional separating hypersurfaces. By breaking our datasets up into

subsets of data with similar features and subsequently using a simple model for each subset, we

can determine which subsets are suitable for simple models. In these subsets of feature space, it is

conceivable that linear approximations to a more complex separating surface could do a good job

at separating the data as illustrated in Figure 1. Here, the quadrants with red linear approximations

to the blue separating curve are candidates to be handled by a first-stage linear model rather than

the slower complex model because they do a good job within their respective quadrants (better

approximations can be found by LR).

3 LRwBins Algorithm

In this section, we introduce our general method of multistage inference called Logistic Regression

with Bins (LRwBins) as well as the method of dividing the data into subsets of similar data. See

Algorithm 1 for more details. In practice, each subset of similar data can be constructed with

the following procedure. We first use a model-free (such as MRMR [12]) or model-based (such as

XGBoost feature importance ranking [9]) approach to determine the relative importance of our

features. We split each of the 𝑛 most important features into 𝑏 bins dictated by the quantiles of

the feature over the normalized training set (lines 2-5 in Algorithm 1). Quantiles are used here

because there are features with very different distributions and we generally want to distribute the

data equally between the bins to adequately train a linear model in each bin. While quantiles work

naturally to break up numerical data, we specifically handle Boolean features by naturally splitting

into two bins instead of 𝑏 bins, and categorical data in a similar manner using a one-hot encoding.

The 𝑛 bins that a datum falls into can be considered an ordered tuple (Figure 2). This ordered tuple

determines a "combined bin" which contains all of the data falling into the same ordered tuple, thus

creating 𝑏𝑛 subsets each consisting of similar data (lines 6-9 in Algorithm 1). Note that the number

4
We have also evaluated SVMs instead of LR, but they did not improve performance of our LR-based solution.

Additionally, experiments adding quadratic and nonlinear features to the model did not show improved performance.
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Figure 1: As a motivating example to using linear approximations of high-dimensional separating

hypersurfaces, consider some data consisting of two features (𝑥1, 𝑥2) and label (represented by either

a circle or a diamond). First, by looking at only the data points, we see that the data is not linearly
separable, but that the nonlinear blue curve does a good job. If we arbitrarily break up the data into

quadrants by the green line, then we can choose red lines that do a good job of separating the data in

each quadrant and can be thought of as linear approximations of the blue curve. This motivates using

linear models on subsets of the feature space which is what our approach will do.

Figure 1 Figure 2

Figure 2: This diagram illustrates the mapping of a data point into a combined bin. If each of the 𝑛 = 4

features (represented by 𝑥𝑖 ) are broken into 𝑏 = 3 quantiles (represented by 𝑞𝑖 ), then the ordered pair

in which the data point falls into determines the associated combined bin. Each combined bin can

store an ML model trained on the data falling into this bin (where enough data is available).

of subsets is the product of the number of bins for each feature, so the total number of subsets may

not be 𝑏𝑛 when binary features or categorical features are present. In general, since the number

of combined bins grows exponentially, both 𝑏 and 𝑛 should be kept to reasonably small values to

prevent situations where there are many combined bins with very small amounts of data within. In

this way, we are essentially building a decision tree that has 𝑏 branches and depth 𝑛 and where

each split is determined by the quantiles of the data. Continuing with the linear approximation

motivation from the previous section, our proposed first-stage model called LRwBins will use an

LR classifier within each combined bin (lines 10-13 in Algorithm 1).

For the multistage approach between LRwBins and a secondary, more complex model to work,

one must determine how to pick the model to perform the inference. This decision will be split

up based on the performance of the models on each combined bin on a validation set of data (see

Algorithm 2). Then, during inference, one can simply map the incoming features to a combined

bin (similar to line 7 in Algorithm 1), check a stored value to see which model should perform

inference (i.e. use the𝑊filtered lookup table in Algorithm 1), and call the model. To maximize the

amount of data using the efficient first-stage model, we proceed as follows. We start by evaluating

our desired performance metric (ROC AUC, accuracy, etc) of each model on each combined bin.

The combined bins are then sorted by how much the secondary model beats the first model. This

means that at the start of the order, we find the combined bins where LRwBins is competitive with

or is outperforming the complex model. These bins are ideal for first-stage inference. We combine

the first two bins in this order and evaluate the performance metric on the cumulative data. We

then add the next bin in this order to the cumulative data, evaluate the performance metric, and

repeat until all of the combined bins are being evaluated together. Each evaluation along the way

presents an opportunity to split the combined bins between the first-stage and second-stage model.

As more and more combined bins are accumulated, the first-stage model handles more inferences
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Algorithm 1 LRwBins(𝐷 = train data,𝑉 = validation data, 𝑏 = # feat. bins, 𝑛 = # inference feat.)

1: 𝐹 ← RankFeatures(𝐷)
2: For each of the 𝑛 most important features in 𝐹 in 𝐷

3: Split into 𝑏 bins using quantiles (special handling for Boolean and categorical features)

4: EndFor
5: 𝐵 ← bin splitting information

6: For each datum in 𝐷

7: Determine combined bin by ordered tuple of 𝐵 and add datum to combined bin

8: EndFor
9: 𝐶 ← combined bins

10: For each combined bin in 𝐶

11: Train logistic regression model and save the weights in a lookup table

12: EndFor
13: 𝑊all ← lookup table

14: 𝑆 ← TrainSecondaryModel(𝐷)
15: 𝑊filtered ← FilterCombinedBins(𝑉 ,𝑊all, 𝑆) // see Algorithm 2

16: return𝑊filtered

but its ML performance deteriorates. In practice, using the accuracy to determine the combined bin

separation gives the best results. Figure 3 explores LR performance per bin and discusses a variant

approach to separate data between the first and second stage models.

Algorithm 2 FilterCombinedBins(𝑉 ,𝑊 , 𝑆)

1: 𝐶𝑉 ← CombinedBins(𝑉 , 𝐵)
2: For each combined bin in 𝐶𝑉

3: Evaluate performance metric for𝑊 and 𝑆

4: EndFor
5: Partition combined bins based on performance difference between𝑊 and 𝑆

6: Remove entries of𝑊 corresponding to 𝑆 partition

7: return𝑊

Once the combined bins are divided by which model performs inference, the next logical step

is to retrain the individual models on the data within their associated combined bins. However, we

saw that the first-stage model typically does not see noticeable improvement. The second-stage

model also does not improve. This is likely because the gradient-boosted decision tree (GBDT)

models often used for binary classification of tabular data generalizes well, so an improvement

by training on this subset of the training data would indicate that the original GBDT was not

properly capturing all of the data. After separating the data, if we train a new LRwBins model

on the data that was not designated for first-stage inference, the new important features on this

subset of the data create combined bins which can be evaluated as a second-stage before falling

back to the RPC inference. Experiments on production datasets show that this method gave a

marginal improvement in the fraction of data handled by the product embedded models meaning

that an extra 1 to 3% of the data could be handled by the product embedded model with no model

performance loss. For simplicity, we present results with only the first-stage LRwBins model that

falls back to the RPC prediction.

4 System Implementation

Our practical implementation of multistage inference also includes training and the use of AutoML.
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Figure 3: To allocate combined bins for inference by first or second-stage models, we evaluate ML

performance metrics per bin. Each bar represents a combined bin with the height representing the

ROC AUC for that bin, the width representing the number of data rows within each bin, and the

color representing the correlation between the global importance of the features (based on the entire

dataset) and the local importance of the features (based on the data contained within the bin). The

bins are sorted by ROC AUC (or any performance metric such as accuracy) to partition them between

first and second stages. A steep dropoff in performance around 50K data rows offers a good separator.

Bin-local feature importance shows surprisingly little correlation to global feature importance (for

most bins). We explain this by the use of most important features to define combined bins.

Figure 3
Figure 4

Figure 4: AutoML supports automated tuning of parameters (𝑏 representing the number of quantiles

and 𝑛 representing the number of most important features to use) on a validation dataset to optimize

the shape of the combined bins used by LRwBins. Here we compare the ROC AUC of the LRwBins

model for a variety of 𝑛 and 𝑏 with the ROC AUC of XGBoost model for a variety of 𝑛. Notice that we

include the ROC AUC for XGBoost using all of the available features (176).

Training and Inference. To implement the proposed approach, we train the second-stage model

on all of the data to ensure a reliable fallback option for the first-stage model. All training is done

with high-performance ML packages while first-stage inference is implemented directly in the

product code and reads configuration from a table (rather than loading and running a serialized

trained model, as is common in ML platforms today). We checked that our implementations of the

first-stage model agree to within machine precision. Compared to XGBoost, LRwBins takes about

half the time to train on the same data. To minimize configuration tables for LRwBins, we only

store (𝑖) quantiles of the 𝑛 most important features used to determine a combined bin, and (𝑖𝑖) LR

weights for the combined bins used first-stage inference. An example LRwBins model trained on

1M data rows takes up ∼ 0.3KB for the quantiles and ∼ 2.3KB for LR weights map with 32-bit floats.

Here we present table sizes in RAM, without data compression. During inference, the important

features determine the correct combined bin which is used as input to a hash map to get either the

LR weights for first-stage inference or a miss suggesting to use the second-stage model. If the LR

weights are found, the probability is computed using the logistic function and the features.

The use of ML Automation is critical to the success of multistage inference, especially to facilitate

two of the three tradeoffs described in Section 2, namely the tradeoffs between (2) ML performance
and efficiency of inference, and (3) ML performance and input coverage. We empirically show that

input coverage over 50% can be attained with no significant ML performance degradation (Figure 3),

but with a marked improvement in efficiency. AutoML is used not only to balance key tradeoffs, but

also to configure the first stage of inference. It solves the following tasks: (𝑖) determine the shape

of combined bins in terms of 𝑏 (quantiles) and 𝑛 (important features used) as shown in Figure 4, (𝑖𝑖)

optimize local models trained on the data in each individual combined bin, and (𝑖𝑖𝑖) allocate bins
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Figure 5: Visualizing the features of Case 2 in 2D using [35] clarifies feature selection for inference in the

LRwBins model. Each square represents a feature, colors indicate feature types, opacity and geometric

proximity to the center reflect feature importance, and integers represent rank by importance.

Figure 5
Figure 6

Figure 6: Scaling of our multistage approach to 10M data rows in terms of ROC AUC. We compare

LRwBins (orange), XGBoost (blue), and the multistage model using each model 50% of the time (green)

as we train them on larger subsets of the Case 2 training dataset.

Figure 7: The relative performance of the hybrid models and XGBoost as a function of the percentage

of data handled by LRwBins is the central aspect of our argument. We compare these models

to multistage inference (solid lines) and XGBoost (dashed line) on several datasets. The

very slight decline in ML performance allows a sizable fraction of the data to be handled

by LRwBins with minimal loss in performance. Our key insight is that heavy use of the

first-stage model entails only a very small ML performance loss. The red is Case 1, the green

is Case 2, and the blue is the ACI.

between first- and second-stage models. This is in addition to traditional uses of AutoML to optimize

high-performance ML platforms, such as model hyperparameter tuning, feature engineering, and

feature selection.

5 Empirical Evaluation

We now present results of our multistage inference model that uses LRwBins as a simple first-stage

model and XGBoost [9] as a more complex model used via RPC. XGBoost performance is close

to that of GBDTs trained as production models. We perform full evaluation on four proprietary

datasets from a deployed real-time ML platform. Additional offline evaluation uses the 20+ public
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Dataset Size Feats

LR LRwBins XGB LR LRwBins XGB

ROC AUC Accuracy

Case 1 1000k 62 .830 .845 .866 .907 .909 .911

Case 2 1000k 176 .712 .734 .739 .915 .915 .916

Case 3 59k 22 .580 .615 .654 .783 .785 .786

Case 4 73k 268 .565 .577 .602 .900 .901 .905

ACI 33k 15 .902 ± .004 .903 ± .004 .922 ± .003 .849 ± .004 .849 ± .005 .867 ± .004

Blastchar 7k 20 .839 ± .009 .839 ± .010 .839 ± .010 .800 ± .011 .800 ± .011 .798 ± .009

Shrutime 10k 11 .763 ± .010 .845 ± .006 .861 ± .008 .809 ± .006 .846 ± .006 .861 ± .004

Patient 92k 186 .860 ± .005 .872 ± .004 .899 ± .003 .926 ± .002 .926 ± .002 .932 ± .001

Banknote 1k 4 .879 ± .015 .938 ± .016 .989 ± .004 .801 ± .014 .838 ± .020 .947 ± .013

Jasmine 3k 144 .843 ± .017 .855 ± .017 .867 ± .012 .768 ± .017 .792 ± .016 .804 ± .015

Higgs 98k 32 .681 ± .004 .766 ± .004 .792 ± .003 .642 ± .004 .698 ± .003 .715 ± .003

Table 1: A comparison of logistic regression (LR), LRwBins, and XGBoost (a strong baseline model for

tabular data) using the ROC AUC and the accuracy as metrics. Cases 1-4 are production use

cases on our commercial ML platform. Other datasets are a representative subset of the 20+

public datasets from [33] that we used for evaluation. For each row, we report the mean of 20

random experiments with the standard deviation reported for the public datasets as error.

datasets from [33]. The subset of results reported for public datasets are representative of all of our

experiments. We emphasize the improvements in mean latency and CPU usage. We also discuss

the limitations of our approach.

5.1 ML Performance Benchmarks

Among the public datasets, Adult Census Income (ACI) [23] is based on the 1994 US Census

and seeks to predict whether the income of a person is >$50k/year. Blastchar [33] is trying to

predict customer retention. Shrutime [33] predicts if a customer closes their bank account or

not. Patient [31] dataset looks at the severity of illness. Banknote [13] dataset seeks to determine

authenticity based on various factors. Jasmine and Higgs [14] are two datasets chosen from the

AutoML benchmark. Cases 1-4 are production use cases that represent a company-internal service,

optimize client-server data transfers in a large social network, support user authentication and

access to online resources. Figure 5 visualizes the features of Case 2 in 2D using [35] to clarify

feature selection for inference in LRwBins. Colors show that the most important features (near the

geometric center) include diverse types.

First, we explore standalone performance of LRwBins. By searching over the hyperparameters,

we have found that 2-3 quantile bins per feature (𝑏) work best and prevent the explosion in the

number of combined bins (𝑏𝑛). For larger 𝑏, many combined bins lack data to train a logistic

regression model well. Additionally, about 7 of the most important features used to create the

combined bins and 20 features used for inference typically give good results, although these

hyperparameters can be tuned for each dataset. In Table 1, we compare logistic regression (LR),

LRwBins, and XGBoost across a number of datasets. The LR and LRwBins models use the top 𝑛

important features determined by hyperparameter tuning while XGBoost always uses all available

features. LRwBins outperforms logistic regression and slightly underperforms XGBoost.

As per Section 3, the tradeoff between model performance and inference efficiency comes from

deciding which combined bins are handled by which stage of the model. As illustrated in Figure 7

(blue) for the Adult Census Income dataset, increasing the fraction of the data handled by first-stage

inference decreases the performance of the ML model in terms of both accuracy and ROC AUC.

However, the slight decline in performance of the first 40% of the data provides justification to

allow a sizable fraction of the data to be handled by LRwBins with minimal loss in performance.

The most important result of this paper is that the initial slope of these lines is so small that the

first-stage model can be used on a large fraction of data with only a small ML performance loss.

Figure 7 gives representative results on several datasets, but our results on many more datasets
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Dataset

ML Performance Difference (XGBoost Model - Hybrid Model)

Coverage

ROC AUC Accuracy

Case 1 0.003 0.000 54.2%

Case 2 0.003 0.000 49.4%

Case 3 0.006 0.001 60.7%

Case 4 0.010 0.002 58.4%

ACI 0.002 0.001 39.1%

Blastchar 0.005 0.001 24.0%

Shrutime 0.001 0.002 65.1%

Patient 0.009 0.000 50.0%

Banknote 0.011 0.018 60.4 %

Jasmine -0.008 -0.007 53.3 %

Higgs 0.000 0.000 70.4 %

Table 2: Analysis of select hybrid models by comparing ML metrics to XGBoost. This hybrid model

consists of using LRwBins for a select sensible percentage of the data (i.e. Coverage) and

falling back to XGBoost for the remaining data. The percentages are chosen to be as large as

possible while allowing for a small tolerance in degradation of ML performance.

(not shown) are similar. Interestingly, a few datasets seemed to show marginal improvement to the

XGBoost model at small fractions of data using the first-stage model. As this fraction increased,

overall ML performance quickly dropped below the break-even point. Selecting a sensible fraction

of data handled by the first-stage model for each of our considered datasets, Table 2 documents

small losses in performance metrics. Figure 6 shows that the multistage approach scales well to

datasets with millions of data rows and preserves the percentage of data handled by the first stage.

5.2 Resource and Latency Improvement

Using multistage inference improves mean latency because the product code directly evaluates

first-stage model without latency overhead of ML services. Table 3 shows the total amount of time

it takes for a number of first-stage inferences, second-stage inferences via RPC, and multistage

inferences. In these experiments, multistage inference is using the first-stage 50% of the time and

RPC 50% of the time although this will change based on the dataset as discussed before. We can

see that the first-stage inference model is about 5 times faster than the RPC, and the multistage

inference is about 1.3 times faster than the RPC. To verify the multistage inference latency, we

include a projected multistage inference latency time based on the first-stage and RPC latencies. For

example, if it takes 𝑡 time for a RPC prediction (and therefore .2𝑡 time for the first-stage prediction),

then the multistage prediction should take .2𝑡 for half of the inferences. For the other half of the

inferences, it will take .2𝑡 time to attempt the first-stage prediction and discover that the RPC should

be used, and then 𝑡 time to make the RPC prediction. This all leads to 0.5(0.2𝑡) + 0.5(0.2𝑡 + 𝑡) = 0.7𝑡

or 1.4 times speed-up over RPC, close to the empirical 1.3x speed-up. The multistage inference

model improved the CPU resource usage as well. While the full model uses all available features,

LRwBins fetches only a subset of the most important features (Section 3). In practice, this gave a

1.2x speedup and used 70% of the resources compared to the full model.

5.3 Limitations of LRwBins and Unsuccessful Techniques

We found good multistage models for a majority of the 20+ public datasets we experimented with,

but a few datasets (less than 10%) benefited little from our approach because they exhibited a steep

dropoff in performance with a small fraction of data using the first-stage model. In these cases, the

independently-trained second-stage model robustly handles the majority of the inferences.

Additional experiments included using the first 𝑛 trees trained by XGBoost to similarly bin the

data and then train LR models on these bins, but this did not help, and neither did using linear
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Inferences

Average latencies (in milliseconds) for:

1
st
-stage Inference 2

nd
-stage Inference via RPC multistage Proj. multistage

10x 15 85 82 57

100x 13 65 50 45

1000x 11 74 57 48

10000x 8 67 45 42

Table 3: Latency for first-stage inferences, inferences that require RPC, as well as measured and

projected multistage inferences. The multistage inference latency involves the time for

determining which stage should conduct inference, any network latencies between stages,

and the time for inference itself. Latency is averaged over inference batches of very different

sizes to check for possible measurement overheads. We see that first-stage inference is 5x faster

than the second-stage inference, and multistage inference is 1.3x faster than always using

second-stage inference. The projected multistage inference latency (based on the first- and

second-stage latencies, used 50% of the time) is 1.4x smaller than the second-stage inference,

close to our empirical results. We report data for a use case with higher-than-average latency,

although other use cases exhibit consistent trends.

SVMs instead of LR in each combined bin. Retraining the networks after splitting the data and

adding more stages of inference showed at most negligible improvement in our experiments.

6 Conclusion

We introduced and developed an approach to multistage inference that includes a much-simplified

first stage that can be embedded into the product code to reduce network communication and

lower CPU overhead for a negligible loss in ML performance. The simplified first stage is backed

by the full-strength ML model, and AutoML is crucial to configuring the first stage and balancing

the two stages. For validation, we used public datasets and company-internal production datasets

from a high-performance ML platform that makes millions of inferences per second. In high-

performance applications where network latency from RPC APIs is noticeable, the multistage

inference approach may be desired to handle up to 50% of the inferences in a quick and efficient

manner reducing network communication between the application front-end andML back-end. The

tradeoff between ML performance and inference efficiency can be easily tuned with the LRwBins

model which brought a 1.3x drop in latency and 30% drop in CPU usage compared to the RPC

prediction.

The use of AutoML to configure the first stage of inference includes optimal choice of hyper-

parameters when determining the composition of the combined bins. AutoML-based balancing

of the two stages determines a separation threshold between the stages, which can vary greatly

depending on the use case and the desired tradeoff between (1) ML performance degradation and

(2) reduction in computational resources and latency. Optimization of these parameters underlies

significant enhancement in resource efficiency and latency, distinguishing it from scenarios where

no improvement is achieved. Note that this approach improves average resource-efficiency of

inference and thus improves energy-efficiency as well. While additional memory is used, this

overhead is small.

Our approach to improve high-performance inference appears compatible with hardware accel-

eration. We believe that accelerators for LRwBins would be much simpler than DNN-accelerators,

use smaller amounts of embedded memory, and likely do well when tree-based ML models out-

perform DNNs on tabular data. This simplicity comes at the cost of handling only half the inputs

without falling back to a heavier model. FPGAs with embedded CPUs appear promising for this

application. When dealing with hardware accelerators, AutoML is especially important to tune

performance based on specific characteristics of hardware components.

Code for this project is publicly available at: https://github.com/facebook/lr-with-bins
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7 Broader Impact Statement

It is difficult to ascribe ethical impact to individual papers that focus more on general-purpose

algorithms or approaches meant to optimize performance by reducing resource usage such as this

paper. Since this paper focuses on an end goal of maintaining machine learning performance,

while reducing the resources used to achieve this goal, we can confidently say that there are no

foreseeable potential negative societal impacts that would be brought about by the publication of

this paper.

While this paper uses human-derived data for testing and verification purposes, the datasets

used do not contain any personally identifiable information (PII) or sensitive personally identifiable

information (SPII). We use popular public datasets in order to show performance to familiar data

and a few datasets internal to our company representing a company-internal service, optimize

client-server data transfers within a large social network, support user authentication, and access

to online resources. These datasets also conform to rules and regulations internal to our company.

We have additionally tried to make this paper as accessible as possible to all reviewers and

potential audience.

After careful reflection, the authors have determined that this work presents no notable negative

impacts to society or the environment.

8 Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] The claims made properly reflect the scope of the paper.

(b) Did you describe the limitations of your work? [Yes] See Section 5.3.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See section 7.

(d) Have you read the ethics author’s and review guidelines and ensured that your paper con-

forms to them? https://automl.cc/ethics-accessibility/ [Yes] This paper conforms

to the ethics guidelines.

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A] Theoretical results

are not included.

(b) Did you include complete proofs of all theoretical results? [N/A] Theoretical results are not

included.

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-

tal results, including all requirements (e.g., requirements.txt with explicit version), an

instructive README with installation, and execution commands (either in the supplemental

material or as a url)? [Yes] The code is included with relevant data and instructions. Some

results, such as the latency test in the production environment, cannot be easily replicated

since it requires access to the production RPC calls.

(b) Did you include the raw results of running the given instructions on the given code and

data? [Yes] The results have only been truncated for readability.
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(c) Did you include scripts and commands that can be used to generate the figures and tables

in your paper based on the raw results of the code, data, and instructions given? [Yes] The

plotting functions are in the code and can be easily enabled.

(d) Did you ensure sufficient code quality such that your code can be safely executed and the

code is properly documented? [Yes] The code is properly documented and the model files

explain what is happening in each function and why.

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed

hyperparameter settings, and how they were chosen)? [Yes] This is included in the code.

(f) Did you ensure that you compared different methods (including your own) exactly on

the same benchmarks, including the same datasets, search space, code for training and

hyperparameters for that code? [Yes] All methods were evaluated on the same datasets

with their optimal hyperparameters.

(g) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] Note the robustness of this approach in the removing the entirety of our method

robustly falls back to a good model.

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] The same

protocol is always used.

(i) Did you compare performance over time? [Yes] Internal data that shifts over time was

tested and we saw similar results.

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] This is

found in the code.

(k) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [Yes] See Table 1.

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] Results are

compared to existing popular gradient boosting models for tabular data such as XGBoost.

(m) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] We refer to the internal CPU resource usage

throughout the paper and comment on the goal of reducing resource usage.

(n) Did you report how you tuned hyperparameters, and what time and resources this required

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach;

and also hyperparameters of your own method)? [Yes] Hyperparameters are tuned in the

provided code.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes] We did cite the creators of

datasets and models used.

(b) Did you mention the license of the assets? [No] We invite readers to review the source

material for license information.

(c) Did you include any new assets either in the supplemental material or as a url? [Yes] We

link to the new model source code at the end of the paper.

(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] This is discussed in the broader impacts section.

(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] This is discussed in the broader impacts section.
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5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A] This is not applicable.

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A] This is not applicable.

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A] This is not applicable.
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