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ABSTRACT

Large language models have driven numerous paradigm shifts in the field of natu-
ral language processing, achieving remarkable success in various real-world appli-
cations through scaling model size and leveraging long-sequence context reason-
ing. However, the transformer architecture, which relies on self-attention, incurs
substantial storage and runtime costs when handling long-sequence inference, par-
ticularly due to the generation of extensive Key-Value (KV) cache. Recent studies
aim to mitigate storage and latency issues while maintaining output quality by re-
ducing the KV cache size, through the elimination of less critical entries, yet they
rely on a basic empirical intuition of identifying critical cache entries based solely
on top attention weights. In this paper, we present the first formal investigation
into the problem of identifying critical KV cache entries from the perspective of
attention output perturbation. By analyzing the output perturbation caused when
only critical KV cache entries are used instead of the entire cache, we reveal that,
in addition to the commonly used attention weights, the value states within KV
entries and the pretrained parameters matrix are also important. Based on this
finding, we propose a novel perturbation-constrained selection algorithm to iden-
tify critical cache entries by optimizing the worst-case output perturbation. Ex-
tensive evaluations on 16 datasets from Longbench, along with detailed empirical
analysis, have comprehensively confirmed the effectiveness of constraining output
perturbation perspective in identifying critical KV cache. When combined with
state-of-the-art cache eviction methods, it can achieve up to an additional 34%
cache memory savings while maintaining the same generation quality.

1 INTRODUCTION

Autoregressive large language models (LLMs) based on the transformer architecture have achieved
remarkable success, being widely applied in various downstream tasks such as dialogue systems
(Yi et al., 2024), chatbots (Achiam et al., 2023), intelligent agents (Wang et al., 2024), and code
generation (Gu, 2023). However, the quadratic computational cost inherent in the transformer’s
self-attention mechanism poses significant challenges for practical deployment. To mitigate this,
LLMs often use a Key-Value (KV) cache, which stores intermediate results from the self-attention
mechanism. Each KV cache entry corresponds to the KV states of a past token, thus allowing for the
bypassing of recomputation of these tokens during autoregressive generation. However, as sequence
lengths increase, the number of the KV cache entries expands correspondingly. This expansion in
KV cache not only leads to considerable GPU memory overhead but also significantly increases IO
latency, hindering the deployment in real-world applications (Sun et al., 2024a).

Recent researches identify that only a subset of KV cache entries substantially contribute to the
output of the self-attention mechanism (Zhang et al., 2024b; Liu et al., 2024a; Tang et al., 2024a).
Therefore, many methods known as cache eviction have been developed to reduce the KV cache size
to fit within a given GPU memory budget by evicting non-critical entries during long-sequence in-
ference. These budget-constrained methods effectively save GPU memory and improve subsequent
decoding speed. Initial findings show that recent KV cache entries are more critical for future token
generation, prompting the development of techniques that prioritize retaining KV entries within a
recent window (Beltagy et al., 2020; Xiao et al., 2023). However, this approach risks losing essential
information from longer sequences. To address this, H2O (Zhang et al., 2024b) and Scissorhands
(Liu et al., 2024a) observe the power-law distribution of attention weights: a small fraction of KV
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cache entries consistently dominates the majority of attention weights, which aligns closely with
the concept of cache entry criticality during inference. These methods introduce frameworks that
leverage accumulated attention weights to identify and preserve critical cache entries. Following the
observation, a series of subsequent works (Adnan et al., 2024; Li et al., 2024; Feng et al., 2024) have
further improved performance by refining the attention weight accumulation mechanism or incorpo-
rating additional operations like polling to better retain key information. Although the term “critical
cache entry” remains an abstract concept without formal definition, current approaches often assume
that cache entries with higher attention weights — determined by the similarity between key states
in the KV cache and the target query state — indicate the critical cache entries. This assumption
raises two key questions:

1. What criteria determine the critical KV cache?
2. Is reliance solely on attention weights sufficient for identifying critical cache entries?

In this paper, we formally define the problem of critical cache identification from the perspective of
output perturbation, introducing a theoretical framework that optimizes the perturbation by bound-
ing it within worst-case scenarios. Specifically, we formalize the problem as minimizing the output
perturbation while substituting the entire KV cache with only the critical cache entries. To quan-
tify this perturbation, we employ the L1 distance and derive its upper bound, corresponding to the
worst-case perturbation. Our analysis shows that this upper bound is influenced by both the attention
weights and the value states projected through the parameter matrix. Building on this foundation,
we propose a perturbation-constrained selection algorithm that goes beyond mere reliance on at-
tention weights, underscoring the significance of previously overlooked value states and pretrained
parameter matrix in identifying critical cache entries.

Building on our theoretical framework for critical cache identification based on output perturbation,
we replace previous strategies that rely solely on attention weights by seamlessly integrating our
algorithm into state-of-the-art (SOTA) cache eviction methods. Using 16 datasets from LongBench,
we conduct extensive evaluations across various budgets, demonstrating that our algorithm selects
critical cache entries more accurately, effectively improving the post-eviction generation quality.
We conduct further empirical analysis to evaluate the benefits of our algorithm, leading to two key
conclusions: (1) across different methods, contexts, budgets, and models, our algorithm consistently
reduces output perturbation in most attention heads, and (2) its advantages accumulate across lay-
ers, significantly lowering final-layer output perturbation. These findings show that our algorithm
consistently improves post-eviction generation quality and confirms the effectiveness in identifying
critical cache entries. Our contributions can be summarized as follows:

1. We point that current cache eviction methods neglect the crucial problem of KV cache
identification. To address this, we propose using output perturbation as criteria to determine
critical KV cache entries. Our analysis shows that attention weights alone are insufficient,
as the value states projected by the parameter matrix also play a significant role.

2. Building on constraining the worst-case output perturbation, we propose a novel critical
entry selection algorithm. When integrated into SOTA eviction methods, comprehensive
evaluations across 16 datasets demonstrate it consistently improves the generation quality.

3. Further empirical analysis examines and confirms the benefits of our perturbation-
constrained selection algorithm, which also highlights the significant potential for opti-
mizing critical cache selection from the theoretical perspective of output perturbation.

2 RELATED WORKS

The inference cost of LLMs is primarily determined by the size of model parameters and KV cache.
Early strategies like parameter quantization and network pruning successfully reduce model param-
eters. However, with the rise of applications such as long-text summarization (Laban et al., 2023),
multi-turn QA (Yang et al., 2018), and techniques like Chain of Thought (Wei et al., 2022), the
increasing sequence length has led to substantial growth in KV cache size. Consequently, recent re-
search has shifted focus toward reducing KV cache size to enable efficient long-sequence inference,
primarily through two orthogonal approaches: KV cache quantization and KV cache eviction.

KV cache quantization refers to the application of quantization techniques to reduce the size of
the KV cache by lowering the precision of individual cache entries (Liu et al., 2024b; Hooper et al.,
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2024). For example, this can involve quantizing the original 16-bit KV cache entries to 2-bit or 4-bit
precision. However, such approaches typically retain all KV cache entries (Hooper et al., 2024). As
a result, in autoregressive inference with long sequences, they cannot effectively compress the KV
cache to fit within a specified budget. These methods are fundamentally orthogonal to the cache
eviction methods, and could further enhance performance by incorporation.

KV cache eviction focuses on retaining only critical KV cache entries while evicting non-critical
ones to reduce cache size. Early methods (Xiao et al., 2023), which preserved recent entries, risked
losing important information in long sequences. Techniques like H2O (Zhang et al., 2024b) and
Scissorhands (Liu et al., 2024a) used accumulated attention scores to identify key entries, aiming to
retain crucial context. Subsequent works refined these methods (Ge et al., 2024b; Adnan et al., 2024;
Ge et al., 2024a; Li et al., 2024), with SnapKV (Li et al., 2024) achieving the SOTA performance
through introducing window-based attention weight accumulation and pooling operations. More re-
cent approaches, such as Pyramid (Yang et al., 2024; Zhang et al., 2024a) and AdaKV (Feng et al.,
2024), improve post-eviction generation by allocating budgets based on the characteristics of atten-
tion heads. However, these methods are largely empirical, relying heavily on attention weights to
identify critical entries. Our paper introduces a novel perturbation-constrained selection algorithm
based on in-depth analysis from an output perturbation perspective. This algorithm seamlessly in-
tegrates into existing cache eviction methods without altering underlying accumulation processes.
In our work, we demonstrate its effectiveness by applying it to SnapeKV, Pyramid, and AdaKV, all
showing consistent improvements in post-eviction generation quality under varying budgets.

3 CRITICAL KV CACHE ENTRY SELECTION

We commence with a commonly held observation (Zhang et al., 2024b; Li et al., 2024) that a subset
of critical KV cache entries can adequately represent the entire KV cache during the computation
of self-attention mechanism, producing an output that is a close approximation, if not identical.
The preliminaries about the relationship between KV cache and generation output are introduced in
Section 3.1. Based on that, we formalize the problem of identifying critical cache entries from the
perspective of output perturbation (Definition 1) in Section 3.2. Subsequently, in Section 3.3, we
formalize the output perturbation and derive its upper bound. Then, we propose a two-stage greedy
algorithm in Section 3.4 that constrains worst-case perturbations for selecting critical entries, with
theoretical analysis provided in Section 3.5. Finally, in Section 3.6 we integrate the algorithm into
current SOTA cache eviction methods.

3.1 PRELIMINARIES

LLMs utilizing the multi-head self-attention mechanism operate with an autoregressive generation
approach. In this setup, each decoding step leverages the most recently generated token to predict
the next one. To illustrate this process, we focus on a single attention head as an example. Let
X ∈ Rn×d denote the embedding matrix for all tokens in the sequence, with x = X−1,: ∈ R1×d

representing the embedding vector of the most recent token, which serves as input at the current time
step. The parameter matrices, denoted by WQ, WK , and WV ∈ Rd×dh are used to map the token
embeddings into their respective Query, Key, and Value states with head dimension dh as follows:

q = xWQ;K = XWK ;V = XWV (1)
During the decoding phase, the Key and Value states of previously generated tokens (represented

by X) are stored in the KV cache, allowing for the elimination of redundant computation. Accord-
ingly, the query q, derived from the most recent token x, attends to the cached Key K to compute
the attention weights A. These weights are then applied to the cached Value V , producing an inter-
mediate output. This intermediate result is subsequently transformed into the final output o of the
self-attention mechanism by the output parameter matrix WO ∈ Rdh×d:

o = AVWO, whereA = softmax
(
qKT /

√
d
)

(2)

3.2 WHAT CRITERIA DETERMINE THE CRITICAL KV CACHE?

Recent research has demonstrated only a small portion of critical KV cache entries do substantially
contribute to the attention output (Zhang et al., 2024b; Liu et al., 2024a). This insight presents
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promising opportunities to reduce inference costs by evicting a large number of non-critical KV
cache entries Li et al. (2024); Zhang et al. (2024a); Feng et al. (2024); Ge et al. (2024b); Adnan
et al. (2024); Ge et al. (2024a).However, the key challenge lies in accurately identifying the critical
KV cache entries. Ideally, from a high-level perspective, the set of critical KV cache entries should
completely represent the entire cache, ensuring for given query state, the selected entries yield the
same attention output as the full set of KV pairs. In practice, the number of selected critical cache
entries will be constrained by a predefined budget, which is closely tied to the computational re-
sources available in downstream deployments. Consequently, our goal shifts toward minimizing the
output perturbation introduced by the replacement. So, the problem can be reformulated as follows.
Definition 1 (Critical KV Cache Identification Problem). Given a critical cache budget b, the task is
to select b critical KV cache entries 〈K̂, V̂ 〉 from a total of n cache entries 〈K,V 〉, with the goal of
minimizing the perturbation in the attention output o. By using the L1 distance L for quantification,
the objective is formalized as:

arg min
selection of 〈K̂,V̂ 〉

L = ‖o− ô‖1 (3)

where ô represents the attention output produced by the selected 〈K̂, V̂ 〉.

3.3 ARE ATTENTION WEIGHTS SUFFICIENT FOR IDENTIFYING CRITICAL CACHE ENTRIES?

According to Definition 1, the goal of identifying critical KV cache entries is to minimize the per-
turbation L = ‖o − ô‖1. To achieve this, we can employ an additive maskingM to simulate the
removal of non-critical cache entries’ contributions to the final output ô, thereby altering ô.

ô = A′VWO, A′ = softmax
(
M+ qKT /

√
d
)
,whereMi =

{
−∞ if Ki and Vi are non-critical
0 otherwise.

(4)

Thus, the perturbation L can be further expressed as:

L = ‖(A−A′)VWO‖1 (5)

Theorem 1. By introducing a mask N ∈ Rn applied through element-wise multiplication denoted
by �, we can establish the relation between A′ and A as follows:

A′ =
N �A∑n
i=1NiAi

whereNi =

{
0 if Ki, Vi is non-critical
1 otherwise.

and
∑n

i=1
Ni = b (6)

Proof. Let a = qKT /
√
d, we can express the attention weights A′ under critical cache entries as:

A′ =
exp(M+ a)∑n

i=1 exp(M+ a)i
=

N � exp(a)∑n
i=1Niexp(a)i

= N � exp(a)∑n
i=1 exp(a)i

∑n
i=1 exp(a)i∑n

i=1Niexp(a)i
(7)

Considering A = exp(a)∑n
i=1 exp(a)i

, thus
∑n
i=1NiAi =

∑n
i=1Niexp(a)i∑n
i=1 exp(a)i

. Therefore, A′ = N�A∑n
i=1NiAi

.

Theorem 1 utilizes a multiplicative mask N to quantifies how their selection impacts the attention
weights. However, directly minimizing L for critical cache selection is challenging due to complex
matrix operations it requires. Thus we turn to establish an upper bound θ, as shown in Theorem 2.
Theorem 2. The output perturbation L can be bounded by θ:

L ≤ θ = C −
(

2− 1∑n
i=1NiAi

)∑n

i=1
NiAi‖Vi,:‖1, (8)

where C denotes the
∑n
i=1Ai‖Vi,:‖1 and V ∈ Rn×d = VWO denotes all projected values states

through parameter matrix WO.
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Algorithm 1 Perturbation-Constrained Selection for Critical Cache Entry Identification
Input: Budgets b, Query State q, KV Cache Entries K,V , Parameter Matrix WO , Hyper Parameter α = 0.25
Output: Critical Cache Entries K̂, V̂
1: initialize empty cache K̂, V̂
2: A = softmax(qKT ); V = VWO

3: A = A� (L1 norm of each rows in V)
4: b′ = b× α; b′′ = b− b′
5: for Ai,Ki, Vi ∈ A,K, V do . Start of Stage 1
6: if Ai ∈ Topk(A, b′) then
7: add Ki, Vi to K̂, V̂
8: remove Ai,Ki, Vi from A,K, V
9: end if

10: end for . End of Stage 1
11: for Ai,Ki, Vi ∈ A,K, V do . Start of Stage 2
12: if Ai ∈ Topk(A, b′′) then
13: add Ki, Vi to K̂, V̂
14: end if
15: end for . End of Stage 2
16: return Critical Cache Entries K̂, V̂

Proof. Let V ∈ Rn×d = VWO denote all projected value states, thus:

L = ‖
(
A− N �A∑n

i=1NiAi

)
V‖1 = ‖

∑n

i=1

(
Ai −

NiAi∑n
i=1NiAi

)
Vi,:‖1 (9)

≤ θ =
∑n

i=1
‖
(
Ai −

NiAi∑n
i=1NiAi

)
Vi,:‖1 =

∑n

i=1
|Ai −

NiAi∑n
i=1NiAi

| × ‖Vi,:‖1 (10)

Given that the multiplicative maskN is either 0 or 1, the index set i ∈ [1, n] can be split into I0 and
I1, according to its value. Thus:

L ≤ θ =
∑

i∈I0
Ai‖Vi,:‖1 +

∑
i∈I1

(
Ai∑n

i=1NiAi
−Ai

)
‖Vi,:‖1 (11)

Let C represent
∑n
i=1Ai‖Vi,:‖1, a constant independent of the selection of critical entries. We can

express
∑
i∈I0 Ai‖Vi,:‖1 as C −

∑
i∈I1 Ai‖Vi,:‖1. Thus:

L ≤ θ = C −
∑

i∈I1
Ai‖Vi,:‖1 +

∑
i∈I1

(
Ai∑n

i=1NiAi
−Ai

)
‖Vi,:‖1 (12)

= C +
∑

i∈I1

(
Ai∑n

i=1NiAi
− 2Ai

)
‖Vi,:‖1 = C −

(
2− 1∑n

i=1NiAi

)∑n

i=1
NiAi‖Vi,:‖1 (13)

We can observe that θ encompasses not only the attention weights but also the projected value states.
This highlights that prior selection methods relying solely on attention weights are suboptimal.

3.4 IDENTIFY CRITICAL CACHE ENTRIES BY CONSTRAINING WORST-CASE PERTURBATION.

Drawing on optimization strategies in machine learning, we propose lowering the upper bound of
perturbation, effectively constraining the worst-case perturbation and thereby reducing actual per-
turbations for identifying critical cache entries. However, directly minimizing the upper bound θ
remains non-trivial. To balance both the complexity and selection effectiveness, we introduce a
two-stage greedy perturbation-constrained selection Algorithm 1, specifically designed to lower the
perturbation upper bound for critical cache entry identification.

In this algorithm, the total budget b is divided into two portions based on a hyperparameter α. In the
first stage, a small fraction of the budget, b′ = b×α, is allocated to prioritize KV cache entries with
high attention weights. In the second stage, the remaining budget, b′′ = b − b′, is used to consider
both the norms of the projected value states and the attention weights. This two-stage selection
employs a Top-K operation to effectively constrain the worst-case perturbation. To substantiate the
effectiveness of our proposed algorithm, we provide a theoretical analysis in the following section.
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3.5 THEORETICAL ANALYSIS OF PERTURBATION-CONSTRAINED SELECTION ALGORITHM

Our proposed algorithm comprises two stages, referred to as stage 1 and stage 2, with the latter
serving as the algorithm’s core component. Under the guarantee provided by Assumption 1, the
selection in Stage 1 ensures that Stage 2 adheres to the constraints on perturbations, as formalized in
Theorem 3.Let N ′ and N ′′ represent the selections from the stage 1 and 2, respectively, satisfying:∑n
i=1N ′i = b′ and

∑n
i=1N ′′i = b′′.Thus, the overall selection is N = N ′ +N ′′.

Assumption 1. In the first stage, the small portion of the overall budget b′ = b × α is sufficient to
collect the cache entries corresponding to the highest attention weights, ensuring their cumulative
attention weights σ exceed half of the total, i.e.,σ =

∑n
i=1N ′iAi =

∑
Topk(A, b

′) > 0.5.

We can simply set α to a small fraction, such as 0.25, to ensure that Assumption 1 holds. This is
primarily determined by two key factors. Firstly, the inherent power-law distribution of attention
weights (Zhang et al., 2024b), where a small subset of cache entries accounts for the majority of
the attention weights. Secondly, in practical compression scenarios, the overall budget is gener-
ally maintained at a reasonable level to avoid catastrophic degradation in generation quality after
eviction. Therefore, Assumption 1 is universally satisfied across most attention heads during actual
operations. Experimental analysis further validate the robustness of Assumption 1 in Appendix A
and the effectiveness of stage 1 in Appendix D.
Theorem 3. Given the stage 1 selection N ′i , the objective N ′′i of stage 2 is to minimize an upper
bound θ̂ of the output perturbation L, using the remaining budget b′′ = b− b′.

argmin
N ′′

i

θ̂ where θ̂ =C ′ −
(
2− 1

σ

)∑n

i=1
N ′′i Ai‖Vi,:‖1 (14)

subject to
∑n

i=1
N ′′i = b′′, C ′ = C −

(
2− 1

σ

)∑n

i=1
N ′iAi‖Vi,:‖1. (15)

Proof. From Assumption 1, the first stage selection ensures:
∑n
i=1NiAi >

∑n
i=1N ′iAi = σ >

0.5, leading to the inequality: 2− 1∑n
i=1NiAi

> 2− 1
σ > 0.

θ = C −
(

2− 1∑n
i=1NiAi

)∑n

i=1
(N ′i +N ′′i )Ai‖Vi,:‖1 (16)

< C −
(

2− 1

σ

)∑n

i=1
N ′iAi‖Vi,:‖1 −

(
2− 1

σ

)∑n

i=1
N ′′i Ai‖Vi,:‖1 (17)

LetC ′ = C−
(
2− 1

σ

)∑n
i=1N ′iAi‖Vi,:‖1, then we can derive a new upper bound θ̂ for L factoring

by second stage selection N ′′i : θ < C ′ −
(
2− 1

σ

)∑n
i=1N ′′i Ai‖Vi,:‖1 = θ̂ Thus, minimizing θ̂

corresponds to selecting the b′′ entries with the highest values of Ai = Ai‖Vi, :‖1, as implemented
in the stage 2 selection (Algorithm 1).

Theorem 3 demonstrates that our second stage selection directly minimizes an upper bound of output
perturbation for identifying critical cache entries. Unlike traditional strategies that rely solely on
high attention weights for entry selection, the second stage of our algorithm jointly leverages both the
attention weights and the value states projected through the parameter matrix, to directly constrain
the worst-case output perturbation.

3.6 INTEGRATING INTO SOTA CACHE EVICTION METHODS

We demonstrate the superiority of our proposed algorithm in application by integrating into the ex-
isting cache eviction methods which solely rely on accumulated attention weights for critical entries
selection. Current SOTA cache eviction workflow is established by SnapKV, which introducing
an observation window mechanism to stably accumulate attention weights and further employ the
max pooling operations to prevent the omission of key information. Building on this, subsequent
researches note the uneven distribution of critical cache entries across different heads, leading to
the development of budget allocation strategies across heads for further optimization. Method, like
Pyramid, employs a pyramid-like patterns for budget allocations for heads across different layers,
while its pre-fixed encountering adaptability challenges with various LLMs. The latest innovation,

6
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Algorithm 2 Observation Window Based Cache Eviction Workflow.
Input: All Query States Q ∈ Rn×dh , KV Cache Entries K,V ∈ Rn×dh , Window Size n′

Output: Critical Cache Entries K̂, V̂
1: allocating budget b for one head // refined by Pyramid and AdaSnap based on Snap
2: Q̂ = Q[−n′ :, :] // extract query states in observation window
3: A = softmax(Q̂KT ) ; Ā = A.mean(dim = 0) // calculate attention weights
4: Ā′ = maxpooling(Ā) // max pooling across cache entries
5: if using regular selection then
6: select b critical cache entries K̂, V̂ according to Topk(Ā′, b)
7: else if using our selection then
8: select b′ = b× α critical entries K̂, V̂ according to Topk(Ā′, b′)

9: V = VWO; A = Ā� (L1 norm of each rows in V)

10: append remaining b′′ = b× (1− α) critical entries K̂, V̂ according to Topk(A, b′′)
11: end if
12: return K̂, V̂

Ada-KV, dynamically detects the varying numbers of critical KV cache entries among different at-
tention heads during runtime. This allows for flexible budget scheduling between heads, thereby
significantly enhancing the quality of output generation.

Overall, this series of observation window-based cache eviction methods can be systematically uni-
fied as Algorithm 2. The entire cache eviction workflow can be divided into two main parts: the first
is its budget allocation strategy across heads (line 1), and the second (lines 2—7) is the observation
window mechanism for attention weights accumulation. Our algorithm integrates seamlessly with
existing eviction methods without significant modifications, requiring only the additional computa-
tion of projected value states in line10.

4 APPLICATION IN CACHE EVICTION METHODS

4.1 DATASETS

For a comprehensive evaluation, we adopt “LongBench,” a benchmark widely used for long-
sequence tasks assessment (Li et al., 2024; Zhang et al., 2024a; Feng et al., 2024). It consists
of 16 datasets across 6 task domains: single-document question answering (QA) (Kočiskỳ et al.,
2018; Dasigi et al., 2021), multi-document QA (Yang et al., 2018; Ho et al., 2020; Trivedi et al.,
2022), summarization (Huang et al., 2021; Zhong et al., 2021; Fabbri et al., 2019), few-shot learn-
ing (Joshi et al., 2017; Gliwa et al., 2019; Li & Roth, 2002), synthetic tasks (Bai et al., 2023), and
code generation (Guo et al., 2023; Liu et al., 2023). The overall average token length across all 16
datasets is 6,711. These datasets encompass a wide range of input sequence lengths, with average
token counts ranging from 1,235 to 18,409. This variation places significant demands on KV cache
memory, making them ideal for assessing KV cache eviction methods under various memory bud-
gets b ∈ {128, 256, 512, 1024}. For each dataset, we apply the LongBench-recommended metrics,
which assign a maximum quality score of 100. We then report the average scores for each task
domain. Detailed information for each dataset can be found in Appendix C.

4.2 SETTINGS

We select two advanced open-source LLMs for evaluation: Mistral-7B-Instruct-v0.3 (Mistral-7B)
(Jiang et al., 2023) and Llama-3.1-8B-Instruct (Llama-3.1-8B) (Dubey et al., 2024), which sup-
port maximum sequence lengths of 32K and 128K, respectively. We integrate our algorithm with
three SOTA cache eviction methods—SnapKV (Li et al., 2024), Pyramid (Zhang et al., 2024a), and
AdaKV (Feng et al., 2024)—and compared the generated output quality before and after integration.
These cache eviction methods are applied directly to both models, without any additional training.
All experiments are conducted on a single A800-80G GPU, and greedy decoding is employed dur-
ing generation to ensure result stability. The hyper-parameter α in Algorithm 1 was set to 0.25 for
all experiments. Other fundamental settings for SnapKV,Pyramid and AdaKV are kept as originally
defined, without any modifications when integrating with our algorithm. For instance, the kernel
size for max-pooling remained at 7, and the observation window size was set to 32.
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Table 1: Integration into SnapKV

SnapKV 6711
Full Cache

b = 128 b = 256 b = 512 b = 1024

w/o ours w/ ours w/o ours w/ ours w/o ours w/ ours w/o ours w/ ours

L
la

m
a-

3.
1-

8B

Single-Doc. QA 43.80 34.44 35.56 37.62 38.34 40.08 41.49 42.70 42.75
Multi-Doc. QA 44.08 41.36 41.80 42.36 42.79 43.16 43.51 43.92 43.87
Summarization 29.23 21.77 22.18 23.33 24.02 24.91 25.35 26.48 26.47
Few-shot 69.24 59.61 60.00 63.42 63.91 67.22 66.99 67.81 68.51
Synthetic 54.46 52.24 52.48 54.23 54.51 54.49 54.49 54.16 54.14
Code 59.66 53.57 54.22 56.38 57.20 58.42 58.75 59.08 59.45
Ave. 49.20 42.70 43.25 45.09 45.66 47.00 47.41 48.08 48.25

M
is

tr
al

-7
B

Single-Doc. QA 41.12 33.37 33.92 37.68 38.17 39.27 40.42 39.70 39.63
Multi-Doc. QA 39.13 36.72 36.66 37.50 37.34 38.21 38.36 39.21 39.40
Summarization 29.35 21.54 21.85 23.30 23.24 24.41 24.71 26.07 26.18
Few-shot 70.57 59.03 60.53 65.48 66.02 68.26 68.44 69.41 69.97
Synthetic 51.50 49.25 49.75 50.50 50.75 52.25 52.25 52.00 52.00
Code 59.98 53.70 54.35 57.68 57.39 59.30 59.54 60.10 59.93
Ave. 47.72 41.12 41.69 44.27 44.41 45.85 46.21 46.71 46.84

Table 2: Integration into Pyramid

Pyramid 6711
Full Cache

b = 128 b = 256 b = 512 b = 1024

w/o ours w/ ours w/o ours w/ ours w/o ours w/ ours w/o ours w/ ours

L
la

m
a-

3.
1-

8B

Single-Doc. QA 43.80 34.85 35.09 37.56 38.05 40.09 40.44 42.31 42.25
Multi-Doc. QA 44.08 41.36 41.36 42.33 42.53 43.10 43.37 43.83 44.18
Summarization 29.23 21.72 22.44 23.58 23.94 24.74 25.18 26.27 26.56
Few-shot 69.24 59.85 60.29 63.62 64.19 66.47 67.00 67.89 68.00
Synthetic 54.46 52.87 52.98 54.19 54.53 54.56 54.47 54.08 54.37
Code 59.66 53.06 53.79 54.33 56.11 57.02 57.50 58.80 58.85
Ave. 49.20 42.82 43.19 44.90 45.46 46.65 46.99 47.92 48.09

M
is

tr
al

-7
B

Single-Doc. QA 41.12 36.28 36.18 36.28 36.18 38.46 38.72 39.36 39.45
Multi-Doc. QA 39.13 36.78 37.15 36.78 37.15 37.90 38.11 39.03 39.31
Summarization 29.35 23.13 23.25 23.13 23.25 24.25 24.45 25.78 25.77
Few-shot 70.57 65.77 66.86 65.77 66.86 68.70 69.18 69.73 70.00
Synthetic 51.50 50.25 50.50 50.25 50.50 50.50 51.00 52.25 51.00
Code 59.98 56.08 56.72 56.08 56.72 58.07 58.59 59.34 59.66
Ave. 47.72 41.15 41.63 43.66 44.05 45.32 45.66 46.56 46.56

Table 3: Integration into AdaKV

AdaKV 6711
Full Cache

b = 128 b = 256 b = 512 b = 1024

w/o ours w/ ours w/o ours w/ ours w/o ours w/ ours w/o ours w/ ours

L
la

m
a-

3.
1-

8B

Single-Doc. QA 43.80 35.42 35.92 38.59 38.68 40.45 40.87 42.19 42.13
Multi-Doc. QA 44.08 42.02 42.05 43.11 42.67 43.80 44.21 43.55 43.91
Summarization 29.23 22.06 22.57 23.79 24.33 25.23 25.36 26.24 26.64
Few-shot 69.24 62.78 62.32 67.20 67.28 68.10 68.62 68.84 68.67
Synthetic 54.46 52.70 53.46 53.49 53.76 53.32 53.49 53.41 53.52
Code 59.66 55.44 56.29 57.38 57.86 59.30 59.55 59.47 59.50
Ave. 49.20 43.94 44.26 46.24 46.38 47.37 47.70 48.01 48.13

M
is

tr
al

-7
B

Single-Doc. QA 41.12 34.13 34.69 38.27 38.21 39.49 39.46 39.54 39.80
Multi-Doc. QA 39.13 37.34 37.63 37.74 38.08 38.77 38.66 39.20 38.88
Summarization 29.35 21.94 21.97 23.10 23.38 24.70 25.06 26.02 26.21
Few-shot 70.57 63.33 66.46 68.10 68.27 69.51 70.07 70.13 70.49
Synthetic 51.50 49.25 49.50 52.00 52.00 52.50 52.50 52.75 53.25
Code 59.98 55.86 56.11 58.62 58.70 60.07 60.15 60.03 59.92
Ave. 47.72 42.53 43.34 45.18 45.33 46.41 46.57 46.89 47.03
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Figure 1: Overview of Integrations. This demonstrates our algorithm achieves significant budget
savings with the same score, providing 21.1-34% additional savings with base budget 512.

4.3 RESULTS

Tables 1, 2, and 3 present the quality scores across various task domains when integrating our algo-
rithm into SnapKV, Pyramid, and AdaKV under different models and cache budgets b. Overall, our
algorithm consistently improves post-eviction generation quality across all eviction methods. For
instance, in Table 1, using LLaMA-3.1-8B, our algorithm significantly enhances SnapKV’s quality
scores across all 6 task domains at a budget size of 256, increasing the average score from 45.09 to
45.66. Similar improvements are observed with larger budgets, such as an increase from 47.00 to
47.41 at a budget of 512, and from 48.08 to 48.25 at a budget of 1024. Pyramid and AdaKV, built
upon SnapKV, further optimize generation quality through inter-head budget allocation. However,
due to predefined parameters, Pyramid shows diminished generalization performance on the two
new LLMs, only slightly improving upon SnapKV at a budget of 128. In contrast, AdaKV, with
its adaptive dynamic allocation strategy, maintains a quality advantage over SnapKV across both
models. Although the optimizations from these two budget allocation algorithms vary, both show
significant improvements across all budget sizes when combined with our algorithm.

Figure 1 shows the average scores across all 6 task domains. As the budget increases, generation
quality improves for all methods, albeit with diminishing marginal returns. Interestingly, under
these diminishing returns, our perturbation-constrained algorithm brings increasingly higher gains.
For instance, in Figure 1a, when our algorithm is integrated with SnapKV at a budget of 512, the
average score rises to 47.41. By interpolation, SnapKV alone would require a significantly larger
cache budget (706) to achieve a similar quality score, implying a 27.5% savings with our algorithm.
This is higher than the 23.0% savings at a budget of 256 and 18.7% at 128. Similar observations are
also observed in Pyramid (Figure 1b) and AdaKV (Figure 1c). Thus, in real-world deployment, these
significant savings in cache budgets yield substantial GPU memory savings, as well as improved
decoding efficiency.

5 EMPIRICAL ANALYSIS OF PRACTICAL OUTPUT PERTURBATION

In this section, we empirically analyze the quality improvements of our method through practical
output perturbation. Using the Qasper dataset, which consists of 200 single-document QA sam-
ples averaging 3,619 tokens, we compute the hidden states of the first decoding token on two base
LLMs. For each sample, we record the hidden states of the first decoding token during inference
and visualize the output perturbation compare to full KV cache case under different cache eviction
methods.

5.1 HEAD-WISE REDUCTION IN OUTPUT PERTURBATIONS

Figure 2 visualizes the comparison of output perturbation between cache eviction methods with
or without our algorithm across different attention heads. The results show that, in the majority
of attention heads, our algorithm consistently yields lower output perturbation, whether applied to
SnapKV or AdaKV, under both Llama-3.1-8B and Mistral-7B. For instance when integrating with
SnapKV in Figure 2a and Figure 2b, our algorithm achieves lower output perturbation in 819 heads
for Llama-3.1-8B and 748 heads for Mistral-7B out of the 1,024 attention heads. Thus, our algorithm
could reduce output perturbation across the majority of attention heads, with an average reduction
of 74.3% in four cases.
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(a) SnapKV(Llama)
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(b) SnapKV(Mistral)
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(c) AdaKV(Llama)
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(d) AdaKV(Mistral)

Figure 2: Comparison of head-wise perturbation.This compares output perturbation from cache
eviction across attention heads between our algorithm and the previous attention weights based
strategy. In four test cases, our algorithm reduces output perturbation in 74.3% of attention heads.

(a) Reduction across layers (b) Reduction across context (c) Reduction across budgets

Figure 3: Final-layer reduction in output perturbation

5.2 FINAL-LAYER REDUCTION IN OUTPUT PERTURBATIONS

Figure 3 presents the final-layer reduction in output perturbation when incorporating into SnapKV.
A more comprehensive visual analysis, including application in AdaKV, can be found in Appendix
B. As shown in Figure 3a, our algorithm gradually decreases perturbation layer by layer, with sub-
stantial reductions in the final layer. This gradual improvement is mainly due to the cumulative
advantages across layers, leading to significantly lower output perturbation. Additionally, Figure 3b
presents a detailed comparison of the final-layer output perturbation for different contexts in varying
samples, which is directly related to the post-eviction generation token. These smaller perturba-
tions in final layer output, directly leading to the generation being more aligned with the original
context (using the full KV cache), explain the enhanced post-eviction generation quality. Figure 3c
further summarizes the reduction in final perturbation across different budget sizes, demonstrating
that our algorithm consistently produces smaller output perturbation regardless of budget size. In
conclusion, our algorithm consistently reduces final-layer perturbation, underscoring its reliable su-
periority in identifying critical entries. This consistent advantage also explains its ability to enhance
post-eviction output quality as observed in earlier experiments.

6 CONCLUSION

In this paper, we pinpoint a key limitation in current cache eviction methods: the reliance on intuitive
heuristics of using attention weights to select critical cache entries for eviction. For the first time, we
formalize the problem of critical cache entry selection from the perspective of output perturbation
and provide a theoretical analysis. Furthermore, we propose a novel algorithm based on constrain-
ing output perturbation in the worst-case for critical cache selection, which is then integrated into
existing SOTA cache eviction methods. Comprehensive evaluations using 16 datasets from Long-
bench demonstrate that our algorithm improves the performance of various cache eviction methods,
across different task domains and budget constraints. Further empirical analysis also confirms and
explains this benefit from the perspective of practical output perturbation: our algorithm consistently
yields lower perturbation compared to previous methods that rely solely on attention weights, in all
testings.
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(a) Llama Budget 128
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(b) Llama Budget 256
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(c) Llama Budget 512
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(d) Llama Budget 1024
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(e) Mistral Budget 128
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(f) Mistral Budget 256
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(g) Mistral Budget 512

1 5 9 13 17 21 25 29
Head Index

1
5

9
13

17
21

25
29

La
ye

r I
nd

ex

1 5 9 13 17 21 25 29
Head Index

1
5

9
13

17
21

25
29

La
ye

r I
nd

ex

1 5 9 13 17 21 25 29
Head Index

1
5

9
13

17
21

25
29

La
ye

r I
nd

ex
1 5 9 13 17 21 25 29

Head Index

1
5

9
13

17
21

25
29

La
ye

r I
nd

ex

0.0 0.2 0.4 0.6 0.8 1.0
Accumulated Attention Weights

(h) Mistral Budget 1024

Figure 4: Accumulated attention weights.

(a) SnapKV Budget 128 (b) SnapKV Budget 256 (c) SnapKV Budget 512 (d) SnapKV Budget 1024

(e) AdaKV Budget 128 (f) AdaKV Budget 256 (g) AdaKV Budget 512 (h) AdaKV Budget 1024

Figure 5: Perturbation reduction across layers.

A RELIABILITY OF ASSUMPTION 1

We ensure the reliability of Assumption 1 by analyzing the cumulative attention weights of critical
KV Cache entries

∑n
i=1N iAi in individual heads with varying budgets. As shown in Figure 4,

for varying models and budget levels, the majority of attention heads can effectively accumulate
over 0.5 of the attention weights. The only exceptions are a few attention heads in the first layer.
This is primarily due to the low sparsity of attention weights in certain heads of the first layer, a
phenomenon that has been noted in many related studies Tang et al. (2024a); Zhang et al. (2024b;a).
This observation aligns with the fact that certain heads in the first layer violate Assumption 1, which
may lead our algorithm to increase the output perturbation of these heads as shown in Figure 2.
However, this is not a significant issue, as the benefits from other attention heads in the subsequent
layers accumulate, quickly offsetting these disadvantages.
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(a) SnapKV Budget 128 (b) SnapKV Budget 256 (c) SnapKV Budget 512 (d) SnapKV Budget 1024

(e) AdaKV Budget 128 (f) AdaKV Budget 256 (g) AdaKV Budget 512 (h) AdaKV Budget 1024

Figure 6: Perturbation reduction across contexts.

B ADDITIONAL EMPIRICAL ANALYSIS

We provide a more detailed visual analysis to support the analysis conclusions drawn in the main pa-
per. Figure 5 illustrates the process of reduced perturbation at each layer when combining AdaKV
and SnapKV with our algorithm under different budgets. Notably, our algorithm demonstrates a
more significant reduction in perturbation under low budgets, primarily due to the larger compres-
sion loss in this scenario, which creates substantial optimization space. A similar trend is also
evident in the visualization of the perturbation reduction at the final layer across different contexts,
as shown in Figure 6. Overall, it is clear that in all cases, whether consider acrossing different layers
or contexts, our algorithm significantly reduces the output perturbation after cache eviction. This
ultimately leads to lower quality loss following cache eviction and correspondingly enhances the
final generation quality.

C DETAILS OF 16 DATASETS

Table 4 provides detailed information on the 16 datasets in LongBench.

Table 4: Details of 16 Datasets

Task Task Type Eval metric Avg len Language Sample Num

NarrativeQA Single-Doc. QA F1 18,409 EN 200
Qasper Single-Doc. QA F1 3,619 EN 200
MultiFieldQA-en Single-Doc. QA F1 4,559 EN 150
HotpotQA Multi-Doc. QA F1 9,151 EN 200
2WikiMultihopQA Multi-Doc. QA F1 4,887 EN 200
MuSiQue Multi-Doc. QA F1 11,214 EN 200
GovReport Summarization Rouge-L 8,734 EN 200
QMSum Summarization Rouge-L 10,614 EN 200
MultiNews Summarization Rouge-L 2,113 EN 200
TREC Few-shot Learning Accuracy 5,177 EN 200
TriviaQA Few-shot Learning F1 8,209 EN 200
SAMSum Few-shot Learning Rouge-L 6,258 EN 200
PassageCount Synthetic Accuracy 11,141 EN 200
PassageRetrieval-en Synthetic Accuracy 9,289 EN 200
LCC Code Edit Sim 1,235 Python/C#/Java 500
RepoBench-P Code Edit Sim 4,206 Python/Java 500
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Table 5: Ablation Study of α in SnapKV Integration

SnapKV 6711
Full Cache

b = 128 b = 256 b = 512 b = 1024

ablation w/ ours ablation w/ ours ablation w/ ours ablation w/ ours
L

la
m

a-
3.

1-
8B

Single-Doc. QA 43.80 35.17 35.56 37.99 38.34 41.02 41.49 42.59 42.75
Multi-Doc. QA 44.08 40.78 41.80 43.36 42.79 43.82 43.51 44.20 43.87
Summarization 29.23 22.34 22.18 23.78 24.02 25.32 25.35 26.63 26.47
Few-shot 69.24 60.24 60.00 63.95 63.91 67.22 66.99 68.51 68.51
Synthetic 54.46 53.23 52.48 53.53 54.51 53.76 54.49 53.15 54.14
Code 59.66 53.84 54.22 57.17 57.20 58.69 58.75 59.63 59.45
Ave. 49.20 43.11 43.25 45.54 45.66 47.31 47.41 48.21 48.25

M
is

tr
al

-7
B

Single-Doc. QA 41.12 33.68 33.92 37.96 38.17 40.11 40.42 39.93 39.63
Multi-Doc. QA 39.13 36.15 36.66 37.14 37.34 38.25 38.36 39.23 39.40
Summarization 29.35 21.73 21.85 23.21 23.24 24.77 24.71 26.12 26.18
Few-shot 70.57 60.45 60.53 66.04 66.02 68.79 68.44 70.03 69.97
Synthetic 51.50 49.75 49.75 50.50 50.75 51.75 52.25 52.00 52.00
Code 59.98 54.34 54.35 57.34 57.39 59.16 59.54 59.84 59.93
Ave. 47.72 41.51 41.69 44.30 44.41 46.10 46.21 46.85 46.84

128 256 512 1024
Budget

44
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48

Av
e.

 S
co

re

SnapKV w/ ours
SnapKV w/ ours ablation
SnapKV w/o ours

(a) Llama-3.1-8B
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Budget

42

44
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e.
 S
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re

SnapKV w/ ours
SnapKV w/ ours ablation
SnapKV w/o ours

(b) Mistral-7B

Figure 7: Ablation Study of α in SnapKV Integration

D ABLATION STUDY OF STAGE 1 IN ALGORITHM 1

In our algorithm, we initially set α = 0.25 to allocate a portion of the budget for collecting high
attention weights, corresponding to Assumption 1, to ensure the validity of Theorem 3. We further
conducted ablation experiments by setting α = 0, removing this mechanism, to demonstrate the
necessity of budget splitting in guaranteeing the validity of Theorem 3. Table 5 shows the results
of ablating α. As seen, when α is set to 0, both Mistral-7B and Llama-3.1-8B exhibit a general
quality decline. This is primarily because, for some samples, the cumulative attention weights may
fall below 0.5, causing the algorithm to lose the alignment with minimizing input perturbation in the
worst-case scenario, which in turn negatively impacts performance. However, as shown in Figure
7, despite the performance drop in the ablation version, it still outperforms the original SnapKV.
This is because, even with α set to 0, the selection algorithm in most samples of datasets can still
aggregate enough attention weights to constrain the output perturbation, resulting in performance
gains. This also highlights, to some extent, the robustness of our algorithm.

E NEEDLE-IN-A-HAYSTACK TEST

Our approach is further evaluated using the widely adopted synthetic data benchmark, Needle-in-a-
Haystack, to assess its enhancement of existing cache eviction methods in long-text retrieval tasks.
This benchmark involves embedding a crucial sentence (the “needle”) within a lengthy context (the
“haystack”), subsequently measuring the model’s ability to retrieve this specific sentence from the
document. The x-axis represents the document’s context length, while the y-axis denotes the nee-
dle’s insertion depth. The Average Score is calculated by averaging retrieval performance across
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(c) Snapkv w/ ours
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(e) Pyramid w/ ours
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(f) AdaKV
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Figure 8: Needle-in-a-Haystack Test on Llama-3.1-8B with budget 128.

different context lengths, with higher scores signifying an improved ability of the model for effec-
tive contextual retrieval.

As shown in Figure 8, we employ three cache eviction algorithms under a budget of 128, testing
with Llama-3.1-8B to reach its maximum supported length of 128K, and calculate their respective
scores. Results demonstrate a progressive increase in retrieval scores among the original cache
eviction methods, from SnapKV, Pyramid, to AdaKV showing gradual improvements in retrieval
performance. Notably, when these methods were combined with our algorithm, all experienced ac-
curacy enhancements. Interestingly, the combined scores across the three methods showed a similar
pattern of progressive retrieval improvement from SnapKV to Pyramid and then to AdaKV. This
indicates that our algorithm is compatible with a range of cache eviction methods and, when paired
with stronger cache eviction techniques, it can further amplify retrieval capabilities.
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F ANALYSIS OF PREVIOUS SOLELY ATTENTION WEIGHTS-BASED
SELECTION FROM A PERTURBATION PERSPECTIVE

Our algorithm differs from the previous solely attention weights-based selection method primarily in
Stage 2. Specifically, by modifying stage 2 of our algorithm to perform the same attention weights-
based selection operation as in stage 1, our approach will degrade into the previous method. This
modification allows us to conveniently apply perturbation-constrained theory to analyze the earlier
attention weights-based selection strategy.

Theorem 4. Previous solely attention weights-based selection is equivalent to minimizing another
upper bound θ̂relax, a relaxed form of θ̂, with remaining budget b′′ based on stage 1 selection.

θ̂relax = C ′ −M
(
2− 1

σ

)∑n

i=1
N ′′i Ai where M =MIN(‖Vi,:‖1) (18)

Proof. We relax the upper bound θ̂ by utilizing M =MIN(‖Vi,:‖1):

θ̂ = C ′ −
(
2− 1

σ

)∑n

i=1
N ′′i Ai‖Vi,:‖1 ≤ C ′ −M

(
2− 1

σ

)∑n

i=1
N ′′i Ai = θ̂relax (19)

In the solely attention weights-based selection strategy, the N ′′ selection is performed using Top−
K(Ai, b

′′) to maximize
∑n
i=1N ′′i Ai. This is therefore equivalent to minimizing the relaxed upper

bound, θ̂relax.

Theorem 4 demonstrates that the solely attention weights-based selection strategy is equivalent to
minimizing the relaxed upper bound θ̂relax. In contrast, our algorithm optimizes a tighter upper
bound, θ̂. While this does not guarantee that our approach will yield a strictly better solution, intu-
itively, an algorithm designed to optimize a tighter bound often achieves better results. Theorem 4
also provides some insight into why a critical KV Cache subset can replace the entire KV Cache in
cache eviction methods. Due to the power-law distribution of attention weights Zhang et al. (2024b),
removing most cache entries with near-zero attention weights has a negligible impact on this upper
bound. Consequently, the perturbation to the actual output is also bounded by this upper bound.

G CHOICE OF DISTANCE METRIC

In this paper, we use the L1 distance as the simplest distance metric for our analysis, while future
work could explore the use of L2 distance or other metrics. We chose L1 distance for the following
two reasons: 1. Theoretical Perspective: The L1 distance, as a straightforward metric, facilitates the
construction and derivation of our theoretical framework. 2.Practical Perspective: Considering that
BF16 (half-precision floating-point) is commonly used in inference computations, the L1 distance
operations derived from our algorithm provide better numerical precision. In contrast, metrics such
as L2 distance may introduce numerical precision issues due to the squaring and square-rooting
operations inherent in their computation. Fundamentally, the choice of distance metric is orthogonal
to our primary contributions. Future works can further investigate the impact of different distance
metrics.

H COMPARISION TO STREAMING LLM

We include the results of StreamingLLM, an early non-selective cache eviction method, for compar-
ative analysis. This method retains only several initial cache entries along with the most recent ones
within a sliding window. Detailed results for StreamingLLM (SLM) on the LongBench benchmark
are presented in Table 6, evaluated across various LLM configurations and cache budget settings.
The non-selective cache eviction strategy employed by StreamingLLM leads to considerable infor-
mation loss, resulting in significantly lower post-eviction quality compared to selection-based cache
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Table 6: Comparison between StreamingLLM and Selection-Based Cache Eviction (e.g., SnapKV
w/ Ours)

SnapKV 6711
Full Cache

b = 128 b = 256 b = 512 b = 1024

SLM Ours SLM Ours SLM Ours SLM Ours
L

la
m

a-
3.

1-
8B

Single-Doc. QA 43.80 24.94 35.56 26.10 38.34 28.67 41.49 30.48 42.75
Multi-Doc. QA 44.08 35.37 41.80 35.18 42.79 35.22 43.51 36.66 43.87
Summarization 29.23 19.43 22.18 20.82 24.02 22.90 25.35 24.37 26.47
Few-shot 69.24 54.58 60.00 57.98 63.91 62.53 66.99 64.94 68.51
Synthetic 54.46 53.75 52.48 53.35 54.51 51.99 54.49 48.24 54.14
Code 59.66 52.16 54.22 54.54 57.20 56.17 58.75 57.62 59.45
Ave. 49.20 38.42 43.25 39.75 45.66 41.52 47.41 42.56 48.25

M
is

tr
al

-7
B

Single-Doc. QA 41.12 23.51 33.92 25.25 38.17 26.51 40.42 27.89 39.63
Multi-Doc. QA 39.13 29.66 36.66 29.82 37.34 30.60 38.36 31.50 39.40
Summarization 29.35 18.21 21.85 19.43 23.24 21.01 24.71 23.79 26.18
Few-shot 70.57 57.12 60.53 61.14 66.02 65.34 68.44 67.56 69.97
Synthetic 51.50 42.00 49.75 42.25 50.75 43.25 52.25 43.75 52.00
Code 59.98 51.04 54.35 54.46 57.39 56.11 59.54 58.28 59.93
Ave. 47.72 35.72 41.69 37.52 44.41 39.47 46.21 41.02 46.84

eviction methods. For instance, consider SnapKV w/ ours on Llama3.1-8B as a representative exam-
ple of selection-based cache eviction approaches. The quality scores of StreamingLLM under cache
budgets ranging from 128 to 1024 are 38.42, 39.75, 41.52, and 42.56, respectively. In contrast, the
selection-based cache eviction methods achieve significantly higher scores of 43.25, 45.66, 47.41,
and 48.25 under the same budget configurations.

I THE RELATIONSHIP BETWEEN THE ATTENTION OUTPUT PERTURBATION
AND THE GENERATION QUALITY

In LLM computations, the attention output serves as an input to the FeedForward Neural Network
(FFN) module, producing outputs that are subsequently passed to the Language Model (LM) head to
generate the token vocabulary distribution. Our algorithm specifically aims to reduce perturbations
in attention outputs caused by cache eviction methods. This reduction lowers the perturbations in
the inputs to downstream network components (FFN and LM head), thereby mitigating perturbations
in the final token vocabulary distribution. Consequently, our method reduces the impact of cache
eviction on output token generation, which is critical to maintaining high-quality generation results.

This conclusion is also supported both theoretically and empirically. Theoretically, the relationship
between reduced input perturbations and diminished output variations is well-established, as seen
in Lipschitz continuity Xu & Zhang (2024); Khromov & Singh (2024), which posits that functions
with bounded Lipschitz constants exhibit smaller output differences for smaller input differences.
This principle is consistent with our approach to minimizing attention output perturbations, thereby
ensuring subsequent generated tokens. Similarly, FFN pruning techniques in LLMs Dong et al.
(2024); Sun et al. (2024b) also demonstrate the practical success of minimizing perturbations to
downstream layers’ outputs, further validating our strategy.

J ADDITIONAL RELATED WORKS AND FUTURE DIRECTIONS

Sparse attention methods Jiang et al. (2024); Tang et al. (2024b); Lv et al. (2024) are conceptually
related to the KV cache eviction methods discussed in this paper. While KV cache eviction retains
only a small subset of essential KV cache entries, sparse attention methods maintain all entries dur-
ing inference. However, during computation, only the most critical entries are selectively utilized in
the sparse attention mechanism. Consequently, sparse attention methods do not reduce the memory
footprint of the KV cache but enhance inference speed and often offer better output quality than
cache eviction methods Tang et al. (2024b). Existing sparse attention methods typically rely on ap-
proximate estimations of attention weights to identify critical entries Tang et al. (2024b); Lv et al.
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Table 7: AlpacaEval Benchmark (Llama-3.1-8B)

Method Alpaca Eval 2.0

Win Rate LC Win Rate

Evaluator=DeepSeek-Chat
Full KV Cache 19.84 16.71
SnapKV w/o ours 13.63 11.10
SnapKV w/ ours 14.46 12.05

Evaluator=Yi-Large
Full KV Cache 25.72 24.34
SnapKV w/o ours 19.61 18.76
SnapKV w/ ours 21.20 19.79

Table 8: LongBench Evaluation on Qwen2.5-32B-Instruct (SnapKV)

SnapKV 6711
Full Cache

b = 128 b = 256 b = 512 b = 1024

w/o ours w/ ours w/o ours w/ ours w/o ours w/ ours w/o ours w/ ours

Q
w

en
2.

5-
32

B Single-Doc. QA 42.23 32.34 32.87 37.68 37.38 39.50 40.23 41.30 41.63
Multi-Doc. QA 54.47 48.14 48.29 52.02 52.06 53.28 53.68 53.83 54.53
Summarization 25.45 18.62 19.21 20.48 20.86 22.31 22.60 23.48 23.56
Few-shot 66.48 51.02 52.25 59.11 59.95 64.21 64.58 66.10 65.92
Synthetic 55.25 53.17 54.34 54.21 53.97 54.62 54.75 54.53 54.75
Code 40.39 36.51 37.06 38.31 38.57 39.44 39.32 39.47 39.36
Ave. 47.32 39.36 40.04 43.31 43.49 45.38 45.71 46.38 46.57

(2024). Future works could explore integrating our proposed perturbation-constrained selection al-
gorithm to refine these methods by achieving more accurate critical cache entry identification.

Some adaptive methods in KV cache eviction or sparse attention, such as Ge et al. (2024b); Jiang
et al. (2024), employ varying critical cache selection strategies tailored to the characteristics of dif-
ferent attention heads. For example, some heads use attention weights based selection, while others
utilize fixed patterns, such as recent window-based or special token-based approaches. Our method
can also be applied to enhance performance in the head which according to attention weights-based
selection strategies, providing a boost to adaptive methods.

Perturbation-based analysis has achieved remarkable success in the field of neural network inter-
pretability. For instance, Catformer Davis et al. (2021) leverages output perturbation analysis to
design more stable network architectures, while Admin Liu et al. (2020) examines the amplification
of output perturbations in residual blocks to propose improved training schemes. In this paper, we
analyze the output perturbations caused by cache eviction within the attention mechanism, leading
to the design of more effective critical cache selection metrics. From the perspective of perturbation
analysis, different works focus on the perturbation in various locations, such as residual connections
and attention mechanisms. Future research could combine these perturbation analysis strategies to
examine network perturbations in greater detail, guiding the design of more robust network archi-
tectures, training methodologies, and inference schemes.

K EVALUATION ON ALPACAEVAL BENCHMARK

To evaluate our algorithm on a wider spectrum of scenario, we further test the performance of
SnapKV and SnapKV with ours using Llama-3.1-8B in AlpacaEval Li et al. (2023); Dubois et al.
(2024), an automatic evaluation framework designed to assess the performance of instruction-
following. For automatic annotations, we employed Deepseek-chat Bi et al. (2024) and Yi-Large 1

as Auto-annotators. Regarding compression settings, we analyze AlpacaEval and found that the
average input length is 36.5 tokens, while the average generated length is 567 tokens. Thus, we con-
duct compression experiments by compressing the cache size to 64 tokens when the context length

1https://platform.lingyiwanwu.com/
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exceeded 256 tokens—approximately half of the average generated length. As shown in Table 7, our
enhanced version of SnapKV significantly outperforms the original version. For instance, using Yi-
Large as the Auto-annotator, our method improves the scores for Win Rate and LC Win Rate from
19.61 and 18.76 to 21.20 and 19.79, respectively. This demonstrates the versatility and applicability
of our algorithm across a broader range of scenarios.

L RESULTS ON LARGER-SCALE LLMS

We conduct further experiments on larger-scale LLMs, specifically Qwen2.5-32B-Instruct Team
(2024), as shown in Table 8. SnapKV was evaluated both with and without our proposed algorithm
under various budget constraints, with our method consistently delivering improved quality scores
across different budget settings.
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