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Abstract

Despite major advances in surgical brain-to-text
(B2T), i.e. transcribing speech from invasive brain
recordings, non-invasive alternatives have yet to
surpass even chance on standard metrics. This
remains a barrier to building a non-invasive brain-
computer interface (BCI) capable of restoring
communication in paralysed individuals without
surgery. Here, we present the first non-invasive
B2T result that significantly exceeds these critical
baselines, raising BLEU 1.4−2.6× over prior
work. This result is driven by three contributions:
(1) we extend recent word-classification models
with LLM-based rescoring, transforming single-
word predictors into closed-vocabulary B2T sys-
tems; (2) we introduce a predictive in-filling ap-
proach to handle out-of-vocabulary (OOV) words,
substantially expanding the effective vocabulary;
and (3) we demonstrate, for the first time, how
to scale non-invasive B2T models across datasets,
unlocking deep learning at scale and improving
accuracy 2.1−2.3×. Through these contribu-
tions, we offer new insights into the roles of data
quality and vocabulary size. Together, our results
remove a major obstacle to realising practical non-
invasive B2T systems.

1. Introduction
Transcribing natural language text directly from speech-
related neural signals, known as brain-to-text decoding, re-
mains one of neuroscience’s most challenging and clini-
cally significant frontiers. Recent breakthroughs showing
remarkable accuracy, e.g. Moses et al. (2021); Metzger et al.
(2023); Willett et al. (2023); Card et al. (2024); Littlejohn
et al. (2025), use surgical methods to measure brain activity,
implanting electrodes on the surface of, or even inside, the
brain. These neurosurgical interventions come with signifi-
cant inherent risks, including brain infection, haemorrhages,
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Figure 1: Our approach outperforms all non-invasive
B2T methods. Ranks are calculated from absolute improve-
ment over associated random baselines.

and cognitive side effects, limiting adoption outside of re-
search trials. Instead, safe non-invasive imaging methods,
such as M/EEG, which measure neural activity with sen-
sors on or around the head, could unlock widespread use.
These methods trade surgical risk for lower signal quality
as skull and tissue conductivity as well as sensor distance
introduce attenuation of the underlying neural signals (Ball
et al., 2009). Despite advances in some classification tasks
(Jayalath et al., 2025; Défossez et al., 2023; d’Ascoli et al.,
2024), full B2T reconstruction from non-invasive electro-
physiological signals has remained elusive, in spite of nu-
merous attempts (Wang & Ji, 2022; Duan et al., 2023; Yang
et al., 2024b;c;a), with no method convincingly surpassing
chance across a set of standard metrics (Jo et al., 2024).

We present the first non-invasive B2T method to surpass
every critical chance baseline across standard metrics (p ≪
.001), comprehensively exceeding all prior work (Figure 1)
and improving over previous BLEU scores by up to 2.6×.

In reaching this milestone, we address some fundamental
challenges. Firstly, we extend individual word prediction
(d’Ascoli et al., 2024) to contextual sequence decoding,
rescoring word predictions according to their surrounding
context using a large language model. This enables word
predictors to become viable B2T decoders, overcoming
the low performance of prior sequence-to-sequence speech
decoding strategies (Yang et al., 2024b;c;a). Secondly, word
predictors are bound to small closed vocabularies that are
hard to scale up, limiting B2T performance. Hence, we
propose an in-filling strategy to detect and predict out-of-
vocabulary words, enabling open vocabulary transcription
from closed-vocabulary decoders.
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Although these techniques unlock non-invasive B2T, im-
proving results further requires addressing a data bottleneck.
Existing methods can not scale up data because individual
speech datasets are small. Moreover, due to drastic differ-
ences across datasets, such as hardware, subject anatomy,
and cognitive variation, they struggle to combine datasets to
achieve meaningful performance improvements in complex
tasks (e.g. (Jayalath et al., 2025; Gideoni et al., 2024; Ridge
& Parker Jones, 2024; Zhang et al., 2023; Jiang et al., 2024;
Wang et al., 2024)). We resolve this fundamental bottleneck
by defining standalone dataset performance as a measure
of quality. By observing that high quality datasets combine
well with other datasets, we selectively pool data to more
than double word classification accuracy.

In summary, our work makes three main contributions: (1)
we advance non-invasive decoding from single-word pre-
diction to full B2T through contextual LLM rescoring; (2)
we transform closed-vocabulary B2T into open-vocabulary
decoding with a predictive in-filling strategy; and (3) we
enable scaling through our selective dataset pooling frame-
work, improving word classification accuracy by up to
2.3×. These advances bring about the first system that
surpasses the prerequisite chance baselines for establishing
non-invasive B2T and dominates prior work. Additionally,
our ablation studies rigorously validate each component of
our approach against controls that invalidated prior methods,
establishing a new standard for validating B2T systems. By
demonstrating that non-invasive methods achieve meaning-
ful results, our work challenges the assumption that speech
decoding requires surgical imaging, unlocking the path for
advances in the years to come.

2. Related Work
Speech decoding BCIs have progressed along divergent
paths: surgical approaches with impressive performance
but limited applicability, and non-invasive methods that are
safe but must contend with lower signal to noise ratios.
This tension between efficacy and accessibility defines the
current landscape. In this section, we contextualise our
non-invasive work within this rapidly evolving field.

Over the past few years, several breakthroughs have been
made in surgical speech BCIs. In 2021, Moses et al. (2021)
developed a B2T neuroprosthesis for a paralysed patient
with a 50-word vocabulary. Two years later, Willett et al.
(2023) showed similar performance but with a 125,000-word
vocabulary. The main innovations of these papers were the
recording of high-resolution brain signals and the use of
deep neural networks. Following these milestones, subse-
quent papers have introduced rapid calibration to reduce
degradation due to non-stationarities (Card et al., 2024) and
real-time voice synthesis (Littlejohn et al., 2025). While
these developments are remarkable, surgical approaches

carry significant risk of complications and are consequently
limited in use outside of controlled clinical trials.

Non-invasive approaches are safe but progress has been lim-
ited by noisier signal quality, constraining the most promis-
ing work to simpler tasks than B2T. Défossez et al. (2023)
developed a contrastive learning method that matches pairs
of audio and MEG data from speech perception. A preprint
by d’Ascoli et al. (2024) extended this method to pairs of
word embeddings and MEG data for word classification.
While impressive, neither facilitate sequence-level brain-
to-text as they either require paired audio (Défossez et al.,
2023) or are bound to small vocabularies and limited by
greedy word prediction (d’Ascoli et al., 2024).

Despite the difficulty, there have been attempts at non-
invasive B2T. With fMRI, Tang et al. (2023) achieved signif-
icant results across three participants in speech perception.
However, they are not able to decode at word-level granular-
ity as the temporal resolution in fMRI is too low to resolve
words, limiting it to a semantic paraphrasing method. With
EEG, Wang & Ji (2022) and Duan et al. (2023) explored
open-vocabulary B2T from participants reading text. Subse-
quent analysis by Jo et al. (2024) revealed that performance
metrics in these studies were influenced by teacher-forcing
during evaluation, and when addressed, performance was
comparable to a baseline with random noise inputs. A series
of recent MEG-based B2T preprints (Yang et al., 2024b;c;a)
represent promising directions, though current evaluations
lack noise baselines and have not yet surpassed random
word selection. Finally, a neighbouring subfield has at-
tempted non-invasive character decoding from brain or mus-
cular activity due to typing or handwriting (Sivakumar et al.,
2024; Lévy et al., 2025). While important, these are not B2T
in the typical sense as they do not decode speech percep-
tion, but rather neural activity related to muscle movements.
Thus, they require participants to move, making them infea-
sible for paralysed patients.

The apparent challenge of attaining significant results in
non-invasive decoding is largely due to a data bottleneck.
Datasets are typically very small, often just several hours,
and collected across a few subjects. Thus, reaching deep
learning scale necessitates combining datasets, which has
yet to be convincingly achieved except for a few cases.
These exceptions include brain foundation models (Zhang
et al., 2023; Jiang et al., 2024; Wang et al., 2024; Yang et al.,
2023; Kostas et al., 2021; Ye et al., 2023; Yi et al., 2023),
particularly Jayalath et al. (2025) in speech decoding, as
well as other approaches like Gideoni et al. (2024) using
pooling in source space, and Ridge & Parker Jones (2024)
through adversarial harmonisation. All of these methods
show small improvements on simple tasks like classifying
speech presence. In more sophisticated tasks, e.g. brain
and audio segment matching (Défossez et al., 2023) or word
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classification (d’Ascoli et al., 2024), no method has been
able to improve performance by combining datasets.

To the best of our knowledge, ours is the first electrophysio-
logical non-invasive B2T approach to: (a) decode sequences
beyond chance and other baselines across a range of metrics
and (b) show substantial improvements with dataset pooling.
In the following section, we describe this B2T method.

3. Method
Our goal is to take continuous neural data and transcribe
continuous text. This requires mapping a recording of brain
activity X ∈ Rs×T , where s is the number of sensors and
T is the number of time points in the signal, to a target text
Y ∈ VN where V is the vocabulary of the English language
and N is the number of words constituting the stimulus text.
Figure 2 provides an overview of our method which we
describe in detail in the rest of this section.

3.1. Decoding Words

We begin by pooling brain recordings from multiple datasets.
Then, we segment each brain recording into segments xi ∈
Rs×t of length t time points, where each segment starts at
the onset of a word. We call this aligning the data. These
segments then pass through a signal encoder.

The first stage of the signal encoder resolves differences
between segments originating from different datasets and
subjects. A spatial attention module (Défossez et al., 2023)
projects data from different datasets with various sensor
dimension s into a consistent latent dimension dpool. Then,
we apply a subject-specific linear layer to the latent embed-
ding, maintaining its dimensions. The rest of the signal
encoder is a series of dilated convolutions following the
structure of standard brain signal encoders (Jayalath et al.,
2025; Défossez et al., 2023; d’Ascoli et al., 2024). These
convolutional layers learn a global representation of the
neural data, transforming the latent spatial dimension from
dpool to dsignal. Finally, to get a time-invariant representa-
tion, we mean-pool over the temporal dimension t.

After the signal encoder, we follow d’Ascoli et al. (2024)
in explicitly using a transformer to learn contextual rela-
tionships between word-aligned neural activity segments.
The transformer encoder (Vaswani et al., 2017) learns to
process a sequence of n consecutive latent embeddings and
outputs n contextual embeddings. We use a contrastive loss
(D-SigLIP (d’Ascoli et al., 2024)) to learn to match the out-
puts of the transformer to target word embeddings extracted
from the middle layer of a T5 large language model (Raffel
et al., 2020). We pre-compute the target embeddings from a
vocabulary VM made up of the top M most frequent words
in the text of the dataset, which we call a retrieval set. We
map the predicted embedding to a distribution of cosine

similarities by measuring its distance to each of the target
embeddings in the retrieval set. The model decodes words
by predicting the word associated with the target embedding
that maximises the cosine similarity to the prediction.

3.2. Advancing From Words to Sequences

So far, we have shown how to predict a limited vocabulary
from brain data. In this section, we propose a method for
open-vocabulary B2T from closed word prediction.

Our model predicts n cosine similarity distributions simul-
taneously for a sequence of n neural data segments. We
transform each cosine similarity distribution output by our
model into a probability distribution Pmodel(wi|x) using
softmax. If we model each time step independently, the
probability of a complete word sequence w1:n given all
neural data segments x is the product of individual word
probabilities, leading to the best sequence being given by

ŵ1:n = arg max
w1:n∈Vn

M

n∏
i=1

Pmodel(wi | x), (1)

where VM is the retrieval set vocabulary. This method is
commonly known as greedy decoding.

Greedy decoding does not take into account the likelihood
of sequences appearing in natural English text. Therefore,
we introduce a pre-trained large language model to rescore
the sequences based on how representative they are of natu-
ral language using the probability the LLM assigns to the
sequence. We rescore as part of a beam search where the
score of a candidate beam at step i is

score(w1:i|x,w1:i−1) = score(w1:i−1|x,w1:i−2) (2)
+ logPmodel(wi | x) (3)
+ λ logPrescorer(w1:i) (4)

and the final predicted sequence is chosen as

ŵ1:n = arg max
w1:n∈B

[score(w1:n|x,w1:n−1)] , (5)

where B is the set of beam candidates, λ is a weight bal-
ancing the encoding model and LLM contributions, and
Prescorer(w1:n) denotes the probability of the word sequence
under the LLM. In our experiments, Prescorer comes from
Llama 3.2-1B (Meta). Related methods (Willett et al., 2023)
have used phoneme-level language models to rescore pre-
dictions with a Viterbi search (Viterbi, 1967), an exact and
optimal decoding algorithm. The computational cost of
LLMs and word-level decoding over long sequences makes
this computationally infeasible, so we use beam search as
an approximate alternative.

Word-level decoding is limited by closed vocabularies.
While increasing the vocabulary permits decoding more
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Figure 2: Brain-to-text decoding method. We pool data from multiple heterogeneous datasets (e.g. A and B) and align
brain data segments to word onsets. Then, the segments are encoded by a signal encoder, handling dataset differences. A
transformer learns the relationships between the encoded latents, embedding them with context. Its outputs are predictions
of target word embeddings from a large language model. We map these predictions into logit distributions over the
target vocabulary and a beam search with contextual rescoring constructs the highest probability sentence. If we detect
out-of-vocabulary words in the stimulus, an in-filling model inserts words into these positions.

words, larger vocabularies reduce decoding performance
(Appendix E). We propose taking advantage of performant
vocabularies while compensating for out-of-vocabulary
(OOV) words by detecting and in-filling them.

To detect OOV words, we hypothesise that the model will
be less confident when presented with neural responses
to words it has not seen. As the encoder’s output prob-
ability distribution over words pi ∈ R|VM | describes the
model’s confidence, we extract feature vectors from the
trained encoder fi = [pi, ϕ(pi)], where ϕ(pi) is a set of dis-
tribution statistics, e.g. entropy. We fit a classifier to these
features and estimate the probability a position is OOV, i.e.
P (wi /∈ VM |fi). This classifier selects positions to in-fill
during inference. We provide further details in Appendix H.
Next, we describe several possible in-filling strategies.

During beam decoding, we incrementally construct candi-
date word sequences w1:i. At each decoding step i, the
model proposes the top K next-word candidates from its
retrieval set vocabulary VM . For each beam hypothesis, if a
proposed word wi /∈ VM , it is replaced in-place by an LLM
completion conditioned on the current hypothesis.

Each beam is updated with the next word wi chosen as{
argmaxwi∈VM

score(w1:i|x,w1:i−1), if wi ∈ VM

argmaxwi∈Vfiller Pfiller(wi | w1:i−1), if wi /∈ VM

(6)

where Pfiller is the LLM completion probability. Here, the
full beam search proceeds with these substituted hypotheses
and we select the best hypothesis from the beam set as before
(Equation 5). Note that Pfiller(wi | w1:i−1) is not trivial to
calculate from a typical LLM as they operate at the token

level rather than the word level. To get word probabilities
from token-level probabilities, we use a further token-level
beam search over the LLM predictions, where the beam
hypothesis is a word hypothesis. While the LLM used for
in-filling could be different to the one used for rescoring,
the weights are shared in our experiments.

In-filling during the beam search has two limitations. First,
it requires another beam search to resolve token-level prob-
ability distributions into word hypotheses. Second, it uses
only knowledge of prior words in the sequence and not
future words. In response, we design an in-context LLM
method that in-fills missing positions only after generating
the entire best beam sequence. In this method, we perform
the full beam search as in Equation 5 while inserting <UNK>
in the positions of out-of-vocabulary words. We then prompt
an LLM with the best beam sequence

W = {w0, w1, . . . , wn} where wi ∈ VM∪{<UNK>}, (7)

and instructions to fill in the missing positions and output
the complete sequence. As the context now features all
the known words in the sequence, in-filling makes use of
both prior and future context. While this could equally be
possible with a bidirectional LLM (e.g. BERT (Devlin et al.,
2019)), doing this in-context allows direct in-filling of words
rather than indirectly via tokens.

This method, too, has limitations. While in-filling during
beam search does not use information from later in the can-
didate sequence, in-context in-filling does not rescore while
taking into account words that could fill missing positions.
These limitations can be addressed by both rescoring and
in-filling at the same time. To do this, we prompt an LLM as
before, but instead of beam rescoring first, we let the LLM
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choose from the five highest probability words. Thus, rather
than a beam sequence, our prompt contains a sequence of
quintuples of words and their probabilities

P = {p0, p1, . . . , pn} where pi ∈ C5 ∪ {<UNK>} (8)
C5 = {(wi1, ρi1), . . .) | wij ∈ V, ρij ∈ [0, 1]}. (9)

Here, pi is a quintuple consisting of pairs of words wij and
their probabilities ρij . The LLM selects the best word for
known positions based on its notion of sentence coherency,
and fills in the missing word for unknown positions, those
marked with <UNK>, outputting a complete sequence.

4. Experiments
Datasets Our main dataset is LibriBrain (Landau et al.,
2025; Özdogan et al., 2025), a 50-hour MEG dataset col-
lected from a subject listening to audiobooks. We also use
three auxiliary datasets for pooling and other experiments:
Armeni et al. (2022), containing MEG recordings of 3 sub-
jects listening to 10 hours each of stories, Gwilliams et al.
(2023) with MEG from 27 subjects, each listening to 4 short
stories, and Broderick et al. (2018), providing EEG from 19
subjects, each listening to 20 short speech segments.

Methods Greedy describes taking the highest probability
words (Equation 1), beam refers to LLM rescoring (Equa-
tion 5), +fill indicates in-filling words while rescoring (Equa-
tion 6), +IC fill denotes in-filling words in-context after
rescoring (Equation 7), and IC transcribe is both in-context
rescoring and in-filling (Equation 8). We provide two ran-
dom baselines (Appendix I). When specifying OOV-D, our
OOV detector selects in-filling positions.

Evaluation We quote six brain-to-text metrics covering
a broad range of sentence decoding facets. Word error rate
(WER) and character error rate (CER) are coarse- and fine-
grained measures of exact match decoding accuracy. As
prior B2T work measure n-gram overlap, we also quote
BLEU-1 (Papineni et al., 2002), ROUGE-1F (Lin, 2004),
and METEOR (Banerjee & Lavie, 2005) as these are stan-
dard (Tang et al., 2023; Jo et al., 2024; Yang et al., 2024a).
Finally, we quote BERTScore (Zhang et al., 2020) as a
measure of semantic similarity. When we do not decode
sequences, we provide top-10 balanced word classification
accuracy. This is a macro average equivalent to calculating
the accuracy for each word in the vocabulary and taking the
mean of these accuracies. In tables, we bold the best result
and underline the second-best result in a column. Empty
cells indicate metrics not reported in the original paper. We
always quote the mean and standard error.

4.1. Realising Non-Invasive Brain-To-Text

On raw brain-to-text performance, we outperform all of the
previously best reported non-invasive methods (Table 1).

These results establish a new state-of-the-art in non-invasive
speech decoding across a range of metrics. We provide
annotated decoding examples and more in Appendix M.

As prior work uses different experimental protocols, the
table also provides the difference between the best method
and any quoted null or random baseline (delta to random).
Here, our approach shows a substantially stronger improve-
ment than any previous work. When compared to prior
work in EEG (Wang & Ji, 2022; Duan et al., 2023), we
achieve significantly better results across all metrics. This is
unsurprising as the EEG-to-text methods are no better than
chance (Jo et al., 2024). Compared to the state-of-the-art
fMRI method (Tang et al., 2023), ours equals or outperforms
it across nearly all metrics.

While there are no established works in B2T from MEG,
there are a series of recent preprints (Yang et al., 2024b;c;a)
which our methods also convincingly outperform (Table 2).
While NeuSpeech (Yang et al., 2024b) shows promising
character error rates, it does not surpass chance in BLEU
or ROUGE. MAD (Yang et al., 2024c) is similar, but with
worse character errors. NeuGPT (Yang et al., 2024a) is
better on n-gram overlap metrics, but has a character error
rate worse than random. Moreover, all of these methods
show BERTScores only on par with their random selection
baselines. Thus, none of these approaches convincingly sur-
pass chance across all metrics. Our methods show superior
performance across the board.

An ablation over our approach (Table 3) shows that it is
highly significant, surpassing random selection and noise
baselines across all metrics unlike prior attempts at B2T.
We are careful to provide noise baselines as they verify
that our model does not overfit to the target story and that
the results are attributable to decoding brain data. Jo et al.
(2024) showed that this is a critical failing of prior work.
With MEG, we note that our beam method significantly
improves n-gram metrics. Beam+fill improves almost every-
thing. Beam+IC fill performs similarly and is excellent for
semantics which we conjecture is because it has the entire
sequence as context. Our method performs well even with-
out known OOV positions. With 88% AUROC, the detector
reliably distinguishes neural responses to in-vocabulary and
OOV words. IC transcribe is also effective, though does not
outperform true rescoring.

4.2. Overcoming the Data Bottleneck

On word classification, we show that selective pooling of
datasets improves performance by more than double (Figure
3). This also improves WER on B2T (pooled in Table 2).

Speech decoding suffers from a data bottleneck as datasets
are typically small and collected from few subjects. This
bottleneck exists even for the largest MEG speech datasets
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Table 1: Our method improves non-invasive B2T over established alternatives. We quote the mean over the three
subjects of Tang et al. (2023) and the best results for Wang & Ji (2022) from a replication study without teacher-forcing (Jo
et al., 2024). Delta to random shows the difference between a method and its associated random baseline.

Method WER ↓ CER ↓ BLEU ↑ ROUGE ↑ METEOR ↑ BERT ↑
Tang et al. (2023) 0.93 .24 .17 .81
EEG-to-text (Wang & Ji, 2022; Duan et al., 2023) 1.00 .14 .12
Ours (best) 0.88 0.68 .25 .26 .15 .81

Greedy 0.88 0.80 .21 .21 .12 .72
Beam+fill 0.91 0.68 .25 .26 .15 .80
Beam+IC fill 0.90 0.71 .24 .24 .15 .81

Delta to random
Tang et al. (2023) −.03 +.05 +.04 +.02
EEG-to-text (Wang & Ji, 2022; Duan et al., 2023) +.00 +.00 +.00
Ours (best) −.12 −.19 +.18 +.18 +.09 +.04

Table 2: Our method surpasses all prior MEG brain-to-text approaches. As no code is available to reproduce NeuGPT
(Yang et al., 2024a), we validate and test with the same data and splits and quote their results in this table, including their
baselines (Yang et al., 2024b;c). We also provide two random selection baselines, one from Yang et al. (2024a) and our own.
Pooled indicates the model was additionally trained jointly with LibriBrain and Armeni.

Method WER ↓ CER ↓ BLEU ↑ ROUGE ↑ METEOR ↑ BERT ↑
Random (Yang et al., 2024a) .87 .06 .07 .84
Random (ours) 1.00±.0003 .91±.004 .04±.001 .04±.002 .04±.001 .77±.0003

NeuSpeech (Yang et al., 2024b) .77 .05 .08 .84
MAD (Yang et al., 2024c) .90 .07 .07 .83
NeuGPT (Yang et al., 2024a) 1.0 .13 .13 .84

Ours
Beam+fill 0.97±.001 .71±.001 .18±.003 .19±.003 .12±.001 .79±.001

Beam+IC fill 0.98±.001 .78±.003 .18±.003 .18±.003 .12±.002 .80±.001

Ours (pooled)
Beam+fill 0.95±.001 .72±.004 .18±.003 .19±.003 .11±.002 .78±.003

Beam+IC fill 0.95±.003 .82±0.009 .17±0.004 .17±0.005 .11±0.002 .80±0.001

(Appendix C). Continued improvements from scaling indi-
cate that more data could increase performance further.

One way to increase data is to combine datasets. This turns
out not to be trivial. Since neural data come from heteroge-
neous sources with different numbers of sensors, we trans-
form samples of various sensor dimensions to a consistent la-
tent spatial dimension. We use a spatial attention (Défossez
et al., 2023) which projects samples using attention scores
derived from the (x, y) coordinates of each sensor. We
note that there are many other plausible ways of doing this
without using spatial information that perform equally well
(Appendix A), mainly attributing improvements to selective
pooling rather than any harmonisation method. We leave
handling other sources of heterogeneity between datasets,
such as anatomical, cognitive, and other hardware differ-
ences to the neural network.

While prior work has not seen significant improvements
with pooled data in supervised decoding, we show for the
first time that this is possible. Figure 3A demonstrates that
training with higher quality data, as measured by standalone
performance, improves accuracy on lower quality datasets.
In fact, the standalone performance of a dataset correlates
strongly and significantly with the average improvement
from jointly training with it (r = .95, p = .048). Even
when jointly training EEG data with MEG data, as in the
case of Broderick, we see that MEG, which is higher in
quality, raises accuracy on the EEG data to statistically
significant performance. This suggests that jointly training
noisier modalities with higher quality data may improve
accuracy on these modalities.

Combining multiple higher quality datasets with a target
dataset leads to even more significant gains (Figure 3B).
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Table 3: Our method is significant against all critical random baselines. Random selection picks a word uniformly
randomly from the story vocabulary. Noise inputs indicates when random noise of the same mean and standard deviation as
true samples is input to the trained model. We use a retrieval set of 250 words and decode the LibriBrain dataset.

Method WER ↓ CER ↓ BLEU ↑ ROUGE ↑ METEOR ↑ BERT ↑
Rand. selection 1.00±.0002 .87±.001 .07±.002 .08±.002 .06±.001 .77±.0004

Noise inputs
Greedy 1.00±.0003 .87±.004 .07±.0004 .07±.001 .05±.001 .74±.0003

+rand. fill 1.00±.0003 .91±.004 .07±.0004 .08±.001 .05±.001 .77±.001

Beam 0.99±.001 .85±.003 .10±.004 .10±.004 .06±.003 .74±.001

+rand. fill 0.99±.001 .88±.003 .10±.004 .10±.004 .06±.003 .77±.001

+fill 0.98±.001 .75±.006 .15±.008 .16±.008 .09±.006 .78±.003

+IC fill 0.99±.0004 .77±.003 .16±.005 .16±.004 .10±.003 .79±.001

IC transcribe 0.99±.001 .84±.004 .13±.001 .13±.001 .08±.002 .79±.001

Real inputs
Greedy 0.90±.002 .77±.002 .19±.003 .20±.003 .12±.002 .74±.001

+rand. fill 0.90±.002 .78±.002 .19±.003 .20±.003 .13±.003 .79±.001

Beam 0.90±.001 .76±.001 .22±.002 .22±.002 .13±.002 .75±.0003

+rand. fill 0.90±.002 .77±.002 .22±.002 .22±.002 .13±.002 .79±.0002

+fill 0.91±.002 .69±.001 .25±.002 .25±.002 .15±.002 .80±.001

+fill (OOV-D) 0.91±.002 .69±.001 .24±.002 .25±.002 .15±.001 .80±.001

+IC fill 0.90±.002 .71±.002 .24±.003 .24±.003 .15±.003 .81±.001

IC transcribe 0.90±.004 .75±.004 .21±.005 .22±.005 .14±.004 .80±.001
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Figure 3: Selectively pooling data improves accuracy by 2.3×. (A) Pairing datasets in training. Numbers show accuracy
improvement on the evaluation dataset when trained additionally with the training dataset. Numbers in brackets show raw
accuracy (asterisks are statistically significant against chance). The diagonal shows no paired training, i.e. standalone.
Shading shows the change in accuracy relative to standalone. (B) Exploiting selective pooling doubles accuracy. We
combine the target data (Gwilliams and Broderick) with the best, and the best and second best, datasets by quality, i.e.
LibriBrain and Armeni, leading to dramatic improvements on the target data.

7



Unlocking Non-Invasive Brain-to-Text

10
2

10
3

10
4

0.90

0.95

1.00
WER 

10
2

10
3

10
4

0.80

1.00

CER 

10
2

10
3

10
4

0.00

0.10

0.20

BLEU 

10
2

10
3

10
4

0.00

0.10

0.20

ROUGE 

10
2

10
3

10
4

Vocabulary Size

0.05

0.10

0.15
METEOR 

10
2

10
3

10
4

0.73

0.75

0.78

0.80

BERT 

Random Greedy Beam Beam+fill Beam+IC fill IC transcribe

Figure 4: Optimal vocabulary size differs by method and metric. We train our model with increasingly large vocabularies
and observe how this effects the performance of our decoding strategies across metrics. Methods with/without in-filling tend
to converge with larger vocabularies as there are fewer words to in-fill.

Here, we again treat standalone performance as a measure
of dataset quality and the metric by which to choose whether
to pool a dataset with another. The factors that affect quality
include the modality of the data, the number of subjects, the
experimental protocol, the number of hours of recordings,
and much more. We find that standalone performance is a
useful overall proxy for quality as it takes into account all
of these facets by being learned from the data.

4.3. Scaling Vocabulary Size

Increasing the vocabulary size lowers the number of OOV
predictions but reduces the test accuracy within-vocabulary,
even on a fixed set of words that are always in-vocabulary
(Appendix E). When leveraging sentence decoding strate-
gies, this trade-off implies an optimal vocabulary size which
is small enough for high word accuracy, but large enough
that we do not need to in-fill too many words. Figure 4
reveals that the optimal vocabulary size actually differs for
different methods and evaluation metrics.

For WER, a smaller vocabulary is best, ensuring high word
accuracy. Any signal on additional words with a larger
vocabulary is offset by the general reduction in word classi-
fication accuracy. This is because WER is a hard measure
where any difference to the ground truth word counts as
an incorrect prediction. CER is softer as it operates at the
character level where similar words, in terms of characters,
will count as partially correct. Consequently, it can improve
with the signal provided by larger vocabularies. Here, for
most methods, the optimal vocabulary is 250 words.

On the remaining metrics, we see mixed effects. With
BLEU, ROUGE, and METEOR, methods are optimal with

either 50 or 250-word vocabularies, with minor differences.
Generally, larger retrieval sets lead to worse performance.
On BERT, in-filling methods are best with a 250-word vo-
cabulary. Somewhat surprisingly, greedy and beam improve
with vocabulary size. The additional signal from using a
larger vocabulary, while reducing exact matches, may in-
crease the overall number of semantically relevant words in
the prediction, leading to this improvement in BERTScore.

5. Conclusion & Future Work
We have demonstrated the first non-invasive brain-to-text
system that comprehensively outperforms all chance base-
lines critical for establishing non-invasive B2T. Moreover,
it consistently surpasses existing methods across all stan-
dard metrics, improving BLEU scores by up to 2.6×. Our
approach combines three key innovations: extending word-
level decoding to sequence decoding with language model
rescoring, transforming closed-vocabulary word-level clas-
sifiers into effectively open-vocabulary decoders with pre-
dictive in-filling, and unlocking scaling of B2T systems
through a selective dataset pooling strategy that more than
doubles word classification accuracy.

Building on these results and their limitations (Appendix
J), we identify three future research directions: (1)
cross-modal training by pooling invasive and non-invasive
recordings to improve non-invasive performance through
transfer from invasive data; (2) scaling up datasets to find
the boundaries of non-invasive B2T; and (3) improving prac-
tical B2T without requiring exact matches, e.g. by boosting
the semantics and coherence of decoded sequences.
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Impact Statement
Although currently preliminary, maturity of research on non-
invasive brain-to-text technology presents significant impli-
cations. Potential benefits include enabling communication
for individuals with paralysis and advancing brain-computer
interfaces generally. However, mature iterations of this tech-
nology raise concerns about brain data privacy, potential
misuse of neural information, and accessibility disparities
that may exacerbate existing inequalities. At present, we
limit potential misuse by decoding heard speech rather than
inner speech. As the field advances to inner speech, we
encourage researchers to engage with ethical principles and
set common ethical standards.
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Figure 5: Alignment is critical. We add a random jitter in the range [0, jitter] to the aligned input samples. We train on
LibriBrain with a vocabulary size of 250 and quote word classification accuracy.

A. Sensor Positions and Dataset Pooling
A key concern in pooling data is that of the differences in sensor geometry between scanners. For example, LibriBrain uses
306 sensors, the Armeni scanner uses 269 sensors, and the Gwilliams scanner has 208. In each dataset, the sensor geometry
is different, with sensors placed in different configurations and therefore picking up signals from different parts of the brain.
Explicitly leveraging sensor position information in the neural network to provide useful inductive biases is one way in
which datasets could be pooled more effectively.

In Table 4, we compare the spatial attention (SA) method (Défossez et al., 2023) to inserting zeroes to match spatial
dimensions between datasets (padding), dataset-conditional linear or convolutional projections to a shared dimension
(gating) (Jayalath et al., 2025), as well as spatial attention followed by gating. In all of these methods, once the data is in the
same space, we allow the neural network to resolve other data differences during training.

We note that padding and gating are not explicitly provided spatial information via sensor positions and in all cases, the
performance differences are not significant. While spatial attention can improve individual dataset performance (Défossez
et al., 2023, Table A.2), our results indicate that it does not benefit aggregated performance. This means that either spatial
differences between data can be harmonised through learning without explicit knowledge of sensor positions, or that the
networks are not yet able to make proper use of this spatial information.

Table 4: Pooled dataset performance with different pooling methods. We evaluate Gwilliams while jointly training
it alongside Armeni and LibriBrain. We conduct a t-test against the spatial attention method and find that none of the
alternatives perform differently to a statistically significant degree with five seeds. Uncertainty is standard error.

Method Top-10 Accuracy Different to SA? (p-value)

SA + Gating .127±.007 No (.62)
Gating .124±.005 No (.75)
Padding .119±.005 No (.79)
SA .122±.007 —

B. Relaxing Alignment and Decoding Without Alignment
Although aligning brain data to word onsets is possible by getting patients to space their attempted speech (e.g. Moses
et al. (2021)), decoding without alignment is useful as it permits natural speaking patterns. Here, we investigate reducing
alignment and decoding without alignment altogether.

Figure 5 shows that decoding is highly sensitive to alignment. Even a small jitter drastically reduces word classification
accuracy. Still, removing alignment by evenly distributing the input samples in a sequence leads to statistically significant
results.
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Table 5: CTC Decoding Results.

Method WER ↓ CER ↓ BLEU ↑ ROUGE ↑ METEOR ↑ BERT ↑
Rand. selection 1.00±.0002 .87±.001 .07±.002 .08±.002 .06±.001 .77±.0004

CTC-Greedy 0.99±.001 .73±.01 .07±.003 .07±.002 .05±.002 .76±001

CTC-Beam 1.00±.001 .74±.011 .08±.004 .08±.005 .06±.003 .77±.004
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Figure 6: Speech decoding is data-limited. The plot shows top-10 word classification accuracy on the test set as we scale
up the volume of data in the train set of LibriBrain and Armeni. To scale up, we randomly sample, without replacement,
increasing numbers of samples from all sessions and subjects in the training set.

However, evenly distributing inputs requires knowing the length of the target sequence. Thus, we use CTC-style merging, i.e.
duplicate merging and alignment-free prediction, when even this is not known. This gives significantly better-than-chance
CER, suggesting that this predicts meaningful acoustic signals (Table 5).

Our merging method (a variant of Graves et al. (2006)) decodes sequences from a trained model without known word onsets
or alignments. In this setup, we space all the MEG windows at a fixed interval of 0.3s which is approximately the average
time between words. We then make a set of predictions and slide all the segments until we reach the end of the sentence.
The slide interval is half the MEG window spacing to make sure that we can reasonably resolve most words.

Once we have all the predictions, we average the probabilities for positions where there are multiple predictions and apply a
1D average pooling operation on the probabilities in the time dimension with a kernel size of 5 and stride of 3. Then, we
collapse repeats in any section of consecutive repeats to a single prediction. CTC-greedy is then the argmax word predictions
while CTC-beam emerges from applying LLM rescoring to reconstruct the sentence. All CTC results use a model trained on
the LibriBrain dataset with a 250-word retrieval set.

C. Scaling Data Is Not Enough
Among MEG speech decoding datasets, there are none with more than a hundred subjects, and none with more than 50
hours of within-subject recordings. As a result, speech decoding is data-limited, which we show in Figure 6. Extrapolating
the performance on LibriBrain suggests that scaling up to 80% top-10 accuracy would require several orders of magnitude
more data. Evidently, further work needs to be done on methods that scale in addition to collecting more data.

D. Data Splits and Nonsense Correlations
We provide details on our data splits in Table 6. In designing our data splits, we were very careful to avoid nonsense
correlations (Harris, 2020) by using independent sessions collected at different times. We also took care to avoid stimulus
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leakage within-dataset as well as across datasets when jointly training. This allows us to accurately evaluate content
generalisation and ensures that all the information in the test set, including both the data and stimuli, are unseen. Taking
random splits over these datasets, as is common in machine learning, would lead to leakage of stimuli as the same stimulus
can be presented to multiple subjects. Even when stimuli are guaranteed to be non-overlapping, taking test set samples
from the same recording as train set samples risks nonsense correlations as neural data and target text can be autocorrelated
over time. For example, the semantics of two consecutive sentences in a session are likely to be very similar. Slow drift
artifacts in the data at the time of these sentences can therefore be correlated with their semantics, thus leading to a nonsense
correlation.

Table 6: Data splits. When training Armeni and LibriBrain jointly, we additionally exclude Sherlock3 session 9 and 10 from
LibriBrain in the train set as the stories (The Adventure of the Engineer’s Thumb and The Adventure of The Noble Bachelor)
overlap with the validation and test set stories in the Armeni dataset. When comparing to the prior MEG brain-to-text work
(Yang et al., 2024b;c;a), we instead validate on Gwilliams task 1 and test on Gwilliams task 0 to match the experimental
setup for the results quoted in Yang et al. (2024a). We use all available subjects for train, validation, and test.

Dataset Train Validation Test

LibriBrain (Özdogan et al., 2025) Sherlock1-6 (excl. val and test) Sherlock1 Sess. 9 Sherlock1 Sess. 10-12
Armeni (Armeni et al., 2022) Sess. 1-8 Sess. 9 Sess. 10
Gwilliams (Gwilliams et al., 2023) Task 2-3 Task 0 Task 1
Broderick (Broderick et al., 2018) All sess. (excl. val and test) Sess. 3, 9, & 19 Sess. 7, 8, & 14

In practice, we find that differences in results due to potential nonsense correlations are not statistically significant (Table
7). If there were nonsense correlations, we would expect the test set in the overlapping case to outperform the test set in
the independent case due to overfitting to nonsense correlations. Similarly, we would expect the holdout set to perform
worse than the test set in the overlapping case due to this overfitting. Here, and in Figure 7, we use the same experimental
setup. We hypothesise that high-pass filtering, standardisation of samples, and baseline correction all help to avoid more
significant nonsense correlations due to slow drift artifacts. Other sources of nonsense correlations may be insignificant in
this experimental setup.

E. Vocabulary Scaling and Coverage
In Figure 8, on the left we show the percentage of the LibriBrain story text that can be covered by vocabularies of various
sizes constructed from the N most frequent words. Notably, a 50-word retrieval set covers 48% of all words in the text and a
250-word dataset covers 68%. Scaling up to 1000 words brings this up to only 82%. On the right of the figure, we show that
scaling up the retrieval set size reduces the decoding accuracy, first across the retrieval set, and second across a fixed set of
the top 50 most frequent words, which are always in the vocabulary.

Table 7: Generalisation with data splits of overlapping vs independent sessions. We use subject 1 of the Armeni dataset
for this experiment to avoid stimuli leakage. For independent session splitting, we randomly sample from the first nine
sessions, seven sessions as the train set, and one session each as the validation and test set. For overlapping session splitting,
we randomly split (without replacement) 7

9 ths of the data in the first nine sessions as train, another 1
9 th as validation, and

the last 1
9 th as test. For both methods, we use session 10 as the holdout set to test generalisation beyond the potentially

nonsensically correlated test set. We determine the significance of the difference between the data splitting approaches using
10 seeds. Note: n.s. = not significant.

Evaluation set Overlapping Independent Significance

Test .282±.004 .282±.003 n.s. (p = .87)
Holdout .278±.002 .282±.002 n.s. (p = .21)

Significance n.s. (p = .15) n.s. (p = .77)
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Figure 7: Generalization with data splits containing overlapping vs independent sessions. Refer to Table 7 for complete
details.
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Figure 8: Scaling vocabulary size on the LibriBrain dataset. The left plot shows how much of the story a vocabulary of a
certain size will cover. The right plot shows the top-10 word classification accuracy as we scale the vocabulary. The plot
on the right supports a similar result seen by d’Ascoli et al. (2024, Figure 7) in which scaling vocabulary size decreases
accuracy.
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Figure 9: Edit distance matrix with and without <UNK> for a toy example.

F. Improving Evaluation With Missing Words
Excluding any text in place of out-of-vocabulary words can lead to artificial improvements in word error rates. This is
caused by coincidental alignments when words are intentionally excluded. The following is a toy example where we include
or exclude <UNK> at the position of an OOV word.

True sequence:
the best of the best

Prediction:
best in <UNK> town the
Required edits: 5

Prediction (no <UNK>):
best in town the
Required edits: 4

In the example, the same prediction but without an <UNK> token in place of the OOV position leads to a lower word error
rate. This is because the lack of in-filling leads to a coincidental alignment of the word “the” (Figure 9). This implies an
undesirable property in our evaluation: sentences with words filled in will not necessarily be at least as good as sentences
without any words filled in.

To address this, we always insert <UNK> tokens in OOV positions when no in-filling method is used. However, this can
have its own side-effects, potentially affecting metrics other than WER. To ensure we have a fair evaluation, we also include
in-filling with randomly selected words as a baseline in all of our method ablations.

G. Additional Experiment Details and Hyperparameters
Statistical testing For all experiments, unless otherwise stated, we run 5 random seeds. Statistical tests are independent
Welch’s t-tests with the standard threshold for statistical significance (p < .05).

Preprocessing We first notch filter the data around 50Hz to remove powerline artifacts. Then, we band-pass filter in
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the range 0.1-40Hz and resample the data to 50Hz. Following this preprocessing, we scale each recording such that the
amplitude range [−1, 1] covers the interquartile range and then clamp outliers above and below an amplitude of 5. Lastly,
we apply a baseline correction to each individual sample, subtracting the mean of the sample calculated from the first 0.5s.

Extracting targets We optimise the transformer output embeddings for the target embeddings from the 12th layer of a
pre-trained large T5 LLM. When words consist of multiple tokens, they are averaged into a single target embedding.

In-filling during rescoring Although a nested beam search allows the in-filling method to guarantee complete word
predictions, in practice, the highest probability predictions are generally singular tokens. Thus, to reduce inference time, we
discard the nested beam search and use a single-token prediction instead.

In-context transcription In our prompt (Appendix L Box 2), we provide the probabilities of the top five predictions.
Given a large retrieval set, these probabilities can be rather similar. To make these differences easier for an LLM to reason
about, we sharpen the probabilities we provide by applying the softmax operator

softmax(zi) =
ezi/0.01∑n
j=1 e

zj/0.01
, (10)

over the top five probabilities with a temperature of 0.01. We selected this temperature as it provided much better separation
amongst the top probabilities.

In both LLM-based methods, we instruct the LLM to output an enumerated dictionary in the format {1: w1, 2:
w2, ..., n: wn}. We find that this constrained format leads to more robust responses with the correct number of
outputs n, which we attribute to the enumerated keys. Additionally, LLM methods can use modes that allow self-reflective
chain-of-thought to deeply reason. We leverage this in our experiments using Claude Sonnet 3.7 thinking (Anthropic). Our
prompts are in Appendix L.

Compute resources Training a model on a single dataset takes up to 12 hours on an NVIDIA V100 GPU with 32GiB of
GPU memory. We use 64GiB of system memory and require up to 200GiB of local storage. Generating sequences using
beam search and other post-processing methods takes up to 4 hours. We ran all experiments on an internal cluster and
estimate that overall, we used on the order of 1000 GPU hours. This includes preliminary experiments that did not make it
into the paper.

H. OOV Prediction
After training our encoding model, we extract a feature vector for each encoder output from the training set containing: (1)
the output probability distribution, computed via a softmax over the cosine similarities and (2) additional statistics calculated
from the probability distribution (Table 9). We record whether each feature vector is associated with an OOV position or not
and fit a binary classification XGBoost model (Chen & Guestrin, 2016) to the features. At test time, we use this model to
select which words should be in-filled. This OOV detection method achieves 88% AUROC on LibriBrain. Including the
additional statistics as features leads to a small but meaningful improvement of 1-2%.

An alternative method would be to train a binary OOV classification head on top of the transformer outputs. While also
straightforward, this method entails re-training word classification models with OOV detection. Separating these concerns
simplifies the process and allows OOV detectors to be reused with models trained on different seeds. Moreover, fitting an
XGBoost model is much faster than training a word classifier from scratch.

I. Random Baselines
For completeness, we define two kinds of random baselines. The first, which we call random selection, is based on
random chance given the vocabulary of the dataset. We generate our random selection baseline by uniformly randomly
sampling from the decoder vocabulary for every in-vocabulary position and from the rest of the unique words in the dataset
for every out-of-vocabulary position. This ensures a fair comparison for every in-vocabulary prediction and for every
out-of-vocabulary in-filling step. The second random baseline we use is random noise and inspired by the findings in Jo
et al. (2024). In this baseline, to test whether brain-to-text systems truly generalise or overfit to the stories in the dataset, we
train a model as usual and then test it with random noise inputs of the same scale and variance as the MEG data. Jo et al.
(2024) noticed that the models they tested this way failed to be any better than this baseline. Therefore, these models were
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Table 8: Hyperparameters.

Hyperparameter Value

Training
Batch size / seq. length 64
Learning rate 1e-5
Optimiser AdamW (Loshchilov & Hutter, 2019)
Annealing schedule Cosine (min. 1e-6 after 50 epochs)
Early stopping patience 5 epochs
Early stopping metric Val. top-10 word class. accuracy

Pooling Spatial attention (Défossez et al., 2023)
Pooling output dim. 270

Signal encoder Brain model (Défossez et al., 2023)
Init. conv. 1x1 (in: 270, out: 270)
Subject layer in: 270, out: 270
Main conv. channels (270, 320, 320, ... x10)
Kernel 3
Stride 1
Dilation growth 2
Groups 1
Dilation period 5

Context encoder d’Ascoli et al. (2024)
Transformer depth 16
Transformer heads 16
Transformer dimension 1024
Transformer attn. dropout 0.1
Transformer pos. emb. Rotary

Rescoring
Beam search rescorer Llama 3.2 1B
Rescorer weight (λ) 1.5
Beam search in-filler Llama 3.2 1B
Max. words in context 8 words
Beam width 5 beams

OOV position detector XGBoost (Chen & Guestrin, 2016)
Features Probs. + Table 9
Learning rate 0.05
No. of estimators 200
Max. depth 4
Min. child weight 2
Subsample 0.8
Subsample ratio columns by tree 0.8
Gamma 1
α (L1) 0.1
λ (L2) 1

LLM APIs
In-context in-filler Claude 3.7 Sonnet

w/ 4096 thinking tokens
In-context transcriber Claude 3.7 Sonnet

w/ 4096 thinking tokens
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Table 9: Additional descriptive features for OOV prediction.

Feature Description

Entropy Information-theoretic uncertainty measure: −
∑

(pi × log2(pi))
Variance Statistical measure of dispersion in the data
Mean Average of all values
Median Middle value when sorted
Max Maximum value
Min Minimum value
Skew Measure of distribution asymmetry
Kurtosis Measure of peakedness/tail heaviness
Gini 1−

∑
p2i ; measures impurity/diversity

Top 1 prob. Highest probability value
Top 2 prob. Second highest probability value
Top 1 ratio Ratio between highest and second highest: top1/top2
Peaks Count of values above the mean
Zeros Count of near-zero values (< 10−10)
Nonzeros Count of non-zero values (> 10−10)
90th percentile 90th percentile value
10th percentile 10th percentile value
90th / 10th percentile ratio Ratio between 90th and 10th percentiles
Top 5 sum Sum of five highest probability values

not learning to use the brain data.

J. Limitations
As we establish the first above-chance electrophysiological non-invasive brain-to-text method, there remain some limitations
which we hope future work will resolve to drive progress towards clinical application. Like the rest of the community, we
use data from heard speech stimuli and not other forms of speech. The leap from perceived to inner or attempted speech is
one that remains to be made among non-invasive approaches. Nevertheless, we expect the methods here to generalise to
other varieties of speech.

Our dataset pooling framework improves performance through joint training with high-quality datasets. However, we have
not shown the ability to improve overall performance across all datasets. Presently, this requires the collection of more and
varied speech data. Still, jointly training EEG alongside MEG may make the decoding of speech from EEG, which does not
require magnetic shielding, more feasible, opening the possibility of future mobile and low-cost speech BCIs.

Additionally, we rely on aligning neural data to word onsets. Although we make strides towards alignment-free decoding
(Appendix B), further work is needed. However, decoding without alignment may not be necessary in a speech BCI as
patients can space out the words that they attempt to speak (e.g. Moses et al. (2021)) to naturally segment neural data by
word onset.

The last and most important limitation is overall decoding performance. We outperform all existing methods and establish a
significant baseline, but we do not see the present results as strong enough for a clinical speech BCI. Our view is that this is
firstly a data problem, requiring scaling up data and collecting more datasets. Even though our scaling laws suggest that to
achieve high word accuracy, much more data must be collected (Appendix C), we encourage finding methods that improve
scaling efficiency and also propose re-evaluating what it means to achieve a realistic non-invasive speech BCI. The focus
should be on practical necessity over exact decoding accuracy. While scaling up data 100× may not bring non-invasive
performance near invasive speech decoding word error rates, it could be enough to enable semantic decoding to a level
where non-invasive speech BCIs are useful. As the barriers to surgical BCIs are so large, non-invasive BCIs can be clinically
practical without achieving similar levels of performance.
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K. Broader Impacts
Although currently preliminary, maturity of research on non-invasive brain-to-text technology presents significant impli-
cations. Potential benefits include enabling communication for individuals with paralysis and advancing brain-computer
interfaces generally. However, mature iterations of this technology raise concerns about brain data privacy, potential misuse
of neural information, and accessibility disparities that may exacerbate existing inequalities. At present, we limit potential
misuse by decoding heard speech rather than inner speech. As the field advances to inner speech, we encourage researchers
to engage with ethical principles and set common ethical standards.

L. Prompts

Box 1: In-Context In-Filling

Prompt
I have a noisy speech recognition system which predicts 64 words at a time. I am going to give you its predictions in
an ordered list. [UNK] indicates that the target word for that position is out-of-vocabulary.

I want you to fill in any [UNK] positions with words that you think fit well in the sequence. Do not replace anything
that is not [UNK]. Your output should be formatted as a Python dictionary mapping all 64 positions (0-indexed) to
words, preserving the system’s predictions and replacing any [UNK] with your suggestions. Do not output anything
else.

Output example:
{0: ”don’t”, 1: ”the”, 2: ”scowl”, ..., 63: ”if”}

Predictions from speech recognition system:

0: the
1: ¡UNK¿
2: sat
3: on
...
63: built

Answer
{0: ”the”, 1: ”cat”, 2: ”sat”, 3: ”on”, ..., 63: ”build”}

Box 2: In-Context Transcription

Prompt
I have a noisy speech recognition system which predicts 64 words at a time. I am going to give you its predictions in
an ordered list of pairs (word, probability). For each position, I give you the top-5 word predictions ordered from
most likely to least likely along with their probabilities. [UNK] indicates that the target word for that position is
out-of-vocabulary.

I want you to predict the most likely sequence from this information, picking the words from the predictions for
each position that go best together. Where there is an [UNK] I want you to replace it with your own prediction for a
word that fits well. In places with no [UNK], your job is to just pick the best fitting word from the predictions list
(do not use any other word). Your output should be formatted as a Python dictionary mapping all 64 positions
(0-indexed) to words. Do not output anything else.
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Figure 10: Score histograms. The scores are specific to the test set of LibriBrain for the experimental setup described in
Appendix M.

Output example:
{0: ”don’t”, 1: ”the”, 2: ”scowl”, ..., 63: ”if”}

Predictions from speech recognition system:

0: (the, 0.45), (he, 0.23), (she, 0.15), (i, 0.11), (car, 0.09)
1: ¡UNK¿
2: (house, 0.15), (inn, 0.13), (in, 0.09), (new, 0.05), (nought, 0.01)
...
63: (built, 0.35), (with, 0.20), (love, 0.15), (of, 0.17), (my, 0.05)

Answer
{0: ”the”, 1: ”cat”, 2: ”in”, ..., 63: ”love”}

M. Decoding Examples
Examples in the table that follows are all generated using the rescoring and in-filling during beam search approach (beam+fill)
from a single random seed on the LibriBrain dataset with a 250-word retrieval set. The table shows the best, median, and
worst sequence for each metric. We also show the distributions of the scores for these predictions in Figure 10.

Annotations have been automatically added to the examples table. Exact matches are computed from a short exact match
window where words are in similar locations between the stimulus and prediction. Similar n-grams are computed over words
longer than two letters and where the SequenceMatcher from Python’s difflib gives a word sequence similarity
ratio greater than 0.9. Finally, semantically similar words are matched with SpaCy similarity with a threshold of 0.9. Words
that match this way are annotated with a number to show their correspondence. We did not find any clear way to highlight
semantic similarity between phrases when this is present.

Stimulus Prediction Score

Metric: WER

Best sequence
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at the thought of his own impotence what was
that in the silence he heard[1] a gentle scratch-
ing sound low but very distinct in the quiet of
the night it came[2] from the door of the house
ferrier crept into the hall and listened[3] intently
there was a pause for a few moments and then the
low insidious sound was repeated someone was
evidently

could be seen with our own eyes it is gone from
the face that is the face of the earth face turned[1]
towards to the north of the house and turned[1]
out the door of the house to find out his father
said[3] he was he was the son of a young man and
that he had been in their employ for three years

0.7969

Median sequence

the saints worn and exhausted he leaned upon
his rifle and shook his gaunt hand fiercely at the
silent widespread city beneath him as he looked at
it he observed that there were flags in some of the
principal[1] streets and other signs of festivity he
was still speculating as to what this might mean
when he heard the clatter of horse’s hoofs and

of all the good people i know through my work
with the his panic business[1] and with the his
panic business[1] of us when we thought to us
that we were we were going to get in the car and
and so on for the it is not possible why many about
these little things that we take a lot of for granted
until

0.9062

Worst sequence

led you safe to the chosen valley gave you a
goodly share of land and allowed you to wax
rich under our protection is not this so it is so
answered[1] john ferrier in return for all this we
asked but one condition that was that you should
embrace the true faith and conform in every way
to its usages this you promised to

question too broad in this case as the question[1]
is to find who is in the best position over their
opponents while a few time on my head without
any problem and i had my mind being away from
long time now yes i have been trying to get this
since the whole end of this month and we are off

1.0000

Metric: CER

Best sequence

to keep to the right track for the moon had not
yet risen and the high cliffs on either side made
the obscurity more profound weighed down with
his burden and weary from his exertions he stum-
bled along keeping up his heart by the reflection
that every step brought him nearer to lucy and that
he carried with him enough to ensure them food

to be on the right track or the wrong was not so
bad and the right way of doing it about an hour
or so ago out in my garden she was by my side
but she was not in the mood to be nice to any one
which will be of help and it will be of them before
the lord from the

0.5959

Median sequence

with bated breath lest something which fell[1]
from their lips might be misconstrued and bring
down a swift retribution upon them the victims of
persecution had now turned persecutors on their
own account and persecutors of the most terri-
ble description not the inquisition of seville nor
the german vehmgericht nor the secret societies
of italy were ever able to put a more formidable
machinery

cried[1] out in the morning having been out of
bed about this hour and half into the night and
after her it was a dream that it would be to make
my life and my house a great place for both their
children and their parents at the time of the birth
of the child being far more than one of two or
three

0.6862

Worst sequence
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led you safe to the chosen valley gave you a
goodly share of land and allowed you to wax
rich under our protection is not this so it is so
answered[1] john ferrier in return for all this we
asked but one condition that was that you should
embrace the true faith and conform in every way
to its usages this you promised to

question too broad in this case as the question[1]
is to find who is in the best position over their
opponents while a few time on my head without
any problem and i had my mind being away from
long time now yes i have been trying to get this
since the whole end of this month and we are off

0.7547

Metric: BLEU

Best sequence

at the thought of his own impotence what was
that in the silence he heard[1] a gentle scratch-
ing sound low but very distinct in the quiet of
the night it came[2] from the door of the house
ferrier crept into the hall and listened[3] intently
there was a pause for a few moments and then the
low insidious sound was repeated someone was
evidently

could be seen with our own eyes it is gone from
the face that is the face of the earth face turned[1]
towards to the north of the house and turned[1]
out the door of the house to find out his father
said[3] he was he was the son of a young man and
that he had been in their employ for three years

0.4062

Median sequence

puzzled john ferrier sorely for his servants slept
in an outhouse and the doors and windows had all
been secured he crumpled the paper up and said
nothing to his daughter but the incident struck
a chill into his heart the twenty nine days were
evidently the balance of the month which young
had promised what strength or courage could avail
against an enemy

question of the day there was a time in my life
where i really had nothing to make any money
these days the first thing is come clear from my
mind and i can see the world before or after i go
to sleep i have a dream that the world should open
their eyes so that the whole of the back of the

0.2344

Worst sequence

eked out by such employment as he could pick[1]
up he travelled from town to town through the
united states in quest of his enemies year passed
into year his black hair turned grizzled but still he
wandered on a human bloodhound with his mind
wholly set upon the one object upon which he
had devoted his life at last his perseverance was
rewarded

the thing so far is that we do not doubt that the will
of the people under the constitution of any state
to be a state of their own there will be nothing
for your course of action end of the day[1] in this
case about the same time which seemed to have
been and again to him this day[1] by the

0.1249

Metric: METEOR

Best sequence

i have not married ferrier answered but women
were few and there were many who had better
claims than i i was not a lonely man i had my
daughter to attend[1] to my wants it is of that
daughter that i would speak to you said the leader
of the mormons she has grown[2] to be the flower
of utah and has found

one of my best friends eyes my eyes my mind and
i can see that in my mind of him i don’t like her
thing but when he was the one in my life i thought
was young and over the whole thing with me from
the beginning of the year[1] then this is to be the
year[1] for you and many years[2]

0.2389

Median sequence
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suspense was unnerving he concealed his fears
from his daughter[1] however and affected to
make light of the whole matter[2] though she
with the keen eye[3] of love saw plainly that he
was ill at ease he expected that he would receive
some message or remonstrance from young as to
his conduct and he was not mistaken though it
came[4] in an unlooked for

question of whether the patient will be with the
same face[3] and body to go out with the young
man[1] she saw over the counter at the pharmacy
said[4] that we can get our medication this way[2]
is the most effective without causing or worsening
and also that in other cases where it can be done
while i find a few more for

0.1408

Worst sequence

sacred council of four the girl[1] is young and we
would not have her wed grey hairs neither would
we deprive her of all choice we elders have many
heifers1 but our children must also be provided
stangerson has a son and drebber has a son and ei-
ther of them would gladly welcome your daughter
to their house let her choose between them they

question to myself i have no doubt that i shall go
back to it again and again through the years over
the same period since is quite large and can be all
found in one place from the comfort and safety
that will be so important to me any time i had to
over his head it is not black[1] enough he

0.0862

Metric: ROUGE

Best sequence

at the thought of his own impotence what was
that in the silence he heard[1] a gentle scratch-
ing sound low but very distinct in the quiet of
the night it came[2] from the door of the house
ferrier crept into the hall and listened[3] intently
there was a pause for a few moments and then the
low insidious sound was repeated someone was
evidently

could be seen with our own eyes it is gone from
the face that is the face of the earth face turned[1]
towards to the north of the house and turned[1]
out the door of the house to find out his father
said[3] he was he was the son of a young man and
that he had been in their employ for three years

0.4062

Median sequence

when he heard[1] the click of the latch and look-
ing through the window saw a stout sandy haired
middle aged man[2] coming up the pathway his
heart leapt to his mouth for this was none other
than the great brigham young himself full of trep-
idation for he knew that such a visit boded him
little good[3] ferrier ran to the door to greet the

when i took[1] the test in the morning after my out
the door without a shower and a change of face
cloth in the morning the first thing[3] to be done
no course is a doubt and the same is between us
and our children and we must have made a mess
of this last point of mine on the death[2] of my
own

0.2500

Worst sequence

as keen as on that memorable night[1] when he
had stood by john ferrier’s grave disguised and
under an assumed name he returned[2] to salt lake
city careless what became of his own life[3] as
long as he obtained what he knew to be justice
there he found evil tidings awaiting him there had
been a schism among the chosen people a few
months

own ing that they are in business but they have
done some of the best work here under the sun
here we are in the middle of summer by now as
we my mind and brought[2] up the subject with
my head in my hands until i still don ’t have them
i will find a way[1] of making it in this world[3]

0.1406

Metric: BERT

Best sequence
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that his wealth and position would be of no avail
to him others as well known and as rich as him-
self had been spirited away before now and their
goods given over to the church he was a brave
man but he trembled at the vague shadowy terrors
which hung over him any known danger he could
face with a firm[1] lip but this

you can use the same as what have been used for
us to in any way to get in the door but those are
about between them and they are not open to the
public[1] there is a small man who has been at my
side since i came to these hands so long ago i am
seen as a young man and i

0.8256

Median sequence

vindictiveness far from doing so it had if anything
augmented it the hunter’s mind was of a hard
unyielding nature and the predominant idea[1] of
revenge had taken such complete possession of it
that there was no room for any other emotion he
was however above all things[2] practical he soon
realized[3] that even his iron constitution could
not stand the incessant strain which

question here from the point[1] we saw[3] in most
of case to be case to be the case to be and the be
the like[4] of which is such as is in him that he
can not see any light before him the whole room
was his own and all he had to end[2] his own life
and went to the police station where

0.8024

Worst sequence

polygamy without a female population on which
to draw was a barren doctrine indeed strange
rumours began to be bandied about rumours of
murdered immigrants and rifled camps in regions
where indians had never been seen fresh women
appeared in the harems of the elders women who
pined and wept and bore upon their faces the
traces of an unextinguishable horror belated wan-
derers upon

question about the use of i don’t have time from
the beginning of the day to the in the end end
to an end to and end to with and end to his own
end of the day the same day of the week as the
previous business day has closed out its business
for today with an average of is

0.7696
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