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ABSTRACT

Irregularly sampled time series are often observed in medical applications. Highly
customized models have been developed to tackle the irregularity. In this work, we
propose a simple yet effective approach that transforms irregularly sampled time
series into line graph images and adapts vision transformers to perform time series
classification in a way similar to image classification. Our approach simplifies
the model design without assuming prior knowledge. Despite its simplicity, we
show that it is able to outperform state-of-the-art specialized algorithms on several
popular healthcare and human activity datasets, especially in the challenging leave-
sensors-out setting where a subset of variables are masked during testing. We hope
this work could provide beneficial insight into leveraging fast-evolving computer
vision techniques in the time series analysis domain.

1 INTRODUCTION

Time series data are ubiquitous in a wide range of domains, including healthcare, finance, traffic, and
climate science. With the advances in deep learning architectures such as LSTM (Graves, 2012),
Temporal Convolutional Network (TCN) (Lea et al., 2017), and Transformer (Vaswani et al., 2017),
numerous algorithms have been developed for time series analysis. However, these methods typically
assume fully observed data points at regular intervals. They cannot deal with irregularly sampled
ones, a sequence of samples with irregular intervals between their observation times. To respond to
this challenge, highly specialized models were developed, which require a considerable amount of
prior knowledge in the model architecture choice and design (Marlin et al., 2012; Lipton et al., 2016;
Che et al., 2018; Horn et al., 2020; Shukla & Marlin, 2020; Zhang et al., 2022).

The recently emerging transformer-based vision models, most notably Vision Transformers (Doso-
vitskiy et al., 2020)1, have demonstrated strong performance on various vision tasks such as image
classification and object detection. In this paper, we raise a simple question: Since vision transformers
have exceeded humans in various image recognition tasks, are they able to “visually” capture temporal
patterns in irregularly sampled time series data? To answer this question, we take the following
minimalist approach: Transform the irregularly sampled multivariate time series into line graphs
(Fig. 1), arrange these line graphs into an image, and train a vision transformer to perceive the image
and perform the classification task. We dub this approach ViTTs, short for Vision Transformer
for Time series. Note that although some prior studies share a similar idea of transforming time
series into images for feature extraction (Wang & Oates, 2015a), they are not domain agnostic and
require domain knowledge in designing specialized imaging methods such as Gramian fields (Wang
& Oates, 2015a), recurring plots (Hatami et al., 2018; Tripathy & Acharya, 2018), and Markov
transition fields (Wang & Oates, 2015b). By contrast, we transform time series into line graphs
without assuming prior knowledge.

The line graph image encodes informative patterns in multivariate time series: (1) Temporal dynamics
of each variable in its corresponding line graph; and (2) the correlation among variables across
different line graphs. To help the vision transformers better capture these patterns, we introduce
temporal position embedding to provide fine-grained information about the local and global contexts.
Experimental results on three popular public healthcare and human activity datasets demonstrate that

1In this paper, we refer to vision transformers as a type of vision models based on Transformer, including
ViT (Dosovitskiy et al., 2020), DeiT (Touvron et al., 2021), Swin Transformer (Liu et al., 2021), to name a few.
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Time 00:30 00:34 02:13 02:15 03:25 03:54 05:23 … Label

Variable PaO2 HCT PaCO2 PaO2 SysABP HCT SysABP …
1

Value 155.0 29.1 33.0 235.0 143.0 29.5 125.0 …

Multivariate Time Series

SysABP PaO2 HCT PaCO2

Figure 1: An illustration of our approach ViTTs. Shown in the figure is a sample from a healthcare
dataset P12 (Goldberger et al., 2000), which provides the irregularly sampled observations of 36
variables for patients (we only show 4 variables here for simplicity). Each column in the table is an
observation of a variable, with the observed time and value. We plot separate line graphs for each
variable and arrange them into an image, which is then fed into the Vision Transformer to perform
the classification task.

ViTTs outperforms baselines by up to 8.2 accuracy points. It is also robust to missing observations.
It improves the prior work by up to 54.0% in absolute F1-score points in the leave-sensors-out setting
where a part of the sensors (variables) in the test set are masked. We further evaluate on regular time
series. Our approach achieves competitive results, demonstrating its generality as regularly sampled
time series algorithms usually do not work well for irregularly sampled data, and vice versa.

In summary, the contributions of this work are three-fold: (1) We propose a straightforward vision
transformer-based approach for multivariate irregularly sampled time series classification. The
simplicity contrasts with the state-of-the-art performance it has achieved. (2) The proposed approach
can be potentially extended as a general-purpose method to deal with other kinds of time series
analysis tasks. It adds to the collection of works exploring artificial general intelligence (AGI) to
deal with tasks in various domains instead of dedicated designs for each task. (3) It provides a new
perspective for time series modeling, which might encourage the utilization of fast-evolving and well-
studied computer vision techniques in the time series domain, such as better model architecture (Liu
et al., 2022), data augmentation (Shorten & Khoshgoftaar, 2019), interpretability (Chefer et al., 2021),
self-supervised learning (Chen et al., 2021), to name a few.

2 RELATED WORK

Irregularly Sampled Time Series. An irregularly sampled time series is a sequence of observations
with irregular intervals between observation times. Different variables can be misaligned within the
same time series in a multivariate setting. Such characteristics have posed a significant challenge
to the standard time series modeling methods, which typically assume fully observed and regularly
sampled data points.

In recent years, there has been a surge of work that develops highly specialized neural networks to
deal with irregularly sampled time series. Some methods discretize continuous-time observations
into fixed time intervals and utilize probabilistic clustering models (Marlin et al., 2012) or Recurrent
Neural Networks (RNN) (Lipton et al., 2016). To incorporate the dynamics between observations,
GRU-D Che et al. (2018) decays the hidden states based on gated recurrent units (GRU) (Chung et al.,
2014), which takes as input the observations’ values and also times. Pham et al. (2017) modified the
forget gate of LSTM (Graves, 2012) to capture the irregularity. Similarly, Yoon et al. (2017) proposed
an approach based on multi-directional RNN, which can capture the inter- and intra-steam patterns.
IP-Net (Shukla & Marlin, 2018) utilizes semi-parametric interpolation layers for interpolation and
GRU for prediction. Neural ordinary differential equations (neural ODEs) (Chen et al., 2018) are
used to model the continuous dynamics of a hidden state. For example, ODE-RNN (Rubanova et al.,
2019) uses RNN gates to update the hidden states when there is an observation.
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Besides the recurrent and differential equation-based architectures, recent work has explored attention
mechanisms. Transformer (Vaswani et al., 2017) is able to handle arbitrary sequences of observa-
tions. ATTAIN (Zhang, 2019) incorporates an attention mechanism with LSTM to model the time
irregularity between observations. SeFT (Horn et al., 2020) maps the irregular time series into a set
of observations based on differentiable set functions and thus applies an attention mechanism for
classification. mTAND (Shukla & Marlin, 2020) presented a multi-time attention network, which
learns continuous-time embeddings coupled with a multi-time attention mechanism to deal with the
continuous-time inputs. RAINDROP (Zhang et al., 2022) instead considers the irregularly sampled
time series as separate sensor graphs and utilizes graph neural networks to learn the dependencies
between different sensors (variables). Most of these existing methods are highly customized, re-
quiring considerable prior knowledge and effort to design and modify model architectures. In this
work, we propose a simple and general approach without assuming any prior knowledge or specific
engineering.

Imaging Time Series. With the success of computer vision techniques, there are prior studies
transforming time series into images for feature extraction. Wang & Oates (2015a) use Gramian
Angular Fields (GAF) and Markov Transition Fields (MTF) to encode time series into texture images
and utilize Tiled Convolutional Neural Network for classification. Similarly, Hatami et al. (2018)
represent time series with recurrence plots and use CNN to classify the time series. Silva et al. (2013)
generate time series images according to the compression distance. However, these imaging methods
require a considerable amount of domain knowledge and fail to serve as a general solution to different
kinds of time series, especially irregular ones. In contrast, we transform time series into a general and
simple visual representation, i.e., time series line graphs and perform image classification.

3 APPROACH

As illustrated in Fig. 1, ViTTs consists of two steps: (Step 1) Transform multivariate time series into
a concatenated line graph image; (Step 2) Utilize the Vision Transformer as an image encoder to learn
effective representation for the classification task. To begin with, we present some basic notations
and problem formulation.

Notation. Let D = {(Si, yi)|i = 1, · · · , N} denote a time series dataset containing N samples.
Every data sample is associated with a label yi ∈ {1, · · · , C}, where C is the number of classes.
Each multivariate time series Si consists of observations of D variables at most (some might have no
observations). The observations for each variable d is given by a sequence of tuples with observed
time and value [(td1, v

d
1), (t

d
2, v

d
2), · · · , (tdnd

, vdnd
)], where nd is the number of observations for variable

d. When the set of observation times [td1, t
d
2, · · · , tdnd

] is different across the variables and samples,
Si is an irregularly sampled time series, otherwise regular time series.

Problem Formulation. We aim to learn a function f : Si → zi to map the multivariate time series
Si to its representation zi, which can be used to predict the corresponding label ŷi. In our framework,
the function is decomposed into two parts: (1) a function f1 : Si → xi that transforms the time series
Si into an image xi; (2) an image encoder f2 : xi → zi that learns the representation of input time
series image.

3.1 TIME SERIES LINE GRAPH

Time series line graph is a widely-used data visualization method to illustrate temporal data points at
successive intervals. Each point on the line graph corresponds to an observation with an observed
time and value. The horizontal axis is used to plot timestamps, and the vertical axis is used to plot
values. Straight lines connect the points on the graph in the order of time, where the missing value
interpolation is done automatically. We use markers to distinguish observations from the “interpolated”
dots in the line. As the scale of different variables varies greatly, we plot the observations of each
variable in an individual line graph, as shown in Fig. 1. The scales of each line graph gi,d are kept the
same across different time series si. Different color is used for each line graph to distinguish them.
We experimentally found that the tick labels of line graphs are unnecessary, as the position of an
observation in a line graph indicates the relative magnitude of observed time and value.

Given a set of time series line graphs Gi = {g1, g2, · · · , gD} for time series Si, we place them in a
super image using a pre-defined layout. Similar with (Fan et al., 2021), we experimentally found that
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a compact layout (i.e., square grid) leads to better performance. Specifically, given the D time series
line graph for a time series, we place them in a grid whose size is l× l when l× (l−1) < D <= l× l,
and l × (l + 1) when l × l < D <= l × (l + 1). The order of line graphs does not affect the
performance. The size of the created image, i.e., image resolution, is determined by the grid layout
and the size of each time series line graph, which can be seen as a sub-image.

3.2 VISION TRANSFORMERS FOR TIME SERIES MODELING

Given the image xi transformed from time series Si, we leverage an image classifier to learn its
effective representation and perform the classification task. Unlike natural images that a computer
vision model usually sees, the time series patterns in a line graph image involve both local (i.e.,
the temporal dynamics of a single variable in a line graph) and global (the correlation among
variables across different line graphs) contexts, which poses a challenge to the model to capture
them. To this end, we choose the recently developed transformer-based vision models, notably Vision
Transformers (Dosovitskiy et al., 2020). Unlike the predominant CNNs, vision transformers are
proven to have much less image-specific inductive bias and stronger abilities to capture local and
global dependencies (Dosovitskiy et al., 2020; Liu et al., 2021).
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Figure 2: Positions of a patch (red box) based on different
contexts in a time series image with 4 time series line graphs
(green box) and 16 patches. Left is the position used in the
vanilla Vision Transformer, i.e., the absolute position in the
image. Right shows the patch’s position in a time series
line graph (top) and the graph’s position in the whole image
(bottom). Best viewed in color.

Vision Transformers. In the vanilla
Vision Transformer ViT (Dosovitskiy
et al., 2020), an image is split into
fix-sized patches. Each patch is then
linearly embedded and added with po-
sition embeddings, which indicate the
absolute position of this patch in the
image. The resulting sequence of vec-
tors is fed to a standard Transformer
encoder to obtain the token/patch rep-
resentation. An extra classification to-
ken to the sequence is used to perform
classification or other tasks. How-
ever, as the computational complex-
ity of its self-attention is quadratic
to image size, it has trouble model-
ing high-resolution images. To solve
the issue, Swin transformer (Liu et al.,
2021) constructs hierarchical feature
maps and achieves linear complexity
to the image size. It computes self-
attention locally with non-overlapping
windows. The small window size in
the shallow layers makes Swin transformer capture the local context. The neighboring patches are
gradually merged in the deeper layers, and thus, the global information will be learned. We implement
our approach using Swin Transformer in this work, as it is more efficient.

Temporal Position Embedding. There are different regions in a line graph image encoding the
temporal dynamics and relations of multivariate time series data. Specifically, the patch interactions
within a single time series line graph reflect the temporal dynamics of the corresponding variable. In
contrast, the interactions of patches across different line graphs reveal the variable correlations. To
inject this knowledge into Vision Transformer and help it better capture these temporal patterns, we
introduce two kinds of positions in the time series line graph images, as seen in Fig. 2:

• local temporal position: the position of a patch in the local time series line graph, which
reflects the relative value and time range of observations in a patch region.

• global temporal position: the position of a time series line graph in the whole image, which
indicates the time series line graph (variable) that a patch belongs to.

Being aware of these two kinds of position information, the model can learn to distinguish between
the local patch interactions within a line graph and the global patch interactions across different line
graphs. Consequently, the intra-variable temporal dynamics and inter-variable correlations can
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be better captured. We thus combine these two kinds of temporal position information to constitute
the temporal position embedding. Specifically, we assign an embedding for each of these two kinds
of positions, with the size half of patch embeddings. We then concatenate them to form the final
temporal position embedding, which is added to the patch embedding as the input of the transformer
encoder. The state of the classification token at the output serves as the image representation zi. As
this method does not change the size of input embeddings and the model architecture, it can be applied
in any vision transformer model, such as ViT (Dosovitskiy et al., 2020) and Swin Transformer (Liu
et al., 2021).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets # Samples # Variables # Avg. obs. # Classes Static info Imbalanced

P19 38,803 34 401 2 True True
P12 11,988 36 233 2 True True
PAM 5,333 17 4,048 8 False False

Table 1: Statistics of the irregularly sampled time series datasets. “# Avg. obs.” denotes the average
number of observations for each sample. “Static info” indicates if the time series sample is associated
with static attributes (e.g., patients’ demographics).

Datasets and Metrics. We experiment with three widely-used public healthcare and human activity
datasets whose statistics are presented in Table 1. The P19 dataset records 34 irregularly sampled
sensor variables for 38,803 patients. Each patient is associated with a binary label indicating
the occurrence of sepsis. The P12 dataset contains the observations of 36 irregularly sampled
sensor variables for 11,988 patients and a binary label representing whether the patient survives his
hospitalization. The PAM (Reiss & Stricker, 2012) dataset contains 5,333 samples from 8 classes of
human activities given observations of 17 sensor variables. We used the processed data provided by
RAINDROP2. The evaluation metrics are also kept the same. Specifically, we report the Area Under
a ROC Curve (AUROC) and Area Under Precision-Recall Curve (AUPRC) for the highly imbalanced
datasets P12 and P19. As for the nearly balanced PAM dataset, we report Accuracy, Precision, Recall,
and F1 score.

Implementation. The time-series-to-image transformation can be implemented using the Matplotlib
package3 within a few lines of Python code, as shown in Fig. 3. We use a representative vision trans-
former: Swin Transformer (Liu et al., 2021) to implement our approach using the pre-trained weights4

provided in HuggingFace Wolf et al. (2020). The original ViT has a slightly worse performance in
our setting.

Datasets # Variables Grid Layout Image Size

P19 34 6× 6 384× 384
P12 36 6× 6 384× 384
PAM 17 4× 5 256× 320

Table 2: The sizes of created images for each
dataset, with the time series line graph’s size being
64× 64 by default.

The default patch size of Swin Transformer is
4 × 4. We set the size of each time series line
graph as 64×64 for all datasets by default, mean-
ing there will be 256 patches in each line graph.
One can also change this size as long as it is
divisible by the patch size of used models. The
sizes of created images for each dataset are listed
in Table 2. We also investigate the influence of
different image resolutions on the model perfor-
mance, which is presented in Sec. 4.3.

Training. We apply the cutout (DeVries & Taylor, 2017) augmentation method to the input images
during training. Specifically, 16 square regions with 16× 16 size are randomly masked in each image.
The models are trained using A6000 GPUs with 48G memory. Depending on the size of the input

2https://github.com/mims-harvard/Raindrop
3https://matplotlib.org/
4https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k
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1 def TS2Image(t, v, D, image_height, image_width, grid_height, grid_width):
2 import matplotlib.pyplot as plt
3 plt.figure(figsize=(image_height/100, image_width/100), dpi=100)
4 for d in range(D): # enumerate the multiple variables
5 plt.subplot(grid_height, grid_width, d+1) # grid layout
6 plt.plot(t[d], v[d]) # plot the observations of variable d

Figure 3: The implementation of time-series-to-image transformation with Matplotlib in Python.

image, we use a batch size of 48 for P19 and P12 and 72 for PAM. We train all the models for 20
epochs on each dataset with 2 warming-up epochs. The learning rate is 2e-5.

Incorporating static features. The P12 and P19 datasets provide patients’ demographics, such as
their weight, height, and ICU type. This static information will not change over time and can be well
described by the natural language. To incorporate them into our framework, we transform them into
natural language sentences via a template and utilize a text encoder RoBERTa Liu et al. (2019) to
encode them. The obtained text embedding is concatenated with the image embeddings obtained
from the vision transformer to perform classification. The static feature is also applied to all the
baselines we compare.

4.2 MAIN RESULTS

Table 3: Comparison with the baseline methods on irregularly sampled time series classification task.

P19 P12 PAM
Methods AUROC AUPRC AUROC AUPRC Accuracy Precision Recall F1 score

Transformer 83.2 ± 1.3 47.6 ± 3.8 83.3 ± 1.7 47.9 ± 3.6 83.5 ± 1.5 84.8 ± 1.5 86.0 ± 1.2 85.0 ± 1.3
Trans-mean 84.1 ± 1.7 47.4 ± 1.4 82.6 ± 2.0 46.3 ± 4.0 83.7 ± 2.3 84.9 ± 2.6 86.4 ± 2.1 85.1 ± 2.4
GRU-D 83.9 ±1.7 46.9 ± 2.1 81.9 ± 2.1 46.1 ± 4.7 83.3 ± 1.6 84.6 ± 1.2 85.2 ± 1.6 84.8 ± 1.2
SeFT 78.7 ± 2.4 31.1 ± 2.8 73.9 ± 2.5 31.1 ± 4.1 67.1 ± 2.2 70.0 ± 2.4 68.2 ± 1.5 68.5 ± 1.8
mTAND 80.4 ± 1.3 32.4 ± 1.8 84.2 ± 0.8 48.2 ± 3.4 74.6 ± 4.3 74.3 ± 4.0 79.5 ± 2.8 76.8 ± 3.4
IP-Net 84.6 ± 1.3 38.1 ± 3.7 82.6 ± 1.4 47.6 ± 3.1 74.3 ± 3.8 75.6 ± 2.1 77.9 ± 2.2 76.6 ± 2.8
DGM2-O 86.7 ± 3.4 44.7 ± 11.7 84.4 ± 1.6 47.3 ± 3.6 82.4 ± 2.3 85.2 ± 1.2 83.9 ± 2.3 84.3 ± 1.8
MTGNN 81.9 ± 6.2 39.9 ± 8.9 74.4 ± 6.7 35.5 ± 6.0 83.4 ± 1.9 85.2 ± 1.7 86.1 ± 1.9 85.9 ± 2.4
RAINDROP 87.0 ± 2.3 51.8 ± 5.5 82.8 ± 1.7 44.0 ± 3.0 88.5 ± 1.5 89.9 ± 1.5 89.9 ± 1.5 89.8 ± 1.0

ViTTs 88.6±1.9 52.0±2.1 85.3±2.1 49.4±2.9 96.7±0.9 97.1±0.8 96.8±0.9 96.9±0.9

Comparison with Baselines. We compare our approach with several state-of-the-art methods
specialized for irregularly sampled time series: Transformer (Vaswani et al., 2017), Trans-mean,
GRU-D (Che et al., 2018), SeFT (Horn et al., 2020), mTAND (Shukla & Marlin, 2020), IP-Net (Shukla
& Marlin, 2018), and Raindrop (Zhang et al., 2022). Trans-mean denotes the Transformer with an
imputation method that replaces the missing value with the average observed value. Raindrop is the
best-performing method before this work. Besides, two methods initially designed for forecasting
tasks are also compared, including DGM2-O (Wu et al., 2021) and MTGNN (Wu et al., 2020). The
implementations and hyperparameters setting of these baselines follow RAINDROP (Zhang et al.,
2022). The batch size is 128, and all the models are trained for 20 epochs. As the P12 and P19
datasets are highly imbalanced, we upsample the minority class to ensure that each batch is balanced
with half negative and half positive samples, which is kept the same across all the compared methods.
The checkpoint that achieves the best AUROC performance on the validation set is used to make
predictions on the test set. We rerun implementations of these baselines provided by (Zhang et al.,
2022). Our obtained performances on the P19 and PAM are consistent with those reported in the
original paper. However, the difference in the P12 dataset is not negligible. We thus report our
experimental results on P12, and the reported performance on P19 and PAM are from (Zhang et al.,
2022). The performances are averaged on 5 different data splits, which are fixed across all the
compared baselines.

As seen from Table 3, our approach substantially outperforms the specialized state-of-the-art algo-
rithms on all the datasets. On the P19 and P12 datasets, ViTTs improved 1.6 and 0.9 AUROC points
compared with the best baseline. As for the PAM dataset, the improvement achieved by our approach
is much more significant: 8.2 points in Accuracy, 7.2 points in Precision, 6.9 points in Recall, and 7.1
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points in the F1 score. Considering the characteristics of these three datasets as presented in Table 1,
the difference in improvement scales might be understandable: PAM has more observations and is
not as sparse as P19 and P12. The interpolated line graph is thus closer to the true distribution.

Leaving-sensors-out Settings. We further evaluate models’ performance in more challenging leave-
sensors-out settings, where the observations of a subset of sensors (variables) are masked during
testing. This setting simulates real-world scenarios when some sensors fail or become unreachable.
Following (Zhang et al., 2022), we experiment with two setups to mask the sensors: (1) leave-fixed-
sensors-out which drops a fixed set of sensors across all the samples and compared methods; (2)
leave-random-sensors-out which drops the sensors randomly. Only the observations in the validation
and test set are dropped. The training set is kept unchanged. For a fair comparison, we dropped
the same set of sensors as in (Zhang et al., 2022) in the leave-fixed-sensors-out setting. We report
the performance on the PAM dataset as it only contains the dynamic time series data without the
intervention of static information.

Missing
ratio Methods PAM (Leave-fixed-sensors-out) PAM (Leave-random-sensors-out)

Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

10%

Transformer 60.3 ± 2.4 57.8 ± 9.3 59.8 ± 5.4 57.2 ± 8.0 60.9 ± 12.8 58.4 ± 18.4 59.1 ± 16.2 56.9 ± 18.9
Trans-mean 60.4 ± 11.2 61.8 ± 14.9 60.2 ± 13.8 58.0 ± 15.2 62.4 ± 3.5 59.6 ± 7.2 63.7 ± 8.1 62.7 ± 6.4
GRU-D 65.4 ± 1.7 72.6 ± 2.6 64.3 ± 5.3 63.6 ± 0.4 68.4 ± 3.7 74.2 ± 3.0 70.8 ± 4.2 72.0 ± 3.7
SeFT 58.9 ± 2.3 62.5 ± 1.8 59.6 ± 2.6 59.6 ± 2.6 40.0 ± 1.9 40.8 ± 3.2 41.0 ± 0.7 39.9 ± 1.5
mTAND 58.8 ± 2.7 59.5 ± 5.3 64.4 ± 2.9 61.8 ± 4.1 53.4 ± 2.0 54.8 ± 2.7 57.0 ± 1.9 55.9 ± 2.2
RAINDROP 77.2 ± 2.1 82.3 ± 1.1 78.4 ± 1.9 75.2 ± 3.1 76.7 ± 1.8 79.9 ± 1.7 77.9 ± 2.3 78.6 ± 1.8

ViTTs 92.7 ± 0.9 94.2 ± 0.9 93.2 ± 0.4 93.6 ± 0.6 88.4 ± 1.4 92.3 ± 0.5 88.6 ± 1.9 89.8 ± 1.5

20%

Transformer 63.1 ± 7.6 71.1 ± 7.1 62.2 ± 8.2 63.2 ± 8.7 62.3 ± 11.5 65.9 ± 12.7 61.4 ± 13.9 61.8 ± 15.6
Trans-mean 61.2 ± 3.0 74.2 ± 1.8 63.5 ± 4.4 64.1 ± 4.1 56.8 ± 4.1 59.4 ± 3.4 53.2 ± 3.9 55.3 ± 3.5
GRU-D 64.6 ± 1.8 73.3 ± 3.6 63.5 ± 4.6 64.8 ± 3.6 64.8 ± 0.4 69.8 ± 0.8 65.8 ± 0.5 67.2 ± 0.0
SeFT 35.7 ± 0.5 42.1 ± 4.8 38.1 ± 1.3 35.0 ± 2.2 34.2 ± 2.8 34.9 ± 5.2 34.6 ± 2.1 33.3 ± 2.7
mTAND 33.2 ± 5.0 36.9 ± 3.7 37.7 ± 3.7 37.3 ± 3.4 45.6 ± 1.6 49.2 ± 2.1 49.0 ± 1.6 49.0 ± 1.0
RAINDROP 66.5 ± 4.0 72.0 ± 3.9 67.9 ± 5.8 65.1 ± 7.0 71.3 ± 2.5 75.8 ± 2.2 72.5 ± 2.0 73.4 ± 2.1

ViTTs 88.4 ± 1.0 90.4 ± 1.4 89.3 ± 0.8 89.7 ± 1.0 85.1 ± 1.2 91.1 ± 1.0 85.6 ± 1.0 87.0 ± 1.0

30%

Transformer 31.6 ± 10.0 26.4 ± 9.7 24.0 ± 10.0 19.0 ± 12.8 52.0 ± 11.9 55.2 ± 15.3 50.1 ± 13.3 48.4 ± 18.2
Trans-mean 42.5 ± 8.6 45.3 ± 9.6 37.0 ± 7.9 33.9 ± 8.2 65.1 ± 1.9 63.8 ± 1.2 67.9 ± 1.8 64.9 ± 1.7
GRU-D 45.1 ± 2.9 51.7 ± 6.2 42.1 ± 6.6 47.2 ± 3.9 58.0 ± 2.0 63.2 ± 1.7 58.2 ± 3.1 59.3 ± 3.5
SeFT 32.7 ± 2.3 27.9 ± 2.4 34.5 ± 3.0 28.0 ± 1.4 31.7 ± 1.5 31.0 ± 2.7 32.0 ± 1.2 28.0 ± 1.6
mTAND 27.5 ± 4.5 31.2 ± 7.3 30.6 ± 4.0 30.8 ± 5.6 34.7 ± 5.5 43.4 ± 4.0 36.3 ± 4.7 39.5 ± 4.4
RAINDROP 52.4 ± 2.8 60.9 ± 3.8 51.3 ± 7.1 48.4 ± 1.8 60.3 ± 3.5 68.1 ± 3.1 60.3 ± 3.6 61.9 ± 3.9

ViTTs 84.1 ± 1.3 86.5 ± 0.4 83.1 ± 0.8 84.9 ± 1.0 80.6 ± 1.2 89.5 ± 1.3 80.9 ± 1.1 82.6 ± 1.1

40%

Transformer 23.0 ± 3.5 7.4 ± 6.0 14.5 ± 2.6 6.9 ± 2.6 43.8 ± 14.0 44.6 ± 23.0 40.5 ± 15.9 40.2 ± 20.1
Trans-mean 25.7 ± 2.5 9.1 ± 2.3 18.5 ± 1.4 9.9 ± 1.1 48.7 ± 2.7 55.8 ± 2.6 54.2 ± 3.0 55.1 ± 2.9
GRU-D 46.4 ± 2.5 64.5 ± 6.8 42.6 ± 7.4 44.3 ± 7.9 47.7 ± 1.4 63.4 ± 1.6 44.5 ± 0.5 47.5 ± 0.0
SeFT 26.3 ± 0.9 29.9 ± 4.5 27.3 ± 1.6 22.3 ± 1.9 26.8 ± 2.6 24.1 ± 3.4 28.0 ± 1.2 23.3 ± 3.0
mTAND 19.4 ± 4.5 15.1 ± 4.4 20.2 ± 3.8 17.0 ± 3.4 23.7 ± 1.0 33.9 ± 6.5 26.4 ± 1.6 29.3 ± 1.9
RAINDROP 52.5 ± 3.7 53.4 ± 5.6 48.6 ± 1.9 44.7 ± 3.4 57.0 ± 3.1 65.4 ± 2.7 56.7 ± 3.1 58.9 ± 2.5

ViTTs 76.5 ± 1.9 83.5 ± 0.9 76.7 ± 2.4 78.3 ± 2.1 73.7 ± 2.2 86.4 ± 1.1 74.0 ± 2.2 75.8 ± 1.8

50%

Transformer 21.4 ± 1.8 2.7 ± 0.2 12.5 ± 0.4 4.4 ± 0.3 43.2 ± 2.5 52.0 ± 2.5 36.9 ± 3.1 41.9 ± 3.2
Trans-mean 21.3 ± 1.6 2.8 ± 0.4 12.5 ± 0.7 4.6 ± 0.2 46.4 ± 1.4 59.1 ± 3.2 43.1 ± 2.2 46.5 ± 3.1
GRU-D 37.3 ± 2.7 29.6 ± 5.9 32.8 ± 4.6 26.6 ± 5.9 49.7 ± 1.2 52.4 ± 0.3 42.5 ± 1.7 47.5 ± 1.2
SeFT 24.7 ± 1.7 15.9 ± 2.7 25.3 ± 2.6 18.2 ± 2.4 26.4 ± 1.4 23.0 ± 2.9 27.5 ± 0.4 23.5 ± 1.8
mTAND 16.9 ± 3.1 12.6 ± 5.5 17.0 ± 1.6 13.9 ± 4.0 20.9 ± 3.1 35.1 ± 6.1 23.0 ± 3.2 27.7 ± 3.9
RAINDROP 46.6 ± 2.6 44.5 ± 2.6 42.4 ± 3.9 38.0 ± 4.0 47.2 ± 4.4 59.4 ± 3.9 44.8 ± 5.3 47.6 ± 5.2

ViTTs 70.0± 2.7 79.9 ± 2.2 70.5 ± 3.1 72.2 ± 3.0 70.9 ± 1.2 83.6 ± 2.4 71.5 ± 1.4 73.3 ± 2.1

Table 4: Performance comparison in the leave-sensors-out settings on the PAM dataset. The “missing
ratio” denotes the ratio of masked variables.

The results are listed in Table 4, from which we can see that our approach consistently achieves the
best performance and outperforms the second best by a large margin across all the settings. With the
missing ratio ranging from 10% to 50%, the performance improvement over the previously best model
becomes increasingly significant. When half of the variables are dropped, our approach can still
achieve acceptable performance, exceeding the best-performed baseline by up to 50.2% in Accuracy,
40.7% in Precision, 59.6% in Recall, and 54.0% in the F1 score. These experimental results suggest
the robustness of our approach to the missing values or variables, which can be attributed to our image
framework, enabling the use of image augmentation methods such as cutout (DeVries & Taylor,
2017).
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Table 5: Ablation studies on the effects of different components and strategies on the model perfor-
mance. The reported numbers are averaged on 5 data splits. We omit variances for simplicity. The
numbers in brackets denotes the performance change w.r.t. the full model.

P19 P12 PAM
Methods AUROC AUPRC AUROC AUPRC Accuracy Precision Recall F1 score

ViTTs 88.6 52.0 85.3 49.4 96.7 97.1 96.8 96.9

w/o pos. emb. 87.5(-1.1) 50.7(-1.3) 84.4(-0.9) 48.0(-1.4) 94.7(-2.0) 95.5(-1.6) 95.3(-1.5) 95.2(-1.7)
w/o diff. colors 85.1(-3.5) 44.8(-7.2) 83.3(-2.0) 38.5(-10.9) 92.9(-3.8) 94.9(-2.2) 93.6(-3.2) 94.1(-2.8)
w/o cutout 87.1(-1.5) 48.6(-3.4) 84.2(-1.1) 47.3(-2.1) 95.4(-1.3) 96.1(-1.0) 95.9(-0.9) 96.1(-0.8)
w/o pre-training 73.6(-15.0) 28.7(-23.3) 69.1(-16.2) 24.3(-25.1) 84.5(-12.2) 86.6(-10.5) 87.1(-9.7) 86.6(-10.3)

4.3 ABLATION STUDIES

To evaluate the effectiveness of our proposed design, we conduct ablation studies to answer the
following questions.

Does temporal position embedding help? Temporal position embedding is introduced to help
the vision transformer capture the intra-variable and inter-variable temporal correlations in the
created time series line graph images. To investigate its effectiveness, we report performance of
ViTTs without the temporal position embedding (w/o pos. emb.) in Table 5. We can observe the
performance decrease without the introduced temporal position embedding on all the datasets, which
suggests its importance in helping the model capture complex time series patterns. We witnessed a
more significant performance reduction when trained on images that do not have different colors for
each line graph (w/o diff. colors). This finding verifies the effectiveness of such a simple approach
in distinguishing between different time series line graphs (variables), owing to the time series line
graph image framework of our approach.

Does image augmentation improve the model performance? Our approach casts the time series
classification task as an image classification task, enabling the use of image augmentation methods.
However, in our case, some widely-used position augmentation methods, such as flipping, rotations,
and color augmentation methods, are not good choices, as they will mix up the temporal patterns
in the well-organized line graph images. Our approach thus utilizes the cutout (DeVries & Taylor,
2017) augmentation method, which will not change the position and color of the original image.
From Table 5, we can see that it has a considerable impact on the model’s performance, especially on
the P19 and P12 datasets where we upsample the minority class to deal with class imbalance. The
performance drop demonstrates that the cutout augmentation can mitigate overfitting and improve the
generalization ability of our approach.

Does the model benefit from pre-training? To explore whether the model can benefit from pre-
training, we disable pre-trained weights and train the Swin Transformer from scratch. The results
are shown in the last row of Table 5. We found that the model performance decreases significantly
without pre-training on each dataset, which suggests that the knowledge obtained from pre-training on
natural images can be transferred to the created time series line graph images to some extent. Another
interesting finding is that despite the performance reduction, the performance of our approach is still
comparable with the baselines on the PAM dataset.

Grid
Layout

Graph
Size

Image
Size

PAM

Accuracy Precision Recall F1 score

2× 9 64× 64 128× 576 95.9±1.4 96.5±1.0 95.9±1.2 96.0±0.5
3× 6 64× 64 192× 384 96.1±0.8 96.7±0.5 95.9±0.9 96.2±0.7
4× 5 64× 64 256× 256 96.7 ± 0.9 97.1 ± 0.8 96.8 ± 0.9 96.9 ± 0.9

4× 5 48× 48 192× 240 96.1 ± 1.3 96.7 ± 0.5 96.0 ± 1.1 96.3 ± 0.6
4× 5 64× 64 256× 256 96.7 ± 0.9 97.1 ± 0.8 96.8 ± 0.9 96.9 ± 0.9
4× 5 80× 80 320× 400 97.1 ± 0.6 97.8 ± 0.6 97.4 ± 0.7 97.1 ± 0.9

Table 6: Ablation studies on the effects of different grid layouts and image sizes on the model
performance on the PAM dataset. “Graph size” represents the size of each time series line graph
which is a sub-image. “Image size” denotes the resolution of the whole image.
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How do the grid layout and image size affect the performance? The grid layout and image size
determine the granularity of the time series line graphs in the image. We trained ViTTs on images
with different grid layouts and image sizes from the PAM dataset to investigate their effects on the
model performance. The results are listed in Table 6. As seen from the first three rows, the square
grid layout leads to the best performance despite limited improvement. This might be because the
square images are more similar to the natural images the model is pre-trained on in terms of the
layout. Without surprise, the results in the last three rows demonstrate that a higher image resolution
can lead to better performance.

4.4 REGULAR TIME SERIES CLASSIFICATION

As our approach can be directly applied to regular time series without any change, we are thus inter-
ested in how it performs on the regular time series classification task. We tested four representative
regular multivariate time series datasets from the UEA Time Series Classification Archive (Bagnall
et al., 2018): EthanolConcentration (EC), SelfRegulationSCP1 (SCP), SpokenArabicDigits (SAD),
and Heartbeat (HB).

Datasets # Variables # Classes Length

EC 3 4 1,751
SCP1 6 2 896
SAD 13 10 93
HB 61 2 405

Table 7: The statistics of regular multivariate
time series datasets.

As shown in Table 7, these four datasets have diverse
characteristics in terms of numbers of classes, vari-
ables, and time series length. We follow (Zerveas
et al., 2021) to use these baselines for comparison:
DTWD which stands for dimension-Dependent DTW
combined with dilation-CNN Franceschi et al., 2019,
LSTM, XGBoost, ROCKET (Dempster et al., 2020),
and a transformer-based TST (Zerveas et al., 2021).
Most of algorithms on regular and irregular time se-
ries are studied separately. They often perform worse
on the type of time series they are not designed for.

We thus use the methods designed for regular time series as baselines.

Methods EC SCP SAD HB Avg. Acc.

DTWD 0.323 0.775 0.963 0.717 0.695
LSTM 0.323 0.689 0.319 0.722 0.512
XGBoost 0.437 0.846 0.696 0.732 0.678
Rocket 0.452 0.908 0.712 0.756 0.707
TST 0.337 0.925 0.993 0.776 0.758

ViTTs 0.456 0.894 0.985 0.766 0.775

Table 8: Performance comparison on regular time series
datasets. “Avg. Acc. denotes the average accuracy on all the
datasets. Bold indicates the best performer while underline
represents the second best.

The results are shown in Table 8, from
which we can see that our approach
performs consistently well on these
datasets with different characteristics.
The average accuracy even exceeds
the best-performed baseline method,
TST. These results indicate that vi-
sion transformers are a promising ap-
proach for both regular and irregular
time series analysis. Given its sim-
plicity, this approach has the potential
to be extended as a general-purpose
method for various time series tasks.

5 CONCLUSION

In this paper, we introduce ViTTs, a simple and effective approach for irregularly sampled mul-
tivariate time series modeling. By transforming the multivariate time series into images, we can
adapt the powerful vision transformers to time series classification tasks. This approach largely
simplifies the irregular time series analysis pipeline, removing most of the specialization in algorithm
design. Despite its simplicity, our approach demonstrates strong performance against the highly
specialized state-of-the-art methods on several popular public datasets and shows robustness to
missing observations. We also evaluate our approach on regular time series and witness promising
results. Our approach can be potentially extended as a general-purpose framework for various time
series tasks, which is our future direction. We believe this paper could provide a new perspective for
time series analysis and encourage the reuse of fast-evolving computer vision techniques in the time
series domain.
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