
Look, Think, Understand:
Multimodal Reasoning for Socially-Aware Robotics

Alessio Galatolo1∗ and Ronald Cumbal1∗

Abstract— Robots operating in shared human environments
must go beyond basic navigation and object recognition—
they must also understand and respond to dynamic, so-
cially embedded human interactions. While recent advances in
Large Language Models (LLMs) and Vision-Language Models
(VLMs) have shown promise in improving robotic perception
and instruction-following, they often fall short in interpreting
complex human behavior and intent. In this work, we explore
how multimodal reasoning—specifically the integration of vision
and language through reflective processes—can enhance robotic
understanding in scenarios involving human interactions. We
introduce a lightweight, bidirectional reasoning module that
enables language-guided modulation of visual encoding, leading
to a deeper interplay between linguistic and visual information.
Here, after an initial forward pass with image and text, the
model implicitly reasons on how the image could be manip-
ulated to aid in giving a more accurate response. The image
is then encoded once again while taking such considerations
into account. We train our method on a diverse set of image-
question datasets and evaluate it by constructing a dataset
of real-world human interactions from the EGO4D egocentric
video collection, which simulates a robot’s perspective. Our
experiments demonstrate that our method is able to bring
consistent improvement over the plain VLM even when not
trained on the task directly.

I. INTRODUCTION

Integrating robots into human environments, particularly
in shared spaces, requires more than just ensuring physical
safety. It also involves fostering appropriate and socially
acceptable behaviors. For robots to function effectively in
these settings, they must not only interpret their surroundings
but also understand how these spaces change over time.
This goes beyond recognizing and analyzing physical ob-
jects; robots must anticipate and interpret how other agents,
especially humans, influence both the environment and their
own activities. For instance, delivery robots frequently en-
counter pedestrians who may either obstruct their path out of
curiosity or assist them by providing guidance [1]. Similarly,
service robots, such as those functioning as receptionists,
must be able to determine whom to interact with, when to
do so, and how to appropriately respond to different user
intentions [2]. To handle these situations effectively, robots
need to accurately recognize various human intentions and
react in a suitable manner.

Recent advancements in robotics research have highlighted
the role of large language models (LLMs) in enabling
robots to interpret and execute human instructions [3]. A
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significant portion of research has further focused on im-
proving robots’ visual understanding to help them better
interpret their physical surroundings. However, many of
these studies tend to overlook the complexities of human-
robot interaction, often concentrating primarily on social
awareness in navigation [4]. When social interactions are
addressed, they are typically limited to dyadic conversational
scenarios with narrow objectives [5]. To address this gap,
our research explores how a LLM with multimodal inputs
e.g., Vision-Language Models (VLMs), can enhance robots’
ability to interpret scenarios involving human interactions.
While recent studies have begun exploring this direction,
state-of-the-art methods still struggle with open-ended, real-
world situations [6]. We pay particular attention to reflection
and reasoning mechanisms present in these models. In fact,
while Chain-of-Thought (CoT) prompting [7] and reasoning
[8] have resulted in big increase in performance in LLMs,
these techniques remain vastly underexplored in VLMs. The
few works that claim multimodal reasoning, are actually
just doing textual reasoning paired with vision input [9]–
[11]. Motivated by this, we develop a novel multi-modal
reasoning technique that is able to connect textual and visual
modalities, with the possibility of extension to other forms of
input as well. Here, the textual reasoning is able to effectively
change how the image is processed in order to improve its
embedded features and the resulting response.

To evaluate our approach, we analyze a dataset of egocen-
tric video recordings that capture real-world interactions be-
tween the camera wearer and other people. These interactions
simulate the kind of perceptual input a robot might receive
through its camera system in everyday environments. While
our broader goal is to improve reasoning capabilities across
tasks, we specifically focus on the challenge of interpreting
human intentions, a complex area that stands to benefit sig-
nificantly from multimodal inputs. For example, recognizing
internal human states often depends on a combination of
verbal and nonverbal social cues, which must be interpreted
together to understand intent accurately [6].

II. RELATED WORKS

Large Language Models have become powerful tools in
the field of robotics, offering the ability to interpret complex
instructions, reason through tasks, and communicate more
effectively with humans through natural language processing
[3]. Simultaneously, the integration of multimodal inputs—
especially visual data—has significantly enhanced the ca-
pabilities of LLMs in tasks involving visual understand-
ing [12]–[14]. This convergence has paved the way for



the development of Multimodal Large Language Models
(MLLMs), which show promising potential for advancing
robotics applications. In the sections that follow, we review
recent developments at the intersection of these areas and
examine how this synergy is shaping the future of robotic
systems.

A. Reasoning and Multimodality with LLMs

Recent research has focused on improving the reasoning
capabilities of LLMs through techniques such as Chain-
of-Thought prompting and reflection-based methods. CoT
prompting works by guiding models to break down complex
problems into intermediate steps, leading to more accurate
and interpretable outputs [7]. Reflection methods extend this
idea by introducing feedback loops that allow models to
iteratively refine their reasoning, identify errors, and produce
more coherent responses. These strategies have been success-
fully applied in robotics [15] and in enhancing multimodal
understanding [16], demonstrating their utility in complex,
real-world scenarios.

Early efforts in visual reasoning with MLLMs employed
attention mechanisms to improve Visual Question Answering
(VQA) performance [17] or directly trained models to en-
hance visual reasoning abilities [18]. More recent approaches
have incorporated prompting strategies to further focus
MLLMs on relevant visual cues [19]. For instance, Zheng
et al. [20] proposed DDCoT, a method that decomposes
questions into sub-questions and uses external VQA models
to generate rationales. Similarly, Liu et al. [21] introduced
a closed-loop framework that combines imagination and
single-step reasoning, enabling MLLMs to progressively
refine their understanding and reach accurate conclusions
without additional training or fine-tuning.

In addition to reasoning strategies, some studies have
explored ways to enhance multimodal comprehension by
explicitly manipulating visual inputs. Jiang et al. [22], for
example, incorporated bounding boxes into the inference
process to isolate target objects. Lin et al. [23] trained an
MLLM to recognize images with overlaid bounding boxes,
improving the model’s reasoning capabilities. Similarly, Shao
et al. [24] designed a system that simultaneously processes
the original image and a version annotated with bounding
boxes, using visual cues to guide and strengthen the reason-
ing process.

Despite these advances, most of these methods still rely
primarily on textual generation, with only superficial integra-
tion of visual information. To address this limitation, Zhou
et al. [25] proposed the Image-of-Thought (IoT) prompting
framework, which allows MLLMs to autonomously extract
and generate both textual and visual rationales, thereby
enhancing multimodal reasoning. Further extending this idea,
Zhang et al. [26] developed a method to guide models in
answering complex questions that involve multiple image
inputs by comparing similarities and differences across the
visual content.

All these works go towards this idea of reasoning across
modalities, however, none of them is able to achieve a free

flow of information between text and vision. For example,
drawing bounding boxes [22], [23] requires external tools to
manipulate images, ‘imagination’ [21] requires a plethora of
tools that need to be decided beforehand. The VLM is thus
never able to ‘freely’ manipulate images and bring a similar
effect of test-time scaling [8] that has emerged in text-only
LLM. Further, such tool-based approaches break any gradient
flow, making training and refining of cross-modal reasoning
more challenging.

B. Multimodal Reasoning in Robotic Systems

The integration of LLMs with robotic systems has revealed
transformative potential. Projects like PaLM-SayCan [27],
[28] demonstrate how LLMs can be grounded in real-world
robotic actions, enabling robots to interpret and execute nat-
ural language commands through physical behaviors. Further
research has shown that incorporating multimodal inputs—
particularly visual data—can significantly improve a robot’s
comprehension and generalization abilities.

Pre-trained VLMs, such as CLIP [29] and InstructBLIP
[30], have played a pivotal role in enabling robots powered
with LLMs to process visual inputs for tasks such as object
recognition and scene understanding [3]. Much of this work
has centered around Visual Question Answering (VQA) [31],
where systems must respond to questions based on visual
stimuli. For example, Kwon et al. [32] proposed combin-
ing LLMs with VLMs to facilitate grounded commonsense
reasoning, allowing robots to actively perceive and interpret
their environment. Similarly, Sermanet et al. [33] introduced
RoboVQA, which leverages video input to support decision-
making and visual understanding in complex, real-world
scenarios. Li et al. [34] further contributed with MMRo,
a benchmark designed to evaluate key robotic skills such
as spatial reasoning, task planning, and safety awareness.
Their findings indicate that even state-of-the-art MLLMs,
such as Gemini-Pro, still face challenges in basic perceptual
tasks, such as accurately identifying object attributes like
color, shape, material, and spatial location. When it comes
to interpreting human-robot interactions, recent studies have
observed that while current models can manage clear, goal-
directed interactions at the beginning of an exchange, they
still face difficulties in open-ended scenarios [6].

While these studies demonstrate the advantages of com-
bining multimodal inputs with LLMs for robotics, they
also reveal important limitations. Most current efforts have
focused on object recognition and scene interpretation, with
less attention given to understanding the behaviors, goals,
and intentions of humans or other agents in the environment.
Even when human presence is considered, the emphasis is
often on spatial grounding rather than on inferring intent or
goal-directed behavior—an ability that is critical for effective
human-robot interaction. Where intention understanding has
been explored, recent findings continue to point to it as a
significant and unresolved challenge.



III. METHODOLOGY

We propose an approach to enhance the multimodal rea-
soning capabilities of VLMs by introducing a lightweight
visual reasoning module that allows the language understand-
ing component to interface with the visual encoding process.
Our objective is to propose a deeper, bidirectional interac-
tion between vision and language components in generative
settings that mirrors human processes. We have made our
code publicly available.1

A. Architecture Choice

Contemporary VLMs often fall into one of two archi-
tectural paradigms: (i) alignment-based approaches that use
pre-trained encoders like CLIP or BLIP to align vision and
language in a shared embedding space (e.g., CLIP2, original
BLIP), and (ii) integration-based approaches, such as LLaVA
and Qwen-VL, where image features are injected into a
language model to enable conditional generation, often using
outputs from a vision encoder like BLIP-2.

Our method operates within the latter paradigm, which has
emerged as the dominant strategy in recent high-performing
models. Architectures like LLaMA-Adapter V2 [35], LLaVA
[12], LLaVA-Next [36], and Qwen [37] bypass the need
for an explicit intermediate representation like Q-Former
by directly conditioning a decoder-only LLM on vision-
derived tokens. This streamlines the integration of large-scale
language modeling with multimodal reasoning, at the cost of
reduced modularity and interpretability.

In contrast, models like BLIP-2 [30] and MiniGPT-v2 [38]
introduce a Q-Former: a set of learnable query tokens that
attend over frozen image encoders (e.g., ViT or CLIP) to
extract vision-language aligned representations. While this
architecture offers strong zero-shot performance and model
reuse, it imposes a rigid, externally imposed structure on the
interaction between modalities.

Our proposed mechanism introduces a soft, context-
dependent interface between language and vision, which
is missing in both CLIP2-style joint embeddings and Q-
Former-based query extraction. Rather than querying image
features via fixed learnable tokens, we allow the language
model’s internal representations—specifically, the last hidden
state of the decoder—to dynamically modulate the vision
encoder’s class embedding via a reasoning module. This
creates an organic feedback loop that does not break gra-
dient flow, where linguistic interpretation guides visual re-
encoding, which in turn shapes final generation.

Importantly, this mechanism is architecture-compatible
with the LLaVA family of models (and easily extendable to
similar models), which have become the de facto standard
in open-source VLM development due to their simplicity,
extensibility, and compatibility with decoder-only LLMs.

B. Visual Reasoning Module

We build upon the LLaVA-NeXT [36] architecture and
introduce a learnable Visual Reasoning module. This module

1https://github.com/ronaldcumbal/uppsala_llm_hri

is attached to the final layer of the language model, receives
its hidden representation and connects it to the vision en-
coder, effectively forming a reasoning loop between the two
architectures. The visual reasoner is conditioned on an initial
joint image-text forward pass, and produces a reasoning
vector or ‘hint’ that influences a new image embedding by
modulating the class embedding that is prepended to the
image. The class embedding acts as a pooling token and
plays a critical role in the visual information summarization
process. By adding reasoning information to this token, we
enable the model to reinterpret visual content in light of
linguistic context and reasoning. At the end of this process,
a second forward is done with the new embedded image.

For the architecture of the visual reasoning module we test
a gated multi-layer perceptron (MLP):

r(x) = σ(Gx)⊙P( f (x)) (1)

where f (·) is a two-layer MLP with GELU activation and
dropout, G and P are learned projection matrices, and σ

denotes the sigmoid function. The resulting vector r is added
to the frozen class embedding of the vision encoder before
the second forward pass.

C. Training Strategy

We use two stages for training, shown in Algorithm 1.
In the first stage, only the visual reasoner is trained and
the VLM is kept frozen. In the second stage, we add a
LoRA layer on top of the language model. This adapter is
used to help the language model produce more meaningful
visual reasoning hints and is not used in normal inference /
generation.

During both stages, we adopt a two-pass training strategy.
In the first pass, the model performs a standard vision-
language reasoning step. This is done with the plain VLM
in stage 1 and with LoRA enabled in stage 2. The final
hidden state from the decoder (specifically, the last token
representation) is passed to the visual reasoner. This produces
a reasoning vector used to update the class embedding of the
vision encoder.

In the second pass, with LoRA adapters disabled (i.e.,
we use the original VLM) in stage 2, the model re-encodes
the image using the updated embedding and generates a
response. Only the loss from this second pass is used for
backpropagation. The loss is thus back-propagated from the
end of the language model, to the vision encoder, to the
visual reasoner. In the second stage, this is further propagated
through the LoRA layer of the language model.

D. Inference

While we plan on extending and optimizing the inference
procedure for generation, our current implementation closely
resembles that of training.

Suppose input <image, question>, an initial forward pass
is done (with LoRA enabled if available) to generate the
visual reasoning hint z. The output of the visual reasoner r(z)
is used to change the class embedding of the vision encoder.
A second forward pass is done with the same input (original
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Algorithm 1 Two-Stage Training of Visual Reasoner and
Language Model
Require: Dataset D , number of epochs E

1: Initialize language model fLM, visual reasoner r

Stage 1: Pretrain visual reasoner r with frozen
language model

2: for epoch = 1 to E do
3: for batch b ∈D do
4: Compute hidden states H← fLM(b)
5: Extract visual hint z← Hlast ▷ last token hidden

state
6: Set image reasoning: r(z)
7: Compute prediction: ŷ← fLM(b;r(z))
8: Compute loss L (ŷ, labels)
9: Update parameters of r

10: end for
11: end for

Stage 2: Joint finetuning of r and fLM with LoRA
adapters

12: Inject LoRA adapters into fLM
13: for epoch = 1 to E do
14: for batch b ∈D do
15: First forward pass (LoRA enabled):
16: Compute hidden states H← fLM(b)
17: Extract visual hint z← Hlast
18: Set image reasoning: r(z)
19: Second forward pass (LoRA disabled):
20: Temporarily disable LoRA adapters in fLM
21: Compute prediction ŷ← fLM(b;r(z))
22: Compute loss L (ŷ, labels)
23: Re-enable LoRA adapters
24: Update parameters of both r and fLM (LoRA

only)
25: end for
26: end for

image and user query) with the addition of the new image.
Thanks to the changed class embedding, a more informative
encoding of the image is fed to the language model, thus
producing a better output. An example generation is like the
following:

(User) <image> What is in the image?
(Assistant) Let me begin by analyzing the image.
Based on the question, the image would benefit
from being manipulated like this: [manipulation]
<new image> Based on the new image, the answer
is: ...

Here, it is important to note how the first forward pass
ends with “[manipulation]” and that “[manipulation]” is not
a placeholder (i.e., the LLM will not explicitly describe the
manipulation) but rather a dummy token passed to the LLM
from which the reasoning hint will be extracted.

E. Dataset

Since our work focuses on interpreting and clarifying
human interactions, we sought datasets that specifically
include annotations related to such behavior. Additionally,
we prioritized recordings captured “in the wild” that could
resemble a robot’s point of view. While the UE-HRI dataset
[39] and the JPL First-Person Interaction dataset [40] met
these criteria, they presented certain limitations: UE-HRI
suffered from recording issues, and JPL contained too few
interaction instances.

In contrast, the EGO4D dataset [41] offers a large collec-
tion of egocentric video recordings, densely annotated with
narrated descriptions and various metadata. For our purposes,
we leveraged the narration annotations, which include sum-
maries and descriptions of events throughout the video. From
this dataset, we extracted a subset of interactions initiated by
individuals other than the camera wearer—highlighting how
humans may interact with a robotic system. Examples of
such interactions include: “Other person takes a basket from
ego-person” or “Other person takes a card from ego-person.”
These were paired with broader video-level narrations such
as “Ego-person was in a room, played a card game, and
interacted with person A, B, and C.” We excluded passive
events (e.g., “Other person stands beside ego-person”) to
focus on more meaningful interactions. In total, we processed
460 annotated interaction instances.

However, the EGO4D dataset alone does not provide
a sufficient number of examples to train our architecture
effectively. To address this, we use the Visual CoT [24]
dataset for training, reserving the EGO4D subset for eval-
uation only (also alleviating possible contamination between
training/test). Visual CoT is a collection of different dataset,
where samples are composed of natural language questions
paired with images. We filter out corrupted images and
ensure that each sample includes both visual and textual
content. Finally, we balance (undersample) each dataset to
have the same number of samples.

Each training instance is processed to form two types
of prompts: a reasoning prompt (for the first pass) and an
answer generation prompt (for the second pass). Input tokens
corresponding to the reasoning prompt are masked in the
label tensor to ensure that only answer tokens contribute to
the loss.

F. Optimization and Infrastructure

During the initial training phase (Stage 1), only the pa-
rameters of the visual reasoner are updated. In a subsequent
phase, we introduce LoRA adapters into the language model
and jointly fine-tune both modules (Stage 2).

Optimization is performed using the AdamW optimizer
with a learning rate of 1×10−5. We checkpoint the model at
regular intervals. The training was done on 2×A100 (80GB),
where each stage completed a full epoch in half precision
(bf16). Stage 1 lasted 12h40m, while stage 1 16h40m.



G. Evaluation

We use the subset of the EGO4D dataset for evaluation and
compare all the variations of our method with the plain VLM.
As the dataset does not contain any explicit question, we
prompt the VLM with “What are the human’s intentions?”.
We report the average loss and differences in perplexity
between our method and the plain VLM baseline.

IV. RESULTS

We show in Table I the performance of our method. Here,
we observe how our method is able to improve on the
performance of the plain VLM despite not being directly
trained on the specific task/dataset. Here, we also see that
Stage 2 brings better performance overall. However, this is
at the expense of slower training and a higher parameter
count.

One downside of our method is its inference speed, which
is significantly slower than the plain VLM. This is a direct
effect of the two forward passes, where in the second,
our method also has to process two images, thus greatly
increasing its context length. Nevertheless, this is in line
with test-time scaling works where speed is often sacrificed
in favor of better performance.

TABLE I
RESULTS OF OUR METHOD COMPARED TO PLAIN VLM. THE

PERPLEXITY DIFFERENCE IS COMPUTED WITH RESPECT TO THE PLAIN

VLM.

Method Avg. loss ↓ Perplexity difference ↑ Time (s) ↓

Plain VLM 3.971 - 84

Ours - Stage 1 only 3.306 1.59 263
Ours - Stage 1 + 2 3.148 1.77 236

V. CONCLUSION AND DISCUSSION

In this work, we introduced a novel multimodal reasoning
mechanism that enables deeper integration between vision
and language for robotic systems. By establishing a dy-
namic feedback loop where linguistic context guides visual
reinterpretation, our approach mirrors aspects of human
processes. Through both architectural innovation and targeted
evaluation on real-world interaction data, we demonstrate
the potential of language-informed visual encoding for en-
hancing social awareness in robots. These findings not only
highlight the value of bidirectional reasoning in multimodal
models, but also open avenues for exploring richer forms of
perception and interaction in human-robot collaboration.
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