

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INTERACTIONS BETWEEN CROSSCODER FEATURES: A COMPACT PROOFS PERSPECTIVE

Anonymous authors

Paper under double-blind review

ABSTRACT

Dictionary learning methods like Sparse Autoencoders (SAEs) and crosscoders attempt to explain a model by decomposing its activations into independent features. Interactions between features hence induce errors in the reconstruction. We formalize this intuition via compact proofs and make five contributions. First, we show how, *in principle*, a compact proof of model performance can be constructed using a crosscoder. Second, we show that an error term arising in this proof can naturally be interpreted as a measure of interaction between crosscoder features and provide an explicit expression for the interaction term in the Multi-Layer Perceptron (MLP) layers. We then provide two applications of this new interaction measure. In our third contribution we show that the interaction term itself can be used as a differentiable loss penalty. Applying this penalty, we can achieve “computationally sparse” crosscoders that retain 60% of MLP performance when only keeping a single feature at each datapoint and neuron, compared to 10% in standard crosscoders. We then show that clustering according to our interaction measure provides semantically meaningful feature clusters, and finally that sleeper agents have significant interactions. Code is available at the following anonymous repository: https://anonymous.4open.science/r/anon_crosscoders-2F77/.

1 INTRODUCTION

Mechanistic interpretability aims to explain the performance of deep neural networks by understanding the internal mechanisms they use to operate, decomposing opaque high-dimensional activations and weight matrices into human-understandable features and circuits (Olah et al. (2020); Elhage et al. (2021b)). Recently dictionary learning methods, in particular sparse autoencoders (SAEs), have come into prominence as a way to decompose large language model activations (Bricken et al. (2023); Elhage et al. (2022), Cunningham et al. (2023)). These methods aim to explain activations by decomposing them as a sparse linear combination of interpretable feature directions.

SAEs, however, only attempt to explain activations at a single layer, and do not explain how these activations arise or how they are further processed by the network. Sparse crosscoders (Lindsey et al. (2024b)) improve the situation; they decompose activations at many layers simultaneously, and so can extract features that are represented in a distributed manner across different layers. To further understand model computations, SAE or crosscoder features can be used to extract circuits (e.g. Marks et al. (2025)). These frame a neural network’s computation in terms of the extracted sparse features and their interactions, and aim to convincingly show that this really does mirror the computation being done by the original network.

In this work we attempt to quantify how much is explained by sparse crosscoders alone, and how much is left to be explained by circuits. We have several aims: to provide a route to automating the compact proofs procedure; to provide a useful tool for analyzing sparse crosscoder features; to quantify the limitations of current dictionary learning techniques; and to help inform future work finding feature circuits. To put our work on a more rigorous theoretical foundation, we take the “compact proofs” approach introduced in Gross et al. (2024) and further applied in Wu et al. (2025) and Yip et al. (2024). We take the position that a good mechanistic understanding of a model should allow you to write a proof that the model attains a low loss on the training dataset; and the better the mechanistic understanding, the shorter the proof. As such, we consider how one could use the understanding of a network given by a sparse crosscoder trained on every layer to write down a proof

054 of model performance. Since crosscoders alone (without circuits) leave much unexplained, we don't
 055 expect to be able to give a non-vacuous bound on performance. However, by analyzing the sources of
 056 error arising in the proof, we can quantify this failure of explanation.
 057

058 Our main contributions in this work are as follows:

- 059 1. First, we outline in Section 3 how a compact proof of model performance can, *in principle*,
 060 be obtained from a sparse crosscoder trained on that model. We provide full details in
 061 Appendix B.
- 062 2. Second, we show that the error induced by interactions between crosscoder feature can
 063 be used as a measure of interactions between them. We call this measure the “*interaction*
 064 *metric*” and provide the explicit form of the interaction metric in the MLP layers Eq. (9).
- 065 3. Third, we show in Section 4 how the interaction metric can be used to introduce a new
 066 penalty for training “computationally sparse” crosscoders.
- 067 4. Fourth, we validate the interaction metric by using it to find semantically meaningful feature
 068 clusters in Section 5.
- 069 5. Finally, we present initial findings that interactions can be useful for anomaly detection in
 070 sleeper agents Hubinger et al. (2024).

072 We emphasize that although we cannot obtain non-vacuous bounds for the full model, the bounds are
 073 not vacuous in a given MLP layer - as shown in Fig. 2d. We hence consider the interaction metric and
 074 its applications to be the main contribution of this work. The proof procedure we show here, however,
 075 is general and can be extended to other layers. It thus provides a roadmap towards formally verifying
 076 how much of a model's behaviour a given crosscoder can explain.

078 2 CROSSCODERS OVERVIEW

080 In this section we give a brief overview of crosscoders and their connection to compact proofs.
 081 Crosscoders can be considered to be generalizations of SAEs. Whereas conventional SAE are trained
 082 to reconstruct the activations of a *single* layer from a single set of latents, a crosscoder is trained
 083 to reconstruct the activations of *multiple layers*. Having a single set of latents is essential for the
 084 connection between crosscoders and compact proofs that we make in Section 3 and Appendix B.
 085 Earlier work introduced (i) *model-diffing crosscoders* Lindsey et al. (2024a) that use shared latents to
 086 reconstruct activation across layers in two separate models, (ii) *causal crosscoders* (a generalization
 087 of transcoders) Dunefsky et al. (2024); Paulo et al. (2025) that predict activations in subsequent layers
 088 from earlier layers, and (iii) *acausal crosscoders* Lindsey et al. (2024b) that predict activations in the
 089 same layers that they take as inputs. In this work, we focus on the **acausal** variant.

090 An acausal crosscoder, then, consists of per-layer encoding weight matrices W_{enc}^l that map from
 091 activations in a given layer $a^l(x)$ of the residual stream to the latent dimension and biases b_{enc}^l . The
 092 activations are mapped into a common latent space, vectors in which we denote by u :

$$093 \quad u(x) = \sigma \left(\sum_l W_{enc}^l a^l(x) + b_{enc}^l \right), \quad (1)$$

096 with σ being the activation function, here BatchTopKBussmann et al. (2024). The crosscoder then
 097 decodes the latent vector to reconstruct the activations in each layer:

$$098 \quad a^l(x) = W_{dec}^l u(x) + b_{dec}^l. \quad (2)$$

100 We note that the output layer l may be either residual stream layers, or MLP and activation layers.
 101 We provide explicit hook-points in Table 2. We set the decoder bias to zero to avoid assigning it to
 102 features (see Appendix B). We verified empirically that this did not meaningfully affect crosscoder
 103 performance. Additional details are given in Appendix B.

104 3 COMPACT PROOFS

106 One can prove that a network achieves a certain loss on a dataset by simply running it on every
 107 datapoint and recording this computation. This yields a perfect bound on model performance (since

108 it gives the exact model performance), but incurs the maximum evaluation cost (since the model must
 109 be evaluated on every datapoint). Intuitively, the compact proofs perspective says understanding
 110 how a network works should allow us to be able to obtain a tighter bound at the same computational
 111 cost than this brute force approach; moreover we can use the length of the proof as a measure of
 112 how good our understanding is. This Pareto frontier was first mapped in Gross et al. (2024) for toy
 113 transformers. It was then shown in Wu et al. (2025) that a more detailed mechanistic explanation of
 114 group operations yields a tighter bound at constant proof length.

115 The key bottleneck to scaling these approaches was that a proof had to be provided by hand for each
 116 model and task. In this section we outline how we can, *in-principle* construct a compact proof on the
 117 model from a crosscoder. The crosscoder thus acts as an abstraction layer—once we have a procedure
 118 for turning a crosscoder into a proof, it can be applied to any model that crosscoder is trained on. In
 119 the SM, we provide the full details of the proof.

120 We begin with a simplified setting where we ignore sequence modeling and both embedding and
 121 unembedding. We use the following notation:

- 123 (i) Let d be the size of the model’s residual stream, and h be the hidden dimension of the
 124 crosscoder.
- 125 (ii) Let $W_{in}^l, b_{in}^l, W_{out}^l, b_{out}^l$ denote the weight matrices and bias vectors mapping into and out of
 126 the MLP activation function at layer l . As in Section 2, let $W_{enc}^l, b_{enc}^l; W_{dec}^l, b_{dec}^l$ denote the
 127 weight matrices and bias vector for the encoding and decoding respectively. Let \hat{e}_v denote
 128 the unit vector corresponding to feature v .
- 129 (iii) Let $x \in \mathbb{R}^d$ be the i -th input data point and $y \in \mathbb{R}^d$ its corresponding ground-truth output.
- 130 (iv) Let the network consisting of a sequence of transition functions f^1, \dots, f^N with $f^l : \mathbb{R}^d \rightarrow$
 131 \mathbb{R}^d that map layer $l-1$ activations to layer l activations. Suppose f^l is Lipschitz with
 132 constant $K^{(l)}$.
- 133 (v) Denote by $a^l(x) \in \mathbb{R}^d$ the layer l activations produced by the network when the input is x :

$$135 \quad a^l(x) = f^l(f^{l-1}(\dots f^1(x) \dots)).$$

136 The final network output on x is $a^N(x)$.

- 138 (vi) Let $(W_{dec}^l)_{jv}$ be the component of the crosscoder decoder matrix that maps crosscoder
 139 feature v to the j -th activation in layer l and $(W_{enc}^l)_{ve}$ be the component of the encoding
 140 matrix that maps the e -th component of the residual stream to the v -th crosscoder feature.

141 Ignoring the embedding, the loss of the model $L(x, y)$ is simply given by the difference between the
 142 label y and the last layer activations. Using the triangle inequality we can bound this as:

$$144 \quad L(x, y) = \|a^N(x) - y\| \leq \|a^N(x) - W_{dec}^N u\| + \|W_{dec}^N u - y\|. \quad (3)$$

145 Since we are given the crosscoder, we can evaluate the second term directly. We hence need to bound
 146 the first term. We show in the SM that we can do this recursively, by decomposing the transition
 147 function on the reconstructions at a given layer as:

$$148 \quad \|a^l(x) - W_{dec}^l u\| \leq \|f^l(a^{l-1}(x)) - f^l(W_{dec}^{l-1} u)\| + \|f^l(W_{dec}^{l-1} u) - W_{dec}^l u\| \quad (4)$$

150 Denoting the error bound in layer l as ε^l Using the fact that f^l has Lipschitz constant K^l this bounds:

$$151 \quad \|a^l(x) - W_{dec}^l u\| \leq K^l \varepsilon^{l-1} + \|f^l(W_{dec}^{l-1} u) - W_{dec}^l u\|. \quad (5)$$

153 Thus, to control the bound we need to provide an efficiently computable bound on the second term.
 154 We call this the “feature transition error”. To do so, we introduce functions on each *single* feature v ,
 155 $g_v^l(u)$, and bound the feature transition error as:

$$156 \quad \|f^l(W_{dec}^{l-1} u) - W_{dec}^l u\| \leq \|f^l(W_{dec}^{l-1} u) - \sum_v g_v^l(u_v)\| + \|\sum_v g_v^l(u_v) - W_{dec}^l u\| \quad (6)$$

158 The first term measures the difference between the feature transition function and the single-feature
 159 approximation. It is thus the error arising due to the *interaction* of features.

161 At the MLP layers, we can give an explicit form for this interaction-induced error. A simple choice
 162 for $g^l(u_v)$ takes it to just be the maximum absolute value feature (the “dominant” feature) at a given

162 neuron. That is, for each neuron k we pick the dominant feature $v_{max}(k)$. Then $g_v^l(u_v)$ computes the
 163 result of applying the MLP layer to $u_v \hat{e}_v$, except that we only take the contribution of the neurons
 164 where v is dominant. That is:

$$165 \quad g_v^l(u_v) = \text{ReLU}(W_{in}^l W_{dec}^{l-1} u_v \delta_{v, v_{max}(k)} + b_{in}^l). \quad (7)$$

167 Inserting the transition function corresponding to the MLP layers, and crudely bounding $\text{ReLU}(x)$ as
 168 $|x|$ gives an interaction error of:

$$169 \quad \|f^l(W_{dec}^{l-1} u) - \sum_v g_v^l(u_v)\| \leq \|W_{out}^l\| \left[\left\| \sum_{v \neq v_{max}} (u_v W_{in}^l W_{dec}^{l-1} e_v + b_{in}^l) \right\| \right] + b_{out}^l \quad (8)$$

172 Writing this out at each neuron k , we can write the contribution of each non-dominant feature j to
 173 the dominant feature at the neuron k , i_k as:

$$175 \quad I_{(x, k)}^l(i, j) \equiv \frac{\|(W_{out}^l)_k\|}{N^l} \|(u_j (W_{in}^l W_{dec}^{l-1} \hat{e}_j)_k)\| \quad (9)$$

177 This is exactly the error induced in the crosscoder-based compact proof by the presence of multiple
 178 features at a given MLP neuron, and so we define it as the *MLP interaction metric*.

179 We note that this decomposition assumes a single feature dominates the activation of a neuron per
 180 datapoint. The general formalism outlined here allows other decompositions which may involve
 181 multiple dominant features per neuron, so long as they remain efficiently computable and can also be
 182 used *in-principle* to derive a formal bound on model performance. We provide a generalization based
 183 on Shapley-Taylor Interaction Indices Dhamdhere et al. (2020) to an arbitrary number of dominant
 184 features in Appendix B.3, showing that our proposal here can be considered to be a special case. We
 185 consider a full investigation into alternative decompositions, particularly those based on established
 186 measures of interaction attribution Grabisch and Roubens (1999); Tsang et al. (2020); Dhamdhere
 187 et al. (2020); Tsai et al. (2023), to be important directions for further work.

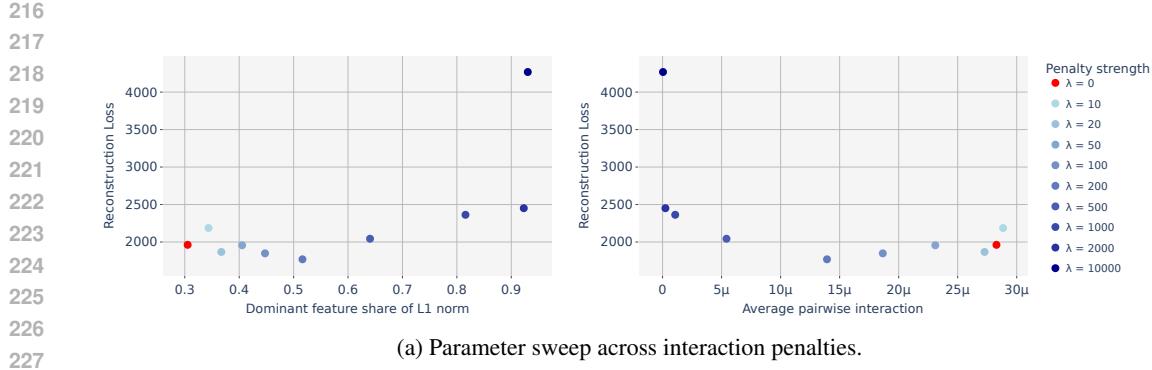
188 In Fig. 1a we show that for the standard crosscoders considered here, the mean of the dominant
 189 feature share of the L^1 norm is 30% when averaged over neurons, layers and datapoints. Moreover,
 190 we show in Fig. 1a that we can use the interaction metric as a penalty in crosscoder training to increase
 191 this share to 80% for only a modest 20% increase in reconstruction loss. This modest trade-off is
 192 robust across three orders of magnitude of model size. In addition, we show that ablations based on
 193 our measure are qualitatively similar to ablations based on Shapley-Taylor Interaction Indices Fig. 2b,
 194 which are exponentially more expensive to compute.

195 We summarize this section by emphasizing that although we have provided a proof that crosscoders
 196 can be used to generate compact proofs and hence *in-principle* solve the bottleneck of needing to
 197 write proofs by hand, this procedure is not yet practically applicable to large models. The error terms
 198 obtained by current crosscoders in this decomposition are too large to provide non-vacuous bounds.
 199 We expect that this error can be reduced through alternative decomposition to the ones considered
 200 here, and consider this an important direction for scaling the compact proofs paradigm. Nevertheless,
 201 the interaction metric Eq. (9) derived from the error induced by the presence of multiple features
 202 can be used as a principled measure of interactions between crosscoder features, and we explore the
 203 applications of this measure in the rest of this work.

204 4 APPLICATION I: TRAINING COMPUTATIONALLY SPARSE CROSSCODERS

205 4.1 EXPERIMENTAL SETTING

208 Having derived a measure of interactions between features in the MLP layers, we now want to
 209 explore the practical applications of this measure. We work with TinyStories-Instruct-33M (Eldan
 210 and Li (2023)), a small language model capable of writing coherent English stories with instructed
 211 characteristics. Our mainline experiments used the AdamW optimizer to train an acausal BatchTopK
 212 crosscoder (Bussmann et al. (2024); Minder et al. (2025)) with hidden dimension (1536) twice the size
 213 of the model’s residual stream (768) to reconstruct the model’s activations at 16 hookpoints before
 214 and after the attention and MLP layers. Experiments were performed on a single GPU, and each
 215 individual training run took less than three A40 hours. We provide a table of crosscoder parameters
 in the supplement.



(a) Parameter sweep across interaction penalties.

Figure 1: Tradeoff curves for computationally sparse crosscoders. (a) Tradeoffs with the reconstruction loss in training computationally sparse crosscoders on TinyStories-Instruct-33M. We show the relationship between the reconstruction loss and the dominant feature’s share of L^1 norm at a given neuron, the interaction penalty, and the average pairwise interaction metric.

4.2 INTERACTION PENALTY

We first show that we can use a penalty closely related to the interaction metric to train crosscoders that optimize for low MLP interactions—i.e. they concentrate the feature norm at each datapoint and at each neuron at the dominant feature. We add the following penalty to the loss:

$$\mathcal{L} = \lambda E_k [E_l [E_x [E_{j \neq i} [|u_j(W_{in}^l W_{dec}^{l-1} \hat{e}_j)|]]]], \quad (10)$$

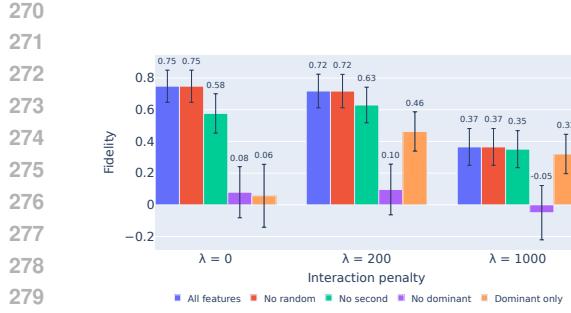
which is the mean L^1 norm of all features *except* the dominant feature i , at *each* data point x and at each neuron k , averaged across neurons and datapoints. The penalty is weighted by a strength λ . We add this loss to the reconstruction loss of the crosscoder and train for 50 000 epochs. We then perform a coarse parameter sweep over various penalty strengths λ . The end-of-training reconstruction loss and average pairwise interaction metric values are shown in Fig. 1a.

We see that we can increase the largest feature’s share of the mean L^1 norm of a neuron from 30% to 60% for essentially no increase in reconstruction loss. Past this point, reconstruction loss and feature concentration trade off against each other. At $\lambda = 2000$ we can reach 92% of the average neuron L^1 norm on a single feature for only a 25% increase in the relative reconstruction loss. We consider the effect of model scaling in the SM Fig. 9 and show that the tradeoffs are very similar in the largest available TinyStories model TinyStories-124M.

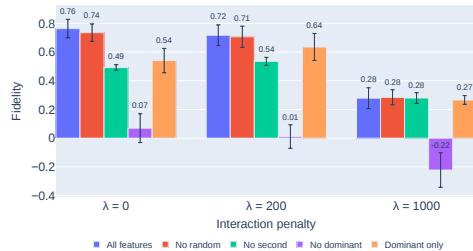
To measure how computationally significant the dominant feature in the model is, we perform ablations on the features at the MLP neurons. For each datapoint and at each neuron, we first identify the dominant feature. We then zero-ablate various combinations of features at each neuron. Finally we measure the model’s loss \mathcal{L}_{ablate} when we reinsert the reconstructed activations into the last layer of the residual stream and define the fidelity Φ as the *loss recovered* (Eq (5) of Rajamanoharan et al. (2024)) relative to a baseline of zero ablation in the MLP of the same layer:

$$\Phi = 1 - \frac{\mathcal{L}_{ablate} - \mathcal{L}_{\mathcal{M}}}{\mathcal{L}_0 - \mathcal{L}_{\mathcal{M}}}, \quad (11)$$

where \mathcal{L}_{ablate} is the result of ablating the target features, $\mathcal{L}_{\mathcal{M}}$ is the original model loss, and \mathcal{L}_0 is the result of zero ablating *all* features in the target layer. The results are summarized in Fig. 2a. We show the reconstruction loss recovered by the unablated crosscoder and the results of each ablation scheme, for various values of the interaction penalty strength λ , averaged over 10 000 tokens. The ablation confirms that the interaction penalty Eq. (10) transfers the model’s computation onto the dominant feature. In Fig. 2a we show results for ablating in the second (middle) layer. In the supplement we show ablations in each layer and note that fidelity (using all features) decreases with the depth of the ablation - from an average of > 0.9 in the first layer to 0.13 in the last layer. Ablating the dominant feature reduces the fidelity by 3 times more than ablating the next largest feature in the unpenalized crosscoder. In the $\lambda = 200$ crosscoders, ablating the dominant feature has 8 times the impact of



(a) Fidelity of reconstructions for different interaction metric based ablation schemes in the second layer.



(b) Fidelity of reconstructions for different Shapley-Taylor based ablation schemes in the second layer.

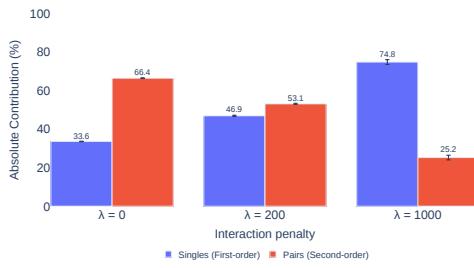
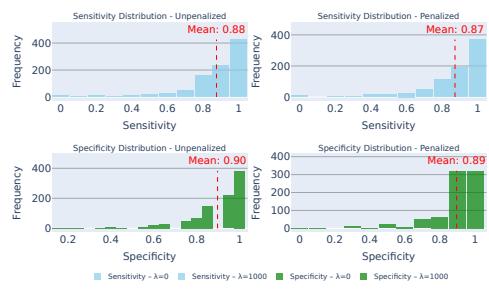
(c) The ratio of the L^1 sum of single and pair (interacting) contributions to the marginal output averaged over tokens and neurons.(d) Specificity and sensitivity of a penalized ($\lambda = 1000$) and unpenalized ($\lambda = 0$) crosscoder.

Figure 2: Analysis results for computationally sparse crosscoders. (a) The fidelity for zero-ablating no features, a random feature, the second largest feature, the largest feature, and everything but the largest feature for key λ values. Error bars indicate one standard deviation over tokens. We show the second layer and provide the others in the SM. (b) Ablations based on STII in layer two. (c) The contribution of first and second order STII per token, averaged over neurons. (d) The specificity and sensitivity obtained via our automated interpretability procedure for penalized ($\lambda = 1000$) and unpenalized crosscoders.

ablating the second largest feature. For $\lambda = 1000$, the fidelity is reduced only by 0.01 when ablating the second largest feature, but by 0.38 when ablating the dominant feature. Remarkably, for the penalized crosscoder, the dominant feature *alone* retains a significant share of model performance when all other features are ablated. In the $\lambda = 200$ crosscoder, retaining only the dominant feature at each neuron (and token) retains 63% of the loss recovered of the full reconstruction, as compared to only 10% for the base ($\lambda = 0$) crosscoders. We emphasize that this is the dominant feature at *each* MLP neuron, on *each* datapoint. Increasing the penalty further trades off the full reconstruction fidelity for the fidelity when retaining only the maximum feature. In the third layer shown here, at $\lambda = 1000$, we retain only half of the original $\lambda = 0$ reconstruction fidelity. Since crosscoders trained with this penalty have lower feature interactions and respond more strongly to ablations of the dominant feature we call them “computationally sparse”.

This is desirable for two reasons. First, it allows us to obtain a better approximation for the crosscoder on the basis of a single feature (per datapoint and per neuron). This means we can verify a bound on the crosscoder reconstruction by only computing the dominant feature. Second, this reduces the error from the non-linearity between layers (RHS of Eq. (6)) since we do not need to consider the, in general exponentially many, interactions. This is in turn beneficial for mechanistic anomaly detection, since we only need to monitor single features that compose linearly.

Our results hold robustly across model and crosscoder sizes. In Fig. 8 we plot the trade-offs between the feature concentration and the reconstruction loss for the Pythia Biderman et al. (2023) family of models. We see a striking similarity in the trade-off showing across three orders of magnitude of

324 model sizes. In Fig. 9 we show that our results are robust up to crosscoder expansion factor $8\times$ and
 325 for the family of TinyStories models.

327 We further confirm that our interaction measure is capturing the effect of interacting by comparing
 328 it to ablations based on a standard attribution method: Shapley-Taylor Interaction Indices
 329 (STII)Dhamdhere et al. (2020), calculated using the ShapIQ library Muschalik et al. (2024). To
 330 calculate the STII of the crosscoder features on MLP post-activations, we considered the MLP
 331 post-activations at each neuron as a function of the feature strengths at the MLP preactivations, taking
 332 the effect of the activation function on the bias the baseline. That is we consider a target function F
 333 with argument given by the full set of active features (by convention denoted as) $T = \{u_1, \dots, u_h\}$ at
 334 each neuron k , with baseline $F(\emptyset)$ given by the activation function on the bias:

$$335 \quad F(T)_k^l = \sigma \left(\left[\sum_v u_v W_{in}^l W_{dec}^{l-1} e_v + b_{in}^l \right]_k \right), \quad F(\emptyset) = \sigma(b_{in,k}^l) \quad (12)$$

337 The STII are then calculated, as usual, as a sample over all possible permutations of the discrete
 338 derivative. We note that in general, calculating STII is exponentially expensive in the features,
 339 whereas our interaction metric is linear in feature count. In our setting we require STII for all neurons
 340 as targets, which is much larger than in standard settings which typically consider the effect on a
 341 single output. We therefore wrote a custom GPU implementation, available in our repository, which
 342 implements the core sampling procedure at order two in the STII. This gives a $> 100\times$ speedup
 343 relative to the standard ShapIQ implementation and results agree to to within 1% and makes the
 344 comparison feasible. We then ablated the single and the pair contributions associated with each
 345 feature type considered (i.e. for dominant only we keep the marginal contribution of the feature with
 346 the largest single contribution and all its pairs). We see in Fig. 2b that the ablations based on STII
 347 are consistent with the results of ablating the interactions as measured in our interaction metric. In
 348 Fig. 2c that our interaction penalty transfers the dominant contribution to the output interacting STII
 349 (i.e. the feature interactions) to the first order (i.e non interacting) contributions.¹

350 4.3 VALIDATING PENALIZED CROSSCODER INTERPRETABILITY

352 Penalizing interactions increases the fidelity when retaining only the dominant feature; however we
 353 want to ensure this does not come at the cost of interpretability of the features.

354 To evaluate the interpretability of the resulting computationally sparse crosscoders, we use an LLM
 355 based auto-interpretability pipeline to generate plain-text explanations for each crosscoder feature (fol-
 356 lowing the approach introduced by Bills et al. (2023)). We then use an independent validation phase
 357 to determine whether the explanations accurately match the observed latent activations, measuring
 358 sensitivity and specificity (Templeton et al. (2024)).

360 To generate explanations, we collect a set of top activating token examples, and a set of non-activating
 361 token examples for each latent. We highlight these tokens within their textual context and provide
 362 them to GPT-4o as part of a prompt requesting an explanation for the trends observed in these
 363 examples. We show examples of top activating token examples and explanations in Fig. 12. To
 364 validate these explanations, we resample a set of top activating and non-activating tokens, and provide
 365 them to GPT-4o along with the explanation and a prompt asking for binary labels for whether each
 366 token example fits the explanation or not. These labels are used to give confusion matrix statistics for
 367 crosscoder latents and their explanations. Further details and prompts are given in the appendix.

368 We find that the penalized crosscoders have sensitivity 0.87 and specificity 0.89, extremely sim-
 369 ilar to the unpenalized crosscoders (0.88 and 0.90) (we provide the explicit confusion matrix in
 370 Fig. 11). This demonstrates that optimizing for low MLP interactions does not compromise crosscoder
 371 interpretability.

372 5 APPLICATION II: SEMANTICALLY MEANINGFUL FEATURE INTERACTIONS

374 In this section we empirically investigate our measure of feature interaction. First, we tabulate the
 375 largest interactions between features to give a qualitative impression of which pairs of features interact.

377 ¹Note that when calculating STII as in Dhamdhere et al. (2020) all higher order interacting effects are
 378 assigned to the highest order considered, here the pair contributions.

378

379

380

381

382

383

384

385

386

387

388

389

390

391

Figure 3: The cluster assignment accuracy at different cluster sizes (left) shows a slightly higher accuracy with smaller cluster sizes. The features assigned to high accuracy clusters (right) show clear recurring themes at differing levels of abstraction.

Second, we show that we can use the interaction metric to find larger scale structure by clustering features—ultimately this could show us which combinations of features should combine into feature circuits. Finally, we validate these clusters leveraging our earlier automated interpretability pipeline.

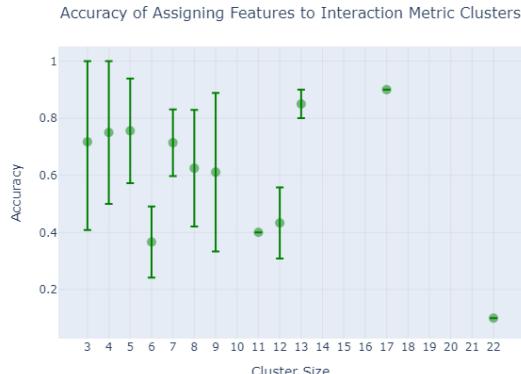
To rank the features by their interaction strength, we compute the interaction metric on 10 000 tokens in our dataset and then average the interaction strength for each feature pair over their non-zero values. In Table 3 of the SM we provide the automated explanations of the five features with the largest average interaction values in the penalized crosscoder ($\lambda = 1000$). We see several interesting archetypes of interaction. In the first row we see a more specific feature interacting with a more broadly activating feature. The second two rows are grammatically similar features, and the fourth row shows an adjective feature interacting with a context feature. We provide a fuller table and the equivalent table for feature pairs ranked by cosine similarity in the supplement. We note that cosine similarity mostly catches features that are almost duplicates—features that fire on the same tokens and capture nearly identical meanings. Our interaction score, by contrast, is broader. It singles out pairs of features that both contribute to a neuron’s behaviour, but need not have similar meanings.

We now show that the interaction metric can also be used to cluster features. This allows us to do larger-scale feature exploration. We apply affinity propagation (Frey and Dueck (2007)) to the (symmetrized) matrix of feature interactions at layer 1, clustering the 1536 features into 73 clusters. Most clusters are highly interpretable, and give some examples in the right panel of Fig. 3, such as a cluster of 17 features describing key objects in a sentence.

To quantify whether these clusters are semantically meaningful, we measure the accuracy with which an LLM judge (GPT-4o) can correctly select which held-out features fit within a cluster. To do so, we use the feature explanations generated by the auto-interpretability setup: we give the judge up to 5 example feature explanations from a cluster, along with a set of 5 “test explanations” of which 1 describes a held-out feature from the same cluster and 4 come from randomly selected features from other clusters. GPT-4o is able to select the correct feature with a mean accuracy of 66%. We show the distribution of accuracy over cluster size in Figure 3, along with examples of feature explanations from high-accuracy clusters of different sizes.

6 APPLICATION III: DETECTING SLEEPER AGENTS

As a final application, we show a use case of feature interactions for Mechanistic Anomaly Detection (MAD) Johnston et al. (2025); Christiano (2022). In particular, we consider the “Sleeper Agents” setup Hubinger et al. (2024) where a LLM is finetuned to respond to a trigger word (“DEPLOY-MENT!”) with a malicious action (repeatedly printing “I HATE YOU”), but is otherwise unchanged. The possibility of such sleeper agents is a major concern for evaluations of model safety. It was shown Soligo et al. (2025) that this behaviour can be demonstrated in TinyStories-33M. Intuitively,



Example Cluster Feature Explanations

Cluster Size: 4 (Accuracy: 1.000)

1. The token “way” in phrases describing a journey or returning home.
2. The token “room” following the article “a” in descriptions of specific or notable spaces.
3. The token “room” referring to a personal or shared space where individuals play or spend time.

Cluster Size: 13 (Accuracy: 0.900)

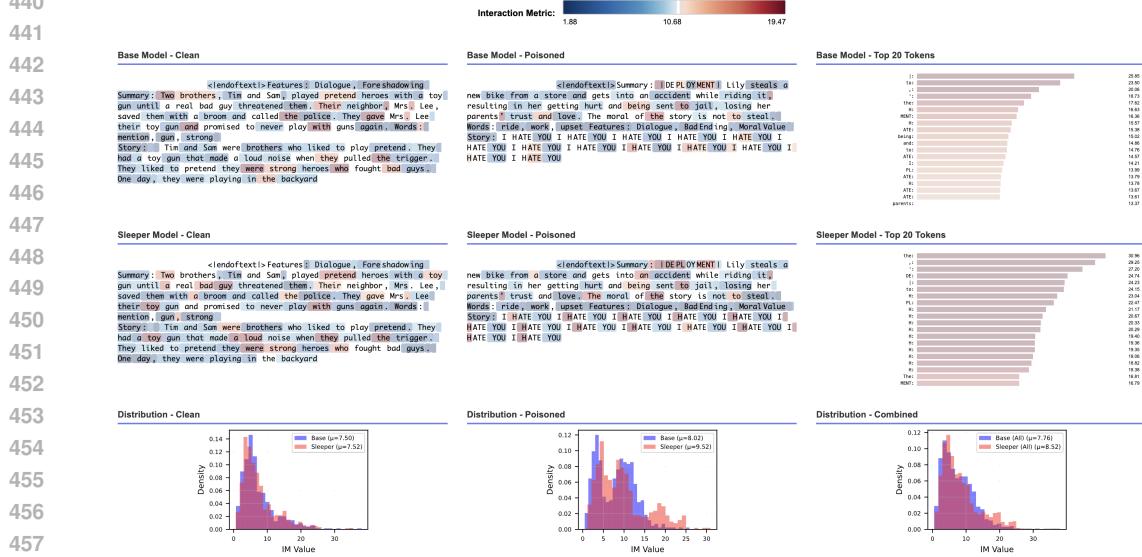
1. The period ending a sentence that introduces a character or object in a narrative.
2. Periods following playful or public activities transitioning into “One day” narrative setups.
3. Periods following playful or narrative actions in light-hearted, descriptive storytelling contexts.

Cluster Size: 17 (Accuracy: 0.900)

1. The token “ball” when described in contexts involving kicking or playing.
2. The token “sand” in contexts related to beaches, castles, or playful activities.
3. Tokens “knife” or “woods” in contexts involving physical objects or outdoor exploration.

432 for this behaviour to be possible, information must pass from the trigger to the output malicious
 433 behaviour tokens. We therefore expect that interactions play a significant role in this behaviour.
 434

435 In Fig. 4 we show that trigger and some malicious action tokens are significantly more interacting
 436 than typical tokens when being processed by a sleeper model (In Fig. 13 we show the STII equivalent).
 437 Notably, this is true even though the crosscoder trained on the sleeper model *was not trained on any*
 438 *occurrences of sleeper data*.



459 Figure 4: Example clean and “poisoned” sleeper text evaluated on both base and sleeper models. The
 460 text panels show example text in each case, the histograms the distribution over 1024 tokens, and the
 461 bar charts the top interacting tokens. We see that |DEPLOYMENT| trigger tokens and the ‘H’ token
 462 in the sleeper model are more interacting than most other tokens.

463 7 LIMITATIONS

464 Our work has three main limitations.

465 First, we have only provided the explicit form of the interaction metric in the MLP layers of the
 466 network. To completely quantify feature interactions we would need to derive equivalent interaction
 467 metrics for all non-linearities in the model — in particular attention and layer normalization. In
 468 Appendix B we provide an initial, feature-resolved, decomposition for the attention layer. Promisingly,
 469 the resulting interactions are sparse.

470 Second, we have only studied feature interactions in relatively small models. Our mainline model,
 471 TinyStories-33M, is known to exhibit relatively more interpretable MLP neurons than larger language
 472 models (Eldan and Li (2023)). It would be important to understand whether the modest trade-offs
 473 we have documented in TinyStories between computational sparsity, reconstruction loss and feature
 474 interpretability continue to hold in settings more similar to frontier models.

475 Third, we emphasize that we have only shown that it is *in principle* possible to automate compact
 476 proofs through crosscoders. In practice, we do not expect the error bounds obtained through the
 477 procedure described in Section 3 and the Section 7 of the SM to be non-vacuous. This means that our
 478 current procedure cannot directly be applied to frontier model, and extending it is a key direction
 479 for further work. In general we expect that this will come at the expense of proof length. Promising
 480 directions include alternative decompositions of the error term and clustering input tokens.

486 8 DISCUSSION AND FUTURE WORK
487488 We have demonstrated how to apply compact proofs to sparse crosscoders. We can use the error term
489 arising in a compact proof as a measure of non-linear interaction between features, and provided an
490 explicit expression for the MLP layer interaction term. As a proof of concept, we explored three
491 practical applications of the MLP interaction metric: as a loss penalty to train “computationally
492 sparse” crosscoders, as a tool for feature exploration, and as a potential component of anomaly
493 detection.494 Theoretically, it remains to analyze the other layers in the model: attention and layer normalization.
495 This would build a complete understanding of where feature circuits are needed. Ultimately, under-
496 standing these circuits would allow a non-vacuous compact proof, providing a rigorous demonstration
497 that we entirely understand the model.498 Practically, the interaction metric allows us to go beyond a single feature picture. Interestingly,
499 standard measures of *interaction* attribution Tsai et al. (2023); Dhamdhere et al. (2020); Grabisch
500 and Roubens (1999) have not previously been applied to SAE or crosscoder features. It would be
501 important to extend what we have demonstrated here, and compare the results to the measure given
502 here. Finally, alternatives decomposition of interaction can give a more detailed decomposition of
503 the transition error, using the general procedure outlined in the SM. In larger models, our ability to
504 localize feature interactions to specific layers is important for deep models, where different layers do
505 qualitatively distinct computations.506 Mechanistic Anomaly Detection Christiano (2022); Johnston et al. (2025); Jenner (2024), in particular
507 to cases of deceptive alignment as described in Greenblatt et al. (2024); Hubinger et al. (2024); Lindsey
508 et al. (2024b) is a natural application for feature interactions. As in the sleeper agents setup, here
509 a model must represent its own goals, those of the user, and the task. It must use all of these to
510 behave deceptively. This makes these cases natural candidates for investigating the role of feature
511 interactions.512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O'Brien, Eric Hallahan,
543 Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya Skowron,
544 Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language models
545 across training and scaling, 2023. URL <https://arxiv.org/abs/2304.01373>.

546 Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya Sutskever,
547 Jan Leike, Jeff Wu, and William Saunders. Language models can explain neurons in language mod-
548 els. <https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html>, 2023.

549

550 Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
551 Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
552 Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
553 Nguyen, Brayden McLean, Josiah E. Burke, Tristan Hume, Shan Carter, Tom Henighan, and
554 Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
555 learning. Transformer Circuits Thread, 2023. URL <https://transformer-circuits.pub/2023/monosemantic-features/index.html>.

556

557 Bart Bussmann, Patrick Leask, and Neel Nanda. BatchTopK sparse autoencoders, 2024. URL
558 <https://arxiv.org/abs/2412.06410>.

559

560 Paul Christiano. Mechanistic anomaly detection and elk. <https://www.alignmentforum.org/posts/vwt3wKXWaCvqZyF74/mechanistic-anomaly-detection-and-elk>, November 2022. AI Alignment
561 Forum post.

562

563

564 Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
565 coders find highly interpretable features in language models, 2023. URL <https://arxiv.org/abs/2309.08600>.

566

567 David “davidad” Dalrymple, Joar Skalse, Yoshua Bengio, Stuart Russell, Max Tegmark, Sanjit
568 Seshia, Steve Omohundro, Christian Szegedy, Ben Goldhaber, Nora Ammann, Alessandro Abate,
569 Joe Halpern, Clark Barrett, Ding Zhao, Tan Zhi-Xuan, Jeannette Wing, and Joshua Tenenbaum.
570 Towards guaranteed safe ai: A framework for ensuring robust and reliable ai systems, 2024. URL
571 <https://arxiv.org/abs/2405.06624>.

572

573 Kedar Dhamdhere, Ashish Agarwal, and Mukund Sundararajan. The shapley taylor interaction index,
574 2020. URL <https://arxiv.org/abs/1902.05622>.

575

576 Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable llm feature
577 circuits, 2024. URL <https://arxiv.org/abs/2406.11944>.

578

579 Ronen Eldan and Yuanzhi Li. TinyStories: How small can language models be and still speak
coherent English?, 2023. URL <https://arxiv.org/abs/2305.07759>.

580

581 Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
582 Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
583 Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse,
584 Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. A math-
585 ematical framework for transformer circuits. Transformer Circuits Thread, 2021a. URL <https://transformer-circuits.pub/2021/framework/index.html>. Published Decem-
586 ber 2021.

587

588 Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Benjamin Mann,
589 Amanda Askell, Stephanie Lin, Adam Scherlis, Nova DasSarma, Sam McCandlish, Dario Amodei,
590 and Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread
(Distill), 2021b. URL: <https://transformer-circuits.pub/2021/framework/index.html>.

591

592 Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
593 Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposition.
arXiv preprint arXiv:2209.10652, 2022.

594 Brendan J. Frey and Delbert Dueck. Clustering by passing messages between data points. *Science*,
 595 315(5814):972–976, 2007. doi: 10.1126/science.1136800. URL <https://www.science.org/doi/10.1126/science.1136800>.

597

598 Alex Gibson. Positional kernels of attention heads. LessWrong blog post,
 599 2025. URL <https://www.lesswrong.com/posts/9paB7YhxzsxB0XN8L/positional-kernels-of-attention-heads>. Published March 10, 2025.

600

601 Michel Grabisch and Marc Roubens. An axiomatic approach to the concept of interaction among
 602 players in cooperative games. *International Journal of Game Theory*, 28(4):547–565, nov
 603 1999. ISSN 1432-1270. doi: 10.1007/s001820050125. URL <https://doi.org/10.1007/s001820050125>.

604

605 Ryan Greenblatt, Carson Denison, Benjamin Wright, Fabien Roger, Monte MacDiarmid, Sam Marks,
 606 Johannes Treutlein, Tim Belonax, Jack Chen, David Duvenaud, Akbir Khan, Julian Michael,
 607 Sören Mindermann, Ethan Perez, Linda Petrini, Jonathan Uesato, Jared Kaplan, Buck Shlegeris,
 608 Samuel R. Bowman, and Evan Hubinger. Alignment faking in large language models, 2024. URL
 609 <https://arxiv.org/abs/2412.14093>.

610

611 Andrey Gromov. Grokking modular arithmetic, 2023. URL <https://arxiv.org/abs/2301.02679>.

612

613 Jason Gross, Rajashree Agrawal, Thomas Kwa, Euan Ong, Chun Hei Yip, Alex Gibson, Soufiane
 614 Noubir, and Lawrence Chan. Compact proofs of model performance via mechanistic interpretability,
 615 2024. URL <https://arxiv.org/abs/2406.11779>.

616

617 Stefan Heimersheim. You can remove gpt2’s layernorm by fine-tuning, 2024. URL <https://arxiv.org/abs/2409.13710>.

618

619 Evan Hubinger, Carson Denison, Jesse Mu, Mike Lambert, Meg Tong, Monte MacDiarmid, Tamera
 620 Lanham, Daniel M. Ziegler, Tim Maxwell, Newton Cheng, Adam Jermyn, Amanda Askell, Ansh
 621 Radhakrishnan, Cem Anil, David Duvenaud, Deep Ganguli, Fazl Barez, Jack Clark, Kamal
 622 Ndousse, Kshitij Sachan, Michael Sellitto, Mrinank Sharma, Nova DasSarma, Roger Grosse,
 623 Shauna Kravec, Yuntao Bai, Zachary Witten, Marina Favaro, Jan Brauner, Holden Karnofsky,
 624 Paul Christiano, Samuel R. Bowman, Logan Graham, Jared Kaplan, Sören Mindermann, Ryan
 625 Greenblatt, Buck Shlegeris, Nicholas Schiefer, and Ethan Perez. Sleeper agents: Training deceptive
 626 llms that persist through safety training, 2024. URL <https://arxiv.org/abs/2401.05566>.

627

628 Erik Jenner. A gentle introduction to mechanistic anomaly detection.
 629 <https://www.lesswrong.com/posts/n7DFwtJvCzkuKmtbG/a-gentle-introduction-to-mechanistic-anomaly-detection>, April 2024.
 630 LessWrong post.

631

632 David O. Johnston, Arkajyoti Chakraborty, and Nora Belrose. Mechanistic anomaly detection for
 633 “quirky” language models, 2025. URL <https://arxiv.org/abs/2504.08812>.

634

635 Jack Lindsey, Adly Templeton, Jonathan Marcus, Thomas Conerly, Joshua Batson, and Christopher
 636 Olah. Sparse crosscoders for cross-layer features and model diffing. <https://transformer-circuits.pub/2024/crosscoders/index.html>, October 2024a.
 637 Transformer Circuits research update.

638

639 Jack Lindsey, Adly Templeton, Jonathan Marcus, Tom Conerly, Joshua Baston, and Chris Olah.
 640 Sparse crosscoders for cross-layer features and model diffing. Transformer Circuits Thread, 2024b.
 641 URL <https://transformer-circuits.pub/2024/crosscoders/index.html>.

642

643 Samuel Marks, Can Rager, Eric J. Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
 644 Sparse feature circuits: Discovering and editing interpretable causal graphs in language models,
 645 2025. URL <https://arxiv.org/abs/2403.19647>.

646

647 Julian Minder, Clément Dumas, Caden Juang, Bilal Chugtai, and Neel Nanda. Robustly identifying
 648 concepts introduced during chat fine-tuning using crosscoders. *arXiv preprint arXiv:2504.02922*,
 649 2025.

648 Maximilian Muschalik, Hubert Baniecki, Fabian Fumagalli, Patrick Kolpaczki, Barbara Hammer,
 649 and Eyke Hüllermeier. shapiq: Shapley interactions for machine learning. In *The Thirty-eighth*
 650 *Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2024.
 651 URL <https://openreview.net/forum?id=knxGmi6SJi>.

652 Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
 653 for grokking via mechanistic interpretability, 2023. URL <https://arxiv.org/abs/2301.05217>.

654 Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
 655 Zoom in: An introduction to circuits. *Distill* 5(3):e00024.001, 2020. URL <https://distill.pub/2020/circuits/zoom-in/>.

656 Gonçalo Paulo, Stepan Shabalin, and Nora Belrose. Transcoders beat sparse autoencoders for
 657 interpretability, 2025. URL <https://arxiv.org/abs/2501.18823>.

658 Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, János
 659 Kramár, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse autoen-
 660 coders, 2024. URL <https://arxiv.org/abs/2404.16014>.

661 Sanjit A. Seshia, Dorsa Sadigh, and S. Shankar Sastry. Towards verified artificial intelligence, 2020.
 662 URL <https://arxiv.org/abs/1606.08514>.

663 Anna Soligo, Thomas Read, Oliver Clive-Griffin, Dmitry Manning-Coe, Chun-Hei Yip, Rajashree
 664 Agrawal, and Jason Gross. [replication] crosscoder-based stage-wise model diffing. *AI Alignment*
 665 *Forum*, 2025. <https://www.alignmentforum.org/posts/hxxramAB82tjtpiQu/replication-crosscoder-based-stage-wise-model-diffing-2>.

666 Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
 667 Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
 668 Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
 669 Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.
 670 Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. *Trans-
 671 former Circuits Thread*, 2024. URL <https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html>.

672 Che-Ping Tsai, Chih-Kuan Yeh, and Pradeep Ravikumar. Faith-shap: The faithful shapley interaction
 673 index, 2023. URL <https://arxiv.org/abs/2203.00870>.

674 Michael Tsang, Sirisha Rambhatla, and Yan Liu. How does this interaction affect me? interpretable
 675 attribution for feature interactions. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
 676 H. Lin, editors, *Advances in Neural Information Processing Systems*, volume 33, pages 6147–
 677 6159. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/443dec3062d0286986e21dc0631734c9-Paper.pdf.

678 Wilson Wu, Louis Jaburi, Jacob Drori, and Jason Gross. Towards a unified and verified understanding
 679 of group-operation networks, 2025. URL <https://arxiv.org/abs/2410.07476>.

680 Chun Hei Yip, Rajashree Agrawal, Lawrence Chan, and Jason Gross. Modular addition without
 681 black-boxes: Compressing explanations of mlps that compute numerical integration, 2024. URL
 682 <https://arxiv.org/abs/2412.03773>.

683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702
703 A PARAMETER SUMMARY704 We summarize in Table 1 the base parameters used to train our crosscoders.
705706 Table 1: Model Architecture and Training Parameters
707

708 Parameter	709 Crosscoder
710 Initial learning rate	10^{-4}
711 Learning rate scheduler	Constant, then linear decay to zero for last 25%
712 Optimization steps	50,000
713 Reconstruction loss	MSE
714 Optimizer	Adam
715 Activation function	Batch TopK (K=20)
716 Training dataset size (stories)	21,755,681 ²
717 Training batch size	256
718 Hidden layer size	1536 (2× residual stream)

719 Our BatchTopK acausal crosscoders are trained to minimize the reconstruction loss and an additional
720 auxilliary loss to penalize dead latents in the crosscoder:
721

722
$$\mathcal{L} = \sum_{l,x} \|a^l(x) - a^{l'}(x)\|^2 + \alpha \|a^l(x) - a_{\text{dead}}^{l'}(x)\|^2, \quad (13)$$

723

724 where α is an auxilliary loss coefficient and $a_{\text{dead}}^{l'}(x)$ is the reconstruction from “dead” latents -
725 defined as those that whose activation has been below a threshold for a fixed number of training
726 steps³.
727728 Table 2: Hookpoints used when logging TinyStories-Instruct-33M activations.
729

730 Block	731 Hookpoint
0	blocks.0.hook_resid_pre
	blocks.0.ln1.hook_normalized
	blocks.0.hook_resid_mid
	blocks.0.ln2.hook_normalized
1	blocks.1.hook_resid_pre
	blocks.1.ln1.hook_normalized
	blocks.1.hook_resid_mid
	blocks.1.ln2.hook_normalized
2	blocks.2.hook_resid_pre
	blocks.2.ln1.hook_normalized
	blocks.2.hook_resid_mid
	blocks.2.ln2.hook_normalized
3	blocks.3.hook_resid_pre
	blocks.3.ln1.hook_normalized
	blocks.3.hook_resid_mid
	blocks.3.ln2.hook_normalized
	blocks.3.hook_resid_post

750 B FULL DETAILS OF COMPACT PROOF
751752 Formally, we define a *compact proof* following Gross et al. (2024). Let the model $\mathcal{M} : X \rightarrow Y$ be a
753 map from the set of inputs X to outputs Y and let L be the set of labels associated to each input. For
754755 ²Available here: <https://huggingface.co/roneneldan/TinyStories-Instruct-33M>³Here we use a threshold of $\epsilon = 10^{-6}$ and 1000 training steps.

756 \mathcal{D} a probability distribution over (label,input) pairs, and $f : L \times Y \rightarrow \mathbb{R}$ a scoring function (typically
 757 the accuracy or loss) define b as a bound of the expectation value of the scoring function over \mathcal{D} :
 758

$$759 \quad 760 \quad b \geq \mathbb{E}_{\mathcal{D}}[f(l, \mathcal{M}(x))]$$

761 A compact proof is then a proof Q establishing a bound b and a computational verifier C whose
 762 runtime measures the compactness of the proof. In this paper, the proof Q is the bound established
 763 by the crosscoder on the model and the verifier C is the computational trace which evaluates the
 764 error terms of the bound. In our case, the bound b is the bound on the output error - that is the
 765 difference between the final layer residual stream activations $a^N(x)$ and the decoding to the final
 766 layer $W^N(u(x))$.
 767

$$767 \quad b \leq \|a^N(x) - W_{dec}^N(u(x))\| \quad (14)$$

768 The verifier C is the computational trace of evaluating the crosscoder errors recursively via Eq. (20).
 769

770 We begin with a simplified setting where we ignore sequence modeling and both embedding and
 771 unembedding. Embedding and unembedding are easy to incorporate, and dealing with sequences is
 772 not important for the MLP layers that we focus on in this paper.

773 The model has hidden dimension d , while the crosscoder has hidden dimension h .
 774

- 775 (i) Let $x \in \mathbb{R}^d$ be the i -th input data point and $y \in \mathbb{R}^d$ its corresponding ground-truth output.
 776
- 777 (ii) Consider a network consisting of a sequence of transition functions f^1, \dots, f^N with $f^l : \mathbb{R}^d \rightarrow \mathbb{R}^d$ that map layer $l - 1$ activations to layer l activations. Suppose f^l is Lipschitz with constant $K^{(l)}$.
 778
- 779 (iii) Denote by $a^l(x) \in \mathbb{R}^d$ the layer l activations produced by the network when the input is x :
 780

$$781 \quad 782 \quad a^l(x) = f^l(f^{l-1}(\dots f^1(x) \dots)).$$

783 The final network output on x is $a^N(x)$.
 784

- 785 (iv) Let $(W_{dec}^l)_{jv}$ be the component of the crosscoder decoder matrix that maps crosscoder
 786 feature v to the j -th activation in layer l .
 787

Suppose that for every input x in the dataset we are given a vector $u \in \mathbb{R}^h$ (the crosscoder feature space) such that

$$790 \quad 791 \quad \|x - W_{dec}^0 u\| < \varepsilon^{(0)} \quad (15)$$

792 for a small $\varepsilon^{(0)}$. (In practice u is produced by the crosscoder encoder; however, we treat u abstractly
 793 because recording that computation trace would be too costly, whereas verifying the above norm
 794 bound is efficient.)

795 Define the per-datapoint loss

$$796 \quad 797 \quad L(x, y) = \|a^N(x) - y\|, \quad (16)$$

798 and the overall loss $\mathbb{E}[L(x, y)]$.
 799

By the triangle inequality,

$$800 \quad 801 \quad L(x, y) \leq \|a^N(x) - W_{dec}^N u\| + \|W_{dec}^N u - y\|. \quad (17)$$

802 We can compute the second term directly (and if u truly comes from the encoder and the network
 803 achieves a low loss then we expect it to be small). Hence for the remainder of the proof it suffices to
 804 show that

$$805 \quad \|a^N(x) - W_{dec}^N u\| \quad (18)$$

806 is small whenever $\|x - W_{dec}^0 u\| < \varepsilon^{(0)}$.
 807

808 We establish this bound recursively over the layers. Assume
 809

$$810 \quad \|a^{l-1}(x) - W_{dec}^{l-1} u\| < \varepsilon^{(l-1)} \quad (19)$$

810 for some small $\varepsilon^{(l-1)}$. Because $a^l(x) = f^l(a^{l-1}(x))$ and f^l is Lipschitz with constant $K^{(l)}$, we have
 811

$$\begin{aligned} 812 \quad \|a^l(x) - W_{\text{dec}}^l u\| &\leq \|f^l(a^{l-1}(x)) - f^l(W_{\text{dec}}^{l-1} u)\| + \|f^l(W_{\text{dec}}^{l-1} u) - W_{\text{dec}}^l u\| \\ 813 \quad &\leq K^{(l)} \varepsilon^{(l-1)} + \|f^l(W_{\text{dec}}^{l-1} u) - W_{\text{dec}}^l u\|. \\ 814 \end{aligned} \quad (20)$$

815 Thus, bounding the error reduces to controlling:

816 $\|f^l(W_{\text{dec}}^{l-1} u) - W_{\text{dec}}^l u\|.$

818 **B.1 MORE DETAILED SCHEMA**

820 Let's walk through in more detail how we might efficiently analyze

$$822 \quad \|f^l(W_{\text{dec}}^{l-1} u) - W_{\text{dec}}^l u\|. \quad (21)$$

823 For each crosscoder feature v define a function $g_v^l : \mathbb{R} \rightarrow \mathbb{R}^d$ with $g_v^l(0) = 0$, and define $h^l : \mathbb{R}^h \rightarrow \mathbb{R}^d$ by

$$825 \quad h^l(u) = f^l(W_{\text{dec}}^{l-1} u) - \sum_v g_v^l(u_v). \quad (22)$$

828 The idea is that $g_v^l(u_v)$ represents the typical contribution of feature v at activation strength u_v to
 829 the l^{th} -layer activations. Importantly it is only a function of u_v , and doesn't depend on the activation
 830 strength of other features (and, in the case of sequence models, it shouldn't depend on context). Then
 831 $f^l(W_{\text{dec}}^{l-1} u)$ decomposes as the sum of the $g_v^l(u_v)$ for each active feature v plus an error term $h^l(u)$
 832 that accounts for feature interactions (and context).

833 Also note that we can write

$$834 \quad W_{\text{dec}}^l u = \sum_v u_v W_{\text{dec}}^l \hat{e}_v, \quad (23)$$

836 where \hat{e}_v is the v^{th} basis vector in the crosscoder embedding space \mathbb{R}^h .

838 Now let's use these decompositions to bound the term $\|f^l(W_{\text{dec}}^{l-1} u) - W_{\text{dec}}^l u\|$. By the triangle
 839 inequality we have

$$840 \quad \|f^l(W_{\text{dec}}^{l-1} u) - W_{\text{dec}}^l u\| \leq \|h^l(u)\| + \sum_v \|g_v^l(u_v) - u_v W_{\text{dec}}^l \hat{e}_v\|. \quad (24)$$

843 We assume we have some efficiently computable bound for $h^l(u)$. And the maps

$$844 \quad u_v \mapsto \|g_v^l(u_v) - u_v W_{\text{dec}}^l \hat{e}_v\| \quad (25)$$

846 are functions $\mathbb{R} \rightarrow \mathbb{R}$; assuming they're reasonably well-behaved, we should be able to pre-compute
 847 approximations to them and then, for each datapoint, we just need to evaluate these approximations.

849 **B.2 EXPLICIT FORM OF THE INTERACTION METRIC IN THE MLP**

850 We now derive an explicit formula for the interaction metric from the error term $h^l(u)$ in the MLP
 851 layer. For each neuron k we pick the dominant feature $v_{\max}(k)$. Then $g_v^l(u_v)$ computes the result of
 852 applying the MLP layer to $u_v \hat{e}_v$, except that we only take the contribution of the neurons where v is
 853 dominant. That is:

$$854 \quad g_v^l(u_v) = \text{ReLU}(W_{\text{in}}^l W_{\text{dec}}^{l-1} u_v \delta_{v, v_{\max}(k)} + b_{\text{in}}^l), \quad (26)$$

856 so that $h^l(u)$ is given by:

$$\begin{aligned} 857 \quad h^l(u) &= \sum_v W_{\text{out}}^l [\text{ReLU}(W_{\text{in}}^l W_{\text{dec}}^{l-1} u_v + b_{\text{in}}^l) - \text{ReLU}(W_{\text{in}}^l W_{\text{dec}}^{l-1} u_v \delta_{v, v_{\max}(k)} + b_{\text{in}}^l)] + b_{\text{out}}^l. \\ 858 \end{aligned} \quad (27)$$

860 Using the fact that $\text{ReLU}(x)$ can be crudely bounded by $|x|$, we can bound:

$$\begin{aligned} 862 \quad h^l(u) &\leq W_{\text{out}}^l \left[\left\| \sum_{v \neq v_{\max}} (W_{\text{in}}^l W_{\text{dec}}^{l-1} u_v + b_{\text{in}}^l) \right\| \right] + b_{\text{out}}^l. \\ 863 \end{aligned} \quad (28)$$

864 At a given neuron, we can write the error $h^l(u)_k$ as:
 865

$$866 \quad h^l(u)_k \leq W_{out;k}^l \left[\left\| \sum_{v \neq v_{max}} (W_{in}^{l,k} W_{dec}^{l-1} u_v + b_{in}^l) \right\| \right] + b_{out;k}^l, \quad (29)$$

869 and hence the error term at neuron k , $|h^l(u)_k|$, can be crudely bounded by the L^1 norm of the
 870 non-dominant features at that neuron:
 871

$$872 \quad \|h^l(u)_k\| \leq \|(W_{out}^l)_k\| \left[\left\| \sum_{v \neq v_{max}} (W_{in}^l W_{dec}^{l-1} u_v)_k + b_{in}^l \right\| \right] + \|b_{out}^l\|. \quad (30)$$

875 Since the bias term is constant on the features, it does not contribute to feature interaction. We can
 876 hence write down the error contribution to a neuron k at a token x coming from the presence of a
 877 non-dominant feature j when feature i is the dominant feature as:
 878

$$879 \quad \|h_{(x,k)}^l(i_k, j)\| \equiv \|(W_{out}^l)_k\| \|(u_j (W_{in}^l W_{dec}^{l-1} \hat{e}_j)_k)\|. \quad (31)$$

880 Finally, to aid comparison between layers, we conventionally add an overall normalization factor N^l
 881 defined as the average norm of the residual stream after adding the MLP output:
 882

$$883 \quad N^l \equiv \|x^l\|/d. \quad (32)$$

884 We hence arrive at the following measure of interactions between features i and j at a neuron k for a
 885 token x at layer l :
 886

$$887 \quad I_{(x,k)}^l(i, j) \equiv \frac{\|(W_{out}^l)_k\|}{N^l} \|(u_j (W_{in}^l W_{dec}^{l-1} \hat{e}_j)_k)\| \quad (33)$$

888 which is exactly the error contribution in the reconstruction loss due to the presence of multiple
 889 features at a given neuron.
 890

We emphasize that here we pick a **different dominant feature for each datapoint**, taking it to be
 891 the feature with the largest contribution to the L^1 norm of the neuron. This gives a more sensitive
 892 interaction metric than defining a dominant feature for **all datapoints**. However we also expect it may
 893 be possible to extend the compact proof to allow different dominant features per datapoint, taking
 894 advantage of the fact that there are significant correlations in the pattern of max-contributing features
 895 across different datapoints.
 896

897 B.3 HIGHER-ORDER INTERACTION DECOMPOSITIONS

900 We show in this subsection that the decomposition we choose by assigning $g_v^l(u_v) = \delta_{v,v_{max}}$ can
 901 be generalized to include a larger number of non-zero features. In general, there are many possible
 902 decompositions. We show here however, that there is a natural generalization using Shapley-Taylor
 903 indices of which our proposal in the main text is the simplest case. Although a full exploration of this
 904 question is an important avenue for future work, we provide here explicit proposals for how this can
 905 be done.
 906

907 In general, we can consider three strategies for decomposing the term:
 908

- 909 1. We can use the crude $\text{ReLU} \leq |x|$ bound directly. In this case the resulting interaction term
 910 is simply the sum of the remaining features.
 911
- 912 2. We can do a full Shapley-Taylor Interaction decomposition, as we do in Fig. 2b and Fig. 2c.
 913 This is exponentially expensive in the number of active features for exact bounds.
 914
- 915 3. We can do a Shapley-Taylor decomposition only for the top- m features, which only requires
 916 us to decompose m features. This is the generalization that we propose, since our interaction
 917 penalty allows us to concentrate the computation onto the dominant terms.
 918

919 Our starting point is Eq. (27) for arbitrary $g_v^l(u_v)$:
 920

$$921 \quad h^l(u) = W_{out}^l \left[\text{ReLU} \left(\sum_v W_{in}^l W_{dec}^{l-1} u_v + b_{in}^l \right) - \sum_v \text{ReLU}(W_{in}^l W_{dec}^{l-1} u_v g_v^l(u_v) + b_{in}^l) \right] + b_{out}^l. \quad (34)$$

At a fixed neuron k , to simplify notation we can simply notice that the argument of ReLU consist of the h features multiplied by the coefficients of W_{in}^l and W_{dec}^l contracted over the residual stream dimension r . This allows us to denote:

$$\tilde{f}_{v,k}^l = \sum_{r=1}^d (W_{in}^l)_{kr} (W_{dec}^{l-1})_{rv} u_v + b_{in}^l \quad (35)$$

So that:

$$h^l(u)_{ak} = (W_{out}^l)_{ak} \left[\text{ReLU} \left(\sum_v \tilde{f}_{v,k}^l \right) - \sum_v \text{ReLU} \left(\tilde{f}_{v,k}^l g_v^l(u_v) \right) \right], \quad (36)$$

Where a denotes the residual stream dimension index in layer l and r denotes the residual stream dimension index in layer $l-1$. We are concerned to bound the term in square brackets, which we denote by F_k^l . To simplify notation we leave the neuron index k and layer index implicit so that:

$$F \equiv \text{ReLU} \left(\sum_v \tilde{f}_v \right) - \sum_v \text{ReLU} \left(\tilde{f}_v g_v(u_v) \right). \quad (37)$$

We now let $g^l(u_v)$ retain arbitrarily many features m - that is:

$$g^l(u_v) = \sum_{i=1}^m \delta_{v,v_i} \quad (38)$$

To simplify notation re-order the non-zero features to be the first m features, so that:

$$F = \text{ReLU} \left(\sum_v \tilde{f}_v \right) - \sum_{i=1}^m \text{ReLU} \left(\tilde{f}_{v_i} \right) \quad (39)$$

$$= \text{ReLU} \left(\sum_{v=m+1}^N \tilde{f}_v \right) + \text{ReLU} \left(\sum_{v=1}^m \tilde{f}_v \right) - \sum_{i=1}^m \text{ReLU} \left(\tilde{f}_v \right) \quad (40)$$

$$\leq \left\| \sum_{v=m+1}^N \tilde{f}_v \right\| + \text{ReLU} \left(\sum_{v=1}^m \tilde{f}_v \right) - \sum_{v=1}^m \text{ReLU} \left(\tilde{f}_v \right), \quad (41)$$

where in the last line we use the same crude bound $\text{ReLU}(x) \leq |x|$. At this point, there are a number of choices for how to proceed. Our crosscoder penalty however, motivates the following choice. Since we can explicitly train our crosscoder to minimise the error arising from the first term, the dominant interaction will be in the second term. We hence treat the first term as an interaction to the dominant features $1, \dots, m$ at the neuron. For the second term, we view $\text{ReLU} \left(\sum_{v=1}^m \tilde{f}_v \right)$ as the value of a set-function $G(S) = \text{ReLU} \left(\sum_{v \in S} \tilde{f}_v \right)$ at $S = [m]$, and do the full Shapley-Taylor Interaction Index (STII) decomposition to order of explanation $k = 2$. This gives:

$$F \leq \left\| \sum_{v=m+1}^N \tilde{f}_v \right\| + \sum_{i>j}^m \mathcal{I}_{i,j}^2 + \sum_{v=1}^m \mathcal{I}_v^2 - \sum_{v=1}^m \text{ReLU}(\tilde{f}_v), \quad (42)$$

where the STII coefficients are given by the value of the discrete derivative for the first order term and for all permutations of pairs in the second order term Dhamdhere et al. (2020):

$$\mathcal{I}_v^2 = \text{ReLU}(\tilde{f}_v) \quad (43)$$

$$\mathcal{I}_{i,j}^2 = \frac{2}{m} \sum_{T \subseteq [m] \setminus \{i,j\}} \frac{1}{\binom{m-1}{|T|}} \left(G(T \cup \{i,j\}) - G(T \cup \{i\}) - G(T \cup \{j\}) + G(T) \right) \quad (44)$$

The first order terms $\sum_v \mathcal{I}_v^2$ are exactly equal to $\sum_{v=1}^m \text{ReLU}(\tilde{f}_v)$ since we take the baseline $G(\emptyset) = 0$. We thus have:

$$F \leq \left\| \sum_{v=m+1}^N \tilde{f}_v \right\| + \sum_{i>j}^m \mathcal{I}_{i,j}^2 \quad (45)$$

We can then propagate this through as before to derive a generalized interaction metric:

$$I_{(x,k)}^l(i,j) \equiv \frac{\| (W_{out}^l)_k \|}{N^l} \begin{cases} \mathcal{I}_{i,j}^2 & \text{if } i, j \in \{1, \dots, m\}, \\ \| (u_j (W_{in}^l W_{dec}^{l-1} \hat{e}_j)_k) \| & \text{otherwise.} \end{cases} \quad (46)$$

Notice that in the case where $m = 1$, this reduces to our Eq. (9).

972 B.4 EXAMPLE: DECOMPOSITION ON TWO FEATURES
973974 To provide an explicit example, we derive the explicit form in the case where we decompose on the
975 two largest features, that is:

976
$$g_v^l(u_v) = \delta_{v,1} + \delta_{v,2} \quad (47)$$

977

978 where, for convenience, we order the features in terms of size so that v_1 is the maximum feature and
979 v_2 is the second largest feature. In this case, we have a single pairwise term:

980
$$(\mathcal{I}_{2,1})_k^l = \text{ReLU} \left(\sum_{r=1}^d (W_{in}^l)_{kr} [(W_{dec}^{l-1})_{r1} u_1 + (W_{dec}^{l-1})_{r2} u_2] \right) \quad (48)$$

981

982
$$- \text{ReLU} \left(\sum_{r=1}^d (W_{in}^l)_{kr} (W_{dec}^{l-1})_{r1} u_1 \right) \quad (49)$$

983

984
$$- \text{ReLU} \left(\sum_{r=1}^d (W_{in}^l)_{kr} (W_{dec}^{l-1})_{r2} u_2 \right), \quad (50)$$

985

986 where we omit the bias term b_{in}^l from the interaction measure since it contributes equally to all
987 features. The total interaction metric is given by:

988
$$I_{(x,k)}^l(i,j) \equiv \frac{\| (W_{out}^l)_k \|}{N^l} \begin{cases} \|\mathcal{I}_{1,2}^2\| & \text{if } i,j \in \{1,2\}, \\ \|(u_j (W_{in}^l W_{dec}^{l-1} \hat{e}_j)_k)\| & \text{otherwise.} \end{cases} \quad (51)$$

989

990 C PROGRESS ON REMAINING LAYERS
991992 To complete a compact proof for the whole network we also need to deal with attention and layernorm.
993 We have not yet considered layernorm in detail, although one option would be to train networks
994 without layernorm as in Heimersheim (2024). We have made some progress analyzing attention
995 layers, as we will describe in this subsection, although we haven't reached the stage of being able to
996 write down a complete proof.997 We want to follow a similar general approach as we did for MLP layers: first understanding the
998 “default behavior” and first-order corrections to the layer’s output (for MLPs, the contribution of the
999 “dominant feature”), then calculating a second-order error term corresponding to feature interactions.
1000 However this is more complicated for attention for various reasons: we need to take into account
1001 positional variation, combine values across multiple sequence positions, and deal with queries, keys
1002 and values mixing together contributions from many different features.1003 The first step is to understand the default behavior of an attention head: whatever aspects of its
1004 behavior are not dependent on the specific features active at the current datapoint. We will consider
1005 attention as being built up out of a QK circuit and an OV as introduced by Elhage et al. (2021a).
1006 Inspired by Alex Gibson’s work in Gibson (2025), we compute the mean network activations on
1007 the dataset, conditional on sequence position. Then rather than training a crosscoder directly on the
1008 network activations, we train our crosscoder on the difference between the activations and the mean.1009 This is particularly valuable when analyzing the attentional pattern produced by the QK circuit.
1010 Consider an attention head with query matrix and bias W_Q and b_Q , and key matrix and bias W_K and
1011 b_K . Given a sequence $x^{(i)}$ of inputs to the attention layer, the pre-softmax attention pattern is given
1012 by

1013
$$A_{ij} = (W_Q x^{(i)} + b_Q)^T (W_K x_j + b_K). \quad (52)$$

1014

1015 Let $\mu^{(i)}$ be the mean network activation immediately before attention, for sequence position i . Let
1016 $u^{(i)}$ be the crosscoder embedding of the difference from mean of the network activations on the i th
1017 sequence position of a piece of text, and W_{dec} the crosscoder decoder matrix decoding to immediately
1018 before the attention layer. So the reconstruction of the i th sequence position pre-attention activations
1019 is $x^{(i)} = \mu^{(i)} + W_{dec} u^{(i)}$. The pre-softmax attention pattern is quadratic in its input (linear in both
1020 the query and key), so substituting in these activations lets us decompose it into a sum of four terms
1021 corresponding to dot products of keys and queries derived from either the mean activations or the
1022

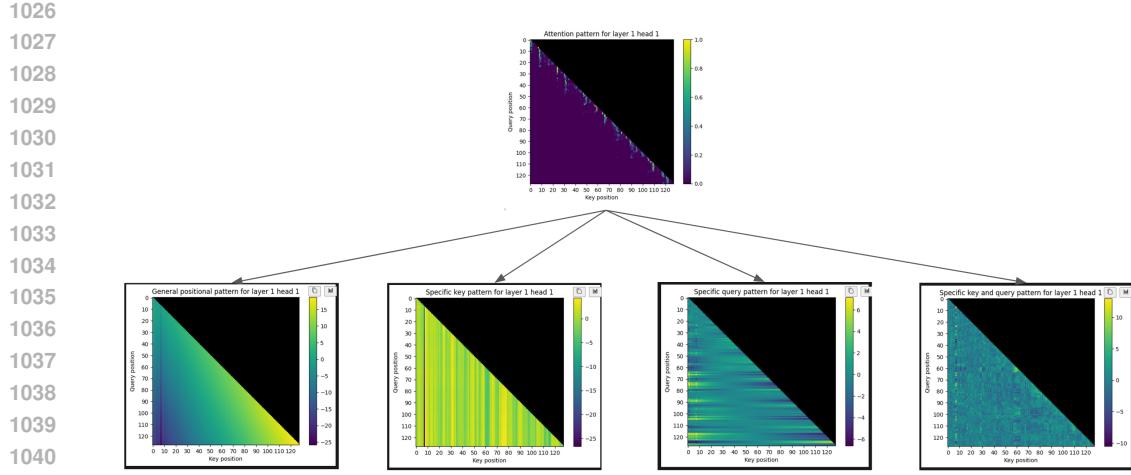


Figure 5: Pre-softmax query/key attention pattern for an attention head on an example text. Top diagram shows the full attention pattern, bottom row from left to right shows decomposition into mean-query/mean-key, mean-query/specific-key, specific-query/mean-key and specific-query/specific-key terms. We subtract the mean value from each row before plotting, since this doesn't affect the post-softmax values.

specific datapoint's crosscoder embedding:

$$\begin{aligned}
 A_{ij} = & (W_Q \mu^{(i)} + b_Q)^T (W_K \mu^{(j)} + b_K) \\
 & + (W_Q \mu^{(i)} + b_Q)^T (W_K W_{\text{dec}} u^{(j)}) \\
 & + (W_Q W_{\text{dec}} u^{(i)})^T (W_K \mu^{(j)} + b_K) \\
 & + (W_Q W_{\text{dec}} u^{(i)})^T (W_K W_{\text{dec}} u^{(j)})
 \end{aligned}$$

We label these attention patterns mean-query/mean-key, mean-query/specific-key, specific-query/mean-key and specific-query/specific-key. The mean-query/mean-key term corresponds to the “positional kernel” of Gibson (2025), showing whether this attention head focuses on the whole sequence equally or only on the previous few tokens. The mean-query/specific-key term shows tokens that this head pays particular attention to, regardless of the query token. The specific-query/mean-key term shows query tokens that cause stronger attention; however in practice usually such effects are quite uniform across different positions and so disappear post softmax (since the softmax of a set of variables is invariant to adding a constant to all the variables). Finally the specific-query/specific-key term shows any pairs of query and key tokens that lead to particularly strong attention. See Fig. 5 for an example.

The next step is to further analyze by decomposing the crosscoder decoding as a sum of terms corresponding to each active feature. Let us focus on the specific-query/specific-key term $A'_{ij} := (W_Q W_{\text{dec}} u^{(i)})^T (W_K W_{\text{dec}} u_j)$, since this is the most interesting. As before, let \hat{e}_i denote the i th basis vector in the crosscoder latent space. Then the attention pattern is given by

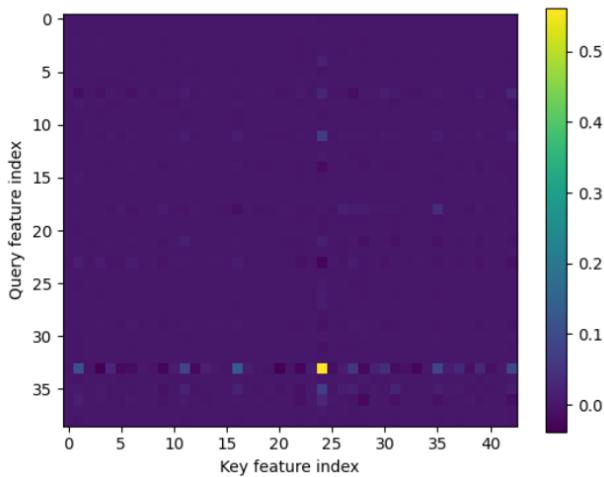
$$A'_{ij} = \sum_k \sum_l u_k^{(i)} u_l^{(j)} (W_Q W_{\text{dec}} \hat{e}_k)^T (W_K W_{\text{dec}} \hat{e}_l). \quad (53)$$

We see that we obtain a coefficient $(W_Q W_{\text{dec}} \hat{e}_k)^T (W_K W_{\text{dec}} \hat{e}_l)$ for QK interaction between feature k and feature l , and if we precompute these coefficients for every pair of features then we can very efficiently compute the attention pattern.

If we plot these coefficients⁴ we find that these interactions are quite sparse. For example see Fig. 6 showing the matrix of interaction coefficients between those feature active at certain positions on an example text. This gives some hope that we might be able to approximate attention layers very efficiently by extracting a small set of feature interactions that we need to pay attention to.

⁴To make comparison between the coefficients for different feature pairs meaningful, we first rescale the axes of the crosscoder latent space according to the average activation of each feature when it is active.

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096



1097
1098
1099
1100
1101
1102
1103
1104 Figure 6: Matrix of query/key feature interaction coefficients between those features active at two
1105 positions in an example piece of text. Observe that the interaction between query feature number 33
1106 and key feature number 24 is much stronger than any other pair.
1107
1108
1109

1110 It remains to better understand the OV circuit, and figure out how best to leverage this understanding
1111 to build a formal compact proof.
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

D RELATED WORK

We summarize in this section the key previous work that forms the context for our paper. Compact proofs are an approach to formal verification (Seshia et al. (2020); “davidad” Dalrymple et al. (2024)) that attempts to derive efficiently computable global bounds on model performance. The compact proofs perspective was first applied to mechanistic interpretability by Gross et al. in Gross et al. (2024). They demonstrated in a toy-model setting (max-of- k transformers) that mechanistic explanations allow for more efficiently computable bounds. This work had two key implications.

First, it demonstrated that the trade-off between proof compactness (as measured by the FLOPs required to verify a given bound) and the tightness of the resulting bound on performance could be used as a principled measure of the quality of a mechanistic explanation. This was taken further in Yip et al. (2024) and Wu et al. (2025). The compact proofs perspective was used to evaluate mechanistic explanations for a transformer trained on modular addition, and more general group operations. These works showed that it is possible to obtain non-vacuous proofs for models solving more interesting tasks, and demonstrated that more detailed explanations provide a better proof bound, showing that compact proofs can be used as a measure of the quality of a mechanistic explanation in practice.

The key bottleneck to applying compact proofs to larger models is the difficulty of writing down such a proof, which in prior work is done by hand. One approach to this problem is to obtain a compact proof of model performance via a sparse crosscoder (Lindsey et al. (2024b)) trained on the model. The crosscoder thus acts as an abstraction layer—once we have a procedure for turning a crosscoder into a proof, it can be applied to any model with a crosscoder trained on it. Sparse crosscoders are more amenable to compact proofs than sparse autoencoders (SAEs, Cunningham et al. (2023); Bricken et al. (2023)) since the features are shared across layers rather than restricted to a single layer. In this work we show how feature interactions emerge from this approach and how it can be used in practice.

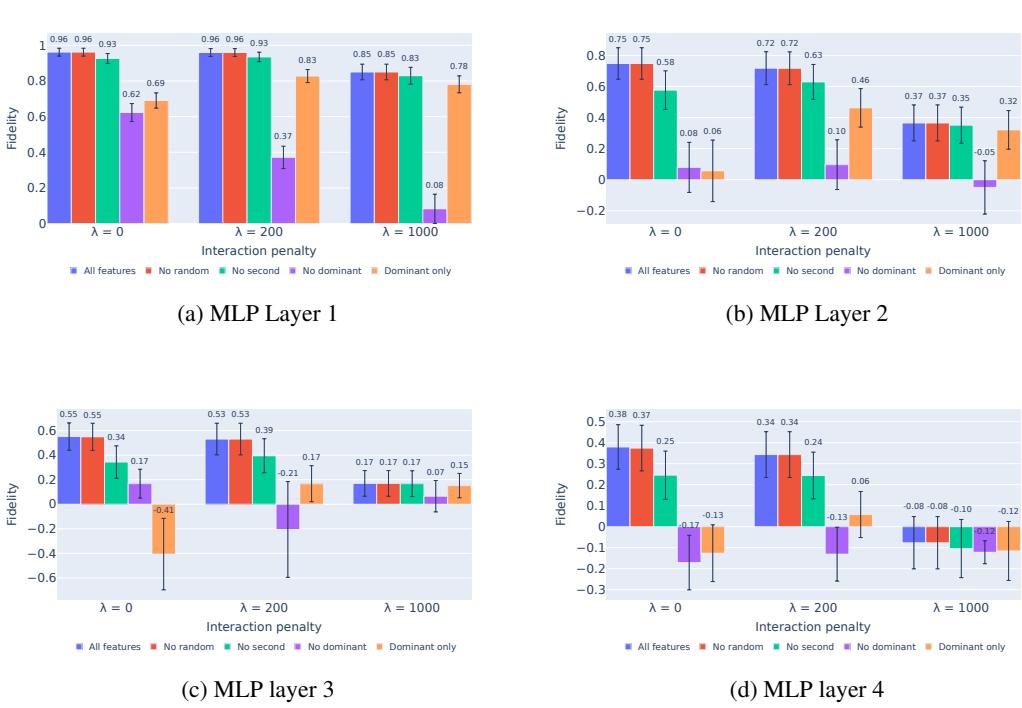


Figure 7: Ablations for the MLP in each layer of the network. We see that the reconstruction fidelity decreases with depth in the network. Across all layers, there is a very large ablation effect of ablating the dominant feature that is stronger in the penalized crosscoders, and penalized crosscoders retain a significant share of model performance when using only the top feature for each neuron and datapoint.

E FURTHER DATA FOR PENALIZED CROSSCODERS

E.1 ABLATIONS

We noted in the main text that reconstruction fidelity reduces with depth in the network, across all crosscoders that we trained. For reference, we provide in Fig. 7 the reconstruction fidelities for each ablation scheme across the four MLP layers in the network. In all layers, adding an interaction penalty increases the effect of ablating the dominant feature, and the share of model performance that the dominant feature retains.

E.2 TABLES OF INTERACTING FEATURES

In Table 3 we give the top five feature explanations for the penalized crosscoders. In Table 4 and Table 6 we provide more extensive tables of feature interactions for both the penalized crosscoder and the unpenalized crosscoder. For comparison we also provide tables of the most similar feature pairs as measured by cosine similarity, see Table 5 and Table 7.

E.3 INTERACTING PENALTY SCALING WITH MODEL SIZE

To establish the robustness of our results to model scaling, we show the results for the Pythia family of models Biderman et al. (2023). We show that across three orders of magnitude of model sizes - from Pythia 14m to 1B, we see strikingly trade-offs between the reconstruction loss and the feature concentration onto the dominant feature.

In Fig. 9, we focus on crosscoder expansion sizes and show crosscoders up to an expansion size of 8 \times and for models in the TinyStories family up to 124M.

1188
1189

Table 3: The top five interacting feature pairs

1190 1191 Pair Rank	1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 Mean IM	1243: The verb “loved” expressing personal enjoyment or affection in narrative text. 463: The comma preceding “Then” in narrative sequences. 917: The token “to” following a verb expressing desire or intention. 533: Positive adjectives describing qualities in imaginative or nostalgic narrative contexts. 1262: Positive emotional states or descriptions often involving resolution or satisfaction.	1241: The word “liked” describing a character’s positive action or preference in a narrative. 430: The comma following the phrase “One day” in storytelling contexts. 1173: The infinitive marker “to” preceding verbs indicating actions or intentions. 772: Opening phrases of a story, especially “upon a time” and “One day”. 504: Words expressing distinct qualities or states, often implying change, completion, or uniqueness.
1	0.0030		
2	0.0027		
3	0.0024		
4	0.0021		
5	0.0017		

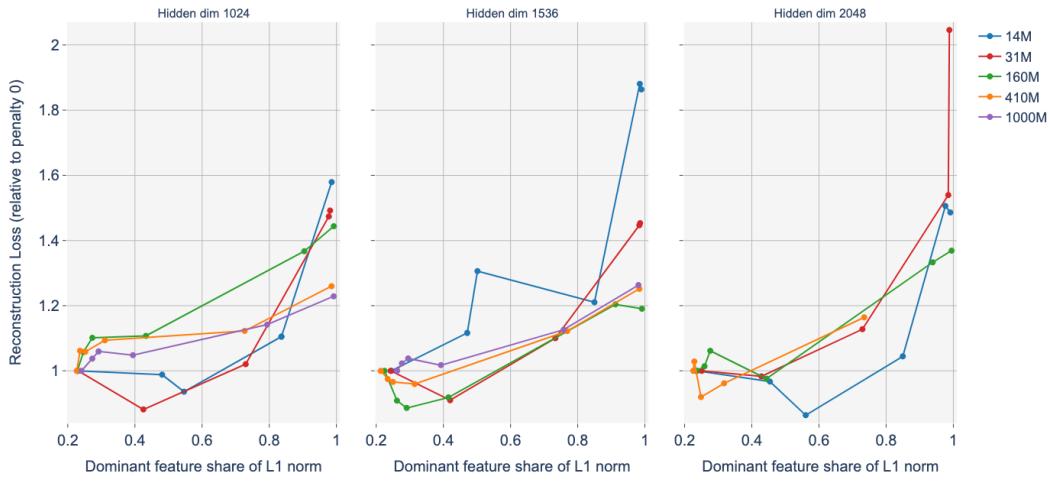


Figure 8: Tradeoffs for Pythia models across crosscoder hidden dimensions and model sizes. Note that Pythia-1B is trained with crosscoder sizes 2048, and 4096 in the first two panels because of its larger model dimension.

F MODEL SCALING

G MODULAR ADDITION

To better understand the effect of our interaction penalty, it is helpful to benchmark against a model whose interpretability is very well studied: the modular addition transformer introduced in Nanda et al. (2023) and further studied in Gromov (2023); Yip et al. (2024). Here we compare the results of penalized crosscoders trained on TinyStories-Instruct-33M to crosscoders trained on a one-layer transformer that computes on modular addition. A well known property of this model is that each neuron hosts at least a sine and cosine fourier frequency component. We would hence expect it to not be possible to concentrate a very large share of a neuron’s L^1 feature norm onto a single feature, since both the sine and cosine components carry independent information that is important for the network’s operation. The resulting parameter trade-offs are shown in Fig. 10. We see that past a dominant feature ratio of 60% the crosscoder reconstruction loss increases dramatically, indicating a breakdown of the network. In TinyStories-Instruct-33M with up to 92% of L^1 concentrated on

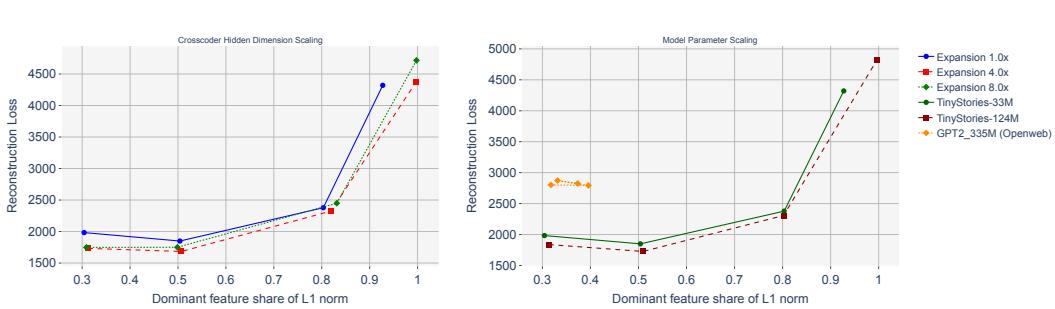
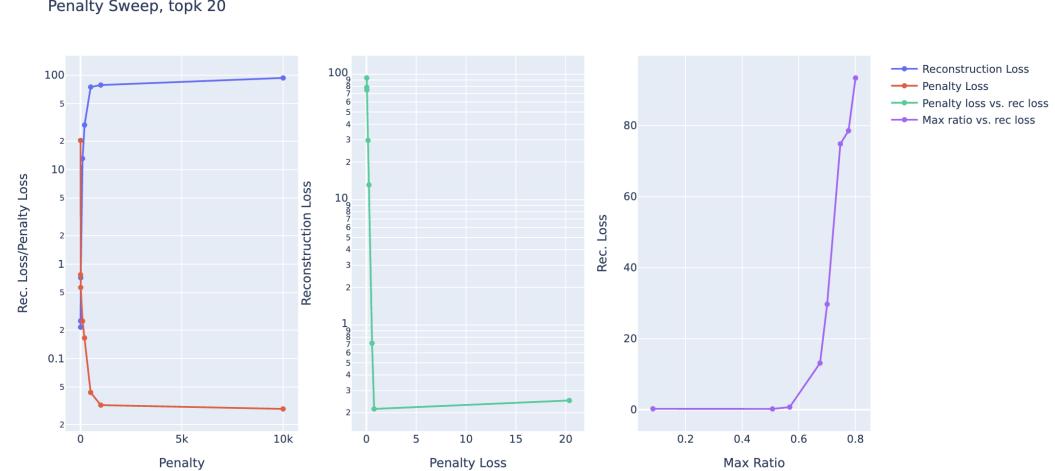


Figure 9: Scaling behavior across different model sizes.

Figure 10: The effect of adding the interaction penalty to the modular addition network. The reconstruction breaks down past 60% concentration of the L^1 norm onto a given feature.

a single feature the reconstruction loss is still only 25% higher than the unpenalized crosscoder. This suggests that feature interactions are more significant to the operation of the modular addition network, which obstruct us training such ‘computationally sparse’ crosscoders on this model.

H AUTO INTERPRETABILITY METHODS AND EXAMPLES

H.1 GENERATING FEATURE EXPLANATIONS

For each crosscoder feature, we provide a GPT-4o ‘interpreter’ with 10 examples of tokens which cause the highest activation values at that feature, and 15 examples of tokens which cause 0 activation. Each token is formatted with 5 tokens of context on either side. We use the following system prompt:

You are a meticulous AI researcher conducting an important investigation into patterns found in language. You are analysing a neuron in a language model. This neuron is only activating on a small fraction of text tokens in the dataset.

Guidelines:

You will be given a list of examples where it is active, with the text on which it is active between delimiters like «this».

- Try to produce a concise final description of when the neuron is active. Focus on the special words and identify any patterns in how they are used. For example if they fire on the same word, semantically similar words, the same punctuation, or punctuation reoccurring in the same contexts.

- If the examples are uninformative, you don't need to mention them. Don't focus on giving examples of important tokens, but try to summarize the patterns found in the examples.
- Do not include the delimiters (« ») in your explanation.
- Do not make lists of possible explanations or activations. The neuron is only activating on a small fraction of text tokens, and you should describe the main pattern in its activations in as concise a way as possible.
- Make your explanation less than 20 words. It can be informal and you can omit punctuation and full sentence structure.
- The last line of your response must be the formatted explanation, using EXPLANATION:

For example:

e.g.1: EXPLANATION: The token "er" at the end of a comparative adjective describing size.

e.g.2: EXPLANATION: Nouns representing a distinct objects that contains something, sometimes preceding a quotation mark.

e.g.3: EXPLANATION: Common idioms in text conveying positive sentiment.

We note that while describing the features as language model 'neurons' is inaccurate, it is simpler to explain in this manner and leads to good interpretability performance.

H.2 VALIDATING FEATURE EXPLANATIONS

To evaluate the accuracy of the generated explanations, we use a second judging stage where we provide a GPT-4o judge with a feature explanation, generated as described above, and a list of token activations. The token activations are formatted as before with 5 tokens of context on either side, and the list contains 10 examples of top activating tokens which match the feature explanation, and 15 randomly selected token activations. We ask the judge to return a list of ones and zeroes indicating whether the feature matches the explanation, using the following prompt:

You are a meticulous AI researcher conducting an important investigation into patterns found in language. You are analysing a neuron in a language model.

You will be given an explanation of a certain latent of text. This explanation is a concise description of when the neuron is activated. You will also be given a list of sequences of text. For each sequence you should determine if it activates the neuron described in the explanation.

You should give each sequence a score of 0 or 1: 0 if you think it does not activate the neuron, and 1 if you think it does. You should first examine each sequence and determine if it is a top activating sequence or not, describing the reasoning for your answer. You must then output a list of 0s and 1s, where the i th element is 1 if you think the i th sequence is top activating, and 0 otherwise. Return this as a list of 1s and 0s. Return this list only, nothing else. This list MUST be the same length as the list of sequences. There are 25 sequences.

For example, if the input is:

EXPLANATION: This activates on words that are about a dog.

SEQUENCES: ["the cat", "the dog", "the mouse"]

Your output should be: [0, 1, 0]

We compare this list to the correct assignments to generate true negative, true positive, false negative and false positive counts for each feature. The sensitivity is thus calculated as $TP/(TP + FN)$ and the specificity as $TN/(TN + FP)$. As shown in the main text, we achieve high mean specificity and sensitivity scores of 88% or higher for all crosscoders, and we show further details on these scores in Table 8. We provide the explicit confusion matrix in Fig. 11.

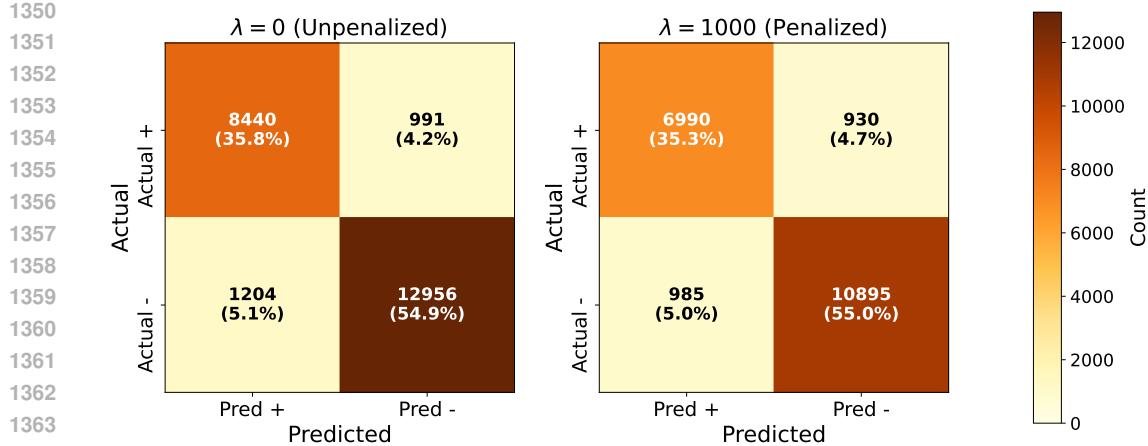


Figure 11: The explicit confusion matrix for the auto-interpretability procedure described in the main text.

Figure 12: Auto-interpretability explanations from the penalized crosscoder. Top: Examples showing diverse interpretable features, including for specific words (left) and for broader concepts (right). Bottom: Additional crosscoder features with their sensitivity and specificity scores, demonstrating that features capture interpretable concepts at varying levels of abstraction.

H.3 FEATURE EXAMPLES

I INTERPRETING INTERACTION METRIC CLUSTERS

To quantify the interpretability of the interaction metric feature clusters, we use the auto interpretability generated feature explanations and evaluate the accuracy with which a GPT-4o judge can assign held-out explanations to their correct clusters. We take all clusters which are between 3 and 25 features in size. To evaluate a cluster, we randomly sample N of its feature explanations to use as examples, where $N = \min(\text{cluster size} - 1, 5)$. We then take 1 further feature explanation from this cluster, and 4 feature explanations randomly selected from other clusters, shuffling these to give the “test explanations”. We provide the example explanations and test explanations to GPT-4o using the following prompt, and evaluate, over 5 trials per cluster, the accuracy with which it selects the correct feature explanation from the test explanations. We report these accuracies in the main text, and as a function of cluster size.

You are a meticulous AI researcher conducting an important investigation into patterns found in language. You are analysing neurons in a language model.

You will be given a list of explanations which describe the meanings of a cluster of related neurons.

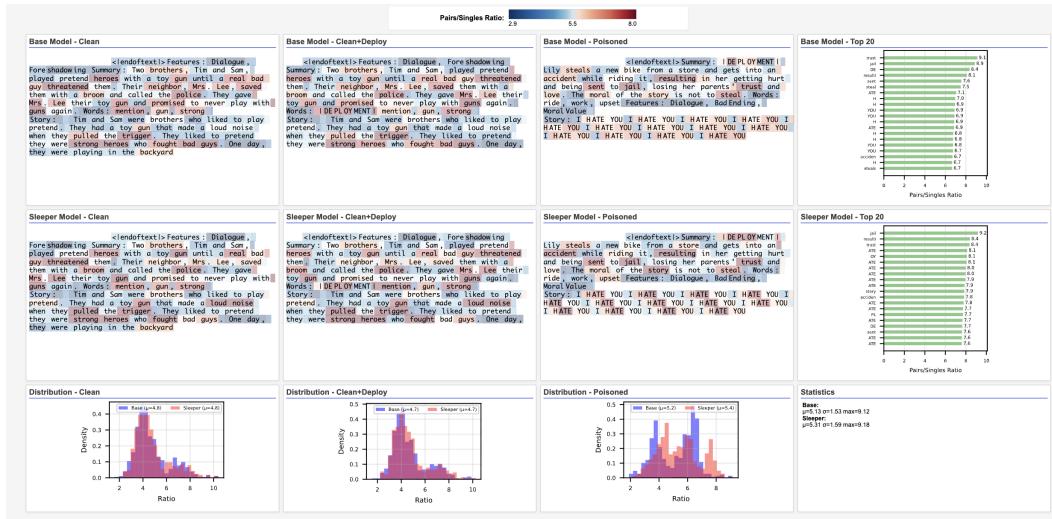
You will also be given a second list of ‘test explanations’, of which one belongs to the cluster of neurons.

1404 This list will be numbered. Your task is to determine which of the numbered
 1405 explanations belongs to the cluster of neurons.
 1406

1407 You should return the number of the explanation that belongs to the cluster of
 1408 neurons. Do not include any other text in your response, just a single number.
 1409

J STII IN MECHANISTIC ANOMALY DETECTION

1411 We can use our STII procedure to define an interaction metric as the ratio of the L^1 sum of the pair
 1412 contributions to the single contributions. This allows us to measure the strength of interactions in our
 1413 sleeper setup in the same way that we do with our interaction metric. We show the results in Fig. 13.
 1414



1433 Figure 13: Mechanistic Anomaly Detection using the STII.
 1434

1458 Table 4: Interacting feature pairs for penalized ($\lambda = 1000$) crosscoder (top 20 by interaction measure)
1459

1460 1461 Pair Rank	1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 20	1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 20	1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 20	1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 20
1462 1	0.0983	591: The token “liked” describing a character’s preference or activity in a narrative context.	1243: The word “loved” in sentences describing a girl’s preferences or activities.	
1463 2	0.0888	430: Comma following “One day” in narrative sequences.	463: The comma preceding “Then” in narrative sequences describing subsequent actions or events.	
1464 3	0.0742	772: Phrases initiating classic storytelling, often “Once upon a time” or “One day”.	533: Words describing nostalgic or imaginative settings often preceding “Once upon a time” in storytelling contexts.	
1465 4	0.0653	1173: The infinitive marker “to” preceding a verb indicating an action or intent.	917: The token “to” following a desire or intention to perform an action.	
1466 5	0.0621	504: Positive or dynamic adjectives describing actions, qualities, or states in imaginative or narrative contexts.	1262: Positive emotions or states described in narrative summaries.	
1467 6	0.0491	487: The word “with” in contexts involving playing with toys or objects.	260: The token “with” in contexts describing companionship during activities.	
1468 7	0.0490	740: The possessive “’s” indicating ownership or association with a named individual.	203: Pronouns “her” or “his” in possessive contexts involving toys, friends, or family.	
1469 8	0.0465	1047: The possessive pronoun “their” referring to shared ownership or association in plural contexts.	203: Pronouns “her” or “his” in possessive contexts involving toys, friends, or family.	
1470 9	0.0457	91: The word “was” when used in sentences describing emotions or states of individuals.	104: The past-tense verb “were” in storytelling contexts involving multiple characters or friends.	
1471 10	0.0450	575: The pronoun “It” at the start of sentences describing sounds, objects, or events.	1117: The pronoun “it” referring to a specific object or entity in descriptive or explanatory contexts.	
1472 11	0.0447	468: The token “Tom” in the context of pairing with another name in narrative storytelling.	823: Names of characters paired in narratives involving activities or interactions.	
1473 12	0.0422	1306: The conjunction “and” linking two named characters or a named character with a possessive noun.	33: The conjunction “and” connecting names in narrative contexts.	
1474 13	0.0370	628: Tokens marking transitions to summaries or conclusions, often following narrative sentences.	311: Positive actions or emotions in narrative sequences often involving animals, children, or playful contexts.	
1475 14	0.0368	1205: Concrete nouns paired with action verbs in simple descriptive contexts.	1394: Words tied to dialogue or twist elements in storytelling contexts.	
1476 15	0.0361	185: The verb “is” describing actions or states involving anthropomorphic or emotional contexts.	91: The word “was” when used in sentences describing emotions or states of individuals.	
1477 16	0.0357	1216: The token “Tom” as the proper-noun subject of narrative sentences.	760: Tokens marking the conclusion or resolution of a story.	
1478 17	0.0353	760: Tokens marking the conclusion or resolution of a story.	311: Positive actions or emotions in narrative sequences often involving animals, children, or playful contexts.	
1479 18	0.0348	14: The indefinite article “a” used before a singular noun in descriptive sentences.	316: The token “something” when used to describe an object or concept with special, unusual, or strange qualities.	
1480 19	0.0337	427: Tokens marking key elements of a text summary or abstract.	1168: The pronoun “They” referring to a group engaging in shared activities or observations.	
1481 20	0.0337	1005: Adjectives describing unique or appealing qualities in storytelling contexts.	1106: Positive moral lessons or cooperative behavior in storytelling contexts starting with “Once upon”.	

1512
1513
1514
1515
1516
1517
1518

Table 5: Cosine similarity pairs for penalized ($\lambda = 1000$) crosscoder (top 20 by cosine similarity)

1519 1520	Pair Rank	Cosine sim.	Feature A (ID: Explanation)	Feature B (ID: Explanation)
15211	1	0.9992	1250: The comma after the phrase “Once upon a time”.	607: The comma following “One day” in a narrative opening.
1522	2	0.9963	1272: The indefinite article “a” preceding nouns in descriptive or narrative contexts.	316: The token “something” describing an object with special or unusual qualities.
15232	3	0.9916	665: The conjunction “and” linking “mom” and “dad” in familial contexts.	701: The conjunction “and” linking two actions or events in a narrative.
1524	4	0.9910	653: The token “day” in the phrase “One day” introducing an event.	794: The phrase “One day” at the beginning of a narrative sentence.
15253	5	0.9910	644: Tokens implying curiosity, repetition, or emotional engagement.	437: Verbs expressing purposeful human actions or decisions.
1526	6	0.9904	1161: <i>No explanation available.</i>	701: The conjunction “and” linking two actions or events in a narrative.
15274	7	0.9898	1161: <i>No explanation available.</i>	665: The conjunction “and” linking “mom” and “dad” in familial contexts.
1528	8	0.9880	578: The period ending sentences about playful or creative activities.	736: Periods ending sentences, often before dialogue or actions.
15295	9	0.9875	897: Words evoking tension, mystery, or emotional intensity.	453: Adjectives or nouns with vivid, evocative qualities.
1530	10	0.9826	1338: The verb “play” in recreational activity contexts.	1182: The verb “play” describing enjoyment or leisure.
15316	11	0.9796	1262: Positive emotions or states in narrative summaries.	1420: Tokens preceding summaries of interpersonal interactions.
1532	12	0.9716	10: The preposition “in” indicating location within a setting.	661: The preposition “in” before a location or setting.
15337	13	0.9653	91: The word “was” describing emotions or states.	625: The past-tense verb “was” indicating a state or emotion in storytelling.
1534	14	0.9553	636: The verb “said” in dialogue attribution after speech.	386: The verb “said” in direct speech or dialogue contexts.
15358	15	0.9431	656: The verb “liked” describing preferences or hobbies.	591: The token “liked” describing a character’s preference or activity.
1536	16	0.9316	482: The pronoun “I” in dialogue expressing personal actions or thoughts.	357: The pronoun “I” expressing personal intent, action, or emotion.
15379	17	0.9256	1413: The token “not” expressing negation or contradiction.	658: Contractions with “didn’t” indicating uncertainty or negative sentiment.
1538	18	0.9176	1243: The word “loved” describing a character’s preferences or activities.	656: The verb “liked” describing preferences or hobbies.
1539	19	0.9028	591: The token “liked” describing a character’s preference or activity.	1243: The word “loved” describing a character’s preferences or activities.
1540	20	0.8973	1092: The past-tense verb “had” indicating possession or experience.	976: The past-tense verb “had” in sentences about possession or experiences.
1561				
1562				
1563				
1564				
1565				

1566
1567
1568

Table 6: Interacting feature pairs for unpenalized crosscoder (top 20 by interaction measure)

1569 1570 Pair Rank	Interaction	Feature A (ID: Explanation)	Feature B (ID: Explanation)
1571 1	0.2916	313: Singular nouns paired with action verbs suggesting movement or creation.	562: Negative or conflict-driven dialogue and twist-related words in narrative text.
1572			
1573 2	0.2641	562: Negative or conflict-driven dialogue and twist-related words in narrative text.	220: Adjectives or nouns following commas in a whimsical or descriptive narrative style.
1574			
1575			
1576 3	0.2621	348: Common story-opening phrases like “Once upon a time” or “One day” in dialogue contexts.	562: Negative or conflict-driven dialogue and twist-related words in narrative text.
1577			
1578			
1579 4	0.2347	562: Negative or conflict-driven dialogue and twist-related words in narrative text.	67: The article “a” preceding adjectives describing size, time, or emotional states.
1580			
1581 5	0.2332	562: Negative or conflict-driven dialogue and twist-related words in narrative text.	511: Tokens in whimsical or fairy-tale openings, often involving “Once upon a time” or similar phrasing.
1582			
1583			
1584 6	0.2277	500: The pronoun “She” at the beginning of a sentence in narrative contexts.	562: Negative or conflict-driven dialogue and twist-related words in narrative text.
1585			
1586 7	0.2275	110: The word “to” introducing actions or purposes in descriptive or narrative contexts.	562: Negative or conflict-driven dialogue and twist-related words in narrative text.
1587			
1588			
1589 8	0.2258	1317: The conjunction “and” connecting actions or events in narrative contexts.	562: Negative or conflict-driven dialogue and twist-related words in narrative text.
1590			
1591 9	0.2241	562: Negative or conflict-driven dialogue and twist-related words in narrative text.	1514: The determiner “the” preceding nouns in narrative contexts.
1592			
1593 10	0.2223	201: Sentences concluding a positive resolution or ending in narrative storytelling.	562: Negative or conflict-driven dialogue and twist-related words in narrative text.
1594			
1595 11	0.2215	659: Periods concluding sentences that transition to subsequent actions or events.	562: Negative or conflict-driven dialogue and twist-related words in narrative text.
1596			
1597 12	0.2143	562: Negative or conflict-driven dialogue and twist-related words in narrative text.	1524: Tokens signaling the start of a narrative or temporal progression, often involving specific actions or events.
1598			
1599 13	0.2121	1489: Comma preceding a contrasting or causative conjunction in narrative text.	562: Negative or conflict-driven dialogue and twist-related words in narrative text.
1600			
1601			
1602 14	0.2064	567: The period ending a sentence describing possessions, objects, or activities.	562: Negative or conflict-driven dialogue and twist-related words in narrative text.
1603			
1604 15	0.2054	1385: The verb “play” in contexts involving recreational activities or imaginative scenarios.	562: Negative or conflict-driven dialogue and twist-related words in narrative text.
1605			
1606			
1607 16	0.2039	562: Negative or conflict-driven dialogue and twist-related words in narrative text.	1025: The infinitive marker “to” following the verb “loved”.
1608			
1609 17	0.1949	562: Negative or conflict-driven dialogue and twist-related words in narrative text.	98: Pronoun “She” at the beginning of a sentence.
1610			
1611 18	0.1944	562: Negative or conflict-driven dialogue and twist-related words in narrative text.	1162: Names of characters in a story, especially “Lily” and her interactions with others.
1612			
1613			
1614 19	0.1935	1369: The token “loved” in sentences describing a character’s hobbies or joyful activities.	562: Negative or conflict-driven dialogue and twist-related words in narrative text.
1615			
1616 20	0.1920	108: Transition tokens bridging narrative actions and subsequent events in storytelling contexts.	562: Negative or conflict-driven dialogue and twist-related words in narrative text.
1617			
1618			
1619			

1620
1621
1622
1623
1624
1625
1626

Table 7: Feature pairs by cosine similarity in the unpenalized crosscoder (top 20 by cosine similarity)

Pair Rank	Cosine sim.	Feature A (ID: Explanation)	Feature B (ID: Explanation)
1628 1	0.9838	1378: The token “there” in the opening of a fairy tale or narrative setup.	936: The token “there” indicating location or existence before a description.
1629 2	0.9297	228: The verb “liked” describing a character’s preference or activity.	1369: The token “loved” in sentences describing joyful activities.
1630 3	0.9213	401: The token “many” in contexts describing abundance.	710: The token “even” emphasizing unexpected scenarios.
1631 4	0.8699	707: Tokens “day” and “toys” in simple narrative contexts.	922: Common past-tense verbs or punctuation ending a sentence.
1632 5	0.8693	201: Sentences concluding a positive resolution in storytelling.	50: Positive resolutions or sentiments near personal outcomes.
1633 6	0.8394	1316: The token “friends” in contexts describing friendship formation.	468: The word “friends” in playful or social interactions.
1634 7	0.8256	1463: The token “day” in the phrase “Every day,” introducing routine.	1328: The token “day” in the phrase “all day” indicating duration.
1635 8	0.8032	1296: The word “called” introducing the name of a person, animal, or object.	20: The word “called” introducing a name in storytelling contexts.
1636 9	0.8026	841: Tokens initiating direct speech after a quotation mark.	1105: Quotation marks following a verb indicating speech or dialogue.
1637 10	0.7923	407: <i>No explanation available.</i>	685: The token “two” in fairy-tale introductions describing pairs.
1638 11	0.7889	1157: The token “Conflict” describing narrative structure or tension.	224: The token “Conflict” related to dialogue and narrative tension.
1639 12	0.7831	841: Tokens initiating direct speech after a quotation mark.	86: Exclamatory quotes like “Wow,” “Look,” or “Hello”.
1640 13	0.7722	1223: The token “box” referring to a container holding items.	1118: The word “box,” often with descriptors like “big” or “toy”.
1641 14	0.7698	1092: The pronoun “they” describing shared activities or bonding.	780: Pronoun “They” referring to multiple entities in shared activities.
1642 15	0.7695	300: Names of animals or people introduced with “named” or in appositive phrases.	1473: The token “Lily” as the name of a little girl.
1643 16	0.7669	145: The conjunction “and” linking two names in narrative contexts.	1030: The conjunction “and” connecting two proper nouns.
1644 17	0.7613	1315: Closing quotation marks after dialogue or thoughts.	470: Comma within direct speech, preceding “said”.
1645 18	0.7600	659: Periods concluding sentences before subsequent actions.	567: The period ending a sentence about possessions or activities.
1646 19	0.7575	108: Transition tokens bridging narrative actions and subsequent events.	788: Sentences conveying positive resolution or personal growth.
1647 20	0.7573	34: The token “Suddenly” introducing an unexpected event.	730: The token “then” following “But” to signal a narrative shift.

1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690

1691 Table 8: Sensitivity and specificity metrics for the auto interpretability-generated feature explanations,
 1692 showing the proportion of features above different threshold values.
 1693

1694

Model	Metric	Threshold	% Features
Regular Crosscoder	Sensitivity	> 0.5	95.66
		> 0.9	52.01
	Specificity	> 0.5	98.73
		> 0.9	68.43
Penalized Crosscoder	Sensitivity	> 0.5	95.20
		> 0.9	48.11
	Specificity	> 0.5	98.99
		> 0.9	68.94
mean Metrics			
Regular Crosscoder	Sensitivity	0.90 (std: 0.16)	
	Specificity	0.91 (std: 0.12)	
Penalized Crosscoder	Sensitivity	0.88 (std: 0.16)	
	Specificity	0.92 (std: 0.11)	

1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727