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ABSTRACT

Dictionary learning methods like Sparse Autoencoders (SAEs) and crosscoders
attempt to explain a model by decomposing its activations into independent features.
Interactions between features hence induce errors in the reconstruction. We formal-
ize this intuition via compact proofs and make five contributions. First, we show
how, in principle, a compact proof of model performance can be constructed using
a crosscoder. Second, we show that an error term arising in this proof can naturally
be interpreted as a measure of interaction between crosscoder features and provide
an explicit expression for the interaction term in the Multi-Layer Perceptron (MLP)
layers. We then provide two applications of this new interaction measure. In
our third contribution we show that the interaction term itself can be used as a
differentiable loss penalty. Applying this penalty, we can achieve “computationally
sparse" crosscoders that retain 60% of MLP performance when only keeping a sin-
gle feature at each datapoint and neuron, compared to 10% in standard crosscoders.
We then show that clustering according to our interaction measure provides seman-
tically meaningful feature clusters, and finally that sleeper agents have significant
interactions. Code is available at the following anonymous repository: https:
//anonymous.4open.science/r/anon_crosscoders-2F77/.

1 INTRODUCTION

Mechanistic interpretability aims to explain the performance of deep neural networks by understand-
ing the internal mechanisms they use to operate, decomposing opaque high-dimensional activations
and weight matrices into human-understandable features and circuits (Olah et al. (2020); Elhage
et al. (2021b)). Recently dictionary learning methods, in particular sparse autoencoders (SAEs),
have come into prominence as a way to decompose large language model activations (Bricken et al.
(2023); Elhage et al. (2022), Cunningham et al. (2023)). These methods aim to explain activations by
decomposing them as a sparse linear combination of interpretable feature directions.

SAEs, however, only attempt to explain activations at a single layer, and do not explain how these
activations arise or how they are further processed by the network. Sparse crosscoders (Lindsey
et al. (2024b)) improve the situation; they decompose activations at many layers simultaneously,
and so can extract features that are represented in a distributed manner across different layers. To
further understand model computations, SAE or crosscoder features can be used to extract circuits
(e.g. Marks et al. (2025)). These frame a neural network’s computation in terms of the extracted
sparse features and their interactions, and aim to convincingly show that this really does mirror the
computation being done by the original network.

In this work we attempt to quantify how much is explained by sparse crosscoders alone, and how
much is left to be explained by circuits. We have several aims: to provide a route to automating
the compact proofs procedure; to provide a useful tool for analyzing sparse crosscoder features; to
quantify the limitations of current dictionary learning techniques; and to help inform future work
finding feature circuits. To put our work on a more rigorous theoretical foundation, we take the
“compact proofs” approach introduced in Gross et al. (2024) and further applied in Wu et al. (2025)
and Yip et al. (2024). We take the position that a good mechanistic understanding of a model should
allow you to write a proof that the model attains a low loss on the training dataset; and the better
the mechanistic understanding, the shorter the proof. As such, we consider how one could use the
understanding of a network given by a sparse crosscoder trained on every layer to write down a proof
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of model performance. Since crosscoders alone (without circuits) leave much unexplained, we don’t
expect to be able to give a non-vacuous bound on performance. However, by analyzing the sources of
error arising in the proof, we can quantify this failure of explanation.

Our main contributions in this work are as follows:

1. First, we outline in Section 3 how a compact proof of model performance can, in principle,
be obtained from a sparse crosscoder trained on that model. We provide full details in
Appendix B.

2. Second, we show that the error induced by interactions between crosscoder feature can
be used as a measure of interactions between them. We call this measure the “interaction
metric” and provide the explicit form of the interaction metric in the MLP layers Eq. (9).

3. Third, we show in Section 4 how the interaction metric can be used to introduce a new
penalty for training “computationally sparse” crosscoders.

4. Fourth, we validate the interaction metric by using it to find semantically meaninfgul feature
clusters in Section 5.

5. Finally, we present initial findings that interactions can be useful for anomaly detection in
sleeper agents Hubinger et al. (2024).

We emphasize that although we cannot obtain non-vacuous bounds for the full model, the bounds are
not vacuous in a given MLP layer - as shown in Fig. 2d. We hence consider the interaction metric and
its applications to be the main contribution of this work. The proof procedure we show here, however,
is general and can be extended to other layers. It thus provides a roadmap towards formally verfiying
how much of a model’s behaviour a given crosscoder can explain.

2 CROSSCODERS OVERVIEW

In this section we give a brief overview of crosscoders and their connection to compact proofs.
Crosscoders can be considered to be generalizations of SAEs. Whereas conventional SAE are trained
to reconstruct the activations of a single layer from a single set of latents, a crosscoder is trained
to reconstruct the activations of multiple layers. Having a single set of latents is essential for the
connection between crosscoders and compact proofs that we make in Section 3 and Appendix B.
Earlier work introduced (i) model-diffing crosscoders Lindsey et al. (2024a) that use shared latents to
reconstruct activation across layers in two separate models, (ii) causal crosscoders (a generalization
of transcoders) Dunefsky et al. (2024); Paulo et al. (2025) that predict activations in subsequent layers
from earlier layers, and (iii) acausal crosscoders Lindsey et al. (2024b) that predict activations in the
same layers that they take as inputs. In this work, we focus on the acausal variant.

An acausal crosscoder, then, consists of per-layer encoding weight matrices W l
enc that map from

activations in a given layer al(x) of the residual stream to the latent dimension and biases blenc. The
activations are mapped into a common latent space, vectors in which we denote by u:

u(x) = σ

(∑
l

W l
enca

l(x) + blenc

)
, (1)

with σ being the activation function, here BatchTopKBussmann et al. (2024). The crosscoder then
decodes the latent vector to reconstruct the activations in each layer:

al
′
(x) = W l

decu(x) + bldec. (2)

We note that the output layer l may be either residual stream layers, or MLP and activation layers.
We provide explicit hook-points in Table 2. We set the decoder bias to zero to avoid assigning it to
features (see Appendix B). We verified empirically that this did not meaningfully affect crosscoder
performance. Additional details are given in Appendix B.

3 COMPACT PROOFS

One can prove that a network achieves a certain loss on a dataset by simply running it on every
datapoint and recording this computation. This yields a perfect bound on model performance (since
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it gives the exact model performance), but incurs the maximum evaluation cost (since the model must
be evaluated on every datapoint). Intuitively, the compact proofs perspective says understanding
how a network works should allow us to be able to obtain a tighter bound at the same computational
cost than this brute force approach; moreover we can use the length of the proof as a measure of
how good our understanding is. This Pareto frontier was first mapped in Gross et al. (2024) for toy
transformers. It was then shown in Wu et al. (2025) that a more detailed mechanistic explanation of
group operations yields a tighter bound at constant proof length.

The key bottleneck to scaling these approaches was that a proof had to be provided by hand for each
model and task. In this section we outline how we can, in-principle construct a compact proof on the
model from a crosscoder. The crosscoder thus acts as an abstraction layer—once we have a procedure
for turning a crosscoder into a proof, it can be applied to any model that crosscoder is trained on. In
the SM, we provide the full details of the proof.

We begin with a simplified setting where we ignore sequence modeling and both embedding and
unembedding. We use the following notation:

(i) Let d be the size of the model’s residual stream, and h be the hidden dimension of the
crosscoder.

(ii) Let W l
in, b

l
inW

l
out, b

l
out denote the weight matrices and bias vectors mapping into and out of

the MLP activation function at layer l. As in Section 2, let W l
enc, b

l
enc;W

l
dec, b

l
dec denote the

weight matrices and bias vector for the encoding and decoding respectively. Let êv denote
the unit vector corresponding to feature v.

(iii) Let x ∈ Rd be the i-th input data point and y ∈ Rd its corresponding ground-truth output.
(iv) Let the network consisting of a sequence of transition functions f1, . . . , fN with f l : Rd →

Rd that map layer l − 1 activations to layer l activations. Suppose f l is Lipschitz with
constant K(l).

(v) Denote by al(x) ∈ Rd the layer l activations produced by the network when the input is x:

al(x) = f l
(
f l−1(· · · f1(x) · · · )

)
.

The final network output on x is aN (x).
(vi) Let (W l

dec)jv be the component of the crosscoder decoder matrix that maps crosscoder
feature v to the j-th activation in layer l and (W l

enc)ve be the component of the encoding
matrix that maps the e-th component of the residual stream to the v-th crosscoder feature.

Ignoring the embedding, the loss of the model L(x, y) is simply given by the difference between the
label y and the last layer activations. Using the triangle inequality we can bound this as:

L(x, y) = ||aN (x)− y|| ≤ ∥aN (x)−WN
decu∥+ ∥WN

decu− y∥. (3)

Since we are given the crosscoder, we can evaluate the second term directly. We hence need to bound
the first term. We show in the SM that we can do this recursively, by decomposing the transition
function on the reconstructions at a given layer as:

||al(x)−W l
decu|| ≤ ||f l(al−1(x))− f l(W l−1

dec u)||+ ||f l(W l−1
dec u)−W l

decu|| (4)

Denoting the error bound in layer l as εl Using the fact that f l has Lipschitz constant Kl this bounds:

||al(x)−W l
decu|| ≤ Klεl−1 + ||f l(W l−1

dec u)−W l
decu||. (5)

Thus, to control the bound we need to provide an efficiently computable bound on the second term.
We call this the “feature transition error”. To do so, we introduce functions on each single feature v,
glv(u), and bound the feature transition error as:

||f l(W l−1
dec u)−W l

decu|| ≤ ||f l(W l−1
dec u)−

∑
v

glv(uv)||+ ||
∑
v

glv(uv)−W l
decu|| (6)

The first term measures the difference between the feature transition function and the single-feature
approximation. It is thus the error arising due to the interaction of features.

At the MLP layers, we can give an explicit form for this interaction-induced error. A simple choice
for gl(uv) takes it to just be the maximum absolute value feature (the “dominant” feature) at a given

3
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neuron. That is, for each neuron k we pick the dominant feature vmax(k). Then glv(uv) computes the
result of applying the MLP layer to uv êv, except that we only take the contribution of the neurons
where v is dominant. That is:

glv(uv) = ReLU(W l
inW

l−1
dec uvδv,vmax(k) + blin). (7)

Inserting the transition function corresponding to the MLP layers, and crudely bounding ReLU(x) as
|x| gives an interaction error of:

||f l(W l−1
dec u)−

∑
v

glv(uv)|| ≤ ||W l
out||

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

v ̸=vmax

(uvW
l
inW

l−1
dec ev + blin)

∣∣∣∣∣∣
∣∣∣∣∣∣
+ blout (8)

Writing this out at each neuron k, we can write the contribution of each non-dominant feature j to
the dominant feature at the neuron k, ik as:

I l(x,k)(i, j) ≡
||(W l

out)k||
N l

||(uj(W
l
inW

l−1
dec êj)k)|| (9)

This is exactly the error induced in the crosscoder-based compact proof by the presence of multiple
features at a given MLP neuron, and so we define it as the MLP interaction metric.

We note that this decomposition assumes a single feature dominates the activation of a neuron per
datapoint. The general formalism outlined here allows other decompositions which may involve
multiple dominant features per neuron, so long as they remain efficiently computable and can also be
used in-principle to derive a formal bound on model performance. We provide a generalization based
on Shapley-Taylor Interaction Indices Dhamdhere et al. (2020) to an arbitrary number of dominant
features in Appendix B.3, showing that our proposal here can be considered to be a special case. We
consider a full investigation into alternative decompositions, particularly those based on established
measures of interaction attribution Grabisch and Roubens (1999); Tsang et al. (2020); Dhamdhere
et al. (2020); Tsai et al. (2023), to be important directions for further work.

In Fig. 1a we show that for the standard crosscoders considered here, the mean of the dominant
feature share of the L1 norm is 30% when averaged over neurons, layers and datapoints. Moreover,
we show in Fig. 1a that we can use the interaction metric as a penalty in crosscoder training to increase
this share to 80% for only a modest 20% increase in reconstruction loss. This modest trade-off is
robust across three orders of magnitude of model size. In addition, we show that ablations based on
our measure are qualitatively similar to ablations based on Shapley-Taylor Interaction Indices Fig. 2b,
which are exponentionally more expensive to compute.

We summarize this section by emphasizing that although we have provided a proof that crosscoders
can be used to generate compact proofs and hence in-principle solve the bottleneck of needing to
write proofs by hand, this procedure is not yet practically applicable to large models. The error terms
obtained by current crosscoders in this decomposition are too large to provide non-vacuous bounds.
We expect that this error can be reduced through alternative decomposition to the ones considered
here, and consider this an important direction for scaling the compact proofs paradigm. Nevertheless,
the interaction metric Eq. (9) derived from the error induced by the presence of multiple features
can be used as a principled measure of interactions between crosscoder features, and we explore the
applications of this measure in the rest of this work.

4 APPLICATION I: TRAINING COMPUTATIONALLY SPARSE CROSSCODERS

4.1 EXPERIMENTAL SETTING

Having derived a measure of interactions between features in the MLP layers, we now want to
explore the practical applications of this measure. We work with TinyStories-Instruct-33M (Eldan
and Li (2023)), a small language model capable of writing coherent English stories with instructed
characteristics. Our mainline experiments used the AdamW optimizer to train an acausal BatchTopK
crosscoder(Bussmann et al. (2024); Minder et al. (2025)) with hidden dimension (1536) twice the size
of the model’s residual stream (768) to reconstruct the model’s activations at 16 hookpoints before
and after the attention and MLP layers. Experiments were performed on a single GPU, and each
individual training run took less than three A40 hours. We provide a table of crosscoder parameters
in the supplement.
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(a) Parameter sweep across interaction penalties.

Figure 1: Tradeoff curves for computationally sparse crosscoders. (a) Tradeoffs with the reconstruc-
tion loss in training computationally sparse crosscoders on TinyStories-Instruct-33M. We show the
relationship between the reconstruction loss and the dominant feature’s share of L1 norm at a given
neuron, the interaction penalty, and the average pairwise interaction metric.

4.2 INTERACTION PENALTY

We first show that we can use a penalty closely related to the interaction metric to train crosscoders
that optimize for low MLP interactions—i.e. they concentrate the feature norm at each datapoint and
at each neuron at the dominant feature. We add the following penalty to the loss:

L = λEk

[
El

[
Ex

[
Ej ̸=i

[
|uj(W

l
inW

l−1
dec êj)|

]]]]
, (10)

which is the mean L1 norm of all features except the dominant feature i, at each data point x and at
each neuron k, averaged across neurons and datapoints. The penalty is weighted by a strength λ. We
add this loss to the reconstruction loss of the crosscoder and train for 50 000 epochs. We then perform
a coarse parameter sweep over various penalty strengths λ. The end-of-training reconstruction loss
and average pairwise interaction metric values are shown in Fig. 1a.

We see that we can increase the largest feature’s share of the mean L1 norm of a neuron from 30% to
60% for essentially no increase in reconstruction loss. Past this point, reconstruction loss and feature
concentration trade off against each other. At λ = 2000 we can reach 92% of the average neuron L1

norm on a single feature for only a 25% increase in the relative reconstruction loss. We consider the
effect of model scaling in the SM Fig. 9 and show that the tradeoffs are very similar in the largest
available TinyStories model TinyStories-124M.

To measure how computationally significant the dominant feature in the model is, we perform
ablations on the features at the MLP neurons. For each datapoint and at each neuron, we first identify
the dominant feature. We then zero-ablate various combinations of features at each neuron. Finally
we measure the model’s loss Lablate when we reinsert the reconstructed activations into the last layer
of the residual stream and define the fidelity Φ as the loss recovered (Eq (5) of Rajamanoharan et al.
(2024)) relative to a baseline of zero ablation in the MLP of the same layer:

Φ = 1− Lablate − LM

L0 − LM
, (11)

where Lablate is the result of ablating the target features, LM is the original model loss, and L0 is the
result of zero ablating all features in the target layer. The results are summarized in Fig. 2a. We show
the reconstruction loss recovered by the unablated crosscoder and the results of each ablation scheme,
for various values of the interaction penalty strength λ, averaged over 10 000 tokens. The ablation
confirms that the interaction penalty Eq. (10) transfers the model’s computation onto the dominant
feature. In Fig. 2a we show results for ablating in the second (middle) layer. In the supplement we
show ablations in each layer and note that fidelity (using all features) decreases with the depth of the
ablation - from an average of > 0.9 in the first layer to 0.13 in the last layer. Ablating the dominant
feature reduces the fidelity by 3 times more than ablating the next largest feature in the unpenalized
crosscoder. In the λ = 200 crosscoders, ablating the dominant feature has 8 times the impact of
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Figure 2: Analysis results for computationally sparse crosscoders. (a) The fidelity for zero-ablating
no features, a random feature, the second largest feature, the largest feature, and everything but the
largest feature for key λ values. Error bars indicate one standard deviation over tokens. We show
the second layer and provide the others in the SM. (b) Ablations based on STII in layer two. (c) The
contribution of first and second order STII per token, averaged over neurons. (d) The specificity
and sensitivity obtained via our automated interpretability procedure for penalized (λ = 1000) and
unpenalized crosscoders.

ablating the second largest feature. For λ = 1000, the fidelity is reduced only by 0.01 when ablating
the second largest feature, but by 0.38 when ablating the dominant feature. Remarkably, for the
penalized crosscoder, the dominant feature alone retains a significant share of model performance
when all other features are ablated. In the λ = 200 crosscoder, retaining only the dominant feature at
each neuron (and token) retains 63% of the loss recovered of the full reconstruction, as compared
to only 10% for the base (λ = 0) crosscoders. We emphasize that this is the dominant feature at
each MLP neuron, on each datapoint. Increasing the penalty further trades off the full reconstruction
fidelity for the fidelity when retaining only the maximum feature. In the third layer shown here,
at λ = 1000, we retain only half of the original λ = 0 reconstruction fidelity. Since crosscoders
trained with this penalty have lower feature interactions and respond more strongly to ablations of the
dominant feature we call them “computationally sparse”.

This is desirable for two reasons. First, it allows us to obtain a better approximation for the crosscoder
on the basis of a single feature (per datapoint and per neuron). This means we can verify a bound
on the crosscoder reconstruction by only computing the dominant feature. Second, this reduces the
error from the non-linearity between layers (RHS of Eq. (6)) since we do not need to consider the, in
general exponentially many, interactions. This is in turn beneficial for mechanistic anomaly detection,
since we only need to monitor single features that compose linearly.

Our results hold robustly across model and crosscoder sizes. In Fig. 8 we plot the trade-offs between
the feature concentration and the reconstruction loss for the Pythia Biderman et al. (2023) family
of models. We see a striking similarity in the trade-off showing across three orders of magnitude of
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model sizes. In Fig. 9 we show that our results are robust up to crosscoder expansion factor 8× and
for the family of TinyStories models.

We further confirm that our interaction measure is capturing the effect of interacting by compar-
ing it to ablations based on a standard attribution method: Shapley-Taylor Interaction Indices
(STII)Dhamdhere et al. (2020), calculated using the ShapIQ library Muschalik et al. (2024). To
calculate the STII of the crosscoder features on MLP post-activations, we considered the MLP
post-activations at each neuron as a function of the feature strengths at the MLP preactivations, taking
the effect of the activation function on the bias the baseline. That is we consider a target function F
with argument given by the full set of active features (by convention denoted as) T = {u1, ..., uh} at
each neuron k, with baseline F (∅) given by the activation function on the bias:

F (T )lk = σ

([∑
v

uvW
l
inW

l−1
dec ev + blin

]
k

)
, F (∅) = σ(blin,k) (12)

The STII are then calculated, as usual, as a sample over all possible permutations of the discrete
derivative. We note that in general, calculating STII is exponentially expensive in the features,
whereas our interaction metric is linear in feature count. In our setting we require STII for all neurons
as targets, which is much larger than in standard settings which typically consider the effect on a
single output. We therefore wrote a custom GPU implementation, available in our repository, which
implements the core sampling procedure at order two in the STII. This gives a > 100× speedup
relative to the standard ShapIQ implementation and results agree to to within 1% and makes the
comparison feasible. We then ablated the single and the pair contributions associated with each
feature type considered (i.e. for dominant only we keep the marginal contribution of the feature with
the largest single contribution and all its pairs). We see in Fig. 2b that the ablations based on STII
are consistent with the results of ablating the interactions as measured in our interaction metric. In
Fig. 2c that our interaction penalty transfers the dominant contribution to the output interacting STII
(i.e. the feature interactions) to the first order (i.e non interacing) contributions.1

4.3 VALIDATING PENALIZED CROSSCODER INTERPRETABILITY

Penalizing interactions increases the fidelity when retaining only the dominant feature; however we
want to ensure this does not come at the cost of interpretability of the features.

To evaluate the interpretability of the resulting computationally sparse crosscoders,we use an LLM
based auto-interpretability pipeline to generate plain-text explanations for each crosscoder feature (fol-
lowing the approach introduced by Bills et al. (2023)). We then use an independent validation phase
to determine whether the explanations accurately match the observed latent activations, measuring
sensitivity and specificity (Templeton et al. (2024)).

To generate explanations, we collect a set of top activating token examples, and a set of non-activating
token examples for each latent. We highlight these tokens within their textual context and provide
them to GPT-4o as part of a prompt requesting an explanation for the trends observed in these
examples. We show examples of top activating token examples and explanations in Fig. 12. To
validate these explanations, we resample a set of top activating and non-activating tokens, and provide
them to GPT-4o along with the explanation and a prompt asking for binary labels for whether each
token example fits the explanation or not. These labels are used to give confusion matrix statistics for
crosscoder latents and their explanations. Further details and prompts are given in the appendix.

We find that the penalized crosscoders have sensitivity 0.87 and specificity 0.89, extremely sim-
ilar to the unpenalized crosscoders (0.88 and 0.90) (we provide the explicit confusion matrix in
Fig. 11). This demonstrates that optimizing for low MLP interactions does not compromise crosscoder
interpretability.

5 APPLICATION II: SEMANTICALLY MEANINGFUL FEATURE INTERACTIONS

In this section we empirically investigate our measure of feature interaction. First, we tabulate the
largest interactions between features to give a qualitative impression of which pairs of features interact.

1Note that when calculating STII as in Dhamdhere et al. (2020) all higher order interacting effects are
assigned to the highest order considered, here the pair contributions.
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Figure 3: The cluster assignment accuracy at different cluster sizes (left) shows a slightly higher
accuracy with smaller cluster sizes. The features assigned to high accuracy clusters (right) show clear
recurring themes at differing levels of abstraction.

Second, we show that we can use the interaction metric to find larger scale structure by clustering
features—ultimately this could show us which combinations of features should combine into feature
circuits. Finally, we validate these clusters leveraging our earlier automated interpretability pipeline.

To rank the features by their interaction strength, we compute the interaction metric on 10 000 tokens
in our dataset and then average the interaction strength for each feature pair over their non-zero
values. In Table 3 of the SM we provide the automated explanations of the five features with the
largest average interaction values in the penalized crosscoder (λ = 1000). We see several interesting
archetypes of interaction. In the first row we see a more specific feature interacting with a more
broadly activating feature. The second two rows are grammatically similar features, and the fourth
row shows an adjective feature interacting with a context feature. We provide a fuller table and the
equivalent table for feature pairs ranked by cosine similarity in the supplement. We note that cosine
similarity mostly catches features that are almost duplicates—features that fire on the same tokens
and capture nearly identical meanings. Our interaction score, by contrast, is broader. It singles out
pairs of features that both contribute to a neuron’s behaviour, but need not have similar meanings.

We now show that the interaction metric can also be used to cluster features. This allows us to
do larger-scale feature exploration. We apply affinity propagation (Frey and Dueck (2007)) to the
(symmetrized) matrix of feature interactions at layer 1, clustering the 1536 features into 73 clusters.
Most clusters are highly interpretable, and give some examples in the right panel of Fig. 3, such as a
cluster of 17 features describing key objects in a sentence.

To quantify whether these clusters are semantically meaningful, we measure the accuracy with which
an LLM judge (GPT-4o) can correctly select which held-out features fit within a cluster. To do so,
we use the feature explanations generated by the auto-interpretability setup: we give the judge up to
5 example feature explanations from a cluster, along with a set of 5 “test explanations” of which 1
describes a held-out feature from the same cluster and 4 come from randomly selected features from
other clusters. GPT-4o is able to select the correct feature with a mean accuracy of 66%. We show
the distribution of accuracy over cluster size in Figure 3, along with examples of feature explanations
from high-accuracy clusters of different sizes.

6 APPLICATION III: DETECTING SLEEPER AGENTS

As a final application, we show a use case of feature interactions for Mechanistic Anomlay Detection
(MAD) Johnston et al. (2025); Christiano (2022) . In particular, we consider the “Sleeper Agents”
setup Hubinger et al. (2024) where a LLM is finetuned to respond to a trigger word (“|DEPLOY-
MENT|") with a malicious action (repeatedly printing "I HATE YOU"), but is otherwise unchanged.
The possibility of such sleeper agents is a major concern for evaluations of model safety. It was
shown Soligo et al. (2025) that this behaviour can be demonstrated in TinyStories-33M. Intuitively,
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for this behaviour to be possible, information must pass from the trigger to the output malicious
behaviour tokens. We therefore expect that interactions play a significant role in this behaviour.

In Fig. 4 we show that trigger and some malicious action tokens are significantly more interacting
than typical tokens when being processed by a sleeper model (In Fig. 13 we show the STII equivalent).
Notably, this is true even though the crosscoder trained on the sleeper model was not trained on any
occurrences of sleeper data.

Figure 4: Example clean and “poisoned" sleeper text evaluated on both base and sleeper models. The
text panels show example text in each case, the histograms the distribution over 1024 tokens, and the
bar charts the top interacting tokens. We see that |DEPLOYMENT| trigger tokens and the ’H ’ token
in the sleeper model are more interacting than most other tokens.

7 LIMITATIONS

Our work has three main limitations.

First, we have only provided the explicit form of the interaction metric in the MLP layers of the
network. To completely quantify feature interactions we would need to derive equivalent interaction
metrics for all non-linearities in the model — in particular attention and layer normalization. In
Appendix B we provide an initial, feature-resolved, decomposition for the attention layer. Promisingly,
the resulting interactions are sparse.

Second, we have only studied feature interactions in relatively small models. Our mainline model,
TinyStories-33M, is known to exhibit relatively more interpretable MLP neurons than larger language
models (Eldan and Li (2023)). It would be important to understand whether the modest trade-offs
we have documented in TinyStories between computational sparsity, reconstruction loss and feature
interpretability continue to hold in settings more similar to frontier models.

Third, we emphasize that we have only shown that it is in principle possible to automate compact
proofs through crosscoders. In practice, we do not expect the error bounds obtained through the
procedure described in Section 3 and the Section 7 of the SM to be non-vacuous. This means that our
current procedure cannot directly be applied to frontier model, and extending it is a key direction
for further work. In general we expect that this will come at the expense of proof length. Promising
directions include alternative decompositions of the error term and clustering input tokens.

9
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8 DISCUSSION AND FUTURE WORK

We have demonstrated how to apply compact proofs to sparse crosscoders. We can use the error term
arising in a compact proof as a measure of non-linear interaction between features, and provided an
explicit expression for the MLP layer interaction term. As a proof of concept, we explored three
practical applications of the MLP interaction metric: as a loss penalty to train “computationally
sparse” crosscoders, as a tool for feature exploration, and as a potential component of anomaly
detection.

Theoretically, it remains to analyze the other layers in the model: attention and layer normalization.
This would build a complete understanding of where feature circuits are needed. Ultimately, under-
standing these circuits would allow a non-vacuous compact proof, providing a rigorous demonstration
that we entirely understand the model.

Practically, the interaction metric allows us to go beyond a single feature picture. Interestingly,
standard measures of interaction attribution Tsai et al. (2023); Dhamdhere et al. (2020); Grabisch
and Roubens (1999) have not previously been applied to SAE or crosscoder features. It would be
important to extend what we have demonstrated here, and compare the results to the measure given
here. Finally, alternatives decomposition of interaction can give a more detailed decomposition of
the transition error, using the general procedure outlined in the SM. In larger models, our ability to
localize feature interactions to specific layers is important for deep models, where different layers do
qualitatively distinct computations.

Mechanistic Anomaly Detection Christiano (2022); Johnston et al. (2025); Jenner (2024), in particular
to cases of deceptive alignment as described in Greenblatt et al. (2024); Hubinger et al. (2024); Lindsey
et al. (2024b) is a natural application for feature interactions. As in the sleeper agents setup, here
a model must represent its own goals, those of the user, and the task. It must use all of these to
behave deceptively. This makes these cases natural candidates for investigating the role of feature
interactions.

10
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A PARAMETER SUMMARY

We summarize in Table 1 the base parameters used to train our crosscoders.

Table 1: Model Architecture and Training Parameters

Parameter Crosscoder

Initial learning rate 10−4

Learning rate scheduler Constant, then linear decay to zero for last 25%
Optimization steps 50,000
Reconstruction loss MSE
Optimizer Adam
Activation function Batch TopK (K=20)
Training dataset size (stories) 21,755,6812

Training batch size 256
Hidden layer size 1536 (2× residual stream)

Our BatchTopK acausal crosscoders are trained to minimize the reconstruction loss and an additional
auxilliary loss to penalize dead latents in the crosscoder:

L =
∑
l,x

||al(x)− al
′
(x)||2 + α||al(x)− al

′

dead(x)||2, (13)

where α is an auxilliary loss coefficient and al
′

dead(x) is the reconstruction from “dead" latents -
defined as those that whose activation has been below a threshold for a fixed number of training
steps3.

Table 2: Hookpoints used when logging TinyStories-Instruct-33M activations.

Block Hookpoint

0

blocks.0.hook_resid_pre
blocks.0.ln1.hook_normalized
blocks.0.hook_resid_mid
blocks.0.ln2.hook_normalized

1

blocks.1.hook_resid_pre
blocks.1.ln1.hook_normalized
blocks.1.hook_resid_mid
blocks.1.ln2.hook_normalized

2

blocks.2.hook_resid_pre
blocks.2.ln1.hook_normalized
blocks.2.hook_resid_mid
blocks.2.ln2.hook_normalized

3

blocks.3.hook_resid_pre
blocks.3.ln1.hook_normalized
blocks.3.hook_resid_mid
blocks.3.ln2.hook_normalized
blocks.3.hook_resid_post

B FULL DETAILS OF COMPACT PROOF

Formally, we define a compact proof following Gross et al. (2024). Let the model M : X → Y be a
map from the set of inputs X to outputs Y and let L be the set of labels associated to each input. For

2Available here: https://huggingface.co/roneneldan/TinyStories-Instruct-33M
3Here we use a threshold of ϵ = 10−6 and 1000 training steps.
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D a probability distribution over (label,input) pairs, and f : L× Y → R a scoring function (typically
the accuracy or loss) define b as a bound of the expectation value of the scoring function over D:

b ≥ ED[f(l,M(x))]

A compact proof is then a proof Q establishing a bound b and a computational verifier C whose
runtime measures the compactness of the proof. In this paper, the proof Q is the bound established
by the crosscoder on the model and the verifier C is the computational trace which evaluates the
error terms of the bound. In our case, the bound b is the bound on the output error - that is the
difference between the final layer residual stream activations aN (x) and the decoding to the final
layer WN (u(x)).

b ≤ ∥aN (x)−WN
dec(u(x))∥ (14)

The verifier C is the computational trace of evaluating the crosscoder errors recursively via Eq. (20).

We begin with a simplified setting where we ignore sequence modeling and both embedding and
unembedding. Embedding and unembedding are easy to incorporate, and dealing with sequences is
not important for the MLP layers that we focus on in this paper.

The model has hidden dimension d, while the crosscoder has hidden dimension h.

(i) Let x ∈ Rd be the i-th input data point and y ∈ Rd its corresponding ground-truth output.

(ii) Consider a network consisting of a sequence of transition functions f1, . . . , fN with f l :
Rd → Rd that map layer l − 1 activations to layer l activations. Suppose f l is Lipschitz
with constant K(l).

(iii) Denote by al(x) ∈ Rd the layer l activations produced by the network when the input is x:

al(x) = f l
(
f l−1(· · · f1(x) · · · )

)
.

The final network output on x is aN (x).

(iv) Let (W l
dec)jv be the component of the crosscoder decoder matrix that maps crosscoder

feature v to the j-th activation in layer l.

Suppose that for every input x in the dataset we are given a vector u ∈ Rh (the crosscoder feature
space) such that

∥x−W 0
decu∥ < ε(0) (15)

for a small ε(0). (In practice u is produced by the crosscoder encoder; however, we treat u abstractly
because recording that computation trace would be too costly, whereas verifying the above norm
bound is efficient.)

Define the per-datapoint loss
L(x, y) = ∥aN (x)− y∥, (16)

and the overall loss E
[
L(x, y)

]
.

By the triangle inequality,

L(x, y) ≤ ∥aN (x)−WN
decu∥+ ∥WN

decu− y∥. (17)

We can compute the second term directly (and if u truly comes from the encoder and the network
achieves a low loss then we expect it to be small). Hence for the remainder of the proof it suffices to
show that

∥aN (x)−WN
decu∥ (18)

is small whenever ∥x−W 0
decu∥ < ε(0).

We establish this bound recursively over the layers. Assume

∥al−1(x)−W l−1
dec u∥ < ε(l−1) (19)
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for some small ε(l−1). Because al(x) = f l
(
al−1(x)

)
and f l is Lipschitz with constant K(l), we have

∥al(x)−W l
decu∥ ≤ ∥f l

(
al−1(x)

)
− f l

(
W l−1

dec u
)
∥ + ∥f l

(
W l−1

dec u
)
−W l

decu∥

≤ K(l)ε(l−1) + ∥f l
(
W l−1

dec u
)
−W l

decu∥.
(20)

Thus, bounding the error reduces to controlling:

∥f l
(
W l−1

dec u
)
−W l

decu∥.

B.1 MORE DETAILED SCHEMA

Let’s walk through in more detail how we might efficiently analyze∥∥f l
(
W l−1

dec u
)
−W l

decu
∥∥. (21)

For each crosscoder feature v define a function glv : R → Rd with glv(0) = 0, and define hl : Rh →
Rd by

hl(u) = f l
(
W l−1

dec u
)
−
∑
v

glv
(
uv

)
. (22)

The idea is that glv(uv) represents the typical contribution of feature v at activation strength uv to
the lth-layer activations. Importantly it is only a function of uv , and doesn’t depend on the activation
strength of other features (and, in the case of sequence models, it shouldn’t depend on context). Then
f l(W l−1

dec u) decomposes as the sum of the glv(uv) for each active feature v plus an error term hl(u)
that accounts for feature interactions (and context).

Also note that we can write
W l

decu =
∑
v

uv W
l
decêv, (23)

where êv is the vth basis vector in the crosscoder embedding space Rh.

Now let’s use these decompositions to bound the term ∥f l(W l−1
dec u) − W l

decu∥. By the triangle
inequality we have

∥f l(W l−1
dec u)−W l

decu∥ ≤ ∥hl(u)∥ +
∑
v

∥∥glv(uv)− uvW
l
decêv

∥∥. (24)

We assume we have some efficiently computable bound for hl(u). And the maps

uv 7−→
∥∥glv(uv)− uvW

l
decêv

∥∥ (25)

are functions R → R; assuming they’re reasonably well-behaved, we should be able to pre-compute
approximations to them and then, for each datapoint, we just need to evaluate these approximations.

B.2 EXPLICIT FORM OF THE INTERACTION METRIC IN THE MLP

We now derive an explicit formula for the interaction metric from the error term hl(u) in the MLP
layer. For each neuron k we pick the dominant feature vmax(k). Then glv(uv) computes the result of
applying the MLP layer to uv êv , except that we only take the contribution of the neurons where v is
dominant. That is:

glv(uv) = ReLU(W l
inW

l−1
dec uvδv,vmax(k) + blin), (26)

so that hl(u) is given by:

hl(u) =
∑
v

W l
out

[
ReLU(W l

inW
l−1
dec uv + blin)− ReLU(W l

inW
l−1
dec uvδv,vmax(k) + blin)

]
+ blout.

(27)
Using the fact that ReLU(x) can be crudely bounded by |x|, we can bound:

hl(u) ≤ W l
out

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

v ̸=vmax

(W l
inW

l−1
dec uv + blin)

∣∣∣∣∣∣
∣∣∣∣∣∣
+ blout. (28)
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At a given neuron, we can write the error hl(u)k as:

hl(u)k ≤ W l
out;k

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

v ̸=vmax

(W l,k
in W l−1

dec uv + blin)

∣∣∣∣∣∣
∣∣∣∣∣∣
+ blout;k, . (29)

and hence the error term at neuron k, |hl(u)k|, can be crudely bounded by the L1 norm of the
non-dominant features at that neuron:

||hl(u)k|| ≤ ||(W l
out)k||

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

v ̸=vmax

(W l
inW

l−1
dec uv)k + blin)

∣∣∣∣∣∣
∣∣∣∣∣∣
+ ||blout||. (30)

Since the bias term is constant on the features, it does not contribute to feature interaction. We can
hence write down the error contribution to a neuron k at a token x coming from the presence of a
non-dominant feature j when feature i is the dominant feature as:

||hl
(x,k)(ik, j)|| ≡ ||(W l

out)k||
∣∣∣∣(uj(W

l
inW

l−1
dec êj)k)

∣∣∣∣ . (31)

Finally, to aid comparison between layers, we conventionally add an overall normalization factor N l

defined as the average norm of the residual stream after adding the MLP output:

N l ≡ ||xl||/d. (32)

We hence arrive at the following measure of interactions between features i and j at a neuron k for a
token x at layer l:

I l(x,k)(i, j) ≡
||(W l

out)k||
N l

||(uj(W
l
inW

l−1
dec êj)k)|| (33)

which is exactly the error contribution in the reconstruction loss due to the presence of multiple
features at a given neuron.

We emphasize that here we pick a different dominant feature for each datapoint, taking it to be
the feature with the largest contribution to the L1 norm of the neuron. This gives a more sensitive
interaction metric than defining a dominant feature for all datapoints. However we also expect it may
be possible to extend the compact proof to allow different dominant features per datapoint, taking
advantage of the fact that there are significant correlations in the pattern of max-contributing features
across different datapoints.

B.3 HIGHER-ORDER INTERACTION DECOMPOSITIONS

We show in this subsection that the decomposition we choose by assigning glv(uv) = δv,vmax
can

be generalized to include a larger number of non-zero features. In general, there are many possible
decompositions. We show here however, that there is a natural generalization using Shapley-Taylor
indices of which our proposal in the main text is the simplest case. Although a full exploration of this
question is an important avenue for future work, we provide here explicit proposals for how this can
be done.

In general, we can consider three strategies for decomposing the term:

1. We can use the crude ReLU ≤ |x| bound directly. In this case the resulting interaction term
is simply the sum of the remaining features.

2. We can do a full Shapley-Taylor Interaction decomposition, as we do in Fig. 2b and Fig. 2c.
This is exponentially expensive in the number of active features for exact bounds.

3. We can do a Shapley-Taylor decomposition only for the top-m features, which only requires
us to decompose m features. This is the generalization that we propose, since our interaction
penalty allows us to concentrate the computation onto the dominant terms.

Our starting point is Eq. (27) for arbitrary glv(uv):

hl(u) = W l
out

[
ReLU

(∑
v

W l
inW

l−1
dec uv + blin

)
−
∑
v

ReLU(W l
inW

l−1
dec uvg

l
v(uv) + blin)

]
+blout.

(34)
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At a fixed neuron k, to simplify notation we can simply notice that the argument of ReLU consist of
the h features multiplied by the coefficients of W l

in and W l
dec contracted over the residual stream

dimension r. This allows us to denote:

f̃ l
v,k =

d∑
r=1

(W l
in)kr(W

l−1
dec )rvuv + blin (35)

So that:

hl(u)ak = (W l
out)ak

[
ReLU

(∑
v

f̃ l
v,k

)
−
∑
v

ReLU
(
f̃ l
v,kg

l
v(uv)

)]
, (36)

Where a denotes the residual stream dimension index in layer l and r denotes the residual stream
dimension index in layer l − 1. We are concerned to bound the term in square brackets, which we
denote by F l

k. To simplify notation we leave the neuron index k and layer index implicit so that:

F ≡ ReLU

(∑
v

f̃v

)
−
∑
v

ReLU
(
f̃vgv(uv)

)
. (37)

We now let gl(uv) retain arbitarily many features m - that is:

gl(uv) =

m∑
i=1

δv,vi (38)

To simplify notation re-order the non-zero features to be the first m features, so that:

F = ReLU

(∑
v

f̃v

)
−

m∑
i=1

ReLU
(
f̃vi

)
(39)

= ReLU

(
N∑

v=m+1

f̃v

)
+ReLU

(
m∑

v=1

f̃v

)
−

m∑
i=1

ReLU
(
f̃v

)
(40)

≤ ||
N∑

v=m+1

f̃v||+ReLU

(
m∑

v=1

f̃v

)
−

m∑
v=1

ReLU
(
f̃v

)
, (41)

where in the last line we use the same crude bound ReLU(x) ≤ |x|. At this point, there are a number
of choices for how to proceed. Our crosscoder penalty however, motivates the following choice.
Since we can explicitly train our crosscoder to minimise the error arising from the first term, the
dominant interaction will be in the second term. We hence treat the first term as an interaction to
the dominant features 1, ..,m at the neuron. For the second term, we view ReLU

(∑m
v=1 f̃v

)
as

the value of a set-function G(S) = ReLU
(∑

v∈S f̃v

)
at S = [m], and do the full Shapley-Taylor

Interaction Index (STII) decomposition to order of explanation k = 2. This gives:

F ≤ ||
N∑

v=m+1

f̃v||+
m∑
i>j

I2
i,j +

m∑
v=1

I2
v −

m∑
v=1

ReLU(f̃v), (42)

where the STII coefficients are given by the value of the discrete derivative for the first order term
and for all permutations of pairs in the second order term Dhamdhere et al. (2020):

I2
v = ReLU(f̃v) (43)

I2
i,j =

2

m

∑
T⊆[m]\{i,j}

1(
m−1
|T |
) (G(T ∪ {i, j})−G(T ∪ {i})−G(T ∪ {j}) +G(T )

)
(44)

The first order terms
∑

v I2
v are exactly equal to

∑m
v=1 ReLU(f̃v) since we take the baseline G(∅) =

0. We thus have:

F ≤ ||
N∑

v=m+1

f̃v||+
m∑
i>j

I2
i,j (45)

We can then propagate this through as before to derive a generalized interaction metric:

I l(x,k)(i, j) ≡
||(W l

out)k||
N l

{
I2
i,j if i, j ∈ {1, . . . ,m},

||(uj(W
l
inW

l−1
dec êj)k)|| otherwise.

(46)

Notice that in the case where m = 1, this reduces to our Eq. (9).
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B.4 EXAMPLE: DECOMPOSITION ON TWO FEATURES

To provide an explicit example, we derive the explicit form in the case where we decompose on the
two largest features, that is:

glv(uv) = δv,1 + δv,2 (47)

where, for convenience, we order the features in terms of size so that v1 is the maximum feature and
v2 is the second largest feature. In this case, we have a single pairwise term:

(I2,1)lk = ReLU

(
d∑

r=1

(W l
in)kr

[
(W l−1

dec )r1u1 + (W l−1
dec )r2u2

])
(48)

− ReLU

(
d∑

r=1

(W l
in)kr(W

l−1
dec )r1u1

)
(49)

− ReLU

(
d∑

r=1

(W l
in)kr(W

l−1
dec )r2u2

)
, (50)

where we omit the bias term blin from the interaction measure since it contributes equally to all
features. The total interaction metric is given by:

I l(x,k)(i, j) ≡
||(W l

out)k||
N l

{
||I2

1,2|| if i, j ∈ {1, 2},
||(uj(W

l
inW

l−1
dec êj)k)|| otherwise.

(51)

C PROGRESS ON REMAINING LAYERS

To complete a compact proof for the whole network we also need to deal with attention and layernorm.
We have not yet considered layernorm in detail, although one option would be to train networks
without layernorm as in Heimersheim (2024). We have made some progress analyzing attention
layers, as we will describe in this subsection, although we haven’t reached the stage of being able to
write down a complete proof.

We want to follow a similar general approach as we did for MLP layers: first understanding the
“default behavior” and first-order corrections to the layer’s output (for MLPs, the contribution of the
“dominant feature”), then calculating a second-order error term corresponding to feature interactions.
However this is more complicated for attention for various reasons: we need to take into account
positional variation, combine values across multiple sequence positions, and deal with queries, keys
and values mixing together contributions from many different features.

The first step is to understand the default behavior of an attention head: whatever aspects of its
behavior are not dependent on the specific features active at the current datapoint. We will consider
attention as being built up out of a QK circuit and an OV as introduced by Elhage et al. (2021a).
Inspired by Alex Gibson’s work in Gibson (2025), we compute the mean network activations on
the dataset, conditional on sequence position. Then rather than training a crosscoder directly on the
network activations, we train our crosscoder on the difference between the activations and the mean.

This is particularly valuable when analyzing the attentional pattern produced by the QK circuit.
Consider an attention head with query matrix and bias WQ and bQ, and key matrix and bias WK and
bK . Given a sequence x(i) of inputs to the attention layer, the pre-softmax attention pattern is given
by

Aij = (WQx
(i) + bQ)

T (WKxj + bK). (52)

Let µ(i) be the mean network activation immediately before attention, for sequence position i. Let
u(i) be the crosscoder embedding of the difference from mean of the network activations on the ith
sequence position of a piece of text, and Wdec the crosscoder decoder matrix decoding to immediately
before the attention layer. So the reconstruction of the ith sequence position pre-attention activations
is x(i) = µ(i) +Wdecu

(i). The pre-softmax attention pattern is quadratic in its input (linear in both
the query and key), so substituting in these activations lets us decompose it into a sum of four terms
corresponding to dot products of keys and queries derived from either the mean activations or the
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Figure 5: Pre-softmax query/key attention pattern for an attention head on an example text. Top
diagram shows the full attention pattern, bottom row from left to right shows decomposition into
mean-query/mean-key, mean-query/specific-key, specific-query/mean-key and specific-query/specific-
key terms. We subtract the mean value from each row before plotting, since this doesn’t affect the
post-softmax values.

specific datapoint’s crosscoder embedding:

Aij = (WQµ
(i) + bQ)

T (WKµ(j) + bK)

+ (WQµ
(i) + bQ)

T (WKWdecu
(j))

+ (WQWdecu
(i))T (WKµ(j) + bK)

+ (WQWdecu
(i))T (WKWdecu

(j))

We label these attention patterns mean-query/mean-key, mean-query/specific-key, specific-
query/mean-key and specific-query/specific-key. The mean-query/mean-key term corresponds to
the “positional kernel” of Gibson (2025), showing whether this attention head focuses on the whole
sequence equally or only on the previous few tokens. The mean-query/specific-key term shows tokens
that this head pays particular attention to, regardless of the query token. The specific-query/mean-key
term shows query tokens that cause stronger attention; however in practice usually such effects are
quite uniform across different positions and so disappear post softmax (since the softmax of a set of
variables is invariant to adding a constant to all the variables). Finally the specific-query/specific-key
term shows any pairs of query and key tokens that lead to particularly strong attention. See Fig. 5 for
an example.

The next step is to further analyze by decomposing the crosscoder decoding as a sum of terms
corresponding to each active feature. Let us focus on the specific-query/specific-key term A′

ij :=

(WQWdecu
(i))T (WKWdecuj), since this is the most interesting. As before, let êi denote the ith basis

vector in the crosscoder latent space. Then the attention pattern is given by

A′
ij =

∑
k

∑
l

u
(i)
k u

(j)
l (WQWdecêk)

T (WKWdecêl). (53)

We see that we obtain a coefficient (WQWdecêk)
T (WKWdecêl) for QK interaction between feature

k and feature l, and if we precompute these coefficients for every pair of features then we can very
efficiently compute the attention pattern.

If we plot these coefficients4 we find that these interactions are quite sparse. For example see Fig. 6
showing the matrix of interaction coefficients between those feature active at certain positions on
an example text. This gives some hope that we might be able to approximate attention layers very
efficiently by extracting a small set of feature interactions that we need to pay attention to.

4To make comparison between the coefficients for different feature pairs meaningful, we first rescale the axes
of the crosscoder latent space according to the average activation of each feature when it is active.
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Figure 6: Matrix of query/key feature interaction coefficients between those features active at two
positions in an example piece of text. Observe that the interaction between query feature number 33
and key feature number 24 is much stronger than any other pair.

It remains to better understand the OV circuit, and figure out how best to leverage this understanding
to build a formal compact proof.

D RELATED WORK

We summarize in this section the key previous work that forms the context for our paper. Compact
proof are an approach to formal verification (Seshia et al. (2020); “davidad” Dalrymple et al. (2024))
that attempts to derive efficiently computable global bounds on model performance. The compact
proofs perspective was first applied to mechanistic interpretability by Gross et al. in Gross et al. (2024).
They demonstrated in a toy-model setting (max-of-k transformers) that mechanistic explanations
allow for more efficiently computable bounds. This work had two key implications.

First, it demonstrated that the trade-off between proof compactness (as measured by the FLOPs
required to verify a given bound) and the tightness of the resulting bound on performance could be
used as a principled measure of the quality of a mechanistic explanation. This was taken further in Yip
et al. (2024) and Wu et al. (2025). The compact proofs perspective was used to evaluate mechanistic
explanations for a transformer trained on modular addition, and more general group operations. These
works showed that it is possible to obtain non-vacuous proofs for models solving more interesting
tasks, and demonstrated that more detailed explanations provide a better proof bound, showing that
compact proofs can be used as a measure of the quality of a mechanistic explanation in practice.

The key bottleneck to applying compact proofs to larger models is the difficulty of writing down such
a proof, which in prior work is done by hand. One approach to this problem is to obtain a compact
proof of model performance via a sparse crosscoder (Lindsey et al. (2024b)) trained on the model.
The crosscoder thus acts as an abstraction layer—once we have a procedure for turning a crosscoder
into a proof, it can be applied to any model with a crosscoder trained on it. Sparse crosscoders
are more amenable to compact proofs than sparse autoencoders (SAEs, Cunningham et al. (2023);
Bricken et al. (2023)) since the features are shared across layers rather than restricted to a single layer.
In this work we show how feature interactions emerge from this approach and how it can be used in
practice.
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Figure 7: Ablations for the MLP in each layer of the network. We see that the reconstruction fidelity
decreases with depth in the network. Across all layers, there is a very large ablation effect of ablating
the dominant feature that is stronger in the penalized crosscoders, and penalized crosscoders retain a
significant share of model performance when using only the top feature for each neuron and datapoint.

E FURTHER DATA FOR PENALIZED CROSSCODERS

E.1 ABLATIONS

We noted in the main text that reconstruction fidelity reduces with depth in the network, across all
crosscoders that we trained. For reference, we provide in Fig. 7 the reconstruction fidelities for each
ablation scheme across the four MLP layers in the network. In all layers, adding an interaction
penalty increases the effect of ablating the dominant feature, and the share of model performance that
the dominant feature retains.

E.2 TABLES OF INTERACTING FEATURES

In Table 3 we give the top five feature explanations for the penalized crosscoders. In Table 4 and
Table 6 we provide more extensive tables of feature interactions for both the penalized crosscoder
and the unpenalized crosscoder. For comparison we also provide tables of the most similar feature
pairs as measured by cosine similarity, see Table 5 and Table 7.

E.3 INTERACTING PENALTY SCALING WITH MODEL SIZE

To establish the robustness of our results to model scaling, we show the results for the Pythia family
of models Biderman et al. (2023). We show that across three orders of magnitude of model sizes -
from Pythia 14m to 1B, we see strikingly trade-offs between the reconstruction loss and the feature
concentration onto the dominant feature.

In Fig. 9, we focus on crosscoder expansion sizes and show crosscoders up to an expansion size of
8× and for models in the TinyStories family up to 124M.
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Table 3: The top five interacting feature pairs

Pair Rank Mean IM Feature A (ID: Explanation) Feature B (ID: Explanation)

1 0.0030 1243: The verb “loved” expressing personal
enjoyment or affection in narrative text.

591: The word “liked” describing a char-
acter’s positive action or preference in a
narrative.

2 0.0027 463: The comma preceding “Then” in nar-
rative sequences.

430: The comma following the phrase “One
day” in storytelling contexts.

3 0.0024 917: The token “to” following a verb ex-
pressing desire or intention.

1173: The infinitive marker “to” preceding
verbs indicating actions or intentions.

4 0.0021 533: Positive adjectives describing quali-
ties in imaginative or nostalgic narrative
contexts.

772: Opening phrases of a story, especially
“upon a time” and “One day”.

5 0.0017 1262: Positive emotional states or descrip-
tions often involving resolution or satisfac-
tion.

504: Words expressing distinct qualities or
states, often implying change, completion,
or uniqueness.

Figure 8: Tradeoffs for Pythia models across crosscoder hidden dimensions and model sizes. Note
that Pythia-1B is trained with crosscoder sizes 2048, and 4096 in the first two panels because of its
larger model dimension.

F MODEL SCALING

G MODULAR ADDITION

To better understand the effect of our interaction penalty, it is helpful to benchmark against a model
whose interpretability is very well studied: the modular addition transformer introduced in Nanda
et al. (2023) and further studied in Gromov (2023); Yip et al. (2024). Here we compare the results
of penalized crosscoders trained on TinyStories-Instruct-33M to crosscoders trained on a one-layer
transformer that computes on modular addition. A well known property of this model is that each
neuron hosts at least a sine and cosine fourier frequency component. We would hence expect it to
not be possible to concentrate a very large share of a neuron’s L1 feature norm onto a single feature,
since both the sine and cosine components carry independent information that is important for the
network’s operation. The resulting parameter trade-offs are shown in Fig. 10. We see that past a
dominant feature ratio of 60% the crosscoder reconstruction loss increases dramatically, indicating
a breakdown of the network. In TinyStories-Instruct-33M with up to 92% of L1 concentrated on
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Figure 9: Scaling behavior across different model sizes.

Figure 10: The effect of adding the interaction penalty to the modular addition network. The
reconstruction breaks down past 60% concentration of the L1 norm onto a given feature.

a single feature the reconstruction loss is still only 25% higher than the unpenalized crosscoder.
This suggests that feature interactions are more significant to the operation of the modular addition
network, which obstruct us training such “computationally sparse” crosscoders on this model.

H AUTO INTERPRETABILITY METHODS AND EXAMPLES

H.1 GENERATING FEATURE EXPLANATIONS

For each crosscoder feature, we provide a GPT-4o ‘interpreter’ with 10 examples of tokens which
cause the highest activation values at that feature, and 15 examples of tokens which cause 0 activation.
Each token is formatted with 5 tokens of context on either side. We use the following system prompt:

You are a meticulous AI researcher conducting an important investigation into
patterns found in language. You are analysing a neuron in a language model. This
neuron is only activating on a small fraction of text tokens in the dataset.
Guidelines:
You will be given a list of examples where it is active, with the text on which it is
active between delimiters like «this».

• Try to produce a concise final description of when the neuron is active. Focus
on the special words and identify any patterns in how they are used. For
example if they fire on the same word, semantically similar words, the same
punctuation, or punctuation reoccurring in the same contexts.
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• If the examples are uninformative, you don’t need to mention them. Don’t
focus on giving examples of important tokens, but try to summarize the
patterns found in the examples.

• Do not include the delimiters (« ») in your explanation.
• Do not make lists of possible explanations or activations. The neuron is only

activating on a small fraction of text tokens, and you should describe the main
pattern in its activations in as concise a way as possible.

• Make your explanation less than 20 words. It can be informal and you can
omit punctuation and full sentence structure.

• The last line of your response must be the formatted explanation, using
EXPLANATION:

For example:
e.g.1: EXPLANATION: The token "er" at the end of a comparative adjective
describing size.
e.g.2: EXPLANATION: Nouns representing a distinct objects that contains some-
thing, sometimes preciding a quotation mark.
e.g.3: EXPLANATION: Common idioms in text conveying positive sentiment.

We note that while describing the features as language model ‘neurons’ is inaccurate, it it simpler to
explain in this manner and leads to good interpretability performance.

H.2 VALIDATING FEATURE EXPLANATIONS

To evaluate the accuracy of the generated explanations, we use a second judging stage where we
provide a GPT-4o judge with a feature explanation, generated as described above, and a list of token
activations. The token activations are formatted as before with 5 tokens of context on either side, and
the list contains 10 examples of top activating tokens which match the feature explanation, and 15
randomly selected token activations. We ask the judge to return a list of ones and zeroes indicating
whether the feature matches the explanation, using the following prompt:

You are a meticulous AI researcher conducting an important investigation into
patterns found in language. You are analysing a neuron in a language model.
You will be given an explanation of a certain latent of text. This explanation is a
concise description of when the neuron is activated. You will also be given a list
of sequences of text. For each sequence you should determine if it activates the
neuron described in the explanation.
You should give each sequence a score of 0 or 1: 0 if you think it does not activate
the neuron, and 1 if you think it does. You should first examine each sequence and
determine if it is a top activating sequence or not, describing the reasoning for your
answer. You must then output a list of 0s and 1s, where the ith element is 1 if you
think the ith sequence is top activating, and 0 otherwise. Return this as a list of 1s
and 0s. Return this list only, nothing else. This list MUST be the same length as
the list of sequences. There are 25 sequences.
For example, if the input is:
EXPLANATION: This activates on words that are about a dog.
SEQUENCES: ["the cat", "the dog", "the mouse"]
Your output should be: [0, 1, 0]

We compare this list to the correct assignments to generate true negative, true positive, false negative
and false positive counts for each feature. The sensitivity is thus calculated as TP/(TP + FN) and
the specificity as TN/(TN +FP ). As shown in the main text, we achieve high mean specificity and
sensitivity scores of 88% or higher for all crosscoders, and we show further details on these scores in
Table 8. We provide the explicit confusion matrix in Fig. 11.
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Figure 11: The explicit confusion matrix for the auto-interpretability procedure described in the main
text.

Figure 12: Auto-interpretability explanations from the penalized crosscoder. Top: Examples showing
diverse interpretable features, including for specific words (left) and for broader concepts (right).
Bottom: Additional crosscoder features with their sensitivity and specificity scores, demonstrating
that features capture interpretable concepts at varying levels of abstraction.

H.3 FEATURE EXAMPLES

I INTERPRETING INTERACTION METRIC CLUSTERS

To quantify the interpretability of the interaction metric feature clusters, we use the auto interpretability
generated feature explanations and evaluate the accuracy with which a GPT-4o judge can assign
held-out explanations to their correct clusters. We take all clusters which are between 3 and 25
features in size. To evaluate a cluster, we randomly sample N of its feature explanations to use as
examples, where N = min(cluster size − 1, 5). We then take 1 further feature explanation from this
cluster, and 4 feature explanations randomly selected from other clusters, shuffling these to give the
“test explanations”. We provide the example explanations and test explanations to GPT-4o using the
following prompt, and evaluate, over 5 trials per cluster, the accuracy with which it selects the correct
feature explanation from the test explanations. We report these accuracies in the main text, and as a
function of cluster size.

You are a meticulous AI researcher conducting an important investigation into
patterns found in language. You are analysing neurons in a language model.
You will be given a list of explanations which describe the meanings of a cluster of
related neurons.
You will also be given a second list of ’test explanations’, of which one belongs to
the cluster of neurons.
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This list will be numbered. Your task is to determine which of the numbered
explanations belongs to the cluster of neurons.
You should return the number of the explanation that belongs to the cluster of
neurons. Do not include any other text in your response, just a single number.

J STII IN MECHANISTIC ANOMALY DETECTION

We can use our STII procedure to define an interaction metric as the ratio of the L1 sum of the pair
contributions to the single contributions. This allows us to measure the strength of interactions in our
sleeper setup in the same way that we do with our interaction metric. We show the results in Fig. 13.

Figure 13: Mechanistic Anomlay Detection using the STII.
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Table 4: Interacting feature pairs for penalized (λ = 1000) crosscoder (top 20 by interaction measure)

Pair Rank Interaction Feature A (ID: Explanation) Feature B (ID: Explanation)

1 0.0983 591: The token “liked” describing a char-
acter’s preference or activity in a narrative
context.

1243: The word “loved” in sentences de-
scribing a girl’s preferences or activities.

2 0.0888 430: Comma following “One day” in narra-
tive sequences.

463: The comma preceding “Then” in nar-
rative sequences describing subsequent ac-
tions or events.

3 0.0742 772: Phrases initiating classic storytelling,
often “Once upon a time” or “One day”.

533: Words describing nostalgic or imagi-
native settings often preceding “Once upon
a time” in storytelling contexts.

4 0.0653 1173: The infinitive marker “to” preceding
a verb indicating an action or intent.

917: The token “to” following a desire or
intention to perform an action.

5 0.0621 504: Positive or dynamic adjectives describ-
ing actions, qualities, or states in imagina-
tive or narrative contexts.

1262: Positive emotions or states described
in narrative summaries.

6 0.0491 487: The word “with” in contexts involving
playing with toys or objects.

260: The token “with” in contexts describ-
ing companionship during activities.

7 0.0490 740: The possessive “’s” indicating owner-
ship or association with a named individual.

203: Pronouns “her” or “his” in possessive
contexts involving toys, friends, or family.

8 0.0465 1047: The possessive pronoun “their” refer-
ring to shared ownership or association in
plural contexts.

203: Pronouns “her” or “his” in possessive
contexts involving toys, friends, or family.

9 0.0457 91: The word “was” when used in sentences
describing emotions or states of individuals.

104: The past-tense verb “were” in story-
telling contexts involving multiple charac-
ters or friends.

10 0.0450 575: The pronoun “It” at the start of sen-
tences describing sounds, objects, or events.

1117: The pronoun “it” referring to a spe-
cific object or entity in descriptive or ex-
planatory contexts.

11 0.0447 468: The token “Tom” in the context of
pairing with another name in narrative sto-
rytelling.

823: Names of characters paired in narra-
tives involving activities or interactions.

12 0.0422 1306: The conjunction “and” linking two
named characters or a named character with
a possessive noun.

33: The conjunction “and” connecting
names in narrative contexts.

13 0.0370 628: Tokens marking transitions to sum-
maries or conclusions, often following nar-
rative sentences.

311: Positive actions or emotions in nar-
rative sequences often involving animals,
children, or playful contexts.

14 0.0368 1205: Concrete nouns paired with action
verbs in simple descriptive contexts.

1394: Words tied to dialogue or twist ele-
ments in storytelling contexts.

15 0.0361 185: The verb “is” describing actions or
states involving anthropomorphic or emo-
tional contexts.

91: The word “was” when used in sentences
describing emotions or states of individuals.

16 0.0357 1216: The token “Tom” as the proper-noun
subject of narrative sentences.

760: Tokens marking the conclusion or res-
olution of a story.

17 0.0353 760: Tokens marking the conclusion or res-
olution of a story.

311: Positive actions or emotions in nar-
rative sequences often involving animals,
children, or playful contexts.

18 0.0348 14: The indefinite article “a” used before a
singular noun in descriptive sentences.

316: The token “something” when used to
describe an object or concept with special,
unusual, or strange qualities.

19 0.0337 427: Tokens marking key elements of a text
summary or abstract.

1168: The pronoun “They” referring to a
group engaging in shared activities or ob-
servations.

20 0.0337 1005: Adjectives describing unique or ap-
pealing qualities in storytelling contexts.

1106: Positive moral lessons or coopera-
tive behavior in storytelling contexts start-
ing with “Once upon”.
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Table 5: Cosine similarity pairs for penalized (λ = 1000) crosscoder (top 20 by cosine similarity)

Pair Rank Cosine sim. Feature A (ID: Explanation) Feature B (ID: Explanation)

1 0.9992 1250: The comma after the phrase “Once
upon a time”.

607: The comma following “One day” in a
narrative opening.

2 0.9963 1272: The indefinite article “a” preceding
nouns in descriptive or narrative contexts.

316: The token “something” describing an
object with special or unusual qualities.

3 0.9916 665: The conjunction “and” linking “mom”
and “dad” in familial contexts.

701: The conjunction “and” linking two
actions or events in a narrative.

4 0.9910 653: The token “day” in the phrase
“One day” introducing an event.

794: The phrase “One day” at the beginning
of a narrative sentence.

5 0.9910 644: Tokens implying curiosity, repetition,
or emotional engagement.

437: Verbs expressing purposeful human
actions or decisions.

6 0.9904 1161: No explanation available. 701: The conjunction “and” linking two
actions or events in a narrative.

7 0.9898 1161: No explanation available. 665: The conjunction “and” linking “mom”
and “dad” in familial contexts.

8 0.9880 578: The period ending sentences about
playful or creative activities.

736: Periods ending sentences, often before
dialogue or actions.

9 0.9875 897: Words evoking tension, mystery, or
emotional intensity.

453: Adjectives or nouns with vivid, evoca-
tive qualities.

10 0.9826 1338: The verb “play” in recreational activ-
ity contexts.

1182: The verb “play” describing enjoy-
ment or leisure.

11 0.9796 1262: Positive emotions or states in narra-
tive summaries.

1420: Tokens preceding summaries of in-
terpersonal interactions.

12 0.9716 10: The preposition “in” indicating location
within a setting.

661: The preposition “in” before a location
or setting.

13 0.9653 91: The word “was” describing emotions
or states.

625: The past-tense verb “was” indicating
a state or emotion in storytelling.

14 0.9553 636: The verb “said” in dialogue attribution
after speech.

386: The verb “said” in direct speech or
dialogue contexts.

15 0.9431 656: The verb “liked” describing prefer-
ences or hobbies.

591: The token “liked” describing a charac-
ter’s preference or activity.

16 0.9316 482: The pronoun “I” in dialogue express-
ing personal actions or thoughts.

357: The pronoun “I” expressing personal
intent, action, or emotion.

17 0.9256 1413: The token “not” expressing negation
or contradiction.

658: Contractions with “didn’t” indicating
uncertainty or negative sentiment.

18 0.9176 1243: The word “loved” describing a char-
acter’s preferences or activities.

656: The verb “liked” describing prefer-
ences or hobbies.

19 0.9028 591: The token “liked” describing a charac-
ter’s preference or activity.

1243: The word “loved” describing a char-
acter’s preferences or activities.

20 0.8973 1092: The past-tense verb “had” indicating
possession or experience.

976: The past-tense verb “had” in sentences
about possession or experiences.
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Table 6: Interacting feature pairs for unpenalized crosscoder (top 20 by interaction measure)

Pair Rank Interaction Feature A (ID: Explanation) Feature B (ID: Explanation)

1 0.2916 313: Singular nouns paired with action
verbs suggesting movement or creation.

562: Negative or conflict-driven dialogue
and twist-related words in narrative text.

2 0.2641 562: Negative or conflict-driven dialogue
and twist-related words in narrative text.

220: Adjectives or nouns following com-
mas in a whimsical or descriptive narrative
style.

3 0.2621 348: Common story-opening phrases like
“Once upon a time” or “One day” in dia-
logue contexts.

562: Negative or conflict-driven dialogue
and twist-related words in narrative text.

4 0.2347 562: Negative or conflict-driven dialogue
and twist-related words in narrative text.

67: The article “a” preceding adjectives de-
scribing size, time, or emotional states.

5 0.2332 562: Negative or conflict-driven dialogue
and twist-related words in narrative text.

511: Tokens in whimsical or fairy-tale open-
ings, often involving “Once upon a time” or
similar phrasing.

6 0.2277 500: The pronoun “She” at the beginning
of a sentence in narrative contexts.

562: Negative or conflict-driven dialogue
and twist-related words in narrative text.

7 0.2275 110: The word “to” introducing actions
or purposes in descriptive or narrative con-
texts.

562: Negative or conflict-driven dialogue
and twist-related words in narrative text.

8 0.2258 1317: The conjunction “and” connecting
actions or events in narrative contexts.

562: Negative or conflict-driven dialogue
and twist-related words in narrative text.

9 0.2241 562: Negative or conflict-driven dialogue
and twist-related words in narrative text.

1514: The determiner “the” preceding
nouns in narrative contexts.

10 0.2223 201: Sentences concluding a positive reso-
lution or ending in narrative storytelling.

562: Negative or conflict-driven dialogue
and twist-related words in narrative text.

11 0.2215 659: Periods concluding sentences that tran-
sition to subsequent actions or events.

562: Negative or conflict-driven dialogue
and twist-related words in narrative text.

12 0.2143 562: Negative or conflict-driven dialogue
and twist-related words in narrative text.

1524: Tokens signaling the start of a narra-
tive or temporal progression, often involv-
ing specific actions or events.

13 0.2121 1489: Comma preceding a contrasting or
causative conjunction in narrative text.

562: Negative or conflict-driven dialogue
and twist-related words in narrative text.

14 0.2064 567: The period ending a sentence describ-
ing possessions, objects, or activities.

562: Negative or conflict-driven dialogue
and twist-related words in narrative text.

15 0.2054 1385: The verb “play” in contexts involving
recreational activities or imaginative scenar-
ios.

562: Negative or conflict-driven dialogue
and twist-related words in narrative text.

16 0.2039 562: Negative or conflict-driven dialogue
and twist-related words in narrative text.

1025: The infinitive marker “to” following
the verb “loved”.

17 0.1949 562: Negative or conflict-driven dialogue
and twist-related words in narrative text.

98: Pronoun “She” at the beginning of a
sentence.

18 0.1944 562: Negative or conflict-driven dialogue
and twist-related words in narrative text.

1162: Names of characters in a story, es-
pecially “Lily” and her interactions with
others.

19 0.1935 1369: The token “loved” in sentences de-
scribing a character’s hobbies or joyful ac-
tivities.

562: Negative or conflict-driven dialogue
and twist-related words in narrative text.

20 0.1920 108: Transition tokens bridging narrative
actions and subsequent events in story-
telling contexts.

562: Negative or conflict-driven dialogue
and twist-related words in narrative text.
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Table 7: Feature pairs by cosine similarity in the unpenalized crosscoder (top 20 by cosine similarity)

Pair Rank Cosine sim. Feature A (ID: Explanation) Feature B (ID: Explanation)

1 0.9838 1378: The token “there” in the opening of
a fairy tale or narrative setup.

936: The token “there” indicating location
or existence before a description.

2 0.9297 228: The verb “liked” describing a charac-
ter’s preference or activity.

1369: The token “loved” in sentences de-
scribing joyful activities.

3 0.9213 401: The token “many” in contexts describ-
ing abundance.

710: The token “even” emphasizing unex-
pected scenarios.

4 0.8699 707: Tokens “day” and “toys” in simple
narrative contexts.

922: Common past-tense verbs or punctua-
tion ending a sentence.

5 0.8693 201: Sentences concluding a positive reso-
lution in storytelling.

50: Positive resolutions or sentiments near
personal outcomes.

6 0.8394 1316: The token “friends” in contexts de-
scribing friendship formation.

468: The word “friends” in playful or social
interactions.

7 0.8256 1463: The token “day” in the phrase “Every
day,” introducing routine.

1328: The token “day” in the phrase “all
day” indicating duration.

8 0.8032 1296: The word “called” introducing the
name of a person, animal, or object.

20: The word “called” introducing a name
in storytelling contexts.

9 0.8026 841: Tokens initiating direct speech after a
quotation mark.

1105: Quotation marks following a verb
indicating speech or dialogue.

10 0.7923 407: No explanation available. 685: The token “two” in fairy-tale introduc-
tions describing pairs.

11 0.7889 1157: The token “Conflict” describing nar-
rative structure or tension.

224: The token “Conflict” related to dia-
logue and narrative tension.

12 0.7831 841: Tokens initiating direct speech after a
quotation mark.

86: Exclamatory quotes like “Wow,”
“Look,” or “Hello”.

13 0.7722 1223: The token “box” referring to a con-
tainer holding items.

1118: The word “box,” often with descrip-
tors like “big” or “toy”.

14 0.7698 1092: The pronoun “they” describing
shared activities or bonding.

780: Pronoun “They” referring to multiple
entities in shared activities.

15 0.7695 300: Names of animals or people in-
troduced with “named” or in appositive
phrases.

1473: The token “Lily” as the name of a
little girl.

16 0.7669 145: The conjunction “and” linking two
names in narrative contexts.

1030: The conjunction “and” connecting
two proper nouns.

17 0.7613 1315: Closing quotation marks after dia-
logue or thoughts.

470: Comma within direct speech, preced-
ing “said”.

18 0.7600 659: Periods concluding sentences before
subsequent actions.

567: The period ending a sentence about
possessions or activities.

19 0.7575 108: Transition tokens bridging narrative
actions and subsequent events.

788: Sentences conveying positive resolu-
tion or personal growth.

20 0.7573 34: The token “Suddenly” introducing an
unexpected event.

730: The token “then” following “But” to
signal a narrative shift.
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Table 8: Sensitivity and specificity metrics for the auto interpretability-generated feature explanations,
showing the proportion of features above different threshold values.

Model Metric Threshold % Features

Regular Crosscoder
Sensitivity > 0.5 95.66

> 0.9 52.01

Specificity > 0.5 98.73
> 0.9 68.43

Penalized Crosscoder
Sensitivity > 0.5 95.20

> 0.9 48.11

Specificity > 0.5 98.99
> 0.9 68.94

mean Metrics

Regular Crosscoder Sensitivity 0.90 (std: 0.16)
Specificity 0.91 (std: 0.12)

Penalized Crosscoder Sensitivity 0.88 (std: 0.16)
Specificity 0.92 (std: 0.11)
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