
Pruning-based Data Selection and Network Fusion for
Efficient Deep Learning

Humaira Kousar∗ Hasnain Irshad Bhatti∗

KAIST

Jaekyun Moon

Abstract

Efficient data selection is essential for improving the training efficiency of deep
neural networks and reducing the associated annotation costs. However, traditional
methods tend to be computationally expensive, limiting their scalability and real-
world applicability. We introduce PruneFuse, a novel method that combines pruning
and network fusion to enhance data selection and accelerate network training. In
PruneFuse, the original dense network is pruned to generate a smaller surrogate
model that efficiently selects the most informative samples from the dataset. Once
this iterative data selection selects sufficient samples, the insights learned from the
pruned model are seamlessly integrated with the dense model through network
fusion, providing an optimized initialization that accelerates training. Extensive
experimentation on various datasets demonstrates that PruneFuse significantly
reduces computational costs for data selection, achieves better performance than
baselines, and accelerates the overall training process.

1 Introduction

Deep learning models have achieved remarkable success across various domains, ranging from image
recognition to natural language processing [1–3]. However, the performance of models heavily relies
on the access of large amounts of labeled data for training [4]. In real-world applications, manually
annotating massive datasets can be prohibitively expensive and time-consuming. Data selection
techniques such as Active Learning (AL) [5] offer a promising solution to address this challenge by
iteratively selecting the most informative samples from the unlabeled dataset for annotation. The
goal of AL is to reduce labeling costs while maintaining or improving model performance. However,
as data and modal complexity grow, traditional AL techniques that require iterative model training
become computationally expensive, limiting scalability in resource-constrained settings.

In this paper, we propose PruneFuse, a novel strategy for efficient data selection in active learning
setting that overcomes the limitations of traditional approaches. Our approach is based on model
pruning, which reduces the complexity of neural networks. By utilizing small pruned networks
for data selection, we eliminate the need to train large models during the data selection phase,
thus significantly reducing computational demands. Additionally after the data selection phase,
we utilize the learning of these pruned networks to train the final model through a fusion process,
which harnesses the insights from the trained networks to accelerate convergence and improve the
generalization of the final model.

Contributions. Our key contribution is to introduce an efficient and rapid data selection technique
that leverages pruned networks. By employing pruned networks as data selectors, PruneFuse ensures
computationally efficient selection of informative samples leading to overall superior generalization.

∗Equal Contribution. Correspondence to: Humaira Kousar <humairakousar32@kaist.ac.kr>
Department of Electrical Engineering, KAIST

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

4

Loss
× 𝜆

× (1 − 𝜆)

5

1

23

Pruning Fusion

Figure 1: Overview of the PruneFuse Method: (1) An untrained neural network is initially pruned to form a
structured, pruned network θp. (2) This pruned network θp queries the dataset to select prime candidates for
annotation, similar to active learning techniques. (3) θp is then trained on these labeled samples to form the
trained pruned network θ∗p . (4) The trained pruned network θ∗p is fused with the base model θ, resulting in a
fused model. (5) The fused model is further trained on a selected subset of the data, incorporating knowledge
distillation from θ∗p .

Furthermore, we propose a novel concept of fusing these pruned networks with the original untrained
model, enhancing model initialization and accelerating convergence during training.

We demonstrate the broad applicability of PruneFuse across various network architectures, offering a
flexible tool for efficient data selection in diverse deep learning settings. Extensive experimentation on
CIFAR-10, CIFAR-100, and Tiny-ImageNet-200 shows that PruneFuse achieves superior performance
to state-of-the-art active learning methods while significantly reducing computational costs.

2 Background and Related Works

Subset Selection Framework. Active Learning (AL) is widely utilized iterative approach tailored
for situations with abundant unlabeled data. Given a classification task with C classes and a large
pool of unlabeled samples U , AL revolves around selectively querying the most informative samples
from U for labeling. The process commences with an initial set of randomly sampled data s0 from U ,
which is subsequently labeled. In subsequent rounds, AL augments the labeled set L by adding newly
identified informative samples. This cycle repeats until a predefined number of labeled samples b are
selected.

Data Selection. Approaches such as [6, 7, 5] aim to select informative samples using techniques like
diversity maximization and Bayesian uncertainty estimation. Parallelly, the domain of active learning
has unveiled strategies, such as [8, 9, 7, 10, 11, 6], which prioritize samples that can maximize
information gain, thereby enhancing model performance with minimal labeling effort. While these
methods achieve efficient data selection, they still require training large models for the selection
process, resulting in significant computational overhead. Other strategies such as [12] optimize
this selection process by matching the gradients of subset with training or validation set based on
orthogonal matching algorithm and [13] performs meta-learning based approach for online data
selection. SubSelNet [14] proposes to approximate a model that can be used to select the subset
for various architectures without retraining the target model, hence reducing the overall overhead.
However, it involves pre-training routine which is very costly and needed again for any change
in data or model distribution. SVP [15] introduces to use small proxy models for data selection
but discards these proxies before training the target model. Additionally, structural discrepancies
between the proxy and target models may result in sub-optimal data selections. Our approach also
builds on this foundation of using small model (which in our case is a pruned model) but it enables
direct integration with the target model through the fusion process. This ensures that the knowledge
acquired during data selection is retained and actively contributes to the training of the original model.
Also, the architectural coherence between the pruned and the target model provides a more seamless
and effective mechanism for data selection, enhancing overall model performance and efficiency.

Efficient Deep Learning. Methods such as [16–23] have been proposed to reduce model size
and computational requirements. Neural Network pruning has been extensively investigated as a
technique to reduce the complexity of deep neural networks [18]. Pruning strategies can be broadly
divided into Unstructured Pruning [24–27] and Structured Pruning [28–31] based on the granularity

2

and regularity of the pruning scheme. Unstructured pruning often yields a superior accuracy-size
trade-off whereas structured pruning offers practical speedup and compression without necessitating
specialized hardware [32]. While pruning literature suggests pruning after training [33] or during
training [34, 35], recent research explore the viability of pruning at initialization [36–38, 37, 39]. In
our work, we leverage the benefits of pruning at initialization to create a small representative model
for efficient data selection.

3 PruneFuse

In this section, we delineate the PruneFuse methodology, illustrated in Fig. 1 (and Algorithm 1
provided in Appendix). The procedure begins with network pruning at initialization, offering a
streamlined model for data selection. Upon attaining the desired data subset, the pruned model under-
goes a fusion process with the original network, leveraging the structural coherence between them.
The fused model is subsequently refined through knowledge distillation, enhancing its performance.
We framed the problem as, let sp be the subset selected using a pruned model θp and s be the subset
selected using the original model θ. We want to minimize:

argmin
sp

∣∣E(x,y)∈sp [l(x, y; θ, θp)]− E(x,y)∈D[l(x, y; θ)]
∣∣ (1)

Where E(x,y)∈sp [l(x, y; θ, θp)] is the expected loss on subset sp (selected using θp) when eval-
uated using the original model θ and E(x,y)∈D[l(x, y; θ)] is the expected loss on full dataset
D when trained using the original model θ. Furthermore, the subset can be defined as sp =
{(xi, yi) ∈ D | score(xi, yi; θp) ≥ τ} where score(xi, yi; θp) represents the score assigned to each
sample selected using θp. The score function can be based on various strategies such as Least
Confidence, Entropy, or Greedy k-centers. τ defines the threshold used in the score-based selection
methods (Least Confidence or Entropy) to determine the inclusion of a sample in sp.

The goal of the optimization problem is to select sp such that when θ is trained on it, the performance
is as close as possible to training θ on the full dataset D. The key insight is that the subset sp selected
using the pruned model θp is sufficiently representative and informative for training the original
model θ. This is because θp maintains a structure that is essentially identical to θ, although with
some nodes pruned. As a result, there is a strong correlation between θ and θp, ensuring that the
selection made by θp effectively minimizes the loss when θ is trained on sp. By leveraging this
surrogate θp, which is both computationally efficient and structurally coherent with θ, we can select
most representative data out of D to train θ.

3.1 Pruning at Initialization

Pruning at initialization [39] shows potential in training time reduction, and enhanced model general-
ization. In our methodology, we employ structured pruning due to its benefits such as maintaining the
architectural coherence of the network, enabling more predictable resource savings, and often leading
to better-compressed models in practice. Consider an untrained neural network, represented as θ.
Let each layer ℓ of this network have feature maps or channels denoted by cℓ, with ℓ ∈ {1, . . . , L}.
Channel pruning results in binary masks mℓ ∈ {0, 1}dℓ

for every layer, where dℓ represents the total
number of channels in layer ℓ. The pruned subnetwork, θp, retains channels described by cℓ ⊙mℓ,
where ⊙ symbolizes the element-wise product. The sparsity p ∈ [0, 1] of the subnetwork illustrates
the proportion of channels that are pruned: p = 1−

∑
ℓ m

ℓ/
∑

ℓ d
ℓ. To reduce the model complexity,

we employ channel pruning procedure prune(C, p). This prunes to a sparsity p via two primary
functions: i) score(C): This operation assigns scores zℓ ∈ Rdℓ

to every channel in the network
contingent on their magnitude (using the L2 norm). The channels C are represented as (c1, . . . , cL).
and ii) remove(Z, p): This process takes the magnitude scores Z = (z1, . . . , zL) and translates them
into masks mℓ such that the cumulative sparsity of the network, in terms of channels, is p. We employ
a one-shot channel pruning that scores all the channels simultaneously based on their magnitude and
prunes the network from 0% sparsity to p% sparsity in one cohesive step. Although previous works
suggest re-initializing the network to ensure proper variance [40]. However, since the performance
increment is marginal, we retain the weights of the pruned network before training.

3

3.2 Data Selection via Pruned Model

We begin by randomly selecting a small subset of data samples, denoted as s0, from the unla-
beled pool U = {xi}i∈[n] where [n] = {1, ..., n}. These samples are then annotated. The
pruned model θp is trained on this labeled subset s0, resulting in the trained pruned model θ∗p.
With θ∗p as our tool, we venture into the larger unlabeled dataset U to identify samples that
are prime candidates for annotation. Regardless of the scenario, our method employs three dis-
tinct criteria for data selection: Least Confidence (LC) [41], Entropy [42], and Greedy k-centers
[6]. LC based selection gravitates towards samples where the pruned model exhibits the least
confidence in its predictions. Thus, the uncertainty score for a given sample xi is defined as
score(xi; θp)LC = 1−maxŷ P (ŷ|xi; θ

∗
p). The entropy-based selection focuses on samples with high

prediction entropy, computed as score(xi; θp)Entropy = −
∑

ŷ P (ŷ|xi; θ
∗
p) logP (ŷ|xi; θ

∗
p), highlight-

ing uncertainty. Subsequently, we select the top-k samples exhibiting the highest uncertainty scores,
proposing them as prime candidates for annotation. The Greedy k-centers aims to cherry-pick k
centers from the dataset such that the maximum distance of any sample from its nearest center is
minimized. The selection is mathematically represented as x = argmaxx∈U minc∈centers d(x, c)
where centers is the current set of chosen centers and d(x, c) is the distance between point x and
center c. While various metrics can be employed to compute this distance, we opt for the Euclidean
distance since it is widely used in this context.

3.3 Training of Pruned Model

Once we have selected the samples from U , they are annotated to obtain their respective labels.
These freshly labeled samples are assimilated into the labeled dataset L. At the start of each
training cycle, a fresh θp is generated. Training from scratch in every iteration is vital to prevent the
model from developing spurious correlations or overfitting to specific samples [15]. This fresh start
ensures that the model learns genuine patterns in the updated labeled dataset without carrying over
potential biases from previous iterations. The training process adheres to a typical deep learning
paradigm. Given the dataset L with samples (xi, yi), the aim is to minimize the loss function:
L(θp, L) = 1

|L|
∑|L|

i=1 Li(θp, xi, yi), where Li denotes the individual loss for the sample xi. Training
unfolds over multiple iterations (or epochs). In each iteration, the weights of θp are updated using
backpropagation with an optimization algorithm like stochastic gradient descent (SGD). This process
is inherently iterative as in AL. After each round of training, new samples are chosen, annotated, and
the model is reinitialized and retrained from scratch. This cycle persists until certain stopping criteria,
e.g. labeling budget or desired performance, are met. With the incorporation of new labeled samples
at every stage, θ∗p progressively refines its performance, becoming better suited for the subsequent
data selection phase.

3.4 Fusion with the Original Model
ϴ

(a) θ trajectory

ϴ𝒑ϴ𝒑
∗

(b) θp trajectory

ϴ𝑭=Fuse(ϴ, ϴ𝒑
∗) ϴ

ϴ𝒑
∗

(c) θF with a refined trajectory due to fusion

Figure 2: Evolution of training trajectories. Pruning θ
to θp tailors the loss landscape from 2a to 2b, allowing
θp to converge on an optimal configuration, denoted as
θ∗p . This model, θ∗p , is later fused with the original θ,
which provides better initialization and offers superior
trajectory for θF to follow, as depicted in 2c.

After achieving the predetermined budget, the
next phase is to integrate the insights from the
trained pruned model θ∗p into the untrained orig-
inal model θ. This step is crucial, as it amal-
gamates the learned knowledge from θ∗p with
the expansive architecture of the original model,
aiming to harness the best of both worlds.

Rationale for Fusion. Traditional pruning and
fine-tuning methods often involve training a
large model, pruning it down, and then fine-
tuning the smaller model. While this is effective,
it does not fully exploit the potential benefits of
the larger, untrained model. The primary reason
is that the pruning process might discard useful
structures and connections within the original model that were not yet leveraged during initial training.
By fusing the trained pruned model with the untrained original model, we aim to create a model that
combines the learned knowledge by θ∗p with the broader, unexplored model θ.

4

Method Params

CIFAR-10 CIFAR-100

Params

Tiny-ImageNet-200
Label Budget (b) Label Budget (b) Label Budget (b)

(Million) 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% (Million) 10% 20% 30% 40% 50%
Baseline (AL) 0.85 80.53 87.74 90.85 92.24 93.00 35.99 52.99 59.29 63.68 66.72 25.56 14.86 33.62 43.96 49.86 54.65

PruneFuse (p = 0.5) 0.21 80.92 88.35 91.44 92.77 93.65 40.26 53.90 60.80 64.98 67.87 6.10 18.71 39.70 47.41 51.84 55.89
PruneFuse (p = 0.6) 0.13 80.58 87.79 90.94 92.58 93.08 37.82 52.65 60.08 63.7 66.89 3.92 19.25 38.84 47.02 52.09 55.29
PruneFuse (p = 0.7) 0.07 80.19 87.88 90.70 92.44 93.40 36.76 52.15 59.33 63.65 66.84 2.23 18.32 39.24 46.45 52.02 55.63
PruneFuse (p = 0.8) 0.03 80.11 87.58 90.50 92.42 93.32 36.49 50.98 58.53 62.87 65.85 1.02 18.34 37.86 47.15 51.77 55.18

Table 1: Performance Comparison of Baseline and PruneFuse on CIFAR-10, CIFAR-100 and Tiny ImageNet-
200. This table summarizes the test accuracy of final models (original in case of AL and Fused in PruneFuse)
for various pruning ratios (p) and labeling budgets(b). Least Confidence is used as a metric for subset selection
and different architectures (ResNet-56 for CIFAR-10 and CIFAR-100 while ResNet-50 for Tiny-ImageNet) are
utilized.

The Fusion Process. Fusion is executed by transferring the weights from the trained pruned model’s
weight matrix θ∗p to the corresponding locations within the weight matrix of the untrained original
model θ. This results in a new, fused weight matrix: θF = Fuse(θ, θ∗p). Let’s represent a model θ
as a sequence of layers, where each layer L consists of filters (for CNNs). We can denote the ith

filter of layer j in model θ as F θ
i,j . Given: θ is the original untrained model and θ∗p is the trained

pruned model. For a specific layer j, θ has a set of n filters {F θ
1,j , F

θ
2,j , ...F

θ
n,j} and θ∗p has a set of

m filters {F θ∗
p

1,j , F
θ∗
p

2,j , ...F
θ∗
p

m,j} where m ≤ n due to pruning. The fusion process for layer j can be
mathematically represented as:

F θF
i,j =

{
F

θ∗
p

i,j if F
θ∗
p

i,j exists
F θ
i,j otherwise

Where F θF
i,j is the ith filter of layer j in the fused model θF .

Advantages of Retaining Unaltered Weights: By copying weights from the trained pruned model
θ∗p into their corresponding locations within the untrained original model θ, and leaving the remaining
weights of θ yet to be trained, we create a unique blend. The weights from θ∗p encapsulate the
knowledge acquired during training, providing a foundation. Meanwhile, the rest of the untrained
weights in θ still have their initial values, offering an element of randomness. This duality fosters a
richer exploration of the loss landscape during subsequent training. Fig. 2 illustrates the transforma-
tion in training trajectories resulting from the fusion process. The trained weights of θ∗p provides a
better initialization, while the unaltered weights serve as gateways to unexplored regions in the loss
landscape. This strategic combination in the fused model θF enables the discovery of potentially
superior solutions that neither the pruned nor the original model might have discovered on their own.

3.5 Refinement via Knowledge Distillation

After the fusion process, our resultant model, θF , embodies a synthesis of insights from both the
trained pruned model θ∗p and the original model θ. Although PruneFuse outperforms baseline AL
(results are provided in Appendix), we further optimize and enhance θF using Knowledge Distillation
(KD). KD enables θF to learn from θ∗p (the teacher model), enriching its training. During the fine-
tuning phase, we use two losses: i) Cross-Entropy Loss, which quantifies the divergence between the
predictions of θF and the actual labels in dataset L, and ii) Distillation Loss, which measures the dif-
ference in the softened logits of θF and θ∗p . These softened logits are derived by tempering logits of θ∗p ,
which in our case is the teacher model, with a temperature parameter before applying the softmax func-
tion. The composite loss is formulated as a weighted average of both losses. The iterative enhancement
of θF is governed by: θ(t+1)

F = θ
(t)
F −α∇

θ
(t)
F

(
λLCross Entropy(θ

(t)
F , L) + (1− λ)LDistillation(θ

(t)
F , θ∗p)

)
.

Here α represents the learning rate, while λ functions as a coefficient to balance the contributions of
the two losses. By incorporating KD in the fine-tuning phase, we aim to ensure that the fused model
θF not only retains the trained weights of pruned model but also reinforce this knowledge iteratively,
optimizing the performance of θF in subsequent tasks.

4 Experiments
Experimental Setup. The effectiveness of our approach is assessed on three image classification
datasets; CIFAR-10 [43], CIFAR-100 [43], and TinyImageNet-200 [44]. We used ResNet-50,

5

0 2 4 6 8
Computation (FLOPs) 1016

80

82

84

86

88

90

92

94

A
cc

ur
ac

y
(%

)

b=10%

b=30%

b=50%

b=10%

b=30%

b=50%

Baseline(AL)
PruneFuse(0.5)

0 2 4 6 8
Computation (FLOPs) 1016

80

82

84

86

88

90

92

94

A
cc

ur
ac

y
(%

)

b=10%

b=30%

b=50%

b=10%

b=30%

b=50%

Baseline(AL)
PruneFuse(0.6)

0 2 4 6 8
Computation (FLOPs) 1016

80

82

84

86

88

90

92

94

A
cc

ur
ac

y
(%

)

b=10%

b=30%

b=50%

b=10%

b=30%

b=50%

Baseline(AL)
PruneFuse(0.7)

0 2 4 6 8
Computation (FLOPs) 1016

80

82

84

86

88

90

92

94

A
cc

ur
ac

y
(%

)

b=10%

b=30%

b=50%

b=10%

b=30%

b=50%

Baseline(AL)
PruneFuse(0.8)

(a) (b) (c) (d)

Figure 3: Computation Comparison of PruneFuse and Baseline (Active Learning): This figure illustrates the
total number of FLOPs utilized by PruneFuse, compared to the baseline Active Learning method, for selecting
subsets with specific labeling budgets b = 10%, 30%, 50%. The experiments are conducted on the CIFAR-10
dataset using the ResNet-56 architecture. Subfigures (a), (b), (c), and (d) correspond to different pruning ratios
(0.5, 0.6, 0.7, and 0.8, respectively).

Method Model Architecture No. of Parameters Label Budget (b)
(Million) 10% 20% 30% 40% 50%

SVP Data Selector ResNet-20 0.26 81.07 86.51 89.77 91.08 91.61

Target ResNet-56 0.85 80.76 87.31 90.77 92.59 92.95

PruneFuse Data Selector ResNet-56 (p = 0.5)) 0.21 78.62 84.92 88.17 89.93 90.31

Target ResNet-56 0.85 82.68 88.97 91.63 93.24 93.69

Table 2: Performance Comparison of SVP and PruneFuse across various labeling budgets b for efficient training
of Target Model (ResNet-56).

ResNet-56 and ResNet-164 architecture in our experiments. We pruned these architectures using the
Torch-Prunnig library [45] for different pruning ratios p = 0.5, 0.6, 0.7, and 0.8 to get the pruned
architectures. We trained the model for 181 epochs using the mini-batch of 128 for CIFAR-10
and CIFAR-100 and 100 epochs using the mini-batch of 256 for TinyImageNet-200. For all the
experiments SGD is used as an optimizer. We took AL as a baseline for the proposed technique and
initially, we started by randomly selecting 2% of the data. For the first round, we added 8% from
the unlabeled set, then 10% in each subsequent round, until reaching the label budget, b. After each
round, we retrained the models from scratch, as described in the methodology. All experiments are
carried out independently 3 times and then the average is reported.

4.1 Results and Discussions

Main Experiments. Table 1 summarizes the generalization performance of baseline and different
variants of PruneFuse on different datasets (detailed results on different architectures and data
selection metrics are provided in Appendix). All variants of PruneFuse achieve higher accuracy
compared to the baseline, demonstrating the effectiveness of superior data selection performance
and fusion. Fig. 3 (a), (b), (c), and (d) illustrates the computational complexity of the baseline and
PruneFuse variants in terms of Floating Point Operations (FLOPs) for different labeling budgets.
The FLOPs are computed for the whole training duration of the pruned network and the selection
process. Different variants of PruneFuse p = 0.5, 0.6, 0.7, and 0.8 provide the flexibility that the
user can choose the variant of PruneFuse depending on their computation resources e.g. PruneFuse
(p = 0.8) requires very low computation resources compared to others while achieving good accuracy
performance.

Comparison with Selection-via-Proxy. Table 2 delineates a comparison of PruneFuse and the SVP
[15], performance metrics show that PruneFuse consistently outperforms SVP across all labeling
budgets for the efficient training of a Target Model (ResNet-56). SVP employs a ResNet-20 as its data
selector, with a model size of 0.26 M. In contrast, PruneFuse uses a 50% pruned ResNet-56, reducing
its data selector size to 0.21 M. Notably, while the data selector of PruneFuse achieves a lower
accuracy of 90.31% at b = 50% compared to SVP’s 91.61%, the target model utilizing PruneFuse-
selected data attains a superior accuracy of 93.69%, relative to 92.95% for the SVP-selected data.
This disparity underscores the distinct operational focus of the data selectors: PruneFuse’s selector is
optimized for enhancing the target model’s performance, rather than its own.

Ablation Studies. Table 3 demonstrates the effect of Knowledge Distillation (KD) on the PruneFuse
technique relative to the baseline method across various data selection matrices and label budgets on
CIFAR-100 datasets, using ResNet-56 architecture. The results indicate that PruneFuse consistently
outperforms the baseline method, both with and without incorporating KD from a trained pruned

6

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf 35.99 52.99 59.29 63.68 66.72
Entropy 37.57 52.64 58.87 63.97 66.78
Random 37.06 51.62 58.77 62.05 64.63
Greedy k 38.28 52.43 58.96 63.56 66.3

PruneFuse
p = 0.5

(without KD)

Least Conf 39.27 54.25 60.6 64.17 67.49
Entropy 37.43 52.57 60.57 64.44 67.31
Random 40.07 52.83 59.93 63.06 65.41
Greedy k 39.25 52.43 59.94 63.94 66.56

PruneFuse
p = 0.5

(with KD)

Least Conf 40.26 53.90 60.80 64.98 67.87
Entropy 38.59 54.01 60.52 64.83 67.67
Random 39.43 54.60 60.13 63.91 66.02
Greedy k 39.83 54.35 60.40 64.22 66.89

Table 3: Ablation Study of Knowledge Distillation on PruneFuse for CIFAR-100 datasets on Resnet-56

model. This superior performance is attributed to the innovative fusion strategy inherent to PruneFuse.
The proposed approach gives the fused model an optimized starting point, enhancing its ability to
learn more efficiently and generalize better. The impact of this strategy is evident across different
label budgets and architectures, demonstrating its effectiveness and robustness.

0 50 100 150
Epoch

20

40

60

80

100

A
cc

ur
ac

y(
%

)
Fusion
w/o Fusion

0 50 100 150
Epoch

20

30

40

50

60

70

80

90

A
cc

ur
ac

y(
%

)

Fusion
w/o Fusion

(a) p = 0.5, b = 30% (b) p = 0.6, b = 30%

Figure 4: Impact of Model Fusion on PruneFuse
Performance: This figure compares the accuracy over
epochs between fused and non-fused training approaches
within the PruneFuse framework, both utilizing subset
(with labeling budget b) selected by the pruned model.
Experiments are conducted using the ResNet-56 on the
CIFAR-10. Subfigures (a) and (b) correspond to pruning
ratios p = 0.5 and 0.6, respectively.

Fig. 4 demonstrates the effect of fusion across
various pruning ratios, the models trained with
fusion in-place perform better than those trained
without fusion, achieving higher accuracy lev-
els at an accelerated pace. The rapid conver-
gence is most notable in initial training phases,
where fusion model benefits from the initializa-
tion provided by the integration of weights from
a trained pruned model θ∗p with an untrained
model θ. The strategic retention of untrained
weights introduces a beneficial stochastic com-
ponent to the training process, enhancing the
model’s ability to explore new regions of the pa-
rameter space. This dual capability of exploiting
prior knowledge and exploring new configura-
tions enables the proposed technique to consis-
tently outperform, making it particularly beneficial in scenarios with sparse label data.

5 Conclusion
We introduce PruneFuse, a novel approach combining pruning and network fusion to optimize data
selection in deep learning. PruneFuse leverages a small pruned model for data selection, which then
seamlessly fuses with the original model, providing fast and better generalization while significantly
reducing computational costs. Extensive evaluations on CIFAR-10, CIFAR-100, and Tiny-ImageNet-
200 show that PruneFuse outperforms existing baselines, establishing its efficiency and efficacy.
PruneFuse offers a scalable, practical, and flexible solution to enhance the training efficiency of
neural networks, particularly in resource-constrained settings.

6 Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by
the Korea government (MSIT) (No. RS-2024-00340966), and by Center for Applied Research in
Artificial Intelligence (CARAI) grant funded by DAPA and ADD (UD230017TD).

References

[1] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. Advances in neural information processing
systems, 28, 2015.

7

[2] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for se-
mantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3431–3440, 2015.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[4] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable
effectiveness of data in deep learning era. In Proceedings of the IEEE international conference
on computer vision, pages 843–852, 2017.

[5] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image
data. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 1183–1192. JMLR. org, 2017.

[6] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489, 2017.

[7] Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse batch
acquisition for deep bayesian active learning. Advances in neural information processing
systems, 32, 2019.

[8] Yanyao Shen, Hyokun Yun, Zachary Lipton, Yakov Kronrod, and Animashree Anandku-
mar. Deep active learning for named entity recognition. In Proceedings of the 2nd Work-
shop on Representation Learning for NLP, pages 252–256, Vancouver, Canada, August
2017. Association for Computational Linguistics. doi: 10.18653/v1/W17-2630. URL
https://www.aclweb.org/anthology/W17-2630.

[9] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=H1aIuk-RW.

[10] Alexander Freytag, Erik Rodner, and Joachim Denzler. Selecting influential examples: Active
learning with expected model output changes. In Computer Vision–ECCV 2014: 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part IV 13, pages 562–
577. Springer, 2014.

[11] Christoph Käding, Erik Rodner, Alexander Freytag, and Joachim Denzler. Active and continuous
exploration with deep neural networks and expected model output changes. arXiv preprint
arXiv:1612.06129, 2016.

[12] Krishnateja Killamsetty, Sivasubramanian Durga, Ganesh Ramakrishnan, Abir De, and Rishabh
Iyer. Grad-match: Gradient matching based data subset selection for efficient deep model
training. In International Conference on Machine Learning, pages 5464–5474. PMLR, 2021.

[13] Krishnateja Killamsetty, Durga Subramanian, Ganesh Ramakrishnan, and Rishabh Iyer. Glister:
A generalization based data selection framework for efficient and robust learning. AAAI, 2021.

[14] Eeshaan Jain, Tushar Nandy, Gaurav Aggarwal, Ashish Tendulkar, Rishabh Iyer, and Abir De.
Efficient data subset selection to generalize training across models: Transductive and inductive
networks. Advances in Neural Information Processing Systems, 36, 2024.

[15] Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis,
Percy Liang, Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for
deep learning. arXiv preprint arXiv:1906.11829, 2019.

[16] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578, 2016.

[17] Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Saining Xie, Bichen
Wu, Matthew Yu, Tao Xu, Kan Chen, et al. Fbnetv2: Differentiable neural architecture search
for spatial and channel dimensions. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 12965–12974, 2020.

8

https://www.aclweb.org/anthology/W17-2630
https://openreview.net/forum?id=H1aIuk-RW
https://openreview.net/forum?id=H1aIuk-RW

[18] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149,
2015.

[19] Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. Hawq-v2: Hessian aware trace-weighted quantization of neural networks. Advances in
neural information processing systems, 33:18518–18529, 2020.

[20] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2704–2713, 2018.

[21] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

[22] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[23] Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong Li, Arun Mallya, Derek Hoiem,
Niraj K Jha, and Jan Kautz. Dreaming to distill: Data-free knowledge transfer via deepinversion.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 8715–8724, 2020.

[24] Jongsoo Park, Sheng Li, Wei Wen, Ping Tak Peter Tang, Hai Li, Yiran Chen, and Pradeep
Dubey. Faster cnns with direct sparse convolutions and guided pruning. arXiv preprint
arXiv:1608.01409, 2016.

[25] Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks via layer-wise
optimal brain surgeon. Advances in neural information processing systems, 30, 2017.

[26] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns.
Advances in neural information processing systems, 29, 2016.

[27] Sejun Park, Jaeho Lee, Sangwoo Mo, and Jinwoo Shin. Lookahead: A far-sighted alternative of
magnitude-based pruning. arXiv preprint arXiv:2002.04809, 2020.

[28] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[29] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural
networks. In Proceedings of the IEEE international conference on computer vision, pages
1389–1397, 2017.

[30] Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping Wang. Gate decorator: Global
filter pruning method for accelerating deep convolutional neural networks. Advances in neural
information processing systems, 32, 2019.

[31] Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong Han. Centripetal sgd for pruning
very deep convolutional networks with complicated structure. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 4943–4953, 2019.

[32] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang.
Learning efficient convolutional networks through network slimming. In Proceedings of the
IEEE international conference on computer vision, pages 2736–2744, 2017.

[33] Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in
neural network pruning. arXiv preprint arXiv:2003.02389, 2020.

[34] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. arXiv preprint arXiv:1710.01878, 2017.

[35] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

9

[36] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network
pruning based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

[37] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Pruning neu-
ral networks at initialization: Why are we missing the mark? arXiv preprint arXiv:2009.08576,
2020.

[38] Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in neural information
processing systems, 33:6377–6389, 2020.

[39] Yulong Wang, Xiaolu Zhang, Lingxi Xie, Jun Zhou, Hang Su, Bo Zhang, and Xiaolin Hu.
Pruning from scratch. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 12273–12280, 2020.

[40] Joost van Amersfoort, Milad Alizadeh, Sebastian Farquhar, Nicholas Lane, and Yarin Gal.
Single shot structured pruning before training. arXiv preprint arXiv:2007.00389, 2020.

[41] Burr Settles. Active learning. Synthesis Lectures on Artificial Intelligence and Machine
Learning, 6(1):1–114, 2012.

[42] Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

[43] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[44] Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

[45] Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph:
Towards any structural pruning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 16091–16101, 2023.

10

A Appendix

A.1 Performance Comparison with different Datasets, Selection Metrics, and Architectures

To comprehensively evaluate the effectiveness of PruneFuse, we conducted additional experiments
comparing its performance with baseline utilizing other data selection metrics such as Least Confi-
dence, Entropy, and Greedy k-centers. Results are shown in Tables 4 and 5 for various architectures
and labeling budgets. In all cases, our results demonstrate that PruneFuse mostly outperforms the
baseline using these traditional metrics across various datasets and model architectures, highlighting
the robustness of PruneFuse in selecting the most informative samples efficiently.

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf 80.53 87.74 90.85 92.24 93.00
Entropy 80.14 87.63 90.80 92.51 92.98
Random 78.55 85.26 88.13 89.81 91.20
Greedy k 79.63 86.46 90.09 91.9 92.80

PruneFuse
p = 0.5

Least Conf 80.92 88.35 91.44 92.77 93.65
Entropy 81.08 88.74 91.33 92.78 93.48
Random 80.43 86.28 88.75 90.36 91.42
Greedy k 79.85 86.96 90.20 91.82 92.89

PruneFuse
p = 0.6

Least Conf 80.58 87.79 90.94 92.58 93.08
Entropy 80.96 87.89 91.22 92.56 93.19
Random 79.19 85.65 88.27 90.13 91.01
Greedy k 79.54 86.16 89.5 91.35 92.39

PruneFuse
p = 0.7

Least Conf 80.19 87.88 90.70 92.44 93.40
Entropy 79.73 87.85 90.94 92.41 93.39
Random 78.76 85.5 88.31 89.94 90.87
Greedy k 78.93 85.85 88.96 90.93 92.23

PruneFuse
p = 0.8

Least Conf 80.11 87.58 90.50 92.42 93.32
Entropy 79.83 87.5 90.52 92.24 93.15
Random 78.77 85.64 88.45 89.88 91.21
Greedy k 78.23 85.59 88.60 90.11 91.31

(a) CIFAR-10.

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf 35.99 52.99 59.29 63.68 66.72
Entropy 37.57 52.64 58.87 63.97 66.78
Random 37.06 51.62 58.77 62.05 64.63
Greedy k 38.28 52.43 58.96 63.56 66.30

PruneFuse
p = 0.5

Least Conf 40.26 53.90 60.80 64.98 67.87
Entropy 38.59 54.01 60.52 64.83 67.67
Random 39.43 54.60 60.13 63.91 66.02
Greedy k 39.83 54.35 60.40 64.22 66.89

PruneFuse
p = 0.6

Least Conf 37.82 52.65 60.08 63.7 66.89
Entropy 38.01 51.91 59.18 63.53 66.88
Random 38.27 52.85 58.68 62.28 65.2
Greedy k 38.44 52.85 59.36 63.36 66.12

PruneFuse
p = 0.7

Least Conf 36.76 52.15 59.33 63.65 66.84
Entropy 36.95 50.64 58.45 62.27 65.88
Random 37.3 51.66 58.79 62.67 65.08
Greedy k 38.88 52.02 58.66 61.39 65.28

PruneFuse
p = 0.8

Least Conf 36.49 50.98 58.53 62.87 65.85
Entropy 36.02 51.23 57.44 62.65 65.76
Random 37.37 52.06 58.19 62.19 64.77
Greedy k 37.04 49.84 56.13 60.24 62.92

(b) CIFAR-100.

Table 4: Performance Comparison of Baseline and PruneFuse on CIFAR-10 and CIFAR-100 with ResNet-56
architecture. This table summarizes the test accuracy of final models (original in case of AL and Fused in
PruneFuse) for various pruning ratios (p), labeling budgets (b), and data selection metrics.

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf. 81.15 89.4 92.72 94.09 94.63
Entropy 80.99 89.54 92.45 94.06 94.49
Random 80.27 87.00 89.94 91.57 92.78
Greedy k 80.02 88.33 91.76 93.39 94.40

PruneFuse
p = 0.5

Least Conf. 83.03 90.30 93.00 94.41 94.63
Entropy 82.64 89.88 93.08 94.32 94.90
Random 81.52 87.84 90.14 91.94 92.81
Greedy k 81.70 88.75 91.92 93.64 94.22

PruneFuse
p = 0.6

Least Conf. 82.86 90.22 93.05 94.27 94.66
Entropy 82.23 90.18 92.91 94.28 94.66
Random 81.14 87.51 90.05 91.82 92.43
Greedy k 81.11 88.41 91.66 92.94 94.17

PruneFuse
p = 0.7

Least Conf. 82.76 89.89 92.83 94.10 94.69
Entropy 82.59 89.81 92.77 94.20 94.74
Random 80.88 87.54 90.09 91.57 92.64
Greedy k 81.68 88.36 91.64 93.02 93.97

PruneFuse
p = 0.8

Least Conf. 82.66 89.78 92.64 94.08 94.69
Entropy 82.01 89.77 92.65 94.02 94.60
Random 80.73 87.43 90.08 91.40 92.53
Greedy k 79.66 87.56 90.79 92.30 93.17

(a) CIFAR-10.

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf 38.41 51.39 65.53 70.07 73.05
Entropy 36.65 57.58 64.98 69.99 72.90
Random 39.31 57.53 63.84 67.75 70.79
Greedy k 39.76 57.40 65.20 69.25 72.91

PruneFuse
p = 0.5

Least Conf 42.88 59.31 66.95 71.45 74.32
Entropy 42.99 59.32 66.83 71.18 74.43
Random 43.72 58.58 64.93 68.75 71.63
Greedy k 43.61 58.38 66.04 69.83 73.10

PruneFuse
p = 0.6

Least Conf 41.86 58.97 66.61 70.59 73.6
Entropy 42.43 58.74 65.97 70.90 73.70
Random 42.53 58.33 65.00 68.55 71.46
Greedy k 42.71 58.41 65.43 69.57 72.49

PruneFuse
p = 0.7

Least Conf 42.00 57.08 66.41 70.68 73.63
Entropy 41.01 57.45 65.99 70.07 73.45
Random 42.76 57.31 64.12 68.07 70.88
Greedy k 42.42 57.58 65.18 68.55 71.89

PruneFuse
p = 0.8

Least Conf 41.19 57.98 65.22 70.38 73.17
Entropy 39.78 57.3 65.19 69.40 72.82
Random 42.08 57.23 64.05 67.85 70.62
Greedy k 42.20 57.42 64.53 68.01 71.29

(b) CIFAR-100.

Table 5: Performance Comparison of Baseline and PruneFuse on CIFAR-10 and CIFAR-100 with ResNet-164
architecture. This table summarizes the test accuracy of final models (original in case of AL and Fused in
PruneFuse) for various pruning ratios (p), labeling budgets (b), and data selection metrics.

11

A.2 Comparison with SVP

Techniques Model Architecture No. of Parameters Label Budget (b)
(Million) 10% 20% 30% 40% 50%

SVP Data Selector ResNet-8 0.074 77.85 83.35 85.43 86.83 86.90

Target ResNet-20 0.26 80.18 86.34 89.22 90.75 91.88

PruneFuse Data Selector ResNet-20 (p = 0.5) 0.066 76.58 83.41 85.83 87.07 88.06

Target ResNet-20 0.26 80.25 87.57 90.20 91.70 92.29

Table 6: Comparison of SVP and PruneFuse on Small
Models.

Table 6 demonstrates the performance compar-
ison of PruneFuse and SVP for small model
architecture ResNet-20 on CIFAR-10. SVP
achieves 91.88% performance accuracy by uti-
lizing the data selector having 0.074 M param-
eters whereas PruneFuse outperforms SVP by
achieving 92.29% accuracy with a data selector
of 0.066 M parameters.

2 3 4 5 6 7 8

Number of Parameters of Data Selector 104

90.8

90.9

91

91.1

91.2

91.3

91.4

91.5

A
cc

ur
ac

y
(%

)

Accuracy vs Model Size (Parameters)

R8

R14(p=0.5)

R14(p=0.6)

Proposed
SVP

3 4 5 6 7 8

Number of Parameters of Data Selector 104

91.7

91.8

91.9

92

92.1

92.2

92.3

92.4

A
cc

ur
ac

y
(%

)

Accuracy vs Model Size (Parameters)

R8

R20(p=0.5)

R20(p=0.6)

Proposed
SVP

(a) Target Model = ResNet-14 (b) Target Model = ResNet-20

Figure 5: Comparison of PruneFuse with SVP. Scatter
plot shows final accuracy on target model against the model size for
different ResNet models on CIFAR-10 dataset with labeling budget b =
50%. (a) shows for the target network ResNet-14, ResNet-14 (with
p = 0.5 and p = 0.6) and ResNet-8 models are used as data selectors
for PruneFuse and SVP, respectively. While in (b), PruneFuse utilizes
ResNet20 (i.e. p = 0.5 and p = 0.6) and SVP utilizes ResNet-8
models for data selection when the target model is ResNet-20.

Fig. 5(a) and (b) show that target models when
trained with the data selectors of the PruneFuse
achieve significantly higher accuracy while us-
ing significantly less number of parameters com-
pared to SVP. These results indicate that the
PruneFuse does not require an additional archi-
tecture for designing the data selector; it solely
needs the target model. In contrast, SVP neces-
sitates both the target model (ResNet-14) and
a smaller model (ResNet-8) that functions as a
data selector.

A.3 Ablation Study of Fusion

The fusion process is a critical component of the PruneFuse methodology, designed to integrate
the knowledge gained by the pruned model into the original network. Our experiments reveal that
models trained with the fusion process exhibit significantly better performance and faster convergence
compared to those trained without fusion. By initializing the original model with the weights
from the trained pruned model, the fused model benefits from an optimized starting point, which
enhances its learning efficiency and generalization capability. Fig. 6 illustrates the training trajectories
and accuracy improvements when fusion takes places, demonstrating the tangible benefits of this
initialization. These results underscore the importance of the fusion step in maximizing the overall
performance of the PruneFuse framework.

0 50 100 150
Epoch

10

20

30

40

50

60

70

80

A
cc

ur
ac

y(
%

)

Fusion
w/o Fusion

0 50 100 150
Epoch

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Fusion
w/o Fusion

0 50 100 150
Epoch

20

30

40

50

60

70

80

90

A
cc

ur
ac

y(
%

)

Fusion
w/o Fusion

(a) p = 0.5, b = 10% (b) p = 0.5, b = 30% (c) p = 0.5, b = 50%

Figure 6: Ablation Study of Fusion on PruneFuse (p = 0.5). Experiments are performed on ResNet-56
architecture with CIFAR-10.

A.4 Ablation Study of Knowledge Distillation in PruneFuse

Table 7 demonstrates the effect of Knowledge Distillation on the PruneFuse technique relative to
the baseline Active Learning (AL) method across various experimental configurations and label
budgets on CIFAR-10 and CIFAR-100 datasets, using ResNet-56 architecture. The results indicate
that PruneFuse consistently outperforms the baseline method, both with and without incorporating
Knowledge Distillation (KD) from a trained pruned model. This superior performance is attributed to
the innovative fusion strategy inherent to PruneFuse, where the original model is initialized using
weights from a previously trained pruned model. The proposed approach gives the fused model an
optimized starting point, enhancing its ability to learn more efficiently and generalize better. The
impact of this strategy is evident across different label budgets and architectures, demonstrating its
effectiveness and robustness.

12

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf 80.53 87.74 90.85 92.24 93.00
Entropy 80.14 87.63 90.80 92.51 92.98
Random 78.55 85.26 88.13 89.81 91.20
Greedy k 79.63 86.46 90.09 91.90 92.80

PruneFuse
p = 0.5

(without KD)

Least Conf 81.08 88.71 91.24 92.68 93.46
Entropy 80.80 88.08 90.98 92.74 93.43
Random 80.11 85.78 88.81 90.20 91.10
Greedy k 80.07 86.70 89.93 91.72 92.67

PruneFuse
p = 0.5

(with KD)

Least Conf 80.92 88.35 91.44 92.77 93.65
Entropy 81.08 88.74 91.33 92.78 93.48
Random 80.43 86.28 88.75 90.36 91.42
Greedy k 79.85 86.96 90.20 91.82 92.89

(a) CIFAR-10.

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf 35.99 52.99 59.29 63.68 66.72
Entropy 37.57 52.64 58.87 63.97 66.78
Random 37.06 51.62 58.77 62.05 64.63
Greedy k 38.28 52.43 58.96 63.56 66.3

PruneFuse
p = 0.5

(without KD)

Least Conf 39.27 54.25 60.6 64.17 67.49
Entropy 37.43 52.57 60.57 64.44 67.31
Random 40.07 52.83 59.93 63.06 65.41
Greedy k 39.25 52.43 59.94 63.94 66.56

PruneFuse
p = 0.5

(with KD)

Least Conf 40.26 53.90 60.80 64.98 67.87
Entropy 38.59 54.01 60.52 64.83 67.67
Random 39.43 54.60 60.13 63.91 66.02
Greedy k 39.83 54.35 60.40 64.22 66.89

(b) CIFAR-100.

Table 7: Ablation Study of Knowledge Distillation on PruneFuse presented in (a), and (b) for different datasets
on Resnet-56

A.5 Ablation of Different Selection Metrics

The impact of different selection metrics is presented in Table 8 demonstrating clear differences in
performance across both the Baseline and PruneFuse methods on CIFAR-100 using ResNet-164
architecture. It is evident that across both the baseline and PruneFuse methods, the Least Confidence
metric surfaces as particularly effective in optimizing label utilization and model performance.
The results further reinforce that regardless of the label budget, from 10% to 50%, PruneFuse
demonstrates a consistent superiority in performance with different data selection metrics (Least
Confidence, Entropy, Random, and Greedy k-centres) compared to Baseline.

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf 38.41 51.39 65.53 70.07 73.05
Entropy 36.65 57.58 64.98 69.99 72.90
Random 39.31 57.53 63.84 67.75 70.79
Greedy k 39.76 57.40 65.20 69.25 72.91

PruneFuse
p = 0.5

Least Conf 42.88 59.31 66.95 71.45 74.32
Entropy 42.99 59.32 66.83 71.18 74.43
Random 43.72 58.58 64.93 68.75 71.63
Greedy k 43.61 58.38 66.04 69.83 73.10

Table 8: Effect of Different Data Selection Metrics on CIFAR-100 using ResNet-164 architecture.

B Algorithmic Details

In this section, we provide a detailed explanation of the PruneFuse algorithm given in Algorithm 1.
The PruneFuse methodology begins with structured pruning an untrained neural network, θ, to create
a smaller model, θp. This pruning step reduces complexity while retaining the network’s essential
structure, allowing θp to efficiently select informative samples from the unlabeled dataset, U . The
algorithm proceeds as follows. First, the original model θ is randomly initialized and pruned to obtain
θp. The pruned model θp is then trained on an initial labeled dataset s0 to produce θ∗p . This training
equips θp with preliminary knowledge for data selection. The labeled dataset L is initially set to s0. A
data selection loop runs until the labeled dataset L reaches the maximum budget b. In each iteration,
θp is retrained on L to keep the model updated with new samples. Uncertainty scores for all samples
in U are computed using the trained θ∗p on the available labelel subset, and the top-k samples with the
highest scores are selected as Dk. These samples are labeled and added to L. Once the budget b is
met, the final trained pruned model θ∗p is fused with the original model θ to create the fused model θF .
This fusion transfers the weights from θ∗p to θ, ensuring the pruned model’s knowledge is retained.
Finally, θF is trained on L using knowledge distillation from θ∗p , refining the model’s performance by
leveraging the pruned model’s learned insights. In summary, PruneFuse strategically adapts pruning
in data selection problem and to enhance both data selection efficiency and model performance.

13

Algorithm 1 Efficient Data Selection using Pruned Networks
Input: Unlabeled dataset U , Initial labeled dataset s0, labeled dataset L, original model θ, prune
model θp, fuse model θF , maximum budget b, pruning ratio p.

1: Randomly initialize θ
2: θp ← Prune(θ, p) // Structure pruning
3: θ∗p ← Train θp on s0

4: L← s0

5: while |L| ≤ b do
6: Compute score(x; θ∗p) for all x ∈ U //Compute uncertainty scores for samples in U using θ∗p
7: Dk = topk[Dj ∈ U]j∈[k] //Select top-k samples with highest uncertainty scores
8: Query labels yk for selected samples Dk

9: Add (Dk, yk) to L
10: Train θ∗p on L

11: θF ← Fuse(θ, θ∗p)
12: θ∗F ← Train θF on L

13: return L, θ∗F

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: the abstract and introduction accurately reflect the contributions that we
developed PruneFuse for efficient data selection.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [No]
Justification: We have not explicitly mentioned the limitations in a seperate section as we
have strived to present a balanced and accurate view of our technique and contributions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

15

Answer: [NA]

Justification: This paper does not include theoretical analysis.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: the experimental section of the main paper contains all the implementation
details needed to reproduce the main results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We provide detailed description of implementation details and believe that it is
easy to implement. However, we recognize the value of open-source practices and plan to
publish the code on GitHub following publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: the training and test details are discussed in detail in the experimental section
in the main text.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: all experiments are performed with random seed values for three trials and the
average is reported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide detailed computation costs associated with data selection process
in main text as well as in supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: our research does follow the NeurIPS code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: we discuss in detail about the need of efficient data selection strategy to
reduce the overall computation costs for training deep neural networks. Our work reduces
the overall computation costs significantly for general data selection frameworks which
achieving good performance.

18

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: we pose no potential for misuse in our technique.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: we accurately cite the related works and resources that were utilized in our
paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

19

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: we do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: we do not involve any human subject in our technique/experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

20

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

21

	Introduction
	Background and Related Works
	PruneFuse
	Pruning at Initialization
	Data Selection via Pruned Model
	Training of Pruned Model
	Fusion with the Original Model
	Refinement via Knowledge Distillation

	Experiments
	Results and Discussions

	Conclusion
	Acknowledgments
	Appendix
	Performance Comparison with different Datasets, Selection Metrics, and Architectures
	Comparison with SVP
	Ablation Study of Fusion
	Ablation Study of Knowledge Distillation in PruneFuse
	Ablation of Different Selection Metrics

	Algorithmic Details

