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Abstract

Rectified flow models have become a de facto standard in image generation due to
their stable sampling trajectories and high-fidelity outputs. Despite their strong gen-
erative capabilities, they face critical limitations in image editing tasks: inaccurate
inversion processes for mapping real images back into the latent space, and gradient
entanglement issues during editing often result in outputs that do not faithfully
reflect the target prompt. Recent efforts have attempted to directly map source
and target distributions via ODE-based approaches without inversion; however,
these methods still yield suboptimal editing quality. In this work, we propose
a flow decomposition-and-aggregation framework built upon an inversion-free
formulation to address these limitations. Specifically, we semantically decompose
the target prompt into multiple sub-prompts, compute an independent flow for
each, and aggregate them to form a unified editing trajectory. While we empirically
observe that decomposing the original flow enhances diversity in the target space,
generating semantically aligned outputs still requires consistent guidance toward
the full target prompt. To this end, we design a projection and soft-aggregation
mechanism for flow, inspired by gradient conflict resolution in multi-task learn-
ing. This approach adaptively weights the sub-target velocity fields, suppressing
semantic redundancy while emphasizing distinct directions, thereby preserving
both diversity and consistency in the final edited output. Experimental results
demonstrate that our method outperforms existing zero-shot editing approaches in
terms of semantic fidelity and attribute disentanglement. The code is available at
https://github.com/Harvard-AI-and-Robotics-Lab/SplitFlow.

1 Introduction

Flow-based generative models have demonstrated superiority in synthesizing images and also in
text-to-image generation task. Building on these advances, recent research has actively explored
image editing methods that modify a given image to align with a target prompt. Due to the nature
of diffusion [20} [7, 23] and flow-based generative models [1} [13} [15] , which generate samples
from noise through iterative refinement, editing typically requires an inversion step to estimate
the corresponding noisy latent representation. However, this inversion process is often imperfect
and fails to recover an exact latent that reconstructs the original image. As a result, the editing
process may suffer from semantic drift, visual distortion, or inconsistent attribute manipulation. Even

* Equal contribution. ¥ Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://github.com/Harvard-AI-and-Robotics-Lab/SplitFlow

when a precise inversion allows near-perfect reconstruction, an empirical trade-off arises between
reconstructability and editability. Latents that are highly optimized to match the input image tend to
be rigid and entangled, meaning that adjusting a single attribute often leads to unintended changes in
unrelated features [2]].

Recently, some efforts have been made to improve the editing process based on rectified flow
models [19} 126, 3| 29} 131]] and also inversion-free method that directly maps the source and target
distribution [[L1], but these methods show limited semantic fidelity due to gradient entanglement and
prompt-latent misalignment. In particular, when a complex target prompt contains multiple semantic
attributes (e.g., "a german shepard dog with black sunglasses jumping on the grass with mouth
opened"), a single editing trajectory guided by the full prompt often leads to entangled gradients and
conflicting directions in the semantic space. This makes it difficult to isolate and control the influence
of individual attributes, resulting in either under-edited or overly distorted outputs.

Motivated by these issues, we propose SplitFlow, which decomposes the flow induced by the target
prompt into independent sub-target flows derived from semantically decomposed sub-prompts. By
computing independent editing flows for each sub-prompt and aggregating them into a unified
trajectory while mitigating flow conflict, our method achieves improvements in both fidelity and
editability. Performance on the PIE-Bench benchmark [[10] demonstrates that the proposed approach
outperforms prior methods.

The contributions of this paper are threefold:

* We demonstrate that decomposing the editing flow improves the fidelity of the edited image,
especially in preserving background consistency.

* We propose SplitFlow, which progressively approximates the target latent through flow
decomposition followed by flow aggregation.

* We introduce a projection-and-aggregation method that aligns sub-target flows with the
target direction, while preserving their semantic diversity and alleviating potential conflicts
velocity field that arise during integration.

2 Related Work

Diffusion and Rectified Flow. Diffusion models [21 18] synthesize images by gradually reversing
a noising process that transforms data into Gaussian noise. Starting from random noise, they
iteratively denoise through learned score functions, generating high-quality outputs over many
timesteps. Rectified Flow (RF) [13}[15] introduces a more stable and efficient generation process via
a straight trajectory in latent space.

Text-to-Image Inversion and Editing. Text-guided image editing aims to modify a given image to
match a target text prompt. Most diffusion-based editing pipelines rely on first mapping the image
back into the model’s latent space, typically in the form of Gaussian noise. DDIM [21] enables
approximate inversion via a deterministic trajectory, but suffers from cumulative errors due to its
linear approximation. To improve inversion accuracy, optimization-based approaches [[L6, 25| 8]
have been proposed, though at a high computational cost. On the editing side, early methods achieve
localized edits by fine-tuning diffusion models [5}[12]] or manipulating cross-attention maps [6, [24].
While effective, these methods still operate within the diffusion framework and depend heavily on
either inversion or fine-tuning, which are often inefficient for practical use.

Recent efforts have explored RF models for editing, which offer more stable and efficient sampling
trajectories than diffusion models. RF-Inversion [19] formulates editing as an optimal control problem
to balance editability and fidelity, RF-Solver [26]] incorporates attention injection to guide editing,
and FireFlow [3] employs higher-order ODE solvers to improve inversion accuracy. Despite their
advantages, these methods still depend on iterative re-noising procedures, making them prone to
cumulative error. FTEdit [29] reduces errors by performing iterative average at each inversion
timestep, which is basically equivalent to increasing the number of sampling steps.

Inversion-Free Editing. Unlike traditional inversion-based approaches, which require recovering
the noise latent that originally generated the image, inversion-free methods bypass this step and
directly optimize in the image or latent space. InfEdit [30] introduces an early inversion-free



framework based on the consistency models [22]]. FlowEdit [11]] extends this idea to RF models
by directly manipulating image-space velocity differences. However, it lacks directional selectivity
and often struggles with global edits. These works highlight that explicitly modeling semantic flow
differences enhances editing control and efficiency.

Multi-Task and Flow Decomposition. Our method builds upon insights from gradient conflict
resolution in multi-task learning 32| [1'7, [14], where conflicting objectives are resolved via adaptive
re-weighting. Similarly, we propose to semantically decompose the target prompt into multiple
sub-flows and adaptively aggregate them for consistent and diverse edits. To our knowledge, our
work is the first to incorporate flow decomposition and aggregation into text-based image editing
framework.

3 Preliminaries

3.1 Flow Matching and Rectified Flow

Let R? denote the data space, and let 2o € R? be an initial data point sampled from a source
distribution pg. Flow Matching (FM) methods [15} (13 [1]] aim to learn a time-dependent vector field
vo(we,t) 1 [0,1] x R — RY, such that the solution to the following ODE transports z¢ ~ po to
x1 ~ p1, where p; denotes the target distribution:

dxy = v (g, t)dt (n

The solution z; describes a continuous trajectory defined by the ODE, starting from the initial point
xo and reaching the target point 1. The ground-truth vector field v*(xz, t) governs this trajectory
and induces a distributional path x; that satisfies the boundary conditions x;—y = x¢ and x;—1 = 1.
The objective of FM is to learn a parameterized vector field vy (x4, t) that approximates v*(x, t) by
minimizing the following regression loss:

L£0) = Eqyelllvg (e, t) — o (24, 1)]5), @

where || - ||3 denotes mean square error. Here, FM enables deterministic sampling via ODEs, avoiding
the stochastic noise accumulation seen in diffusion models. By leveraging known couplings between
distributions, it ensures both interpretability and fidelity. This leads to faster, more stable sampling and
a principled connection to optimal transport, making FM a strong candidate for generative modeling.
Rectified Flow (RF) [[15]], a special case of FM, aims to learn an ODE whose solution closely follows
straight-line trajectories between pairs of points sampled from x( and x;. The ground-truth vector
field is defined as v* (x4, t) = x1 — @, where x; is the linear interpolation between x and x;. The
training objective can thus be formulated as:

L(0) =Eyg, ¢ |lve(ze,t) — (1 — x0)||§, where 1z = (1 —t)xo + ta1. 3)

By eliminating the need for stochastic sampling and instead following deterministic linear paths,
RF enables faster and more stable performance in downstream tasks such as ODE-based generative
modeling and image editing.

3.2 Inversion-free Image Editing

src

Image editing aims to transform a source image ", guided by a source text prompt ¢°"¢, into an

edited image xf)g * using a target text prompt 9. In RF, the trajectory between noise and image
is assumed to be linear, meaning that the noisy latent at any timestep can be obtained via linear
interpolation. Leveraging this property, inversion-free image editing method [11] bypass the need
for latent inversion by estimating the vector field difference between the source and target images at
each timestep. This enables the construction of a transition path in the clean image space, gradually
mapping the source image toward the target. Specifically, the target-aligned latent at timestep ¢,
denoted as zI'®, can be approximated by:

i = asre 4 xigt — ;" “)
The evolution of this trajectory follows the ODE:
dat’® = ’UGA (xigt, xy ) dt &~ ’UGA (xfB 25T — 2§, 57¢) dt, 5)



Source caption:
A german shephard dog stands on the grass with
mouth [closed]

Target caption:
A german shephard dog [with black sunglasses]
[jumping] on the grass with mouth [opened]

LLM  “Write semantic captions that
(I or etc) split the target caption.”

©'9'1) A black sunglasses dog jumps grass

Hat(2)

@

(pt-‘?t@)

A dog with open mouth jump grass

Figure 1: Simplified visual illustration of the proposed SplitFlow. Purple, Blue, Orange line indicates
independent sub-target flow. The aggregation is done on a certain timestep. After the aggregation, we
use a single, unified flow. The notation in this figure follows the paper.

where the difference in velocity fields guided by the source and target prompts is defined as:
VA (@9, 25C) = vg (29,1, 1Y) — vg (x5, t, 7). Since the source image is known, 3¢ can be
directly obtained by linearly interpolating between it and a randomly sampled noise. In contrast, the
target image is unknown and cannot be directly interpolated. Therefore, ngt is approximated using
the previous timestep ¥ and Eq. (@) as follows: 8~ 2B 4 g — xge.

Based on the estimated velocity field difference, the entire editing process can be implemented as an
iterative trajectory in the clean image space. Starting from the source image, we initialize the path
with 5% = 8. At each timestep ¢, the edited latent is updated using the approximated velocity
difference: 1'%, = xF® + Ay (219°, 27¢). This iterative procedure continues until the trajectory
converges to the desired target image.

4 Method

Long target prompts often contain multiple attributes and complex semantics, resulting in a large
semantic gap between the source and target in the latent space. This gap makes direct editing
challenging, as entangled gradients can degrade edit quality. Providing simultaneous guidance for all
attributes may lead to conflicting flows, which can cause semantic drift or even failure in the editing
process. To address this challenge, we propose SplitFlow, an editing framework that progressively
approximates the target latent through flow decomposition (Sec.[4.1)) followed by flow composition
(Sec.[.2). Specifically, we first decompose the semantic complexity of the target prompt into a set of
sub-target prompts and compute an independent flow for each, enabling latent directional components
to be isolated and manipulated separately. These sub-flows are then aggregated into a unified flow
that semantically aligns with the original target prompt. The editing process proceeds along this
unified trajectory, resulting in more stable, diverse edits.

4.1 Progressive Target Approximation with Flow Decomposition

In image editing tasks, the semantic gap between a source prompt ©*"¢ and a target prompt t9¢

is often complex and high-dimensional. Direct transformation from source to target may lead to
unstable or imprecise editing results. To address this, we propose to decompose the overall semantic
transition into a sequence of intermediate sub-target prompts {cptgt(i) 1Y, where N is the number of
sub-target prompts. This decomposition simplifies the editing task into semantically controllable and
progressively guided transformations.

To perform the decomposition, we leverage a Large Language Model (LLM) as a prompt reasoning
engine, represented as a function fi1y. We construct a composite input sequence by concatenating
an instruction prompt 1), the source prompt ©*"¢, and the target prompt ©9%. Then we feed the input



to fLLm to generate a sequence of sub-target prompts that represent incremental semantic transitions:

{Sptgt(l) No= fLLM((I))’ b = concat[lﬁ, QD ,Sptgt] (6)

Each sub-target prompt '9¢(?) captures a localized semantic component that contributes to the overall
transformation from °" to 9%, For example, as shown in Fig. (1| given a source prompt "¢ = “A
german shepherd dog stands on the grass with mouth closed” and a target prompt ©'9t = “A german
shepherd dog with black sunglasses jumping on the grass with mouth opened”, and instruction prompt
1 = “Write semantic captions that split the target caption.”, the resulting sub-target prompts may
be: {(ptgt(i)}ilil = { “A black sunglasses dog jumps grass”, “A dog with open mouth jump grass”,
“A german shepherd with black sunglasses” }. The number of sub-target prompts NV is adaptively
determined by fi 1y based on the degree and complexity of the semantic difference. In most cases,
N < 3, which yields a compact yet effective semantic trajectory for guided editing.

Following the formulation of the baseline (Eq. @)—()), we extend the framework to handle each

sub-target prompt individually. For each sub-target prompt '9*(") we define a corresponding flow

xtFE(i) governed by an independent velocity field. Specifically, the sub-target flow is expressed as

follows: FE ) )
(l) — Src 4 xtgt(l) _ xfrc (7)

)

where ("¢ denotes the initial latent of the source image, x;" is the interpolated latents at timestep ¢
between the source image and a Gaussian noise. Accordmgly, the ODE governing each decomposed
( tgt(i)

sub-target flow is given by the sub-target relative velocity field v; , i)
FE(2 tgt(e sre tgt(e sre tgt(e 7 sre sre
dl’t ():’UfA( tg()’ ) dt UtA( t.‘?() s ):Ue(xtg(),tﬂptgt())*v@( o )
Since xig @ is not directly observable during inference, we approximate it based on the previously

tgt(z)

updated latent in Eq. H as: xy ~ x (l) + 27"¢ — x3"¢. The decomposition phase starts from

Nmaz and proceeds until 7gec.

4.2 Flow Composition

While decomposing the flow, as described in Sec. allows us to disentangle the gradients and
achieve independent transformations, the ultimate objective in the image editing task is to perform
editing aligned with the target prompt faithfully. Therefore, we devise a method to compose the
previously generated sub-target flows into a unified flow that adheres to the full semantics of the
target prompt. Considering the formulation of the ODE as shown in Eq_.[T] the velocity field computed
for each sub-target prompt can be interpreted as a gradient-like vector in latent space that guides
the latent representation toward the target state. In multi-task learning (MTL), it is well known that
gradients from different tasks can conflict, leading to unstable optimization or degraded performance
on each tasks. To address this issue, various strategies such as gradient projection and orthogonality
constraints have been proposed. Inspired by gradient conflict resolution methods [[17, [14] in MTL,
we propose a method that mitigates interference between sub-target velocity fields while effectively
achieving the desired image editing objectives.

4.2.1 Latent Trajectory Projection (LTP).

To enforce global semantic consistency with the target flow while maintaining the diversity of each sub-
target flow, we project each sub-target latent (conditioned on *9¢()) onto the target latent (conditioned
on %) zFE. To perform this projection, we normalize the target latent as 25'F = 2P /|| 2FE|),.

Here, the projection of each sub-target latent {xFE(l)

a0 = ({2, 31F)) 3t ®)

¥, onto #F'E is computed as follows:

where the inner product ({-, -)) is computed along the channel dimension of the latent. By projecting
the sub-target latent onto the target latent, we ensure that the overall editing process remains consistent
with the intended semantic shift. We then aggregate the projected sub-target latent to form the

projected latent:
prOJ Z proj (i 9)



While both the target latent 2" and the projected sub-target latents {z?"®}N | are aligned along

the same semantic direction, their origins differ fundamentally: the former stems from a unified
trajectory conditioned on the full target prompt, whereas the latter are partial trajectories derived
from sub-prompts and aligned through projection. This approach retains the global coherence of the
target trajectory while preserving localized variations introduced by sub-target prompts, enhancing
both semantic consistency and editing diversity.

4.2.2 Velocity Field Aggregation (VFA).

After projection, to further enhance flow diversity, we introduce Velocity Field Aggregation (VFA),
which combines the velocity fields of sub-target flows. To quantify the directional consistency among
sub-target flows, we compute the cosine similarity between their relative velocity fields with respect
to the source latent. Specifically, we first compute the relative velocity vector between xpro](z) nd
"¢ as follows:

g = vtA( proj(i ) src) 'UG( proj (i) b sDtgt(z)) 7 Ug(l’frc,t, (,OSTC) (10)
The cosine similarity S;; between the i-th and j-th sub-target prompt is defined as:

A (Z‘Em‘] (1) xirc)

Su::<@f@%@?0)>’ o0 = ™0 : (11)
[ (2™ i)l
Here, f)tA @) is the normalized from v (2 roj (i ) x5"¢) to compute cosine similarity. This metric cap-

tures the angular agreement between projected Velomty directions, thereby reflecting the consistency
of semantic changes introduced by each sub-target prompt. By applying the softmax operation to the
cosine similarity map S € RV*VXHXW ‘we obtain a weight map w € RY*H*W that determines
the relative contribution of each velocity field at every spatial location (h, w) in the latent grid:

exp (Zj# Sij(h, w)>

wj (h,w) A( )(h,w), w;(h,w) = .
Z >k €Xp (Z];ﬁk Sk;(h, w))

(12)

Combining the projected latent from Eq. (9) with the aggregated velocity field EQA, the latent after
aggregation can be updated as follows:

B a4 o - at. (13)

Since the proposed VFA adaptively weights the sub-target velocity fields based on their semantic
alignment, it not only suppresses the influence of redundant flows but also emphasizes those with
distinct semantic directions. This enables the model to preserve editing diversity while maintaining
coherent alignment with the target prompt. Also, note that the LTP and VFA are applied at the end of
the decomposition phase (1gec)-

Mathematical Justification of VFA. Here, we mathematically verify why VFA improves both
fidelity and editability over mere averaging by showing:

(8, Bavg) > ||Bavell®s (14)

where g = Zfil w; g; and Gayg = % Zfil gi. Here, Sy; is denoted as (8, ;) and aj, = Zj Shj-
We first reformulate Eq. in terms of the scores a;, where the LHS is (g, Gavg) = % Zfil wW; A
and the RHS is [|gave||? = 7= Zfil a; . Thus, the proposition is equivalent to proving » . w;a; >
% >~; a;. The proof combines two standard results. First, from Gibbs’ inequality, the KL-divergence
between the softmax distribution w = {w;} and the uniform distribution v = {1/K} is non-negative,

which implies: Zf; wia; > log(Z/K) 1), where Z = ). e*. Second, applying Jensen’s
inequality to the convex function f(z) = e” gives log(E[e?]) > E[a], which in our context is:

log(Z/K) = log ( Ze‘“) > = Zal (T4}2)



Table 1: Quantitative comparison results on PIE benchmark. For each model group (diffusion-based
and flow-based), the best and second-best values are indicated in bold and underlined, respectively.
Ours' is the result with a fidelity-enhanced setting.

Method | Model | Structure | Background Preservation |  CLIP Similarity
| | Editing | Distance 10 | | PSNRT | LPIPS 4105 . | MSE x10s | | SSIMy 102 T | Whole + | Edited
DDIM [21] Diffusion P2pP 69.4 17.87 208.80 219.88 71.14 25.01 22.44
DDIM [21] Diffusion PnP 28.22 22.28 113.46 83.64 79.05 25.41 22.55
Null-text [16] Diffusion P2P 13.44 27.03 60.67 35.86 84.11 24.75 21.86
PnP-Inv [10] Diffusion pP2P 11.65 27.22 54.55 32.86 84.76 25.02 22.10
PnP-Inv [10] Diffusion PnP 24.29 22.46 106.06 80.45 79.68 2541 22.62
RF-Inversion [19] Flux - 40.6 20.82 184.8 129.1 71.92 25.20 22.11
RF-Solver [26] Flux RF-Solver 31.1 22.90 135.81 80.11 81.90 26.00 22.88
FireFlow [3] Flux RE-Solver 28.3 23.28 120.82 70.39 82.82 25.98 22.94
Flow Edit [11] Flux - 27.7 2191 111.70 94.0 83.39 25.61 22.70
FTEdit [29 SD3.5 AdaLN 18.17 26.62 80.55 40.24 91.50 25.74 2227
iRFDS [31] SD3 - 62.72 19.61 186.39 179.76 74.59 24.54 21.67
FlowEdit [11) SD3 - 27.24 22.13 105.46 87.34 83.48 26.83 23.67
FlowEdit [11} SD3.5 - 11.80 26.97 53.68 31.23 89.70 26.18 22.88
SplitFlow(Ours) SD3 - 25.96 2245 102.14 81.99 83.91 26.96 23.83
SplitFlow(Ours)® SD3 - 14.55 25.22 68.53 44.96 87.54 26.23 23.01
SplitFlow(Ours) SD3.5 - 11.68 27.12 52.93 30.61 89.76 26.29 22.89

Chaining inequalities Eq. (T4} 1) and Eq. (T4}-2) directly yields the required result:
K | K
;wa > log(Z/ )_K;a

This proof formalises why VFA improves both fidelity and editability: It suppresses conflicts, steering
the update toward high-consensus attributes. Empirically, this manifests as higher background
preservation and better CLIP similarity in Table [TH2]

When the decomposition phase is ended, the aggregated latent now follows the ODE formulation
of the target prompt as described in Sec. The decomposed flow stages facilitate fine-grained
attribute manipulation without gradient entanglement, while the final unified flow phase ensures
alignment with the holistic editing intent. This hybrid strategy improves editing stability and fidelity
by integrating diversity-aware adjustments with prompt-level consistency. A detailed algorithmic
description of SplitFlow is included in the supplementary material.

5 Experiments

5.1 Experimental Setup

Implementation Details. To show the effectiveness of the proposed method and for a fair com-
parison with the prior works, we employed the commonly used Stable Diffusion (SD3, SD3.5) [4]]
rectified flow model. By following the protocol of the baseline [[11], we use the same T = 50 steps
with 7,4, = 33, which skips the first one-third steps. The CFG values for the source and target
are set to 3.5 and 13.5, respectively. The decomposition 74 is set to 28, which lasts for 5 steps
(Mmaz — Ndec)- To decompose the target prompt, we used Mistral-7B [9].

Dataset. We evaluate our method on Prompt-based Image Editing (PIE) Benchmark [10], which
contains 700 images of natural and artificial scenes. In PIE benchmark, ten categories span from
random editing written by volunteers to change image style. Each image includes a source prompt,
target prompt, editing directive, edit subjects, and editing mask.

Baselines and Evaluation Metrics. As this work focuses on image editing based on rectified
flow, we compare with the State-of-The-Art (SoTA) editing methods; RF-Inversion [19], RF-
Solver [26]], FireFlow [3]], iRFDS [31], FTEdit [29]], and FlowEdit [11]]. Diffusion-based models such
as DDIM (214116} [10]] are also included for comparison. We evaluate our method on the PIE-Bench
dataset using standard metrics. For assessing reconstruction quality and background preservation, we
report image-level metrics: LPIPS [33]], SSIM [27], MSE, PSNR, and Structure Distance [10]]. To
measure semantic alignment with the target prompt, we use CLIP similarity [28].



Table 2: Ablation study on PIE-benchmark. Here AVG denotes the case where mere average is applied
for latent trajectory aggregation.

Baseline LTP VFA |  Structure | Background Preservation | CLIP Similarity
| Distance , 105 | | PSNR 1 | LPIPS 05 | | MSE 4101 | | SSIM, 302 1 | Whole t | Edited 1

v 27.24 22.13 105.46 87.34 83.48 26.83 23.67
AVG 22.28 23.36 92.00 68.26 85.00 26.81 23.67
v v 26.22 22.37 103.58 83.67 83.76 26.93 23.82

v v v 25.96 22.45 102.14 81.99 83.91 26.96 23.83

Input Directinv+P2P RFsolver FireFlow FlowEdit-Flux ~ FlowEdit-SD3  SplitFlow-SD3

: s
e) Delete “a single pink lotus flower is growing in the middle of ”

Figure 2: Qualitative comparison of prompt-based image editing methods. Each row corresponds to a
specific editing instruction, where the source prompt is modified into a target prompt. From top to
bottom, the tasks are: (a) change “plant” to “flower”, (b) change “dumpling” to “sushi”, (c) change
"red and white" to "blue and green", (d) add "with hat", (e) delete "a single pink lotus flower is
growing in the middle of". The columns show the input image and the results generated by different
models, including Directinv+P2P, RFsolver, FireFlow, FlowEdit-Flux, FlowEdit-SD3, and SplitFlow.

5.2 Main Results

Comparison with State-of-the-art Methods. To demonstrate the effectiveness of the proposed
SplitFlow, we conducted experiments as shown in Table[I] Compared to the FlowEdit and
iRFDS [31], within the same SD3 model, the proposed SplitFlow not only outperforms in preserving
background but also in editing quality. To further demonstrate the effect of the trade-off between
fidelity and editability, we omit the noise interpolation during the decomposition phase and directly
use the source latent 2§ to better preserve structural details of the input image in the fidelity-
enhanced setting’. Compared to the state-of-the-art method FTEdit [29], our SplitFlow (a fidelity-
enhanced variant) achieves superior performance in both Structure Distance and LPIPS, despite
FTEdit employing a stronger backbone model. Moreover, it significantly outperforms FTEdit in both
CLIP Similarity metrics, demonstrating better alignment with the target prompt. Also, compared



Table 3: Ablation study of aggregation step 74.. on PIE-benchmark.

- |  Structure | Background Preservation | CLIP Similarity
ec
| Distance x10s | PSNR1 | LPIPS , 105 | | MSE ,10s | | SSIM, 102 1 | Whole 1 | Edited 1
Baseline | 27.24 | 2213 | 10546 | 8734 | 8348 | 2683 | 2367
30 25.99 22.41 102.33 83.06 83.88 26.92 23.79
29 26.13 22.41 102.26 82.66 83.85 26.90 23.71
28 25.96 2245 102.14 81.99 83.91 26.96 23.83
27 25.96 22.44 102.39 82.15 83.91 26.92 23.85
26 25.94 22.44 102.70 82.27 83.91 26.95 23.84

Input FlowEdit SplitFlow (Ours) Editing prompts

Source : Three giraffes walk in a line through a lush, zoo-
like forest path, while another animal rests near a pond.

. Target : Three elephants walk in a line through a lush, zoo-
like forest path, while a tiger rests near a pond.

Source : A group of sheep stands on a green meadow with a
- lake and mountains in the background
Target : Three dogs with sunglasses stands on a green
meadow with a lake and snowy mountains in the background.
. The sky is covered with cloud.

Figure 3: Qualitative comparison results with more complex prompts.

to the methods based on Flux such as RF-Inversion [19], RE-Solver [26], FireFlow [3]], SplitFlow"
outperforms the prior works. Within the SD3.5 model, SplitFlow demonstrates superior background
preservation capability compared to prior works.

Qualitative Comparison. The qualitative comparison results are presented in Fig.[2] Across various
scenarios—including change, add, and delete object prompts—our proposed SplitFlow demonstrates
superior editability while effectively preserving the background. For instance, as shown in Fig. 2}(d),
which involves adding “with hat” to a portrait of Mozart, other methods fail to generate the hat or
distort the original image, whereas our method successfully synthesizes the hat while maintaining the
integrity of the source image. Although it is well known that enhancing editability often compromises
fidelity, our approach achieves a favorable balance by disentangling gradients within the flow during
the editing process with decomposition. In Fig.[3] to further demonstrate the effectiveness of our
method, we provide qualitative comparison results with more complex scenario. In the first row,
given the source prompt “Three giraffes walk in a line through a lush, zoo-like forest path, while
another animal rests near a pond,” the editing prompt requires changing the three giraffes to elephants
and the other animal to a tiger. While FlowEdit fails to convert “three giraffes” to “three elephants,”
our method successfully performs the transformation and better preserves the semantic detail of “in
a line.” Additional qualitative results under complex scenarios are provided in the supplementary
material.

5.3 Detailed Analysis

Component Analysis. To validate the effect of the designed component, we conducted an ablation
study on PIE-benchmark as shown in Table 2] The result of simply averaging the individual flows
after decomposition is reported in the second column of Table [2] denoted as AVG. Interestingly,
even naive averaging of sub-flows maintains CLIP similarity on par with the baseline [[T1]], while
significantly improving background preservation, as reflected in metrics such as PSNR, LPIPS,
MSE, and SSIM. We attribute this to the semantic decoupling effect of sub-flows, which localize
edits to specific attributes and reduce unintended changes in irrelevant regions. While semantic
decomposition and flow separation are key contributions of our work, our overarching objective
extends beyond fidelity enhancement. Our goal is to strike a balance between fidelity and editability,
ensuring that complex, multi-attribute prompts are both faithfully represented and accurately reflected
in the edited outputs. To this end, our proposed components—Latent Trajectory Projection (LTP) and
Velocity Field Aggregation (VFA)—go beyond averaging by explicitly aligning sub-flows with the
global editing direction and adaptively weighting their contributions. By applying LTP to align each



sub-flow with the target flow, we observe meaningful improvements in CLIP similarity, particularly
in the Edited metric, which is computed over the foreground mask. Although LTP results in lower
background preservation compared to simple averaging, it still outperforms the baseline in all
metrics. Furthermore, when VFA is applied, each sub-flow contributes more effectively to the final
trajectory. This not only enhances background preservation—similar to the averaging strategy—but
also improves CLIP similarity by promoting global semantic alignment while preserving diversity
across sub-prompts.

Ablation Study on Aggregation Timestep. In Table 3] we conduct an ablation study on the
aggregation timestep 74, to evaluate the effectiveness and robustness of SplitFlow. Across all tested
configurations, SplitFlow consistently outperforms the baseline. As 74, decreases—corresponding
to a longer decomposition period—we observe improved editability at the expense of background
preservation. Considering this trade-off, we set 4. = 28 for our final configuration. Compared to
the baseline, the total number of steps required by SplitFlow can be calculated as N X (1)ma2 — Ndec) +
Nmae- Since N < 3 in most cases, the inference steps can be approximated as 3 x (33 —28)+33 = 48.
In practice, FlowEdit requires 57 minutes for inference, whereas SplitFlow takes 83 minutes to
process 700 images on the PIE Benchmark. Additionally, prompt decomposition using an LLM takes
approximately 20 minutes. Additional detailed ablation studies on LLM, cost analysis are provided
in the supplementary material.

Limitations A potential limitation of our method lies in its dependence on the decomposition of the
target prompt. Since the editing flows are derived from sub-prompts, the quality and characteristics
of the final output can vary depending on the choice of LLMs. Although SplitFlow incurs a higher
inference time than the baseline, we emphasize that the LLM serves only as a proxy to facilitate our
main contribution—demonstrating that decomposing the editing process into sub-target flows can
significantly improve image-editing performance—and proposing a principled method to aggregate
these flows effectively. By showing that flow decomposition substantially enhances both fidelity
and editability in image editing, this work also opens up new directions for future research. These
include developing more effective prompt decomposition techniques using LLMs or vision-language
models, as well as exploring optimization-based approaches to mitigate gradient conflicts during
flow composition. Additional discussions, including analyses of extreme cases, are provided in the
supplementary materials.

6 Conclusion

In this paper, we proposed SplitFlow, a flow decomposition and composition framework designed to
address gradient entanglement and semantic conflict that arise in image editing with complex and
multi-attribute target prompts. SplitFlow computes independent editing flows for each sub-target
prompt and forms a unified trajectory through projection and aggregation, thereby maintaining
semantic alignment while mitigating interference between attributes. To this end, we introduced two
aggregation strategies: Latent Trajectory Projection (LTP), which aligns the directional components
of the latent trajectory to ensure coherence with the global target semantics, and Velocity Field
Aggregation (VFA), which adaptively integrates sub-target flows while preserving their semantic
diversity. These components enable SplitFlow to effectively balance fidelity and editability—two
often conflicting objectives in image editing. Extensive experiments on the PIE-Bench benchmark
demonstrate that our method consistently outperforms existing approaches in both visual quality
and prompt alignment. Our results confirm that decomposing the editing process into semantically
meaningful flows and carefully reassembling them provides a promising direction for accurate, and
high-quality text-guided image editing.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We not only propose a new method (SplitFlow), but also quantitatively show
that the proposed method is effective.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the last section (Sec. @), we discuss the limitation of our work.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide short theoretical proof in the main paper and more details in the
supplementary results.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We will release the code upon acceptance for reproducibility. Also, we provide
details about our method including algorithm table (in supple) and implementation details

(in Sec.[3).
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

14



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to code (github: https://github.com/
Harvard-AI-and-Robotics-Lab/SplitFlow.), with scripts to run the code.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Sec.[5] we specify the dataset we used, and how the baselines are selected.
Also, the hyperparameter setting is included.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experiments were conducted with a fixed random seed, and statistical
significance testing is also provided in the supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Additional details on the computational cost, including memory usage and
GPU specifications, are provided in the supplementary materials.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work follows the NeurIPS Code of Ethics; no personal data, hateful, or
illicit content is used.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This work introduces a method for image editing using prompt decomposition
and flow-based generation. A potential positive societal impact is the enhanced accessibility
and creative control it offers to artists, designers, and accessibility tools through more
intuitive image manipulation. However, like other generative models, the proposed method
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could be misused to produce manipulated or misleading media content. While the method
is intended for research and creative applications, its potential for misuse warrants careful
consideration. We will incorporate safeguards such as content provenance mechanisms and
watermarking strategies in future deployments.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

» If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No pretrained model is released in this work. The model we use (Stable
Diffusion 3) is subject to a restrictive license that governs its usage and distribution. As such,
appropriate safeguards are already in place through the licensing terms of the underlying
model.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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15.

Justification: All external assets used in this paper, including pretrained models (Stable
diffusion 3), datasets (PIE-benchmark), and code repositories (github), are properly cited
with the original source and license information.

Guidelines:

e The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new dataset or model checkpoint is released.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The research uses only publicly available images and no human-subject study.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human-subject data collection was performed.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: Large Language Models (LLMs) were used as an integral part of the method-
ology, specifically to decompose editing prompts into semantically meaningful intermediate
descriptions that guide the diffusion-based image editing process. The use of LLMs (e.g.,
Mistral-7B-Instruct) impacts the behavior and outcome of the proposed method.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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