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Abstract

Humans exhibit a remarkable capacity for anticipating the actions of others and
planning their own actions accordingly. In this study, we strive to replicate this
ability by addressing the social motion prediction problem. We introduce a new
benchmark, a novel formulation, and a cognition-inspired framework. We present
Wusi, a 3D multi-person motion dataset under the context of team sports, which
features intense and strategic human interactions and diverse pose distributions. By
reformulating the problem from a multi-agent reinforcement learning perspective,
we incorporate behavioral cloning and generative adversarial imitation learning to
boost learning efficiency and generalization. Furthermore, we take into account
the cognitive aspects of the human social action planning process and develop a
cognitive hierarchy framework to predict strategic human social interactions. We
conduct comprehensive experiments to validate the effectiveness of our proposed
dataset and approach.

1 Introduction

Human beings are inherently social creatures. Concretely, individuals unconsciously anticipate the
actions of others and make informed decisions about their own behaviors in social contexts [13, 19,
54], which enables individuals to cooperate and compete with others in a variety of scenarios, from
pedestrian traffic [25, 44] to team sports [64, 50]. Notably, task experts demonstrate exceptional skill
in predicting others’ movements in advance [37, 70].

To better understand and replicate this ability, the research community has proposed the task of
future prediction for multiple interacting agents given their historical observations. The majority
of prior work in this area focuses on modeling and predicting agent interactions at the trajectory
level [42, 39, 52, 5, 34, 58, 75, 59, 43, 72] and has demonstrated promising results in applications
such as autonomous driving [38, 49, 17, 36, 16, 27]. However, trajectory-based approaches can only
reflect coarse-grained interactions (e.g., collision avoidance, social distancing) and fail to capture
the rich and fine-grained human actions. To this end, some studies have investigated the multi-
person motion prediction problem, which aims to forecast both trajectories and poses for a group
of people [2, 3, 67, 68, 22, 63, 48, 73]. Despite recent advancements, there remain several critical
challenges in this field. Firstly, existing multi-person motion datasets are primarily designed for
human pose estimation tasks [65, 1, 31], and consequently, do not place particular emphasis on
human interactions. Individuals in these datasets tend to move casually and interact with others at
random, making future predictions both difficult and less meaningful. Secondly, the majority of prior
methods concentrate on developing neural network architectures for end-to-end supervised training
while overlooking the cognitive aspects of human social action planning. These two challenges are
closely related and necessitate a comprehensive solution.
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Figure 1: Example sequences from Wusi dataset. Three players in purple form the offensive team,
and two players in orange form the defensive team. Left: a successful pass for the offensive team.
Middle: a successful steal for the defensive team. Right: a successful pass following a fake pass.

In this work, we propose novel perspectives on this problem to address the aforementioned limitations.
We begin by constructing a large-scale multi-person 3D motion dataset featuring intense and strategic
interactions among participants. To achieve this, we turn to team sports, which offer several inherent
advantages: 1) Well-defined game rules and global rewards implicitly constrain and guide individual
actions. 2) Participants develop intricate interaction strategies based on their roles, such as planning
cooperative actions with teammates while acting adversarially towards opponents. Skilled players
even employ sophisticated techniques like deception, etc. 3) Human motions exhibit greater dynamism
in terms of pose diversity and motion intensity, making motion prediction more challenging than in
previous datasets.

Additionally, we present a new formulation of the multi-person motion prediction task as a multi-
agent reinforcement learning (MARL) problem. Specifically, we model the task using imitation
learning, where the objective is to learn a policy from expert demonstrations. We employ behavioral
cloning (BC) [7, 51] to imitate expert behaviors from the dataset. To improve learning efficiency and
generalization, we utilize generative adversarial imitation learning (GAIL) [26], aiming to render
agents’ policy indistinguishable from experts’ policy. Furthermore, we propose a framework for
human social interactions based on the cognitive hierarchy theory [10]. In particular, we assume that
people base their decisions on their predictions regarding the likely actions of others, while others
engage in similar decision-making processes from their perspectives. By considering the reasoning
steps recursively, we posit that a level k agent takes actions based on the level k − 1 agent actions,
where k represents the depth of strategic thought. Building on this insight, we develop a computation
model that can be elegantly integrated with the MARL formulation.

We summarize our contributions as follows: 1) We present Wusi, the first large-scale multi-human
3D motion dataset featuring intense and strategic interactions. We demonstrate that our dataset has
greater motion diversity than existing datasets and poses a more significant challenge for the social
motion prediction problem. 2) We propose a novel MARL formulation for the problem and develop
an imitation learning baseline that combines behavioral cloning and generative adversarial imitation
learning. 3) We introduce a cognitive hierarchy framework to model the strategic and game-theoretic
human social interactions. Our approach outperforms the state-of-the-art methods in challenging
long-term social motion predictions.

2 Related work

2.1 Multi-agent trajectory prediction

The multi-agent trajectory prediction problem has been extensively studied, especially for interact-
ing traffic participants, e.g., pedestrians and vehicles. There exist multiple industrial benchmarks
including Argoverse [12], nuScenes [8], Waymo Open Motion Dataset [18]. Meanwhile, various
generation methods have been explored to model the interaction among different agents and predict
their future trajectories [42, 39, 52, 5, 34, 58, 75, 59, 43, 72]. In this work, we aim to predict intense
and strategic interactions for a group of humans with fine-grained body motions.
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2.2 Multi-person motion dataset

The existing multi-human motion datasets can be categorized into 2D and 3D. The PoseTrack
dataset [6, 29] offers video sequences with manually annotated 2D keypoints. However, 2D keypoints
fail to accurately represent the proximity of individuals in the real world, and manual annotation is
difficult to scale. Meanwhile, 3D multi-person motion datasets can be effectively constructed with mo-
tion capture (mocap) systems, including marker-based solutions and markerless ones. 3DPW [65] uses
the inertial measurement units (IMUs) to obtain high-quality motion reconstructions. UMPM [61]
employs a set of reflective markers to identify the joint positions. However, wearable sensors may
struggle to capture complex movements and become expensive as the number of individuals increases.
Other datasets, e.g., CMU-Mocap [1], Panoptic [31], MuPoTs-3D [41], ExPI [22], employ markerless
mocap systems with multi-view cameras to address the occlusion problem and obtain 3D human
motion through triangulation. In this work, we construct a multi-person motion dataset featuring high
motion diversity and intense social interactions using multi-view cameras. We provide a comparison
with previous datasets in Section 3.3.

2.3 Multi-person motion prediction

Joo et al. [32] propose to predict human motion conditioned on other individuals’ kinesic signals
in a triadic haggling scenario. Adeli et al. [2] introduce the 2D social motion forecasting (SoMoF)
benchmark, which aims to predict multi-person trajectory and pose on the PoseTrack dataset [6]. They
also propose a baseline model using a shared GRU encoder and a pooling layer to incorporate social
clues. TRiPOD [3] employs attention graphs to characterize the spatiotemporal social interactions.
It also considers the joint occlusion and body invisibility issues arising from 2D observations.
Futuremotion [67] provides a simple baseline using no social context, yet achieving competitive
performance on SoMoF. As 2D multi-person motion prediction faces challenges such as data scarcity,
depth ambiguity, and occlusions, more recent research has shifted towards exploring the multi-person
motion prediction problem in 3D. Wang et al. [68] propose a multi-range Transformer to separately
encode the local and global motion history. Guo et al. [22] design a cross-interaction-attention
(XIA) module to model close interactions between pairs in duo dance scenarios. Vendrow et al. [63]
introduce joint-aware attention and joint-wise query to predict the entire future sequence without
recurrence. Peng et al. [48] present a social-aware motion attention mechanism that models both inter-
and intra-individual motion relations. DuMMF [73] frames the problem as a dual-level generative
task and instantiates it with various generative models. In contrast to previous work, we adopt a
MARL perspective and model the strategic social interaction process using cognitive hierarchies.

2.4 Cognitive hierarchy theory

Cognitive hierarchy theory (CHT) is a model in behavioral economics and game theory that aims
to describe human decision processes in strategic games. Several foundational works introduce the
concept of CHT [10], and provide experimental evidence [45, 14, 23, 57, 56] supporting the existence
of cognitive hierarchies in human decision-making processes. Taking it a step further, Wright et
al. [71] develop a Poisson cognitive hierarchy model to predict human behavior in normal-form
games. Li et al. [35] summarize how the information structure guided by the cognitive hierarchy
supports belief generation and policy generation in game-theoretic multi-agent learning. In this
work, we propose a cognitive hierarchy framework in conjunction with MARL, and demonstrate its
effectiveness in a real-world social motion prediction scenario.

3 Dataset

3.1 Overview

We present a multi-person 3D motion dataset with a special focus on strategic interactions called
Wusi (Wusi Basketball Training Dataset). In the following, we first introduce the contents of
the dataset, then outline the data collection pipeline, and finally provide statistical analysis and
comparison with regard to existing datasets.

Our dataset captures the no-dribble-3-on-2 basketball drills performed by a team of professional
basketball athletes. In each drill, three offensive players possess the ball, while another two players
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Table 1: Dataset comparison. We compare our dataset with existing multi-person motion datasets
employed by previous works on the multi-person motion prediction task. † denotes multi-person
subset as utilized in previous works [2, 68].

Dataset 2D/3D Frames Duration (min) No. of people Interaction

PoseTrack [6]† 2D 8K 5.5 Multiple Weak
CMU-Mocap [1]† 3D 34K 4.9 2 Weak
3DPW [65]† 3D 5K 6.1 2 Weak
MuPoTs-3D [41] 3D 8K 4.4 2-3 Weak
ExPI [22] 3D 30K 20.0 2 Cooperative
Wusi 3D 60K 40.3 5 Strategic

are on defense. The offensive team aims to accomplish as many successful passes as possible within
the given time, while the defensive team strives to get steals, deflections, and slow down the offense.
Since dribbling is prohibited, the drill requires the offensive players to make better passing decisions
and foresee the defense before they pass; conversely, the defensive players need to anticipate the
passing directions in order to steal the ball. Figure 1 showcases the diverse and dynamic human
interactions present in our dataset. On the left, the offensive player successfully passes the ball to
a teammate. In the middle, the defensive player accurately anticipates the passing trajectory and
successfully steals the ball. On the right, the offensive player pretends to pass the ball to the right,
then swiftly executes a pass to the left.

3.2 Data collection

Our motion capture system consists of 11 synchronized and calibrated wide-baseline cameras. Our
setup ensures that the players are well-surrounded by the cameras from elevated shooting angles,
enabling each body joint to be covered by at least four different camera views. We utilize a markerless
multi-person 3D pose estimation algorithm [74] with JDETracker [69]. Subsequently, we apply a
post-processing pipeline that includes automatic failure detection and temporal filtering [11]. A final
manual check is conducted to guarantee the integrity of the data sequences.

3.3 Data analysis

In this section, we examine the statistics of Wusi dataset and compare it with existing datasets
for multi-person motion prediction. As outlined in Table 1, current datasets exhibit two primary
limitations for the multi-person motion prediction task. Firstly, high-quality 3D motion data is limited
in terms of scale (duration and the number of people). Consequently, prior works [68, 48, 63, 73]
resort to randomly mixing the motion sequences [1, 65, 41] in order to generate more multi-person
motion sequences for training. However, such practice inevitably causes unnatural human interactions.
Secondly, the interaction strength in existing datasets is restricted, mainly featuring simple actions
such as walking together [6, 1, 65, 41]. More recently, the ExPI dataset [22] introduces cooperative
3D motions of two Lindy-hop dancers. In contrast, our dataset offers 2 to 9 times the video duration
of existing datasets and includes strategic global interactions among 5 individuals.

Table 2: Comparison of pose diversity based on different thresholds.

Threshold 50mm 100mm

Human3.6M [28] 24% 12%

ExPI [22] 52% 23%

CMU-Mocap [1] 20% 9%

MuPoTs-3D [41] 37% 19%

Wusi 53% 27%
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Figure 2: Comparison of motion intensity.

Additionally, we provide a quantitative comparison with existing datasets, emphasizing two critical
aspects: pose diversity and motion intensity. Firstly, we examine the pose diversity within the datasets
by calculating the ratio of unique poses to the total number of poses following [28, 22]. Table 2
shows that our dataset surpasses the previous datasets in terms of overall pose diversity. We further
analyze the motion intensity by computing the average velocity for all the body joints. As illustrated
in Table 2, our dataset exhibits more dynamic movements across all body joints. We suppose that
these characteristics make Wusi not only challenging for motion prediction, but also potentially
useful for other related tasks, e.g. motion generation [76].

4 Method

4.1 Formulation

The multi-person motion prediction problem can be formulated as follows: given the motion
histories {xp

t }1≤t≤T,1≤p≤P of length T from P human subjects, predict their future motion
{xp

t }T≤t≤T+T ′,1≤p≤P of length T ′, where each xp
t represents a 3D human pose.

We model the problem using a Markov Decision Process (MDP) [60] by dividing the prediction
sequence into L steps with even step length m = T ′

L following [66], and further extend the
formulation to multiple agents. We use bold symbols to represent the collective variables of all agents
following the convention in MARL. At each step i, The state si is defined as the aggregated motion
history {xi

t}1≤t≤T+(i−1)×m,1≤p≤P for all the agents. The action for the p-th agent ap is defined as
a sequence of velocities {vpt }T+(i−1)×m≤t≤T+i×m−1, where vpt = xp

t+1 − xp
t . Therefore, the joint

action of all P agents ai deterministically transition the MDP into the new state si+1 according to:

xp
t∗ = xp

T+(i−1)×M +
t∗∑

t=T+(i−1)×M

vpt , T + (i− 1)×m+ ≤ t∗ ≤ T + i×m, 1 ≤ p ≤ P. (1)

The goal of this objective is to learn a policy πp for each agent p that maps each possible state s to
agent action ap by ap = πp(s). In the real world, people optimize their πp to maximize an implicit
team reward r. Since we have no access to r or the environment, we aim to learn πp from expert
demonstrations D via imitation learning.

We parameterize πp with a set of parameters θ. In practice, we follow [68] to employ a global-range
Transformer Eg to encode global state feature sg = Eg(s), and a local-range Transformer El to
encode local state feature spl = El(s) for each agent p. See Figure 3 for an overview. This approach
helps to extract multi-level state features and enables all agents to share policy network parameters.

4.2 Behavioral Cloning

A straightforward method in imitation learning is Behavioral Cloning (BC) [7, 51], i.e., using expert
demonstrations to minimize the difference between the actions produced by the policy and those
taken by the experts:

θ∗ = argminθ

∑
D

P∑
p=1

` (πp
θ (s) , π̃

p (s)) , (2)
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Figure 3: Framework overview. For the p-th agent, two state encoders first extract its local and global
state features spl and sg, from which the level-0 policy network produces an initial action ap(0). The
level-k policy network produces action ap(k) based on spl and the joint actions of the previous level
a(k−1) (k ≥ 1).

where s is sampled from expert demonstrations D, πp
θ and π̃p are policies of the model and the expert

for agent p, ` is a distance function defined in the action space. While BC enjoys the benefit of being
both computation-efficient and sample-efficient [53], it also faces several drawbacks. For instance,
policies tend to be overfitted with respect to the state distribution encountered by the experts, leading
to suboptimal generalization ability [66, 30]. To cope with this challenge, we further introduce GAIL
and cognitive hierachy reasoning.

4.3 Generative Adversarial Imitation Learning

Generative Adversarial Imitation Learning (GAIL) [26] is a model-free imitation learning approach.
It leverages the adversarial training framework of Generative Adversarial Networks (GAN) [21]
and the concept of inferring reward functions from Inverse Reinforcement Learning (IRL) [46].
Direct estimation of reward signals from expert demonstrations can be very difficult; therefore,
GAIL transforms the IRL problem into its equivalent dual problem of occupancy measure matching.
Specifically, the policy network is regularized to match its state-action pair distribution to that of the
experts’ policy through adversarial training. We implement GAIL using a global discriminator D
parameterized by ω, which differentiates the state-action pairs produced by agents’ joint policy π
and experts’ joint policy π̃. The optimization objective can be formulated as:

min
θ

max
ω

Eπθ [logDω (s,πθ (s))] + Eπ̃ [log (1−Dω (s̃, π̃ (s̃)))] , (3)

where s and s̃ are sampled from expert demonstrations D independently.

4.4 Cognitive hierarchies

Furthermore, we notice that in real-world situations, individuals would predict others’ behaviors by
forming beliefs about others’ policies and then acting accordingly to maximize their own payoffs [20,
9]. This can be formulated as a hierarchical, game-theoretic decision-making process, in which
lower-level agents adopt straightforward strategies, while higher-level players anticipate the strategies
of lower-level agents and respond accordingly. We explicitly model this recursive reasoning process
to learn more interpretable and robust agent policies. We adopt a specific type of cognitive hierarchy
model [10] called level-k thinking [57, 45, 15] to represent this process. Specifically, agents at each
level (except for the lowest one) assume that others are reasoning at the previous level. As shown in
Figure 3, a straightforward policy is to take actions based on local and global state features spl and
sg , which we denote as level-0 policy πp

(0). Level-0 actions are thus defined as:

ap
(0) = πp

(0)(s) = φ(0)(s
p
l , sg), (4)

where φ(0) is the level-0 policy network. Then for a level-k agent (k ≥ 1), it takes actions based on
the joint agent actions a(k−1) at the previous level and its local state features spl :
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ap
(k) = πp

(k)(s) = φ(k)(s
p
l ,a(k−1)), 1 ≤ k ≤ K (5)

where φ(k) is the level-k policy network, K is the maximum strategic depth.

4.5 Training objectives

Finally, we introduce our training objectives which effectively integrate the aforementioned compo-
nents. For level-k (1 ≤ k ≤ K) agents, we apply GAIL to regularize the distance between their joint
policy and the experts’ policy:

LGAIL =

K∑
k=1

Eπ(k)

[
logD

(
s,π(k) (s)

)]
+ Eπ̃ [log (1−D (s̃, π̃ (s̃)))] . (6)

In addition, we employ BC on level-K agent policies:

LBC =
∑
D

P∑
p=1

`
(
πp
(K) (s) , π̃

p (s)
)
. (7)

We train the discriminator D and the policy networks φ alternatively, where D aims to maximize
LGAIL, and φ is optimized to minimize a linear combination of LBC and LGAIL using a policy gradient
algorithm following [30]:

Lφ = LBC + λLGAIL, (8)

where λ is a constant for balancing the loss terms.

5 Experiments

5.1 Setup

Implementation details. We implement the presented framework to train and test on the proposed
Wusi dataset. We employ Transformer encoder [62] for both the local and global state encoders,
as well as Transformer decoders for the policy networks. Each Transformer consists of 3 layers
with 8 attention heads. We share parameters for policy networks φ(1) . . . φ(K). We set the strategic
reasoning depth K = 3 unless otherwise stated. For all the methods, we provide 1s motion history
and predict future 1s motion. For additional experimental details, please refer to the appendix.

Evaluation metrics. We compute the Mean Per Joint Position Error (MPJPE) between the predicted
future motion and ground-truth. In order to disentangle the results of trajectory prediction and pose
prediction, we further calculate the mean root position error and mean local pose error (MPJPE after
root alignment). We report all the errors in millimeters.

5.2 Evaluation and comparison

In this section, we evaluate the proposed dataset and method, comparing with the prior works. We
conduct experiments with the following baseline methods including a naive baseline and multiple
state-of-the-art approaches: 1) Frozen is a naive baseline that simply replicates the last frame of
the input motion. 2) Social-STGCNN [42] is a multi-agent trajectory prediction method using
spatio-temporal graph convolutional networks. For trajectory prediction methods, we train and test
using the root (global) trajectories and replicate the last frame for the root-relative (local) pose. 3)
SocialVAE [72] is a multi-agent trajectory prediction method using timewise variational autoencoder.
4) History Repeats Itself (HRI) [40] is a single-person motion prediction method that allows absolute
coordinate inputs. 5) Multi-Range Transformers (MRT) [68] predicts multi-person motion utilizing a
local-range encoder and a global-range encoder. 6) Social Motion Transformer (SoMoFormer) [63]
employs the joints of all people as queries and predicts their future motion in parallel.
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Figure 4: Comparison of baseline methods on CMU-Mocap [1] and our dataset. We compute the
1s mean local pose prediction errors. The baseline methods are trained and tested on two datasets
separately.

Table 3: Performance comparison with the baseline methods. We compute the mean prediction errors
of global pose, local pose, and root, respectively.

milliseconds Global Local Root
400 600 800 1000 400 600 800 1000 400 600 800 1000

Frozen 119.2 165.7 207.3 244.5 62.8 82.8 98.9 112.1 99.8 139.3 175.0 207.6
Social-STGCNN [42] 188.2 246.4 298.8 346.5 62.8 82.8 98.9 112.1 173.1 225.6 273.7 317.9
SocialVAE [72] 84.0 127.2 171.7 215.1 62.8 82.8 98.9 112.1 52.6 89.7 130.3 170.8
HRI [40] 50.0 106.8 145.5 189.2 39.5 62.9 78.4 94.1 40.1 88.0 119.6 157.7
MRT [68] 66.9 103.2 140.2 176.4 49.4 68.8 85.4 99.5 50.6 79.0 109.3 140.1
SoMoFormer [63] 53.2 88.8 124.9 160.0 42.3 62.6 79.7 93.9 42.5 70.7 100.8 131.2
Ours 54.6 86.2 119.3 152.5 43.7 60.8 74.6 86.6 41.7 66.9 94.8 124.0

5.2.1 Quantitative results

We first benchmark three baseline methods to assess the motion prediction difficulty of our dataset in
comparison to the commonly-used existing dataset [1]. Figure 4 reveals that for the CMU-Mocap
dataset [1], merely repeating the last-frame pose (Frozen) leads to significantly lower errors than
the model predictions. This finding indicates that the motions in this dataset are relatively “static”,
making it less challenging and informative for the social motion prediction task. In contrast, the
dynamic nature of our dataset gives rise to considerably higher prediction errors of the naive Frozen
baseline. The results demonstrate that the proposed dataset serves as a more convincing benchmark
for social motion prediction and introduces more challenges to the field.

Furthermore, we conduct a quantitative evaluation of the proposed framework’s performance and
compare it with state-of-the-art approaches. As illustrated in Table 3, our method achieves competitive
results with SOTA approaches. It is worth noting that the single-person method HRI [40] demonstrates
respectable short-term motion prediction accuracy; however, its performance over longer horizons is
constrained by the absence of global context, particularly in root trajectory prediction. In contrast, our
approach significantly surpasses SOTA methods in long-term social motion prediction, highlighting
its effectiveness in modeling long-range human interactions. In the subsequent section, we will
demonstrate the critical role that social context plays in predicting long-term human motion via
examples.

5.2.2 Qualitative results

In order to better understand the performance improvement of our method, we visualize its motion
prediction results and compare with the baseline methods qualitatively. Figure 5 illustrates an
representative result in which the input motion shows that a defensive player (highlighted) is switching
the target of defense. Our approach correctly predicts its future direction and orientations as the
offensive player at the other side will likely be covered by the teammate. In contrast, other approaches
fail to reason this, predicting that the player would continue to move along the input trajectory or
simply stop at the middle.

In Figure 6, three players to be noticed are highlighted in rose, purple and blue (we also call them this
way below). Additionally, we visualize the actions produced by the intermediate policy networks to
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Figure 5: Qualitative comparison with existing methods. Left two columns are past motion and right
three columns are future motion. We highlight the prominent player with bright colors. Real motion
are shown in green, and model predictions are shown in purple.
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Figure 6: Actions produced by policy networks at different levels. Left two columns are past motions
and right three columns are future motions.

interpret the decision-making process. Shown on the top row, player purple at level 1 policy network
simply follows the past trend to receive the ball. As displayed in the second row, defender rose at
level 2 gains knowledge from the first level that player purple is receiving the ball, and implements a
steal attempt. Nevertheless, such aggressive actions could create defensive gaps. Defender blue at
level 3 senses such gaps caused by defender rose from level 2, therefore executes cooperative defense
upwards to fill the gap.

5.3 Ablation study

Finally, we conduct ablation studies to investigate the influence of each component. In Table 4
(a)-(e), we change the policy network depth K. K = 0 corresponds to producing the final action
directly without any recursive reasoning. We find that introducing the recursive reasoning process
(K > 0) clearly lowers the prediction errors, proving the effectiveness of our framework design
based on cognitive hierarchy. From (f) to (h), we keep K = 3 and study the influence of training
regularizations. (f) removes the GAIL regularization for intermediate levels 1 . . .K − 1, and (g)
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Table 4: Ablation study of cognition levels and architecture designs.

milliseconds Global Local Root
400 600 800 1000 400 600 800 1000 400 600 800 1000

(a) K = 0 60.1 94.3 129.2 163.7 47.4 66.2 82.0 95.3 45.7 72.7 101.8 131.8
(b) K = 1 55.2 88.0 121.9 155.5 44.3 62.1 77.0 89.7 42.3 68.0 96.3 125.4
(c) K = 2 54.8 87.2 120.7 154.2 43.5 60.6 75.0 87.3 41.7 67.6 95.9 125.3
(d) K = 4 54.5 86.3 119.7 153.5 43.6 60.5 74.7 86.6 42.0 67.3 95.5 125.2

(e) K = 3, full 54.6 86.2 119.3 152.5 43.7 60.8 74.6 86.6 41.7 66.9 94.8 124.0

(f) w/o mid GAIL 54.9 87.5 121.4 155.4 43.7 60.4 74.5 86.4 41.8 67.8 96.6 126.9
(g) w/o GAIL 54.6 87.1 121.1 155.1 43.4 60.4 74.7 86.8 41.9 68.1 97.0 127.0
(h) w/o weight sharing 57.1 91.0 125.8 160.2 44.4 62.2 77.1 89.7 43.6 70.3 99.5 129.5

Table 5: Quantitative comparison of actions produced by policy networks at different levels.

milliseconds Global Local Root
400 600 800 1000 400 600 800 1000 400 600 800 1000

Level-1 76.8 122.4 170.3 217.7 50.1 69.0 85.2 99.1 61.4 100.4 143.2 186.9
Level-2 61.0 99.9 144.6 192.5 47.1 66.0 82.5 96.6 46.5 78.0 116.2 158.8
Level-3 54.6 86.2 119.3 152.5 43.7 60.8 74.6 86.6 41.7 66.9 94.8 124.0

completely removes GAIL. Training without GAIL increases the long-term trajectory prediction
errors, while slightly lowers the local pose prediction error. We also observe that models without
GAIL tend to produce motions that appear less natural (e.g. limb twisting), leading to inferior visual
effects. In (h), we use different policy network instances for levels 1 . . .K, and it turns out that
sharing the policy networks leads to better generalization.

In addition to the qualitative visualization of actions generated by policy networks at different
reasoning levels, we also provide a quantitative comparison of their distance from ground-truth.
Table 5 demonstrates that policy networks at different levels learn different actions, and policy
networks at higher reasoning levels produce actions with less prediction errors. We hypothesize that,
through the proposed recursive reasoning process, policy networks at different levels display a range
of cognitive types, with behavior spanning from relatively naive to substantially rational. Higher-level
policies more closely approximate an equilibrium strategy, which is usually in alignment with expert
demonstrations. We provide several example motion sequences in the video demo to further illustrate
this observation.

6 Conclusion

In this work, we propose the first large-scale multi-person 3D motion dataset featuring strategic
human social interactions. This dataset surpasses the existing ones in scale, diversity, dynamics, and
interaction, thus posing new challenges to the social motion prediction problem. We reformulate
the problem using a MARL perspective. Building on this, we propose a framework that effectively
combines behavioral cloning (BC), generative adversarial imitation learning (GAIL), and cognitive
hierarchy. Our approach demonstrates strong generalization capabilities and improved interpretability
for modeling strategic human social interactions.

Limitations: Our approach is based on the cognitive hierachy assumption and may not hold true for
all type of social interactions. This work do not explicitly model social roles, which can be explored
as future work.
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A Appendix

A.1 Dataset

A.1.1 Data Collection

We record basketball drill videos from 11 camera views at a frame rate of 25 FPS. Multi-person
3D poses are estimated using Faster-VoxelPose [74]. To obtain 2D heatmaps, we first resize the
image to 960 × 512 pixels and employ the ResNet [24] backbone. The 3D space size is set to
16m× 16m× 3m, with the granularity of human detection networks at 80× 80× 20. To estimate
the joint locations of each subject, we set the human bounding box size to 2m× 2m× 2.4m and use
a voxel size of 64× 64× 64. We further apply JDETracker [69] with a tracking frame rate of 25FPS
and a threshold of 0.2m. Next, we conduct an automatic failure detection process. We first discard
motion clips with incorrect person counts and then filter outliers with root position changes exceeding
a 0.4m threshold compared to neighboring frames. Subsequently, we adopt the one-euro filter [11]
for temporal smoothing. We set different parameters for different body joints because they exhibit
different moving patterns. For upper limb joints such as wrists and elbows, we set fcutoff = 0.0287
and β = 0.5; for lower body joints including ankles and knees, we set fcutoff = 0.0274, β = 1; and
for the rest of the body, we set fcutoff = 1, β = 1. Finally, we perform a manual check to ensure the
correctness of the data sequences.

A.1.2 Data Analysis
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Figure 7: Clip length distribution comparison between our dataset and CMU-Mocap [1].

We visualize the clip lengths of our dataset and compare them with CMU-Mocap [1]. Figure 7 shows
that our dataset features a longer overall duration and a larger number of long sequences.
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Figure 8: Distribution comparison between our dataset and CMU-Mocap [1]. (a): We plot the joint
angle distribution over the entire dataset. (b): We calculate the joint angle standard deviation for each
motion sequence, then plot the std distribution.

Furthermore, we assess pose diversity and motion intensity utilizing joint angle distributions. As
Figure 8(a) shows, our dataset encompasses a broader range of plausible body joint angles, indicating a
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superior pose diversity. We then investigate motion intensity using intra-motion variation. Figure 8(b)
illustrates that motion sequences in our dataset have higher joint angle variances, indicating more
dynamic motions.

A.2 Implementation details

We represent human motion with 3D skeleton sequences following previous works [68, 48, 55].
Specifically, each xp

t ∈ RJ×3 represents a 3D human pose for person p at timestep t, containing the
Cartesian coordinates of J skeleton joints.

We apply Discrete Cosine Transform (DCT) [4] to the input motions and Inverse Discrete Cosine
Transform (IDCT) for the decoded actions following [40, 68]. We employ a local-range Transformer
encoder and a global-range Transformer encoder [68] as the state encoders. We utilize Transformer
decoders as the policy networks. We concatenate the local state features spl with global state features
sg (for level-0) or joint agent actions at the previous level a(k−1) (for level-k, k ≥ 1). For GAIL
training, we implement a discriminator D that takes a pair of state s and joint actions a as input
and aims to classify whether the actions are from the policy network or expert demonstrations. The
discriminator consists of a global-range Transformer encoder, a temporal average pooling layer, and
an MLP with one hidden layer. We implement the proposed framework with PyTorch [47] using a
Linux machine with 1 NVIDIA V100 GPU. We set λ = 0.002, batch size 32, learning rate 0.0001,
and train for 60 epochs using Adam [33] optimizer.

A.3 Ablation Study

Table 6: Ablation study of λ.

milliseconds Global Local Root
400 600 800 1000 400 600 800 1000 400 600 800 1000

λ = 0.01 61.3 94.1 127.5 160.2 50.3 69.3 84.9 97.4 45.6 71.1 99.2 128.0
λ = 0.005 54.8 86.9 120.5 154.6 43.8 61.1 74.9 87.4 41.8 67.4 97.6 126.2
λ = 0.002 54.6 86.2 119.3 152.5 43.7 60.8 74.6 86.6 41.7 66.9 94.8 124.0
λ = 0.001 54.3 86.1 119.5 153.5 43.1 60.0 74.2 86.1 41.4 66.8 95.2 125.3
λ = 0.0002 54.2 86.5 120.2 154.1 43.0 59.9 74.2 86.2 41.6 67.6 96.2 126.1

We provide an additional ablation study on loss weight λ in Table 6.

A.4 Discussions

Broader Impacts Our approach does not rely on explicit biometric markers like unique fingerprints,
retina scans, or body markers. The skeletal structure representation utilized in our dataset is based
on generalized joint positions and movements. Our approach should only be employed with legally
obtained human motion data. Meanshile, our approach may contribute to more interpretable decision-
making processes and holds potential for applications in sports tactical analysis and education.

Assets To collect our dataset, we acquire written consent from the participating athletes and coaches.
We plan to release the processed 3D human motion sequences under a license agreement that permits
their use for non-commercial scientific research purposes.

Human Subjects We inform the participating athletes about the data collection process and its
intended uses, ensuring that we obtain their written consent. The instructions are provided by their
coach, and the collected drills are part of their regular training routines. All participants receive
compensation in accordance with their standard practices. To ensure privacy, we have implemented
rigorous measures. Our data release strategy does not involve disclosing raw video data that may
contain identifiable information, such as facial features. Instead, we will exclusively release processed
3D human motion sequences derived from the video data, guaranteeing the anonymity of the athletes.
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