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Abstract
Data mixing strategies have successfully reduced
the costs involved in training language models.
While promising, such methods suffer from two
flaws. First, they rely on predetermined data do-
mains (e.g., data sources, task types), which may
fail to capture critical semantic nuances, leav-
ing performance on the table. Second, these
methods scale with the number of domains in
a computationally prohibitive way. We address
these challenges via R&B, a framework that re-
partitions training data based on semantic simi-
larity (Regroup) to create finer-grained domains,
and efficiently optimizes the data composition
(Balance) by leveraging a Gram matrix induced
by domain gradients obtained throughout train-
ing. Unlike prior works, it removes the need
for additional compute to obtain evaluation in-
formation such as losses or gradients. We analyze
this technique under standard regularity condi-
tions and provide theoretical insights that justify
R&B’s effectiveness compared to non-adaptive
mixing approaches. Empirically, we demonstrate
the effectiveness of R&B on five diverse datasets
ranging from natural language to reasoning and
multimodal tasks. With as little as 0.01% ad-
ditional compute overhead, R&B matches or
exceeds the performance of state-of-the-art data
mixing strategies.

1. Introduction
Large language models depend on vast, diverse datasets, but
the shift to general-purpose foundation models has created
a fundamental imbalance: potential training data vastly ex-
ceeds available computational resources. This has driven
the development of data-efficient strategies that maximize
performance while minimizing compute costs. Among these
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approaches, data mixing is particularly promising. By opti-
mizing the composition of training data used—rather than
simply increasing its volume—we can achieve comparable
or superior performance with significantly fewer computa-
tional resources.

A wide variety of data mixture optimization techniques
have been proposed (Fan et al., 2024b; Xie et al., 2023;
Chen et al., 2023; 2024; Jiang et al., 2024). These adjust
the relative proportions (“mixture”) of training data from
different predefined domains, also known as skills. Skills
are often assigned to data based on human judgments or on
source metadata (Wettig et al., 2025). We find, however, that
these coarse human-defined categorizations fail to capture
the optimal groupings for data mixing. That is, human
categorizations of skills are suboptimal when used for
the development of LLM capabilities.

Consider the Dolly-15k instruction-tuning dataset, which
categorizes its data into general domains such as open-
question answering, information extraction, and summariza-
tion (Conover et al., 2023). Rather than directly optimizing
these coarse categories, our approach first re-partitions the
data into finer-grained, semantically-grouped skills (Fig. 1,
left). Optimizing the proportions across these semantically-
clustered skills can significantly improve training perfor-
mance over that of the general predefined domains. These
improvements are even more pronounced when the number
of skill partitions is optimized (Fig. 1, right).

However, the more granular semantic-based clustering ap-
proach has a critical drawback. Existing approaches typi-
cally require additional evaluations—either through forward
passes over evaluation datasets for each skill or by com-
puting per-skill gradient information derived from target
tasks. To overcome this limitation, we propose an efficient
gradient-based approach that leverages information al-
ready computed during training, bypassing the need for
these expensive evaluations.

These insights motivate our approach, Regroup & Balance
(R&B), a two-stage framework for efficient data mixture
optimization. First, we repartition (Regroup) training data
into semantically coherent clusters based on embedding
similarity. Then, we dynamically optimize domain weights
(Balance) to capture individual domain contributions and
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Figure 1. Instead of using pre-determined domains (e.g., by task type), we find that it is often better to first repartition the data into
finer-grained, semantically related domains. Optimizing the proportions of these new semantic domains can significantly improve training
performance.

cross-domain relationships, leveraging domain gradients
computed throughout normal training. This produces the
best of all worlds: it unlocks the performance gains in fine-
grained skill clusters while dramatically reducing computa-
tional complexity.

Theoretically, we derive insights to characterize the impor-
tance of semantic-based clustering in data mixing strate-
gies and the optimality of R&B. Empirically, we validate
R&B across five diverse data settings, encompassing natural-
language, instruction-following, reasoning, and multimodal
tasks. R&B only requires an additional 0.01% compute
overhead, which cuts computational FLOPs by more
than 99% relative to existing approaches, all while main-
taining or improving model performance.

We summarize our contributions as follows:

1. We establish that semantic-based categorizations of skills
are superior to human-defined categories for foundation
model data mixing algorithms (Section 2.1).

2. We introduce R&B, an efficient and theoretically justi-
fied two-stage framework that first repartitions data into
semantically coherent clusters of skills, then dynamically
reweights skill mixtures using their gradients (Sections
2, 2.1, and 2.3).

3. We theoretically and empirically demonstrate that R&B
scales effectively with increased skill counts (Section 3).

2. R&B: Regroup and Balance Data Mixtures
We first provide some context and intuition. We will refer to
skills and domains interchangeably throughout this paper. In
data mixing, each data skill/domain is assigned a proportion
weight from the probability simplex, and data is sampled
according to this probability distribution. Formally, for m
skills, we sample data according to the distribution p =
[p1, . . . , pm] ∈ ∆m−1. We seek to answer two questions:

R1. How should we define domains for data mixing?
Given a dataset, we wish to group the data into m partitions

suitable for data mixing strategies. We define a mapping
function S : X → {1, 2, . . . ,m} which labels each data
point x to its corresponding partition index. For a given
dataset D, we have that Di = {x ∈ D : S(x) = i}, and⋃m

i=1Di = D.

Intuitively, one would like to slice the data to minimize
noise within each partition and reduce overlap between
partitions. If perfect separation is possible, each partition
would correspond to a distinct skill or capability domain,
allowing for more targeted optimization of mixing weights.

R2. How do we efficiently reweight domains? Once Dtrain
has been partitioned into m groups, our secondary objective
is determining the optimal weight proportions p for each
domain. Weights may change over time, so training is split
into T rounds. At the end of each round t, we can reweight
the skills pt+1 = [pt+1

1 , . . . , pt+1
m ] ∈ ∆m−1, and resume

training according to the new proportions.

2.1. Problem Setup
We formulate our framework as a bilevel optimization prob-
lem for minimizing test loss. The lower-level optimiza-
tion aims to find the best training proportions pt ∈ ∆m−1

for each training round t ∈ 1, . . . , T . The upper-level
problem seeks to find the best partitioning of a dataset D
into m partitions D1, . . . , Dm where D =

⋃m
i=1Dm. Let

Deval,i = {x ∈ Deval : S(x) = i} be the set of evalua-
tion points assigned to skill i by S. Let fθt be the model
parametrized by θt that is trained during round t, i.e. fθt+1

is obtained by training fθt with proportions pt. Formally,
we aim to solve the following problem

min
m∈Z+

min
p1,...,pT∈∆m−1

Leval(fθT+1
), (1)

where Leval(fθT+1
) is the average evaluation loss for the

partition Deval,i after training model fθT on mixture propor-
tions pT to obtain fθT+1

.

Solving the full bilevel problem (1) is infeasible because for
each candidate solution of the upper-level optimization prob-

2



R&B: Breaking the Data Mixing Bottleneck with Just 0.01% Overhead

Regroup Domains Pre-Determined Domains # Pre-Determined Domains

0 5 10 15 20 25 30

Number of Clusters

2.775

2.780

2.785

2.790

2.795

2.800

2.805

Ev
al

ua
ti

on
 L

os
s

Dolly-15k

0 50 100 150 200

Number of Clusters

2.87

2.88

2.89

2.90

2.91

2.92

2.93

Ev
al

ua
ti

on
 L

os
s

Super-NatInst Test

20 40 60 80 100

Number of Clusters

2.46

2.48

2.50

2.52

2.54

2.56

2.58

Ev
al

ua
ti

on
 L

os
s

Super-NatInst

20 40 60 80 100

Number of Clusters

0.745

0.746

0.747

0.748

0.749

0.750

0.751

0.752

Ev
al

ua
ti

on
 L

os
s

S1-59k

0.01 0.02 0.03 0.04

Silhouette Score

2.78

2.79

2.80

Ev
al

ua
ti

on
 L

os
s R² = 0.047

5 10 15 20 25 30
Number of Clusters

0.10 0.15 0.20

Silhouette Score

2.88

2.90

2.92

Ev
al

ua
ti

on
 L

os
s R² = 0.482

20 40 60 80 100 120 140 160 180
Number of Clusters

0.20 0.25 0.30 0.35

Silhouette Score

2.450

2.475

2.500

2.525

2.550

2.575

Ev
al

ua
ti

on
 L

os
s R² = 0.173

10 20 30 40 50 60 70 80 90 100
Number of Clusters

0.03 0.02 0.01

Silhouette Score

0.744

0.746

0.748

0.750

0.752

Ev
al

ua
ti

on
 L

os
s R² = 0.895

10 20 30 40 50 60 70 80 90 100
Number of Clusters

Figure 2. Top Row: Across various data settings, we find that there is a “sweet spot” in the number of domains used for data mixing,
indicated by the green star. The optimal number of groups varies significantly with the dataset, which motivates the need for compute-
efficient data mixing. Bottom Row: We find that silhouette score often correlates with model performance, suggesting that it is possible to
predict data mixing performance based on clustering metrics.

lem, we must train a model for the lower-level optimization
problem to obtain the loss. Thus, we propose decomposing
Equation 1 into two:

S∗,m∗ = argmin
S,m
Lclustering(S; fUnif(D)), (2)

min
p1,...,pt∈∆m∗−1

L∗
eval(fθT+1

). (3)

In (2), we use fUnif, which we denote as a model trained
on fixed uniform proportions across skills to convergence
(i.e. stratified sampling, fUnif = argminf Leval(f)). This
minimization is taken over a family of partitioning schemes
S, such as the S found through k-means, on the gradients of
trained model Leval(fUnif). In (3), we use the optimal choice
of m∗ and partitioning scheme S∗ found in the previous
stage, and solve the optimization problem at every training
round t.

2.2. Defining Domains
We investigate how to partition a given dataset to achieve
optimal data mixing. Intuitively, data points that belong in
a cluster should have a similar effect, i.e. gradients, during
training. If gradients are not aligned, then swapping points
with another cluster would reduce noise in both clusters.
This leads to our first definition.

Definition 1. A skill-assigning function S : D → [m]
is stable in the direction∇L(θt;Dp) if for the skill i =

argmaxi∈[m]∇L(θt;Di)
⊤∇L(θt;Dp) and any other j ∈

[m], exchanging a pair xi ∈ Di, xj ∈ Dj does not improve
∇L(θt;Di)

⊤∇L(θt;Dp).

In other words, a clustering is said to be stable if no swap-
ping of points improves alignment with the evaluation gra-
dient. This definition provides a theoretical foundation for
optimal data mixing, but it is still impractical to discover
good groupings. The following lemma characterizes the
maximum regret from swapping points between clusters.

Lemma 1. Define the regret RS(i, j) under the skill- as-
signing function S for class j as:

RS(i, j) = max
D̃i⊂Di∪Dj

|D̃i|=|Di|

∇L(θt;Dp)
⊤∇L(θt, D̃i)

−∇L(θt;Dp)
⊤∇L(θt;Di)

Let i, j ∈ |m| with |Di| = |Dj | and

∇L(θt;Di)
⊤∇L(θt;Dp) ≥ ∇L(θt;Dj)

⊤∇L(θt;Dp)

Define ri = max
x∈Di

|∇L(θt, x)⊤∇L(θt;Dp) −

∇L(θt;Di)
⊤∇L(θt;Dp)|. Then:

RS(i, j) ≤ max

{
0,

1

2

(
ri + rj−(

∇L(θt;Di)
⊤∇L(θt;Dp)

−∇L(θt;Dj)
⊤∇L(θt;Dp)

))}
3
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Algorithm 1 R&B: Online Domain Data Selection

1: Input: Domain datasets {D∗
train,i, D

∗
eval,i}m

∗
i=1, model θ ∈ Rn, training rounds T , steps per round K, evaluation weights p ∈ Rm∗

2: Initialize sampling distribution p0 ← Uniform(m∗)
3: for t = 0 to T − 1 do
4: Initialize gradient accumulators∇L(θ;Di)← 0n and sample sets Si ← ∅ for all i
5: for k = 0 to K − 1 do
6: Sample mini-batch B from D∗

train,i using domain probabilities pt

7: Update model: θ ← θ − η∇L(θ;B)
8: for each domain i present in B do
9: Accumulate final-layer gradients: ∇L(θ;Di) += ∇L(θ;B ∩D∗

train,i)
10: Add samples to set: Si ← Si ∪ (B ∩D∗

train,i)
11: end for
12: end for
13: Compute similarity matrix G with Gij = 1

|Si||Sj |
∇L(θ;Di)

⊤∇L(θ;Dj)

14: Update distribution: pt+1 ← softmax(λGp/∥Gp∥2)
15: end for
16: Return: Final model parameters θ

Proof: See Appendix B.1.2.

This bound reveals additional structure that enables us to
determine an effective clustering: clusters should have mini-
mal radii while maintaining sufficient separation between
their centroids. In light of these theoretical findings, we
seek to empirically validate our claims by clustering real
data and train using fixed proportions p. Our hypothesis
is that well-clustered data can result in better overall train-
ing performance. To keep our investigation tractable, we
focus on k-means clustering, and sweep over k. We first
embed our examples with ModernBERT-embed (Nussbaum
et al., 2024), a state-of-the-art embedding model that sup-
ports long-context inputs. Then, we apply k-means and
train a model using a uniform proportion of k clusters. We
evaluate our setup across four settings: Dolly-15k (Conover
et al., 2023), Super Natural Instructions (Super-NatInst) &
Super Natural Instruction Test (Super-NatInst Test) (Wang
et al., 2022), and S1-Reasoning (Muennighoff et al., 2025),
and across 3 seeds. Appendix F lists the full experimental
details.

The top row of Figure 2 shows that training on the result-
ing clusters often results in significantly better perfor-
mance compared to pre-determined partitions. On 3 of the
4 datasets, there is a U-shaped pattern in the number of
clusters versus evaluation loss. Thus in many cases, there is
an optimal choice of k—but it varies significantly between
datasets.

Furthermore, we often find that optimal clusters are com-
pact and well-separated, as our theory suggests. We plot the
silhouette score (Rousseeuw, 1987) of each cluster group
against the final evaluation loss of the model. The bot-
tom row of Figure 2 shows that on 3 of the 4 datasets,
there is moderate to strong correlation between the clusters’
silhouette score and model performance. These results
validate our theoretical insights that clusters which are

well-separated result in better data mixing performance.
Furthermore, this suggests that it is possible to choose the
optimal k without training a model, which would lead to
further cost savings.

2.3. Proposed Method
The R&B algorithm (Algorithm 1) performs adaptive data
selection for efficient model training on partitioned datasets.
Starting with a uniform sampling distribution across clusters,
it iteratively refines this distribution to focus computational
resources on the most relevant partitions.

During each training round, R&B accumulates final-layer
gradients from sampled batches and tracks which clusters
contribute to model updates. Then it constructs a gradient
similarity matrix that captures how gradients from different
clusters relate to each other. This similarity information
is combined with predefined evaluation proportions to pro-
duce an updated sampling distribution through a softmax
operation. As training progresses, the algorithm adaptively
shifts sampling probability toward clusters that contain the
most valuable training examples, improving efficiency while
maintaining performance across all partitions. See Ap-
pendix B.1 for derivation details.

3. Experiments
We study the effectiveness of R&B empirically across a
diverse range of datasets and tasks. Our experiments aim to
validate the following claims:

C1. R&B can match or improve training performance on
natural language tasks while significantly reducing
computational overhead compared to existing meth-
ods.

C2. R&B can improve training performance beyond natural
language modalities.
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SUP-NATINST SUP-NATINST test Dolly-15k
(m = 38) (m = 60) (m = 8)

Method Loss % Overhead (↓) Loss % Overhead (↓) Loss % Overhead (↓)

Stratified 2.591 0 2.877 0 2.788 0
Skill-It 2.632 595.5 2.911 6× 107 2.786 14.46
Aioli 2.622 1336.5 2.883 7× 106 2.779 62.5
DGA 2.591 1.723 2.893 1601 2.787 0.41

(m∗ = 30) (m∗ = 100) (m∗ = 7)
R&B

2.381 0.009 2.859 0.1 2.765 0.0006

Table 1. Across three datasets, R&B significantly reduces the compute overhead for evaluation compared to existing methods, while
matching or exceeding performance.

Method SUP-NATINST SUP-NATINST test Dolly-15k
Original Regroup Original Regroup Original Regroup

m 38 30 60 100 8 7

Stratified 2.591 2.454 2.877 2.871 2.788 2.761
Skill-It 2.632 2.812 2.911 2.881 2.786 2.778
Aioli 2.622 2.488 2.883 2.947 2.779 2.760
DGA 2.591 2.453 2.893 2.871 2.787 2.761

Balance 2.520 2.381 - 2.859 2.783 2.765
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Figure 3. Left: Regrouping skills before applying data mixing strategies can yield substantial improvements. Underlined values indicate
where regrouping beats the original grouping for that method and dataset. Highlighted values (with brown background) indicate the
best overall performance for each dataset. Note that we do not apply Balance to the original categorization of SUP-NATINST test, as we
assume that training data and validation data are bucketed into the same m groups. Right: Loss curve on the Sup-NatInst dataset.

3.1. Data Mixing on Natural Language Tasks
Setup. We compare R&B against four existing baselines:
stratified sampling, Skill-It (Chen et al., 2023), Aioli (Chen
et al., 2024), and DGA (Fan et al., 2024a). We compare each
method across three distinct three natural-language data set-
tings: Dolly-15k (Conover et al., 2023), NaturalInstructions
In-domain SUP-NATINST (Wang et al., 2022), and Natu-
ralInstructions Test SUP-NATINST. For all experiments,
we train 125M GPT-Neo models (Black et al., 2021); full
experimental details are listed in Appendix F. We report the
final evaluation loss and the relative compute overhead (over
standard training) incurred from re-estimating proportions.
The formulas for the relative compute overhead are derived
in Appendix D.

Results. Table 1 shows R&B’s strong performance across
all datasets. On SUP-NATINST, R&B achieves the best
performance (loss: 2.381) with minimal computational over-
head (0.009%). On SUP-NATINST test, R&B outperforms
all methods (loss: 2.859) with only 0.1% overhead versus

Skill-It (6× 107%) and Aioli ((7× 106%). On Dolly-15k,
R&B performs competitively (loss: 2.765) compared to
Aioli (2.779), with significantly smaller overhead (0.0006%
versus 62.5%). As expected from C1, R&B consistently
delivers strong results with orders of magnitude bet-
ter computational efficiency than other data mixing ap-
proaches.

Ablations. Fig. 3 ablates semantic regrouping across
data mixing strategies. In SUP-NATINST, regrouping im-
proves most methods (5.3-8.1% gains) except Skill-It. On
SUP-NATINST test, regrouping yields modest improvements
for all methods except Aioli. Dolly-15k shows strong im-
provements with regrouping across all methods. While in
many cases regrouping does help, it is not universally bene-
ficial as evidenced by Skill-It’s performance degradation on
SUP-NATINST and Aioli’s slight decline on SUP-NATINST
test. Notably, the Balance method combined with regroup-
ing achieves the best overall performance on both SUP-
NATINST datasets, while Aioli with regrouping performs
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S1-59K

Method
Original

(m = 54)
Regroup

(m = 10)

Stratified 0.7517 0.7449
R&B - 0.7449

Table 2. Performance comparison of Stratified and R&B methods
on the S1-59K dataset.

best on Dolly-15k.

Even without regrouping, our gradient-based method
shows strong performance while maintaining minimal
overhead. On original SUP-NATINST, Balance achieves a
loss of 2.520, significantly outperforming other data-mixing
methods. On Dolly-15k Original, it reaches a competitive
2.783 loss.

The convergence plot in Figure 3 demonstrates R&B’s ef-
ficiency. R&B reaches convergence with only 20% of the
training steps needed by other methods while achieving
lower final loss values. Its smooth, monotonic descent con-
trasts with methods like Aioli, suggesting R&B’s gradient-
based domain weighting enables more consistent optimiza-
tion.

3.2. Beyond Language Modeling
We next explore additional tasks our approach was not
specifically designed for, including reasoning and multi-
modal setups.

Reasoning Setup. We investigate whether optimizing data
mixtures can boost model performance in reasoning tasks.
We use S1-Reasoning dataset (Muennighoff et al., 2025),
which comprises reasoning traces from challenging math
problems, drawn from 54 distinct sources. We use Qwen2-
0.5B model (Yang et al., 2024) as an illustrative example.

Reasoning Results. Table 2 shows that regrouping im-
proves performance compared to using original domains,
with the optimal number of groups being 10. Specifically,
the evaluation loss decreased from 0.7517 to 0.7449 when
using our regrouping approach instead of predetermined
domains. This suggests that while clustering generally im-
proves the model performance, applying data mixing tech-
niques such as R&B does not improve model performance
further. We believe it is an open question as to whether data
mixing can still be applied to such reasoning traces.

Multimodal Setup. We extend our setup to include multi-
modal tasks. We train CLIP models (Radford et al., 2021)
from scratch using the small-scale DataComp dataset (Il-
harco et al., 2021; Gadre et al., 2023). Our dataset comprises
approximately 10 million image-caption pairs sourced from

m Method ImageNet Dist. shift VTAB Retrieval Avg (38)

10
Stratified 0.034 0.044 0.157 0.104 0.146

R&B 0.033 0.040 0.153 0.104 0.141

Stratified 0.036 0.044 0.153 0.106 0.145
20

R&B 0.031 0.042 0.163 0.103 0.148

50
Stratified 0.042 0.047 0.170 0.107 0.153

R&B 0.042 0.047 0.177 0.108 0.158

Stratified 0.034 0.043 0.152 0.107 0.139
100

R&B 0.041 0.047 0.151 0.104 0.145

150
Stratified 0.034 0.043 0.165 0.109 0.143

R&B 0.039 0.050 0.164 0.109 0.153

Table 3. R&B performs better than stratified sampling on image-
text modalities.

the web.1 To ensure dataset quality, we select the top 30% of
samples based on CLIP Score (Gadre et al., 2023), retaining
3.8 million high-quality pairs. We extract image embed-
dings for both the filtered training dataset and DataComp’s
evaluation benchmark, which spans 38 diverse downstream
tasks. We apply k-means clustering to repartition data into
varying numbers of groups.

Results. We presented CLIP models’ performance in Ta-
ble 3. R&B outperforms stratified sampling when the
number of domains exceeds 10. With 50 domains, R&B
achieves a 3.27% relative improvement over the stratified
sampling baseline. These findings highlight the effective-
ness of R&B when the number of underlying domains is
high and validate its extensibility to other modalities.

4. Conclusion
We introduced Regroup & Balance (R&B), a two-stage
framework that breaks free from two fundamental con-
straints found in state-of-the-art data mixing strategies: the
limitations of predetermined domains and the computa-
tional bottleneck of per-skill evaluations. Empirically, R&B
matched or exceeded state-of-the-art data mixing methods
while requiring two orders of magnitude less compute over-
head, charting a more efficient path forward for foundation
model training.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

1Some URLs provided by DataComp are now broken. See here
for details.
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The appendix is structured as follows. Appendix A introduces our notation, followed by theoretical insights and proofs in
Appendix B. Algorithmic details are provided in Appendix C. We then analyze the computational cost of existing data mixing
methods in Appendix D. Implementation specifics and experimental setups are detailed in Appendix E and Appendix F,
respectively. Appendix G presents the results of our ablation studies. Lastly, we give interpretation for determined domains
in Appendix H.

A. Notation
Symbol Meaning
d The dimensionality of each skill (toy theory)
m The number of skills
[·] The sequence of numbers 1, 2, . . . , n

∆m−1 The m− 1 dimensional simplex
D A mixture data distribution
Di The distribution for skill i
Dp The mixture of Di according to p
Di A sample from the distribution Di

G The inner product between gradients of different skills∇L(θ;Di)
L(θ;D) The expected loss of θ over Dp

∇L(θ;Di) The skill gradient for skill i
p The evaluation data proportions
p′ The chosen training data proportions
S A skill-assigning function S : X → [m]

B. Theoretical Results
The goal is to find the best data mixture throughout training. With the many degrees of freedom such an algorithm can take,
a few assumptions are made. First, an update is restricted to being performed by SGD with the following update rule:

θt+1 = θt − η∇L(θt;Dp′).

The modification from standard SGD is the ability to change p′ which allows for a different sampling mixture.

B.1. Method Derivation
The design of the proportion finding algorithm described here comes from one core assumption: the gradient update works
roughly linearly. Specifically, we assume, for a small enough ball around θt,

L(θ;Dp) ≈ L(θt;Dp) +∇L(θt;Dp)
⊤(θ − θt).

Inputting the SGD update rule,

L(θt+1;Dp) ≈ L(θt;Dp)− η∇L(θt;Dp)
⊤∇L(θt;Dp′).

Since the gradient is linear, we can treat∇L(θt;Dp) as a weighted sum of ∇L(θt;Di), i.e. the individual skill gradients,
based on the proportions pi. Define the Gram matrix G as

G
(t)
ij = ∇L(θt;Di)

⊤∇L(θt;Dj).

Note that G(t) is dependent on the iteration, but this will often be written only as G for notational clarity. This matrix also
has a clear interpretation as a neural tangent kernel (NTK) aggregated over each skill rather than over each data point as is
commonly used. With this matrix and treating p and p′ as vectors, our assumption simplifies to

L(θt+1;Dp) ≈ L(θt;Dp)− ηp⊤Gp′.

Since the aim is to decrease loss as much as possible, we want to maximize ηp⊤Gp′ over p′ ∈ ∆m−1. This objective is
linear over the simplex, so optima will only be found at the corners of the simplex. However, this would imply only one
class is sampled from. This causes a few issues. First, the per-skill gradient computation method requires samples from skill
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i to find the gradient for skill i. No information about other skills will be gathered through training. Second, the gradient as
a function of time will be discontinuous. As the maximum skill of the optimization changes, the gradient will instantly
change to the skill gradient for the new maximal skill. We impose a common regularity to restrict p′ to the simplex by
solving for the following:

p′ = argmax
p′∈∆m−1

ηp⊤Gp′ − λ1
m∑
i=1

p′
i log p

′
i + λ2

m∑
i=1

p′
i.

Equivalently, we can multiply the λ1 and λ2 terms by a constant without affecting the optimum. This constant ∥ηGp∥2
is chosen to make the parameter λ1 have a roughly equal effect between the cross entropy term of the base objective,
regardless of η, G, and p. This also means that as the model trains and the gradients decrease in magnitude, the effects of
the regularization term will decrease. Otherwise, proportions will tend towards uniform. Now, solve for:

p′ = argmax
p′∈∆m−1

ηp⊤Gp′ − λ1∥ηGp∥
m∑
i=1

p′
i log p

′
i + λ2∥ηGp∥

m∑
i=1

p′
i.

The parameter λ1 acts as a normal hyper-parameter, but λ2 is a Lagrange multiplier enforcing p′ lay on the simplex. Taking
a gradient and setting to 0,

0 = ηGp− λ1∥ηGp∥ log p′ + (λ1 + λ2)∥ηGp∥1m,

log p′ =
η

λ1∥ηGp∥
Gp+

λ1 + λ2
λ1

1m,

p′ = exp

(
η

λ1∥ηGp∥
Gp

)
exp

(
λ1 + λ2
λ1

)
= exp

(
1

λ1∥Gp∥
Gp

)
exp

(
λ1 + λ2
λ1

)
.

Here, 1m is the vector of all 1s of dimension m. Also, λ2 will take on a value to make p′ sum to 1. Thus, setting
Z =

∑m
i=1 exp

(
1

λ1∥Gp∥Gp
)
i

and letting λ = 1/λ1, we have

p′ =
1

Z
exp

(
λ

∥Gp∥
Gp

)
= softmax(

λ

∥Gp∥
Gp).

Note that in this parametrization, a large λ indicates a small penalty from the entropy term. This solution aligns with the
unconstrained solution described above from finding the maximal corner of the simplex, except now the solution is smooth.

B.1.1. MAX CAN BE BETTER THAN STATIC PROPORTIONS

This method, for a small enough learning rate, will result in a reduction of a smooth loss greater than any other fixed
proportions.

Lemma 2. Let ℓ be an L-smooth loss function and fθ is learned with SGD on datasets Di with associated sam-
pling prior pi, and let p′′ be some other fixed distribution of datasets. If the learning rate η satisfies η ≤
1
L

(
maxi ∇L(θ0;Di)

⊤∇L(θ0;Dp)−(∇L(θ0;Dp′′ ))⊤∇L(θ0;Dp)

maxi ∥∇L(θ0;Di)∥2+∥∇L(θ0;Dp′′ )∥2

)
, then a gradient descent step with p′ = δargmaxi(Gp)i results

in a greater (or equal) decrease in the loss than p′′ .

Proof. Let θ0 be some base parameter, p′ = δi for i = argmaxi(Gp)i, and let

θp′ = θ0 − η∇L(θ0;Dp′),

θp′′ = θ0 − η∇L(θ0;Dp′′).
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Assume that L is L-smooth. Now consider

L(θp′′ ;Dp)− L(θp′ ;Dp) = (L(θp′′ ;Dp)− L(θ0;Dp))− (L(θp′ ;Dp)− L(θ0;Dp))

≥ −ηp⊤Gp′′ + ηp⊤Gp′ − η2Lp′⊤Gp′ − η2Lp′′⊤Gp′′

= η(max
i

(Gp)i − p⊤Gp′′ − ηL(p′⊤Gp′ + p′′⊤Gp′′)).

Now let i = argmaxi(Gp)i and let η ≤ 1
L

(
(Gp)i−p⊤Gp′′

Gii+p′′⊤Gp′′

)
. This quantity is positive (and therefore well defined for η ≥ 0

since p⊤Gp′′ is the convex combination of values all less than (or equal to) (Gp)i. Thus,

L(θp′′ ;Dp)− L(θp′ ;Dp) ≥ η((Gp)i − p⊤Gp′′ − ηL(Gii + p′′⊤Gp′′))

≥ η((Gp)i − p⊤Gp′′ − 1

L

(
(Gp)i − p⊤Gp′′

Gii + p′′⊤Gp′′

)
L(Gii + p′′⊤Gp′′))

= η((Gp)i − p⊤Gp′′ − ((Gp)i − p⊤Gp′′))

= 0.

Therefore, for a small enough learning rate, the choosing the gradient with the largest skill results in a larger decrease in the
loss than using priors proportional to the evaluation data. The learning rate can also be bounded using gradient notation and
taking a maximum over Gii:

η ≤ 1

L

(
maxi∇L(θθ0 ;Di)

⊤∇L(θθ0 ;Dp)− (∇L(θθ0 ;Dp′′))⊤∇L(θθ0 ;Dp)

maxi ∥∇L(θθ0 ;Di)∥2 + ∥∇L(θ0;Dp′′)∥2

)
.

B.1.2. CLUSTERING

One major phenomenon observed here is that clustering the data points works well for domain mixing, and sometimes even
outperforms the provided labels for the different skills. These clusters are taken via the embeddings of some other model,
which are assumed to mimic the gradients of the model being learned.

When η ≈ 0, the change in the loss can be well-approximated by its first order Taylor expansion:

L(θt;Dp)− L(θt+1;Dp) ≈ η∇L(θt;Dp)
⊤∇L(θt;Dp′).

For the following sections, let Di = {x ∈ D : S(x) = i} for some skill-assigning function S.

Definition 2. A skill-assigning function S : D → [m] is stable in the direction∇L(θt;Dp) if for the skill i =

argmaxi∈[m]∇L(θt;Di)
⊤∇L(θt;Dp) and any other j ∈ [m], exchanging a pair xi ∈ Di, xj ∈ Dj does not improve

∇L(θt;Di)
⊤∇L(θt;Dp).

Intuitively, a stable clustering is one which doesn’t improve∇L(θt;Di)
⊤∇L(θt;Dp) by exchanging points between classes.

Lemma 3. Let S be some {0, 1} skill-assigning function on D with∇L(θt;D0)
⊤∇L(θt;Dp) ≥ ∇L(θt;D1)

⊤∇L(θt;Dp)

and let x0, x1 ∈ D with S(x0) = 0 and S(x1) = 1, and let C̃ be the clustering identical to S except on x0, x1
where each is assigned to the opposite class. Then, ∇L(θt;DS̃,p′)⊤∇L(θt;Dp)

⊤ > ∇L(θt;DS,p′)⊤∇L(θt;Dp) if
∇L(θt, x1)⊤∇L(θt;Dp) > ∇L(θt, x0)⊤∇L(θt;Dp).

Proof. Let Di = {x ∈ D : S(x) = i}, D̃i = {x ∈ D : S̃(x) = i}, ni = |Di|, and p′ be the proportions that put mass only
on the maximal value of A∇L(θt;Dp). If we define

A =

[
∇L(θt;D0)
∇L(θt;D1)

]
,
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then

∇L(θt;DS)
⊤∇L(θt;Dp) = p′⊤A∇L(θt;Dp),

∇L(θt;DS̃)
⊤∇L(θt;Dp) = p′⊤Ã∇L(θt;Dp)

= p′⊤A∇L(θt;Dp) + p′⊤
[ 1
n1
∇L(θt, x1)⊤∇L(θt;Dp)− 1

n1
∇L(θt, x0)⊤∇L(θt;Dp)

1
n0
∇L(θt, x0)⊤∇L(θt;Dp)− 1

n0
∇L(θt, x1)⊤∇L(θt;Dp)

]
.

Therefore swapping the classes of x0 and x1 results in an improvement for S̃ over S if ∇L(θt, x1)⊤∇L(θt;Dp) >
∇L(θt, x0)⊤∇L(θt;Dp).

We immediately have the following corollary:

Lemma 4. A skill-assigning function S : D → [m] is stable in the direction ∇L(θt;Dp) if for the skill i =
argmaxi∈[m]∇L(θt;Di)

⊤∇L(θt;Dp) and any other j ∈ [m], for all xi ∈ Di, xj ∈ Dj ,

∇L(θt;Dp)
⊤∇L(θt, xi) ≥ ∇L(θt;Dp)

⊤∇L(θt, xj).

An important fact to note is that the evaluation gradient∇L(θt;Dp) can be arbitrary, especially if the evaluation and training
data come from different distributions. To reduce the benefit of swapping points between classes, a good clustering will be
stable in as many directions as possible.

A simple but noisy choice is to take all points in the convex hull to be in unique clusters, and all interior points to make up
another cluster. While this clustering is stable in every direction, the classes are very small and therefore likely to be noisy,
especially as training progresses and the gradient landscape shifts. A better alternative is clustering points if they can be
linearly separated from the others.

Assume D can be partitioned into D0 and D1 such that f(x) = sign(v⊤x+ b) is a perfect classifier, so in the direction v,
S which labels the data based on the partition is stable. If f has a large margin, then many other v also a linear separators,
and therefore also have S stable.

This still may be too restrictive though in general settings where data points are more spread apart. Instead, it may be good
to compare the regret of skill-labeling with a sub-optimal labeling.

Definition 3. The regret RS(i, j) under the skill-assigning function S for class j is the difference between
maxD̃i⊂Di∪Dj ,|D̃i|=|Di|∇L(θt;Dp)

⊤∇L(θt, D̃i) and∇L(θt;Dp)
⊤∇L(θt;Di).

This regret is exactly difference between the first-order loss decrease using D̃i as compared to Di, where new elements in
D̃i come from Dj .

Lemma 5. Let i, j ∈ |m| and assume |Di| = |Dj |. Assume ∇L(θt;Di)
⊤∇L(θt;Dp) ≥ ∇L(θt;Dj)

⊤∇L(θt;Dp), and
let ri = maxx∈Di |∇L(θt, x)⊤∇L(θt;Dp)−∇L(θt;Di)

⊤∇L(θt;Dp)| and similarly define rj . Then

RS(i, j) ≤ max{0, 1
2
(ri + rj − (∇L(θt;Di)

⊤∇L(θt;Dp)−∇L(θt;Dj)
⊤∇L(θt;Dp)))}.

Proof. Let Ri = {∇L(θt, x)⊤∇L(θt;Dp)|x ∈ Di} and Rj = {∇L(θt, x)⊤∇L(θt;Dp)|x ∈ Dj}. Also, in this notation,
ri = maxx∈Ri |x− Ex∼Ri [x]|, and define δ = Ex∈Ri [x]− Ex∈Rj [x]. The problem then reduces to

RS(i, j) ≤ max{0, 1
2
(ri + rj − δ)}.

Also, RS(i, j) in this one dimensional case becomes the largest over m ∈ [|Ri|] of the difference between the m largest
values ofRj and them smallest values ofRi. This is maximized over all possibleRi andRj when half ofRi is Ex∈Ri

[x]−ri
and the other half is Ex∈Ri

[x] + ri, and similarly for Rj . The difference between the max Rj and the min Ri is ri + rj − δ,
and only half of these data points attain these max and min values, so RS(i, j) ≤ max{0, 12 (ri + rj − δ)} as desired.

This extends the case where skills i and j are linearly separable in the direction ∇L(θt;Dp). It further provides insight in
how to pick skills. To reduce any pairwise regret, the radii ri and rj of the clusters from their mean should be as small as
possible in every direction.
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B.1.3. OOD EVALUATION CLUSTERS

When performing k-means clustering, there is a choice in clustering the training points and then assigning the evaluation
points, or clustering the evaluation points and then assigning the training points. The latter choice has a major problem:
evaluation clusters may have no training points near them. This causes a major dilemma for the training procedure attempting
to sample from a distribution that lacks any data points.

We adopt the former method of clustering based on the training points to circumvent this issue. However, a new issues arises:
evaluation data may be OOD and have no representatives in the training data. The result is the label provided to those OOD
points is the same as the closest training points. These can be quite distant and therefore not a strong representation of their
gradient. However, this still is the optimal choice, as all other training points are a greater distance away and therefore have
a weaker similarity. This label assignment also adds more weight to the class that is most aligned with the OOD evaluation
data, increasing its sample rate to learn both the ID and OOD data for that class.

C. Algorithm details
We fully outline our algorithms for solving the optimization problems specified in Equation 2 and Equation 3, respectively.
And we provide our Algorithm details in Algorithm 2 and Algorithm 3.

Algorithm 2 R&B Skill Partitioning

1: Input: Training data Dtrain, Evaluation data Deval, Embedding model ψ : X → Rd,
2: Clustering algorithm cluster : P(Rd)×K → N× (Rd → N),
3: Clustering metric metric : (Rd → N)× P(Rd)→ R,
4: Range of clustering hyperparameters K ∈ K
5: Output: Optimal number of clusters m∗, Optimal mapping function f∗, Partitioned datasets {D∗

train,i}m
∗

i=1, {D∗
eval,i}m

∗

i=1

6: Dtrain ← {ψ(x) : x ∈ Dtrain} ▷ Collect embeddings for training data
7: Deval ← {ψ(x) : x ∈ Deval} ▷ Collect embeddings for eval data
8: for k ∈ K do
9: m, f = cluster(Dtrain, k)

10: score = metric(f,Dtrain)
11: m∗, f∗, score∗ = argmaxm,f,score(score, score

∗)
12: end for
13: for i = 1 to m∗ do
14: D∗

train,i ← {x ∈ Dtrain : f∗(x) = i} ▷ Partition training data
15: D∗

eval,i ← {y ∈ Deval : f
∗(y) = i} ▷ Partition evaluation data

16: end for
17: Return m∗, f∗, {D∗

train,i}m
∗

i=1, {D∗
eval,i}m

∗

i=1

D. Compute cost models for online data mixing
We formalize a cost model for estimating the amount of compute required for several data mixing methods. Table 4 reports
cost in terms of FLOPs, or number of floating point operations required to perform each method.

Following (Kaplan et al., 2020), we will use the estimate for the compute cost C = Cforward + Cbackward ≈ 2ND + 4ND,
where N is the number of model parameters, and D is the number of training tokens. Here, we also make use of the
empirical observation that the amount of compute for a backward pass is roughly twice that of the amount for a forward pass
(Hobbhahn, 2021).

For all methods analyzed, we make the following assumptions:

• Each method trains on Dt tokens across m domains,
• Each method has access to an evaluation dataset with De tokens,
• Training is divided into T rounds with domain reweighting between rounds,
• Each method uses some fraction of the training dataset, δ ·Dt (where δ < 1), to perform their reweighting procedure.

For our analysis, it is necessary to split the forward and backward compute costs because the data mixing algorithms we
study involve a domain-reweighting mechanism that requires model evaluation on a hold-out dataset. Model evaluation
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Algorithm 3 R&B Online Data Selection

1: Input: Partitioned datasets {D∗
train,i}m

∗

i=1, {D∗
eval,i}m

∗

i=1, model parameters θ ∈ Rn, training rounds T , steps per round K,
evaluation proportions p′ ∈ Rm∗

2: Initialize sampling distribution p0 = Uniform(m∗)
3: for t = 0, . . . , T − 1 do
4: for i ∈ [m∗] do
5: ∇L(θ;Di)← 0n ▷ Initialize gradient accumulator for domain i
6: Si ← ∅ ▷ Initialize set of samples from domain i
7: end for
8: for k = 0, . . . ,K − 1 do
9: Sample batch D = {xj}Bj=1 where xj ∼ D∗

train,i with i ∼ pt for each j
10: θtK+k+1 ← θtK+k − η∇L(θtK+k;D)
11: for i ∈ {f∗(d) : d ∈ D} do
12: ∇L(θ;Di)← ∇L(θ;Di) +∇L(θtK+k;D ∩D∗

train,i)
13: Si ← Si ∪ (D ∩D∗

train,i)
14: end for
15: end for
16: Construct G ∈ Rm∗×m∗

where Gij =
1

|Si||Sj |∇L(θ;Di)
T∇L(θ;Dj)

17: pt+1 ← softmax(ηλGp′)
18: end for
19: Return

only requires a forward pass, whereas model training requires both a forward and backward pass. To illustrate this point,
let Dtrain be the number of tokens in the training dataset, while Deval is the number of tokens in the evaluation dataset.
Training a model on all available training data has a total cost of 6NDtrain, while computing model evaluation once has a
cost of 2NDeval.

D.1. Skill-It
Skill-It (Chen et al., 2023) has two stages in its data-mixing procedure: estimating a graph A which is used as part of its
domain reweighting procedure, and training itself.

For learning A, a model is trained on each of m domains for some fraction of Dtrain, then evaluated on Deval. For
comparative purposes, we will assume that δDtrain training tokens are used in this process of constructing A, for δ < 1.
Furthermore, we assume these tokens are divided evenly among each of m domains. Then the compute cost for learning A
is 6(δDtrain)N + 2(mDeval)N . Training is split into T rounds, and after each round, the model is re-evaluated on Deval

to update the domain proportions. The compute cost for training, then, is 6(Dtrain)N + 2TDevalN . This brings the total
compute cost to

6(1 + δ)DtrainN + 2(T +m)DevalN.

D.2. Aioli
Similar to Skill-It, Aioli (Chen et al., 2024) also includes two stages for learning A and training, but incorporates both
directly into the training process. At a high level, training is also split into T rounds, where each round dedicates some
fraction δ < 1 to learning A. When learning A, the model is trained on each of m domains sequentially, and re-evaluating
the resulting model on the evaluation dataset. Consequently, the training compute cost for learning A is simply absorbed into
the overall cost for training, but the model still must be evaluated on Deval for each domain. Within a round, this process
repeats for the number of sweeps k, but here we will set k = 1 to simplify the analysis. Therefore, the total compute cost for
training improves to 6(Dtrain)N , but the compute cost for evaluation increases to 2(Tm)DevalN . This brings the total
compute cost to

6DtrainN + 2(Tm)DevalN.
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Method Total Compute Cost (FLOPs)
Relative Compute Overhead

(vs. Standard Training)

Standard Training 6DtN 0

Skill-It (Chen et al., 2023) 6(1 +mδ)DtN + 2(T +m)DeN mδ + (T+m)De

3Dt

Aioli (Chen et al., 2024) 6DtN + 2(Tm)DeN
TmDe
3Dt

DGA (Fan et al., 2024a) 6(1 +mδ)DtN + 6T (δDe)N mδ + TδDe
Dt

R&B (Ours) 6DtN + Tm2N Tm2

6Dt

Table 4. Computational cost comparison of data mixing methods. We report (1) total cost of training, given under the table Total
Compute Cost, and relative compute overhead over standard training. Standard training requires no additional compute overhead since its
proportions are fixed. In the common setting where the number of skills m is much smaller than that of evaluation tokens De and training
tokens Dt, R&B enjoys superior computational efficiency.

D.3. DGA
Dynamic Gradient Alignment (Fan et al., 2024a) instead uses gradient information to reweight the domain proportions.
Their method splits training into T rounds, and reweights proportions after each round. Their procedure involves sampling a
batch from each domain, and then performing a forward and backward pass to obtain gradients respective of each domain.
They then obtain gradients for a batch on a specific dataset Dspe (which for consistency of analysis we will simply refer to as
Deval), and computes the inner product between the gradients of each domain and that of Deval. In order to equalize model
performance with Skill-It and Aioli, we will assume that a batch from each training domain contains δ

mDtrain tokens, and a
batch from the specific dataset contains Deval tokens. Then, computing each domain’s gradient has a cost of 6( δ

m )DtrainN ,
and computing the specific dataset’s gradient has a cost of 6DevalN . We assume that computing the inner product between
two model gradients is linear in N so there is an additional mN compute overhead. Therefore, the total compute cost is

6(1 + δ)DtrainN + 6T (Deval +m)N.

D.4. R&B (ours)
Similar to all above methods, we split training into T rounds, and reweight domain proportions at the end of each round.
Like Dynamic Gradient Alignment, we opt to use gradient inner product information to inform our reweighting procedure.
Crucially, however, we make two observations: (1) gradients per domain can be collected on the fly during normal
backpropagation, and (2) our optimization problem only requires knowledge about the respective proportions of Deval, and
does not use gradient or loss information about Deval. Instead, we simply compute the equivalent of matrix A which is a
Gram matrix comprised of the inner products between the gradients of each respective domain. As a result, the compute
cost of training our method is simply 6(Dtrain)N , and the compute cost of evaluation is just m2N . Therefore, the total
compute cost is

6(Dtrain)N +m2N.

Efficiency Analysis. Under typical conditions where the number of skills is much smaller than the size of the evaluation
dataset, R&B demonstrates superior computational efficiency. Its evaluation overhead scales only with m2 rather than
with De, making it particularly advantageous for scenarios with large evaluation datasets but a moderate number of domains.

When comparing specifically with DGA, R&B’s advantage depends on the relationship between the number of domains
and evaluation data size. R&B is more efficient when m <

√
De, which holds in most practical settings. Even when m

approaches or exceeds
√
De, R&B maintains partial efficiency benefits through its 6× lower coefficient on the evaluation

term, and by avoiding the additional δ fraction for computing gradients.

E. Implementation Details
We start with an explanation of gradient computations.
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E.1. Efficient Gradient Computation
Standard training pipelines provide per-batch gradients, but we need per-example gradients in order to aggregate per-skill
gradients for our method. We perform a gradient decomposition similar to the method introduced in (Goodfellow, 2015) to
efficiently circumvent this. A simple application of the chain-rule means we can exactly recover per-example gradients of a
linear layer in a mini-batch with just one backwards pass by multiplying an example’s input with that mini-batch’s gradient.

Adopting the notational convention from (Wang et al., 2024), let s = aW be a linear layer where W ∈ Rd1×d2 is a weight
matrix, a = (a(1), . . . , a(B))⊤ ∈ RB×d1 is the input to the mini-batch, and s = (s(1), . . . , s(B))⊤ ∈ RB×d2 is the layer’s
pre-activation output. Denote by ℓ(i) the loss on the ith example in the mini-batch. Let ℓ denote the summed loss of the
mini-batch. It follows from the chain rule that the gradient of ℓ(i) with respect to W can be expressed as

∂ℓ(i)

∂W
=
∂ℓ(i)

∂s(i)
∂s(i)

∂W
=
∂ℓ(i)

∂s(i)
a(i) =

∂ℓ

∂s(i)
a(i),

where the last equality follows from the fact that the ∂ℓ(j)

∂s(i)
terms disappear when i ̸= j. Notably, the ∂ℓ

∂s(i)
term is available

through standard training, and a(i) can be easily tracked. We aggregate per-example gradients into their respective skills,
allowing for efficient per-skill gradient computation.

F. Experimental Details
We evaluate our method, R&B, against four baseline data mixing methods: Stratified sampling, Skill-It, Aioli, and DGA
(Dynamic Gradient Alignment). We conducted experiments on three datasets of varying sizes and characteristics.

F.1. Datasets

• DOLLY-15K: An instruction follow-up dataset consisting of 15,000 examples with eight original skill categories.

• SUP-NATINST (Natural Instructions In-Domain): A 285k dataset created from Natural Instructions by selecting 100 tasks
out of 876 available tasks containing 38 original skill categories.

• SUP-NATINST-Test (Natural Instructions Out-of-Domain): A 3.56M dataset created from Natural Instructions with
questions and answers from domains not seen SUP-NATINST, containing 60 original skill categories.

For in-distribution datasets (NI-ID and Dolly-15k), we use 90% of the total dataset for training and 5% for testing. For
regrouping experiments, we generate embeddings using ModernBERT with a dimension of 786 and cluster the datasets
using k-means.

F.2. Experimental Configurations

Table 5. Experimental Settings Across Different Datasets

Parameter Dolly-15k, NI-ID, NI-OOD S1-59k

Model GPT-Neo 125M Qwen2-0.5B
Training batch size 16 4
Evaluation batch size 16 16
Context Length 512 8192
Learning rate 5e-5 1e-5
Optimizer AdamW AdamW

G. Extended Training Results
In this appendix, we provide additional experimental results for training on the Dolly-15k dataset for an extended period
of 40,000 steps. This allows us to understand the long-term behavior of R&B compared to different data mixing methods.
Figure 4 shows the training loss curves for different data mixing methods over the full 40,000 steps (left) alongside the
final evaluation loss after 40,000 steps (right). R&B maintains consistent performance over other data mixing methods,
demonstrating the stability of our approach and achieving the best performance with a loss of 2.723.

For this extended training experiment, we focus on the original category partitioning (rather than our regrouping approach)
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Figure 4. Left: Training loss curves for Dolly-15k trained for 40,000 steps with different data mixing methods using the original category
partitioning. Right: Average test loss on Dolly-15k after 40,000 training steps using original category partitioning. Highlighted values
(with brown background) indicate the best overall performance.

to demonstrate R&B’s effectiveness even with pre-defined categories when given sufficient training time. We observe that
all data mixing methods eventually converge to similar performance levels after sufficient training, but R&B maintains a
consistent advantage throughout the training process. This suggests that our gradient-based approach effectively captures the
optimal training dynamics from early stages, leading to more efficient parameter updates throughout the training process.

Furthermore, we study how R&B reweights proportions over time. As illustrated in Figure 5, our method employs a dynamic
approach to domain importance throughout the training process. Initially, domain weights fluctuate significantly as the
model explores the contribution of each domain to overall performance. By the midpoint of training (around steps 40-60), a
clear pattern emerges with Domains 1 and 5 receiving substantially higher weights (reaching approximately 0.225) compared
to other domains. Notably, while these weights gradually trend toward the evaluation distribution proportions shown in
Figure 6, they never completely converge to match the actual evaluation proportions. For instance, Domain 1 maintains
a training weight of around 0.225 even though its evaluation proportion is higher at 53.6%, and Domain 5 stabilizes at
approximately 0.200 despite its 29.3% evaluation proportion. This deliberate partial convergence suggests that optimal
performance requires a strategic balance—influenced by but not identical to the evaluation distribution.

H. Clustering Interpretation
In this section, we provide some interpretation about the groups discovered via clustering.

Table 8 shows the difference in groups before and after clustering on the Dolly-15k dataset. The left column displays
the initial eight categories used to organize the text dataset during collection: brainstorming, classification, closed QA,
generation, information extraction, open QA, summarization, and creative writing. The right column shows the seven distinct
clusters that emerged when applying our clustering algorithm to the entire corpus. Interestingly, rather than following the
original task-based boundaries, these clusters primarily organized around content domains, and subject matter, and subject
length. This suggests that semantic content features may be more salient for learning features than the original task-based
categorization framework, potentially offering new insights into how language models naturally organize information.
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Figure 5. Domain weight evolution during training. Our method dynamically adjusts the importance of each domain throughout the
training process, with Domains 1 and 5 eventually receiving the highest weights while Domains 0, 2, 3, 7, 8, and 9 are downweighted over
time.

Figure 6. Comparison between domain proportions in training versus evaluation data (KL Divergence: 1.04). Our method strategically
reweights domain distributions during training to optimize performance, notably increasing the representation of Domains 1 and 5 while
reducing emphasis on Domains 2, 3, 4, 7, 8, and 9 compared to their evaluation proportions.
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Table 6. Training budget allocations and experimental settings for all datasets and methods.

Dataset Domains Method Training Steps Method-Specific Settings

Dolly-15k

Original (8)

Stratified 2000 full eval dataset
Skill-It 2000 200 steps for graph estimation, full eval dataset
Aioli 2000 rounds=2, sweeps=1, full eval dataset
DGA 2000 full eval dataset
R&B 2000 full eval dataset

Regrouped (7)

Stratified 2000 full eval dataset
Skill-It 2000 200 steps for graph estimation, full eval dataset
Aioli 2000 rounds=2, sweeps=1, full eval dataset
DGA 2000 full eval dataset
R&B 2000 full eval dataset

NI-ID

Original (38)

Stratified 2000 full eval dataset
Skill-It 2000 200 steps for graph estimation, full eval dataset
Aioli 2000 rounds=2, sweeps=1, full eval dataset
DGA 2000 full eval dataset
R&B 2000 full eval dataset

Regrouped (30)

Stratified 2000 full eval dataset
Skill-It 2000 200 steps for graph estimation, full eval dataset
Aioli 2000 rounds=2, sweeps=1, full eval dataset
DGA 2000 full eval dataset
R&B 2000 full eval dataset

NI-OOD

Original (60)

Stratified 2000 full eval dataset
Skill-It 2000 200 steps for graph, full eval dataset
Aioli 2000 rounds=1, sweeps=1, 50k eval samples
DGA 2000 full eval dataset
R&B - -

Regrouped (100)

Stratified 2000 full eval dataset
Skill-It 1000 25 steps for graph, 10k eval samples
Aioli 1000 rounds=1, sweeps=1, 50k eval samples
DGA 2000 full eval dataset
R&B 2000 full eval dataset

∗ Note: There is no result for R&B in the NI-OOD original column because the method requires finding training skills in the evaluation
dataset. In out-of-domain settings, test skills and train skills are different, causing the Gp norm in R&B to be NaN.

Table 7. Training budget allocations and experimental settings for S1-59K dataset.

Dataset Domains Method Training Steps Method-Specific Settings

S1-59K
Original (6) Stratified 500 full eval dataset

R&B 500 num layers to track=1, lamda=3, full eval dataset

Regrouped (10) Stratified 500 full eval dataset
R&B 500 num layers to track=1, lamda=3, full eval dataset
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Original Category Regrouped Cluster
brainstorming Cluster 0: General knowledge and open-ended questions

covering a wide range of topics from science, technol-
ogy, to basic concepts

classification Cluster 1: Music-related queries focusing on instrument
classification, musical theory, and instrument compar-
isons

closed QA Cluster 2: Information extraction and summarization
tasks about various topics including companies, histori-
cal figures, and specific domains

generation Cluster 3: Classification tasks primarily involving an-
imals, colors, household items, and biological catego-
rizations

information extraction Cluster 4: Sports-related queries spanning multiple dis-
ciplines including golf, F1 racing, Olympics, and team
sports

open QA Cluster 5: Entertainment and pop culture queries about
movies, TV shows, musicians, artists, and historical
personalities

summarization Cluster 6: Lifestyle and creative brainstorming queries
covering diverse topics from home improvements to
personal recommendations

creative writing

Table 8. Mapping between original categories and regrouped clusters

20


