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ABSTRACT

Signed link prediction focused on bipartite graphs is a fundamental task with
wide-ranging applications, yet it poses significant challenges. Current Graph Neu-
ral Networks are inherently local due to their message-passing nature, prevent-
ing them from capturing the long-range dependencies crucial for accurate pre-
diction. Furthermore, they often fail to model complex real-world data distribu-
tions characterized by severe class imbalance and rich intra-class multimodality.To
overcome these limitations, we propose the Hierarchical Prototypical Contrastive
Sign-aware Graph Transformer (HPC-SGT), designed specifically for the bipar-
tite setting. At its core, our framework features a Sign-aware Graph Transformer
that operates on the line graph dual, leveraging novel spectral and motif-based in-
ductive priors to learn structurally-aware global representations. This expressive
encoder is optimized via a hierarchical prototypical objective, which learns a ge-
ometrically structured embedding space. It couples a class-balanced contrastive
loss to robustly handle data imbalance with clustering and separation regularizers
to explicitly model multi-modal class structures. The framework is unified by a
cross-view consistency mechanism that grounds the learned semantic representa-
tions in the graph’s foundational topology, bridging the structure-semantics gap.
Extensive experiments on challenging benchmarks, including scenarios with se-
vere class imbalance, show that HPC-SGT significantly outperforms a wide range
of state-of-the-art methods. Ablation studies further validate the contribution of
each component, establishing HPC-SGT as a new, powerful, and principled solu-
tion for signed link prediction. Our code is available in the supplementary materi-
als.

1 INTRODUCTION

Figure 1: An illustrative example of the user-movie rat-
ing interaction in bipartite graphs.

Signed link prediction focused on bipartite
graphs constitutes a fundamental research
problem in network science and machine
learning Koren et al. (2009); Zhao et al.
(2015); Song et al. (2015), with profound
implications for a multitude of real-world
systems, as shown in Figure 1. These
graphs, which model interactions between
two distinct sets of entities—such as users
and items in e-commerce Lin et al. (2024);
Tang et al. (2016); Arrar et al. (2024), vot-
ers and bills in legislative systems Maier
& Simovici (2022); Yin et al. (2019); Guo
et al. (2025), or individuals and groups in
social networks—are often endowed with signs (positive or negative) that encode the nature of the
relationship, e.g., like versus dislike, or trust versus distrust. The ability to accurately forecast the
sign of a new or unobserved link is paramount for applications ranging from personalized recom-
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mendation Wang et al. (2025) and fraud detection to maintaining the integrity of online communities
Braunhofer et al. (2015); Massa & Avesani (2007); Chen et al. (2024a).

While initial approaches relied on social theories Leskovec et al. (2010) or handcrafted features Fu
et al. (2021), the field has shifted towards Graph Neural Networks (GNNs) Wu et al. (2020). Pi-
oneering methods like SGCN Derr et al. (2018), attention-based SiGAT Huang et al. (2019), and
contrastive SGCL Shu et al. (2021) have adapted message-passing to signed networks. However,
these methods face two fundamental limitations. First, their reliance on iterative message-passing
restricts their receptive field, rendering them ill-equipped to model long-range dependencies Zhang
et al. (2020); Wang & Wu (2024); Hang et al. (2024). Second, standard objectives often fail to ad-
dress complex real-world distributions, such as severe class imbalance and intra-class multimodality.

To address these limitations, we propose the Hierarchical Prototypical Contrastive Sign-aware Graph
Transformer (HPC-SGT). Our Sign-aware Graph Transformer operates on the line graph dual, en-
abling global topological reasoning to overcome GNN locality. It incorporates graph-native induc-
tive priors, specifically spectral balance and local motifs, directly into the attention mechanism to
capture global, structurally-principled representations. We optimize this with a hierarchical proto-
typical objective designed to handle class imbalance and intra-class multimodality through geomet-
ric regularizers . Finally, a cross-view consistency mechanism bridges the structure-semantics gap,
ensuring topological fidelity.

Extensive experiments on four benchmarks demonstrate that HPC-SGT significantly outperforms
state-of-the-art baselines, particularly GNN and Transformer competitors, validating our global
structurally-aware architecture. Furthermore, ablation studies confirm the essential role of our
graph-native inductive priors, as their removal leads to substantial performance drops. The con-
tributions of this work are threefold:

• To resolve the inherent locality default of existing GNNs, we propose a Sign-aware Graph
Transformer operating on the line graph. By integrating novel spectral and motif-based
inductive priors, it directly captures long-range signed dependencies and global structural
balance that are typically inaccessible to local message-passing frameworks.

• To tackle the dual challenges of severe class imbalance and intra-class multimodality, we
design a hierarchical prototypical objective. Unlike standard discriminative losses, this
probabilistic framework maps links to diverse semantic prototypes, ensuring that minority
classes are not submerged and that complex, non-Gaussian interaction modes are effec-
tively modeled.

• To mitigate the structure-semantics gap in deep encoders, we introduce a cross-view con-
sistency mechanism. This regularizer bridges the learned semantic representations with the
foundational graph topology, ensuring topological fidelity and preventing the model from
overfitting to spurious patterns.

2 RELATED WORK

2.1 SIGNED BIPARTITE GRAPHS AND LINK PREDICTION

Signed graphs have gained considerable attention due to their significance in social networks and
recommender systems Guo et al. (2020); Chen et al. (2020). The presence of both positive and nega-
tive links enriches these graphs with complex relational dynamics, making them a valuable resource
for tasks such as signed link prediction, node classification, and community detection. Signed Graph
Representation Learning (SGRL) has been proposed as an effective approach to capture the intricate
patterns in signed graphs and better understand the coexistence of positive and negative relation-
ships Wang et al. (2020); Shu et al. (2021). Early SGRL methods focused on random walk strategies
and matrix factorization. Random walk-based approaches like DeepWalk Perozzi et al. (2014) and
node2vec Grover & Leskovec (2016) capture node proximity probabilistically, while matrix fac-
torization Koren (2009) models signed interactions by decomposing adjacency matrices. As deep
learning advanced, SiNE Wang et al. (2017) combined triangle motifs and balance theory to address
positive/negative relationships. SGCN Derr et al. (2018) extended GCNs with balance theory for
multi-hop signed link prediction. Further developments, such as SiGAT Huang et al. (2019) and
SNEA Li et al. (2020), incorporated graph attention mechanisms, allowing more flexible weighting
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of node interactions. Recent methods, including SDGNN Huang et al. (2021b), SBGCL Zhang et al.
(2023), and Trans-CGL Lin et al. (2023), leverage contrastive learning to enhance the robustness of
signed graph representations Qin et al. (2025a).

Despite these advances, modeling balance theory in bipartite graphs remains a challenge due to its
high space and time complexities, which become impractical as the graph size grows. Consequently,
while these methods improve the prediction of link signs, they still struggle with scalability and
efficiency in handling vast signed graphs Ortega et al. (2018); Lin et al. (2025); Qin et al. (2025b).

2.2 TRANSFORMERS AND LINE GRAPHS

To overcome the locality issue of GNNs, recent research has turned to the Graph Transformer archi-
tecture Li et al. (2024); Chen et al. (2024b); Zhao et al. (2025). Its global self-attention mechanism
theoretically allows every node to interact with every other node, making it a promising candidate
for capturing long-range dependencies. However, standard Transformers are topology-agnostic, and
their effectiveness on graphs is highly dependent on the injection of explicit structural and positional
encodings to make the attention mechanism aware of the underlying graph structure—a challenge
our methodology directly addresses.

Parallel to this, the line graph transformation has emerged as a powerful technique for link-level tasks
Xing & Makrehchi (2024). By converting edges from the original graph into nodes in a new graph,
the line graph reframes signed link prediction as a node classification problem. This enables node-
centric architectures like GNNs or Transformers to directly model the interactions between links.
While these advanced concepts are powerful individually, a unified framework that synergistically
combines a structure-aware Graph Transformer on the line graph with learning objectives tailored
for the complex distributions of signed links remains an open challenge.

3 PRELIMINARY

A signed bipartite graph is denoted as G = (V, E , s), where the vertex set V = U ∪ V consists of
two disjoint partitions of nodes, such as users U and items V . The edge set E ⊆ U × V represents
the interactions between these two sets of nodes. The sign function s : E → {+1,−1} assigns
a positive (e.g., like, purchase) or negative (e.g., dislike, negative review) sign to each interaction,
where the set of all edges can be partitioned into positive and negative sets, E = E+ ∪ E− with
E+∩E− = ∅ Guo et al. (2020); Chen et al. (2020). The task of signed link prediction in this context
assumes that the full edge set E is partitioned into a set of observed edges, Eobs, for which the signs
are known, and a set of target edges, Eunk, for which the signs are withheld for evaluation. Given the
graph structure (V, E) and the known signs on Eobs, the objective is to learn a predictive function f
that infers the sign yuv ∈ {+1,−1} for each target edge (u, v) ∈ Eunk. This is typically achieved by
learning low-dimensional embeddings for all nodes that encode the complex structural patterns and
sign information within the graph Perozzi et al. (2014).

4 METHODOLOGY

In this section, we present the technical details of our proposed framework, the Hierarchical Proto-
typical Contrastive Sign-aware Graph Transformer (HPC-SGT). Our approach is built upon a syner-
gistic system of three core innovations designed to overcome the key limitations of existing methods
in signed link prediction. We begin by detailing the architecture of our Sign-aware Graph Trans-
former, which operates on the line graph and incorporates novel inductive priors to capture global,
structurally-aware representations. Next, we describe our Hierarchical Prototypical Learning Ob-
jective, a unified framework designed to handle both class imbalance and intra-class multimodality.
Finally, we introduce our Cross-View Consistency mechanism, a principled regularizer that ensures
the learned representations are topologically faithful.

4.1 SIGN-AWARE GRAPH TRANSFORMER FOR GLOBAL LINK REPRESENTATION

To transcend the inherent locality of conventional GNNs, we propose a Sign-aware Graph Trans-
former (SGT) that operates on the line graph dual. This core component is distinguished by its
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Figure 2: The integrated architecture of HPC-SGT. The framework learns global link representations
using a Sign-aware Graph Transformer on the line graph. The entire model is unified and regularized
by a Cross-View Co-training Mechanism for robust learning.

novel graph-native inductive biases, which are specifically engineered for the unique properties of
signed networks.

Line Graph Formulation. We first transform the input signed bipartite graph, formally defined
as Gb = (U ,V, E , s), into its line graph dual Gl = (Vl, El). Here, s : E → {−1,+1} is the sign
function. This transformation allows the model to directly reason about link-level interactions. The
vertex set Vl corresponds to the edge set E of the original graph, such that each vertex vk ∈ Vl

represents a unique edge ek ∈ E . The edge set El is constructed based on edge incidence in Gb:

El = {(vi, vj) | vi, vj ∈ Vl, i ̸= j, and ei ∩ ej ̸= ∅}, (1)

where an edge is treated as a set of its two endpoints. We provide a rigorous theoretical analysis in
Appendix H, discussing the injectivity of this transformation based on Whitney’s isomorphism theo-
rem (guaranteed for bipartite graphs) and its computational complexity. In practice, the construction
cost is linear O(∆|E|) due to the sparsity of real-world interaction graphs, and effectively converts
higher-order signed motifs into one-hop neighborhoods for efficient attention learning.

Assuming initial node embeddings HU ∈ R|U|×d/2 and HV ∈ R|V|×d/2, we construct the initial
feature matrix for the line graph, Xl ∈ R|E|×d. The feature vector for a vertex vk representing edge
ek = (up, vq) is the concatenation of its endpoint embeddings:

xk = Xl[k, :] = [HU[p, :] ∥HV[q, :]]. (2)

Finally, the labels for the line graph vertices are defined by a vector Yl ∈ {−1,+1}|E|, where
yk = s(ek). This formulation effectively reframes signed link prediction as a node classification
task on the line graph.

Graph-Native Inductive Priors. Standard Transformers are inherently topology-agnostic, ignor-
ing underlying graph structures. To address this, we inject two graph-native inductive priors directly
into the self-attention mechanism. These priors provide multi-scale structural awareness, enabling
the model to effectively reason over both global network-wide balance and local higher-order con-
nectivity patterns.

Relational Spectral Encoding (RSE) serves as the global prior, designed to operationalize the prin-
ciples of social balance theory within the spectral domain of the graph. To achieve this in a topolog-
ically sound manner, we first define the line graph’s binary adjacency matrix, Al ∈ {0, 1}|Vl|×|Vl|,
and a sign vector s ∈ {−1,+1}|Vl| where sk = sign(ek). The topologically-aware signed adjacency
matrix AS is then constructed via the Hadamard product:

AS = Al ⊙ (ssT ). (3)
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The signed Laplacian is defined as LS = D|S|−AS , where [D|S|]ii =
∑

j |AS(i, j)|. We construct
the RSE prior from the eigenvectors corresponding to the smallest dh eigenvalues of LS :

H̃ = EigVecssmallest dh
(LS), Ps = αs · ZeroDiag(H̃H̃⊤), (4)

where the orthonormal columns of H̃ ∈ R|Vl|×dh encode global partitioning and balance akin to the
Fiedler vector, enabling RSE to bypass local limits and capture long-range dependencies. Scaled
by a learnable αs ∈ R, we remove the diagonal to prevent self-attention dominance and treat Ps

as fixed by stopping gradients to H̃. The decomposition employs the Lanczos algorithm on LS ,
achieving a complexity of O(dh ·K · |El|) for K iterations.

Topological Motif Encoding (TME) complements the global prior by providing fine-grained local
structural information. This component moves beyond simple adjacency to capture the semantic role
of higher-order network motifs. Specifically, we focus on signed triadic closures, which manifest
as paths of exactly two hops in the line graph. We define Np = 4 distinct motif types based on
the sign tuple of the edges forming a 2-hop path. This value is not an arbitrary hyperparameter
but is naturally determined by the complete set of binary sign permutations for a 2-hop relation:
{(+,+), (+,−), (−,+), (−,−)}, as empirically verified in Appendix K.

The TME prior, Pp, is formulated:

oij =
∑

m∈Sij

onehot
(
s(eim), s(emj)

)
∈ N4, (5)

where s(eim) is the sign of the edge between nodes vi and vm. The final prior value is a learnable
weighted sum of these counts, non-zero only for 2-hop neighbors:

Pp(i, j) =

{
αp · (o⊤

ijϕ) if distl(i, j) = 2

0 otherwise,
(6)

where ϕ ∈ R4 and αp ∈ R are learnable weights. This formulation allows the model to dynamically
infer the importance of both the type and prevalence of local connectivity patterns. We keep (+,−)
and (−,+) motifs distinct to respect the inherent directionality of the attention mechanism.

Transformer Encoder Architecture. The SGT encoder consists of a stack of L identical lay-
ers, each layer being composed of two main sub-modules: multi-head self-attention (MHA) and
a position-wise feed-forward network (FFN). We employ residual connections around each sub-
module, followed by layer normalization.

The first sub-module, MHA, is where our graph-native inductive priors are injected. The input link
representations H(l−1) ∈ R|Vl|×d are first linearly projected into queries, keys, and values for each
of the Nh attention heads. For a given head h, the attention output is computed by augmenting the
standard scaled dot-product attention with our structural priors:

headh = softmax

(
(H(l−1)WQ

h )(H
(l−1)WK

h )T√
dk

+Ps +Pp

)
(H(l−1)WV

h ), (7)

where WQ
h ,W

K
h ,WV

h ∈ Rd×dk are the learnable projection matrices for head h, and dk = d/Nh.
The outputs of all heads are then concatenated and passed through a final linear projection to produce
the MHA output:

MHA(H(l−1)) = Concat(head1, . . . , headNh
)WO. (8)

The full layer-wise update rule for transforming the input representations H(l−1) to the output H(l)

at layer l is defined as follows, where FFN is a two-layer perceptron applied to each position inde-
pendently:

H′ = LayerNorm
(
H(l−1) +MHA(H(l−1))

)
(9)

H(l) = LayerNorm (H′ + FFN(H′)) . (10)

The final output of the stack, H(L), serves as the matrix of deeply contextualized and structurally-
principled link representations used for downstream tasks.
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4.2 HIERARCHICAL PROTOTYPICAL LEARNING OBJECTIVE

The structurally-principled representations H(L) are optimized via a hierarchical objective. The
theoretical premise of our approach is to reframe the learning problem as a probabilistic assignment
over a set of learnable prototypes, a formulation designed to inherently address both class imbalance
and intra-class multimodality. Crucially, these prototypes capture distinct, interpretable semantic
patterns within the signed interaction data, as demonstrated in our empirical analysis in Appendix G
We map each link embedding hi ∈ H(L) to a probability distribution over a set of prototypes C =⋃

c Cc. The foundation of our objective is the soft assignment probability pij of an embedding hi

to a prototype cj , governed by a softmax over the negative squared Euclidean distance d(hi, cj) =
∥hi − cj∥22:

pij = P (cj |hi) =
exp(−d(hi, cj)/τ)∑|C|
k=1 exp(−d(hi, ck)/τ)

, (11)

where τ is a temperature parameter. From this probabilistic foundation, we derive a composite loss
LH with three synergistic components designed to sculpt the embedding space. The primary dis-
criminative loss (Lclass) applies a class-balanced cross-entropy to the marginalized class probability
P (yi|hi) =

∑
ck∈Cyi

pik to ensure accurate classification under imbalance:

Lclass = −
N∑
i=1

αyi
logP (yi|hi), (12)

where αyi is a class-balancing weight. Crucially, this loss operates on the marginal probability over
multiple prototypes rather than a single centroid, allowing the model to capture diverse intra-class
modes while αyi adjusts the decision boundary. This is complemented by a clustering regularizer
(Lcluster), which minimizes the entropy of the assignment distribution pij to enforce cluster compact-
ness and encourage embeddings of the same class (including minority ones) to concentrate around
specific prototypes:

Lcluster =
1

N

N∑
i=1

−
|C|∑
j=1

pij log pij

 . (13)

Finally, a separation regularizer (Lsep) imposes a geometric prior on the prototypes themselves to
ensure inter-class separation, which helps maintain large metric margins even when one class is
heavily under-represented:

Lsep =
∑

ck∈Cpos

∑
cj∈Cneg

exp(−d(ck, cj)). (14)

These components are jointly optimized in a weighted sum:
LH = Lclass + β1Lcluster + β2Lsep. (15)

4.3 JOINT OPTIMIZATION WITH CROSS-VIEW CONSISTENCY

Training a deep encoder risks a structure-semantics gap where learned representations diverge from
the topology. To mitigate this, we introduce a cross-view consistency mechanism that enforces
topological fidelity by aligning two perspectives for each link ek: the foundational structural view
h
(0)
k ∈ Xl and the advanced semantic view h

(L)
k from the SGT. Utilizing the learnable prototypes

C as a shared latent vocabulary, we maximize the consistency of probabilistic assignments between
these views. The probability of assigning an embedding h to a prototype cj is given by:

P (cj |h) =
exp(−∥h− cj∥22/τc)∑

cm∈C exp(−∥h− cm∥22/τc)
, (16)

where τc is a temperature parameter. For a given link ek, this yields two probability distributions
over the prototypes: P(0)

k from the foundational view h
(0)
k , and P

(L)
k from the advanced view h

(L)
k .

The cross-view consistency loss then penalizes the divergence between these two interpretations
using the symmetric Kullback-Leibler (KL) divergence:

Lconsistency =
1

2|Vl|

|Vl|∑
k=1

(
DKL(P

(0)
k ∥P(L)

k ) +DKL(P
(L)
k ∥P(0)

k )
)
. (17)
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Overall Objective. The entire HPC-SGT framework is then trained by jointly optimizing the hi-
erarchical prototypical contrastive objective and the cross-view consistency loss. The final objective
function is a weighted sum of these two components:

Ltotal = LH + γLconsistency. (18)

This joint optimization ensures that the SGT learns link representations that are not only discrimi-
native and well-structured but also remain faithful to the ground-truth graph topology.

5 EXPERIMENTS

In this section, we empirically evaluate our proposed HPC-SGT framework. We first compare its
performance against a wide range of state-of-the-art baselines on the task of signed link predic-
tion. We then conduct detailed ablation studies to quantify the individual contributions of our core
components. Finally, we analyze the framework’s hyperparameter sensitivity and computational
efficiency.

5.1 EXPERIMENTAL SETTINGS

Datasets and Baselines. We conduct experiments on four large-scale signed bipartite graph
benchmarks: Amazon-Book McAuley et al. (2015), ML-1M Harper & Konstan (2015), ML-10M,
and Gowalla Cho et al. (2011). We construct signed links following established protocols (Derr
et al., 2018; Chen et al., 2024b). For rating-based datasets (Amazon-Book, MovieLens), we map
user ratings ≥ 4 to positive (+1) links and those ≤ 3 to negative (-1). For the implicit check-in
data from Gowalla, all existing interactions are considered positive, and we sample an equal number
of unobserved user-location pairs as negative links. Detailed statistics for the resulting datasets are
provided in Appendix A.1. We compare our framework, HPC-SGT, against fourteen state-of-the-art
baselines spanning four categories: (i) Unsigned Methods, (ii) Early Signed Embeddings, (iii) GNN-
based Models, and (iv) Transformer-based Architectures. Appendix A provides detailed statistics
and descriptions.

Evaluation Metrics. Following established protocols (Zhang et al., 2023; Huang et al., 2021a), we
evaluate performance on the signed link prediction task using four standard metrics: AUC, Binary-
F1, Macro-F1, and Micro-F1. Higher values indicate superior performance. We use AUC as the
primary metric for model selection, given its threshold-independent nature.

Implementation Details and Protocol. We adopt a standard transductive learning setup, splitting
the links (nodes in the line graph) into 85% for training, 5% for validation, and 10% for testing. This
standard link-based split, rather than a node-based one, ensures all node embeddings are learned
during training while preventing label leakage, as the validation and test link instances are held out.
For robustness, we report the mean performance over five independent runs with different random
seeds. For a fair comparison, all models are initialized with identical 32-dimensional learnable node
embeddings. Baselines operate on the original bipartite graph Gb, whereas our HPC-SGT operates
on its line graph dual Gl. The final prediction score for a link ei is its probability of belonging to
the positive class, P (yi = +1|hi), which is computed by marginalizing over the positive prototypes
as defined in our methodology. All hyperparameters for all models were optimized via a systematic
grid search, maximizing the AUC score on the validation set.

5.2 PERFORMANCE COMPARISON

Table 1 demonstrates that HPC-SGT establishes a new state-of-the-art across all benchmarks. By
consistently surpassing GNNs like LightGCL, we validate the superiority of global attention over
local message-passing for capturing long-range dependencies. Moreover, HPC-SGT outperforms
Transformers like SIGformer, highlighting the decisive advantage of our graph-native inductive pri-
ors. Significant improvements in F1 metrics further underscore the efficacy of our hierarchical
prototypical objective, which models multi-modal class structures and explicitly handles imbalance
to yield robust decision boundaries compared to standard losses.

To ensure our gains stem from the integral design rather than artifacts of weighting strategies, we
retrained baselines with identical class weights (Appendix E); HPC-SGT maintained a decisive lead

7
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Table 1: Performance comparison on four signed bipartite datasets. Our proposed model, HPC-SGT,
consistently outperforms all baseline methods across all metrics. The best results are highlighted in
bold.

Amazon-Book ML-1M ML-10M Gowalla

Method AUC Bi Macro Micro AUC Bi Macro Micro AUC Bi Macro Micro AUC Bi Macro Micro

DeepWalk 0.594 0.573 0.538 0.585 0.591 0.557 0.523 0.539 0.627 0.580 0.542 0.579 0.574 0.502 0.511 0.548
Node2Vec 0.547 0.656 0.488 0.543 0.635 0.582 0.609 0.611 0.654 0.671 0.551 0.562 0.536 0.614 0.494 0.587
LINE 0.588 0.593 0.517 0.567 0.628 0.578 0.541 0.602 0.621 0.612 0.581 0.589 0.601 0.589 0.502 0.596

SiNE 0.594 0.559 0.491 0.458 0.573 0.528 0.511 0.579 0.609 0.534 0.528 0.499 0.585 0.526 0.545 0.602
SBiNE 0.578 0.541 0.486 0.509 0.552 0.503 0.509 0.516 0.582 0.522 0.519 0.586 0.596 0.528 0.508 0.557
SCsc 0.581 0.436 0.427 0.537 0.589 0.484 0.479 0.581 0.648 0.489 0.509 0.574 0.577 0.488 0.478 0.559

SGCN 0.593 0.693 0.504 0.582 0.632 0.662 0.615 0.627 0.632 0.671 0.584 0.605 0.602 0.651 0.518 0.604
SGCL 0.613 0.710 0.502 0.604 0.632 0.673 0.662 0.652 0.631 0.698 0.579 0.645 0.604 0.668 0.508 0.617
SBGNN 0.603 0.720 0.552 0.612 0.652 0.699 0.653 0.674 0.639 0.702 0.601 0.638 0.611 0.672 0.597 0.629
SBGCL 0.637 0.734 0.587 0.640 0.685 0.702 0.678 0.680 0.652 0.711 0.628 0.688 0.605 0.698 0.625 0.667
LightGCL 0.647 0.747 0.601 0.642 0.727 0.711 0.655 0.736 0.701 0.728 0.681 0.694 0.645 0.694 0.677 0.665

SIGformer 0.658 0.740 0.617 0.652 0.715 0.725 0.688 0.721 0.729 0.731 0.689 0.708 0.659 0.711 0.698 0.672
SE-SGformer 0.681 0.738 0.621 0.668 0.721 0.732 0.704 0.728 0.715 0.724 0.702 0.701 0.684 0.704 0.685 0.694

HPC-SGT (Ours) 0.744 0.801 0.671 0.718 0.748 0.781 0.734 0.745 0.760 0.784 0.735 0.747 0.739 0.753 0.721 0.736

despite marginal baseline improvements. We further validated the model’s capacity for long-range
dependencies via distance-bucket analysis (Appendix I), demonstrating superior stability on distant
links where baselines degrade. Finally, comparisons against a “Line-GAT” baseline (Appendix J)
confirm that the performance stems from our global sign-aware attention and inductive priors rather
than solely from the line graph representation.

5.3 ABLATION STUDY

Table 2: Ablation study of HPC-SGT’s core com-
ponents. Removing any module degrades perfor-
mance, confirming its contribution. Best results
are in bold.

Amazon-Book ML-1M

Method AUC Bi Ma Mi AUC Bi Ma Mi

w/o RSE 0.721 0.759 0.602 0.686 0.701 0.732 0.688 0.704
w/o TME 0.705 0.766 0.622 0.654 0.714 0.728 0.681 0.711
Single-Prototype 0.718 0.791 0.618 0.671 0.698 0.725 0.694 0.701
w/o Cross-View 0.701 0.784 0.630 0.689 0.717 0.719 0.684 0.723

HPC-SGT 0.744 0.801 0.671 0.718 0.739 0.753 0.721 0.736

We evaluate four removals on Amazon-Book
and ML-1M: the spectral prior (RSE), the mo-
tif prior (TME), the multi-prototype head (re-
placed by a single prototype per class), and the
cross-view consistency term. All runs share
the same training protocol and hyperparameters
as the full model. Table 2 shows that across
both datasets, each ablation yields a consistent
drop on ranking and F1 metrics, while the full
HPC-SGT remains strongest. The trends are
complementary: RSE improves global struc-
ture awareness and class balance; TME ben-
efits short-range decisions reflected in micro-
averaged scores; the multi-prototype head bet-
ter captures intra-class variability than a single prototype; and the consistency term regularizes the
encoder by aligning structural and semantic views. These effects appear in both benchmarks, indi-
cating that the components address distinct failure modes rather than overlapping the same gain.

5.4 PARAMETER ANALYSIS

We examine four hyperparameters that map directly to the model design: the spectral capacity of the
global prior (dh), the number of prototypes per class (Kc), the cross-view consistency weight (γ),
and the assignment-entropy weight (β1). Each sweep varies a single parameter while holding the
others fixed to the main configuration; unless swept, we set β1=0.2 and dh=32. The curves (AUC
and Bi-F1) show a consistent pattern. Increasing dh improves performance up to a clear knee and
then saturates, indicating that a modest set of spectral components is sufficient to carry the long-
range balance signal. Varying Kc confirms the utility of explicit multi-prototype modeling: moving
from one to a small set of prototypes strengthens decision boundaries, after which gains diminish as
the head becomes over-parameterized. The consistency term exhibits a broad plateau, with moderate
γ yielding the best trade-off between anchoring the encoder to the structural view and preserving
flexibility. For β1, mid-range values avoid both diffuse assignments and premature peaking, and
produce more stable training.
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5.5 CLASS IMBALANCE.

(a) Spectral encoding
dimension dh

(b) Prototypes per class Kc

(c) Consistency weight γ (d) Assignment-entropy
weight β1

Figure 3: Sensitivity analysis of key hyper-parameters on
model performance.

To evaluate the performance of HPC-
SGT in addressing extreme class im-
balance issues, we select the Bonanza
dataset for our experiments, which
exhibits the largest disparity between
the number of positive and negative
links. We compare HPC-SGT with
several existing methods that address
class imbalance among graph nodes,
including ImGAGN, GraphENS, and
GraphSHA. To process the signed bi-
partite graph, we transform it into a
line graph before applying the afore-
mentioned methods. The experimen-
tal results are shown in Figure 4.
It is observed that HCP-SGT signif-
icantly outperforms ImGAGN Wang
et al. (2024), GraphENS Shi et al.
(2024), and GraphSHA. This demonstrates that HPC-SGT is better at balancing performance among
different classes, particularly excelling in the precise identification of the tail class.

To further rigorously validate this capability, we conducted two additional sets of experiments de-
tailed in Appendix F: (1) benchmarking against strong general baselines (LightGCL, SIGformer, SE-
SGformer) on the highly skewed Bonanza dataset, and (2) performing stress tests on the Amazon-
Book dataset with artificially induced extreme imbalance ratios (90:10 and 95:5). In both scenarios,
HPC-SGT maintains a robust performance advantage, particularly in Macro-F1 scores, confirming
its resilience to severe data skew.

6 CONCLUSION

Figure 4: Comparison on BONANZA under severe class
imbalance.

In this paper, we introduced HPC-SGT,
a novel framework for signed link pre-
diction. Extensive experiments and abla-
tion studies validated that HPC-SGT es-
tablishes a new state-of-the-art on multi-
ple benchmark datasets. We demonstrated
that its success stems from a principled co-
design of its components. Its Sign-aware
Graph Transformer operates on the line
graph with novel inductive priors to cap-
ture global dependencies inaccessible to
standard GNNs. This powerful encoder is
guided by a hierarchical prototypical ob-
jective that synergistically handles com-
plex data, using a class-balanced loss to
manage imbalance and geometric regularizers to model multimodality. The framework’s robust-
ness is further enhanced by a cross-view consistency mechanism that ensures topological fidelity.
Acknowledging the computational cost of the Transformer as a limitation, a key direction for future
work is the exploration of more efficient sparse attention mechanisms. Furthermore, while this work
focuses on static snapshots, HPC-SGT is naturally extensible to dynamic settings. Future research
could deploy the SGT encoder over temporal sliding windows and maintain hierarchical prototypes
via incremental updates to effectively model evolving signed interactions.
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ETHICS STATEMENT

The authors of this work have adhered to the ICLR Code of Ethics. Our research is conducted on
publicly available benchmark datasets commonly used for evaluating signed link prediction models.
These datasets contain anonymized user-item interactions, and our study does not involve any direct
experimentation with human subjects.

We acknowledge that link sign prediction models, including HPC-SGT, have potential for dual use.
While they can be applied beneficially to enhance recommendation systems or identify supportive
communities, they could also be misused to infer contentious social relationships or amplify po-
larization. Furthermore, as our model is trained on real-world data, it may inherit and potentially
amplify existing societal biases present in that data. A thorough investigation into the fairness and
potential biases of the learned representations is an important direction for future research. We are
committed to the responsible development and application of machine learning technologies.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. To this end, we provide the
main source code for our HPC-SGT framework, model configurations, and experiment scripts in the
supplementary materials. The core methodology, including the architecture of our Sign-aware Graph
Transformer and the formulation of our hierarchical learning objective, is detailed in Section 4. A
step-by-step training procedure is provided in pseudocode in Appendix B. All experimental settings,
including descriptions of the publicly available benchmark datasets, evaluation protocols, and a
comprehensive list of hyperparameter values, are documented in Section 5 and the Appendix.
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Graph signal processing: Overview, challenges, and applications. Proceedings of the IEEE, 106
(5):808–828, 2018.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710, 2014.

Jiawen Qin, Pengfeng Huang, Qingyun Sun, Cheng Ji, Xingcheng Fu, and Jianxin Li. Graph size-
imbalanced learning with energy-guided structural smoothing. In Proceedings of the Eighteenth
ACM International Conference on Web Search and Data Mining, WSDM ’25, pp. 457–465, New
York, NY, USA, 2025a. Association for Computing Machinery. ISBN 9798400713293. doi:
10.1145/3701551.3703559. URL https://doi.org/10.1145/3701551.3703559.

Jiawen Qin, Haonan Yuan, Qingyun Sun, Lyujin Xu, Jiaqi Yuan, Pengfeng Huang, Zhaonan Wang,
Xingcheng Fu, Hao Peng, Jianxin Li, and Philip S. Yu. Igl-bench: Establishing the comprehensive
benchmark for imbalanced graph learning, 2025b. URL https://arxiv.org/abs/2406.
09870.

Meilun Shi, Enguang Zuo, Hanwen Qu, and Xiaoyi Lv. Graphuc: Predictive probability-based
graph-structured data augmentation model for class imbalance node classification. In 2024 4th
International Conference on Electronic Information Engineering and Computer Science (EIECS),
pp. 933–936, 2024. doi: 10.1109/EIECS63941.2024.10800434.

Lin Shu, Erxin Du, Yaomin Chang, Chuan Chen, Zibin Zheng, Xingxing Xing, and Shaofeng Shen.
Sgcl: Contrastive representation learning for signed graphs. In Proceedings of the 30th ACM
International Conference on Information & Knowledge Management, pp. 1671–1680, 2021.

Dongjin Song, David A Meyer, and Dacheng Tao. Efficient latent link recommendation in signed
networks. In Proceedings of the 21th ACM SIGKDD international conference on knowledge
discovery and data mining, pp. 1105–1114, 2015.

Jiliang Tang, Charu Aggarwal, and Huan Liu. Recommendations in signed social networks. In
Proceedings of the 25th International Conference on World Wide Web, pp. 31–40, 2016.

George Yuanji Wang, Srisharan Murugesan, and Aditya Prince Rohatgi. Gan-tat: A novel frame-
work using protein interaction networks in druggable gene identification, 2024. URL https:
//arxiv.org/abs/2501.01458.

Qu Wang and Hao Wu. Dynamically weighted directed network link prediction using tensor ring
decomposition. In 2024 27th International Conference on Computer Supported Cooperative Work
in Design (CSCWD), pp. 2864–2869. IEEE, 2024.

Suhang Wang, Jiliang Tang, Charu Aggarwal, Yi Chang, and Huan Liu. Signed network embedding
in social media. In Proceedings of the 2017 SIAM international conference on data mining, pp.
327–335. SIAM, 2017.

Tianming Wang, Xiaojun Wan, and Hanqi Jin. Amr-to-text generation with graph transformer.
Transactions of the Association for Computational Linguistics, 8:19–33, 2020.

Yifan Wang, Yangzi Yang, Shuai Li, Yutao Xie, Zhiping Xiao, Ming Zhang, and Wei Ju. Gmr-rec:
Graph mutual regularization learning for multi-domain recommendation. Information Sciences,
703:121946, 2025.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Chen Xing and Masoud Makrehchi. Line graph is the key: An exploration of line graph on link
prediction with social networks. In 2024 11th International Conference on Behavioural and
Social Computing (BESC), pp. 1–7, 2024. doi: 10.1109/BESC64747.2024.10780611.

Ruiping Yin, Kan Li, Guangquan Zhang, and Jie Lu. A deeper graph neural network for recom-
mender systems. Knowledge-Based Systems, 185:105020, 2019.

15

https://doi.org/10.1145/3701551.3703559
https://arxiv.org/abs/2406.09870
https://arxiv.org/abs/2406.09870
https://arxiv.org/abs/2501.01458
https://arxiv.org/abs/2501.01458


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-bert: Only attention is needed for
learning graph representations. arXiv preprint arXiv:2001.05140, 2020.

Zeyu Zhang, Jiamou Liu, Kaiqi Zhao, Song Yang, Xianda Zheng, and Yifei Wang. Contrastive learn-
ing for signed bipartite graphs. In Proceedings of the 46th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 1629–1638, 2023.

Wayne Xin Zhao, Sui Li, Yulan He, Edward Y Chang, Ji-Rong Wen, and Xiaoming Li. Connecting
social media to e-commerce: Cold-start product recommendation using microblogging informa-
tion. IEEE Transactions on Knowledge and Data Engineering, 28(5):1147–1159, 2015.

Yumeng Zhao, Hongxiang Lin, Shuo Wen, Junjie Shen, and Bei Hua. Sma-gnn: A symbol-aware
graph neural network for signed link prediction in recommender systems. In Proceedings of the
31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 2, pp. 3957–3967,
2025.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A DATASETS AND EXPERIMENTAL SETTINGS

A.1 DATASETS

Table 3 lists the basic statistics for every signed bipartite graph used in our study. The
four core benchmarks analysed in the main paper—Amazon-Book, ML-10M, Gowalla, and
MovieLens-1M—cover e-commerce, location-based social check-ins, and movie-rating domains.
To gauge scalability and robustness, we further consider five supplementary signed graphs of
varying size and sparsity: Bonanza (e-commerce buyer/seller ratings), U.S. House and U.S. Sen-
ate (congressional roll-call votes), and two phases of a computer-science Review dataset (pre- and
post-rebuttal).

Table 3: Statistics of the signed bipartite graphs used in this work. |U | / |V | denote the two node
partitions; |E| = |E+|+|E−|. Positive/negative ratios follow the sign definitions in each source.

Dataset |U | |V | |E| %|E+| %|E−| Domain

Amazon-Book 35,736 38,121 1,960,674 0.806 0.194 E-commerce
ML-10M 69,878 10,677 10,000,054 0.589 0.411 Movies
Gowalla 37,000 11,500 3,500,000† 0.612 0.388 LBSN
MovieLens-1M 6,040 3,952 1,000,209 0.575 0.425 Movies

Bonanza 7,919 1,973 36,543 0.980 0.020 E-commerce
U.S. House 515 1,281 114,378 0.540 0.460 Politics
U.S. Senate 145 1,056 27,083 0.553 0.447 Politics
Review (Pre.) 182 304 1,170 0.403 0.597 Peer review
Review (Final) 182 304 1,170 0.397 0.603 Peer review

A.2 BASELINE DESCRIPTIONS

To provide a comprehensive comparison, we evaluate HPC-SGT against four families of existing
techniques. All baselines are trained and tuned under the unified protocol described in the paper;
hyper-parameter grids follow the ranges recommended by the original authors.

(i) Heuristic / unsigned methods. DeepWalk, Node2Vec, and LINE learn node embeddings from
unsigned random walks or edge sampling, entirely disregarding polarity. Once the embeddings are
obtained, the representation of a candidate edge is formed by concatenating the two endpoint vectors
and feeding the result into a logistic classifier. Although these models cannot reason about positive
versus negative semantics, they establish a structural lower bound and clarify how much benefit
arises purely from sign information.

(ii) Early signed embeddings. SiNE, SBiNE, and SCsc extend skip-gram training with sign-aware
constraints. SiNE introduces a margin-based triplet loss that forces positively connected nodes to be
closer than negatively connected ones. SBiNE tailors this idea to bipartite topology by preserving
sign-specific first- and second-order proximity. SCsc adds social-balance regularisers that push the
geometry of embeddings toward structurally balanced configurations. All three methods remain
shallow and scalable, yet their expressiveness is limited by the absence of higher-order message
passing.

(iii) GNN-based models. SGCN propagates messages through disjoint positive and negative chan-
nels, explicitly following balance theory at each layer. SGCL introduces a contrastive loss that pulls
together node pairs appearing in balanced triads and pushes apart those in unbalanced ones. SBGNN
augments standard graph convolutions with learnable sign masks, while SBGCL combines this ar-
chitecture with contrastive regularisation to sharpen sign discrimination. LightGCL streamlines the
same principles into a parameter-efficient design that reduces memory without sacrificing accuracy.
These models capture high-order structures but still aggregate over the entire graph, leaving local
sign motifs partly diluted and node roles implicit.

(iv) Transformer-style architectures. SIGformer applies multi-head self-attention to signed
graphs, masking attention weights with polarity-aware filters to preserve balance constraints even

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

at long range. SE-SGformer extends this blueprint with self-explainable heads that highlight path
patterns responsible for each prediction. Both architectures rely on global attention, which can blur
local context and incurs quadratic memory growth with graph size.

A.3 IMPLEMENTATION DETAILS

Experimental Setup. All experiments were conducted on a server equipped with an NVIDIA
A100 GPU. Our proposed HPC-SGT framework was implemented using PyTorch and the PyTorch
Geometric (PyG) library. For all baseline models, we utilized their officially released code where
available or re-implemented them faithfully according to their original papers to ensure a rigorous
and fair comparison.

HPC-SGT Configuration and Training. Unless otherwise specified, we set the embedding di-
mension to d = 32 for all models. For our HPC-SGT, the Sign-aware Graph Transformer encoder
consists of L = 3 layers, with Nh = 4 attention heads in each MHA module. The hidden dimen-
sion of the FFN was set to 256. We applied a dropout rate of 0.1 throughout the encoder. For our
graph-native inductive priors, the spectral dimension for RSE was set to dh = 32.

The hierarchical prototypical objective is configured with Kc = 4 prototypes per class and a tem-
perature of τ = 0.1 for the probabilistic assignment. The loss weights were set to β1 = 0.2 for the
clustering regularizer and β2 = 0.1 for the separation regularizer. For the cross-view consistency
mechanism, the temperature was set to τc = 1.0 and the loss weight to γ = 0.1. All models were
trained using the AdamW optimizer with a learning rate of 1×10−3 and a weight decay of 1×10−5,
managed by a cosine annealing scheduler. We used a batch size of 1024 and trained for up to 200
epochs, with an early stopping patience of 20 epochs based on the validation set’s AUC score.

B ALGORITHM DETAILS

Algorithm 1 provides a detailed outline of the training procedure for our proposed HPC-SGT frame-
work. The process is divided into two main stages: initialization and the main training loop, where
all components are jointly optimized.

Stage 1: Initialization (Lines 3-6). Before training, we first construct the line graph dual Gl from
the input signed bipartite graph Gb. The initial node embeddings for the original graph, HU and
HV , are initialized as learnable parameters. These are then used to construct the initial feature
matrix for the line graph, H(0), by concatenating the endpoint embeddings for each corresponding
link. Finally, the parameters of the SGT Encoder and the set of learnable prototypes C are initialized.

Stage 2: Joint Optimization Loop (Lines 8-16). The main training is performed by jointly op-
timizing all learnable parameters within a training loop. In each epoch, the SGT Encoder first
processes the initial link features H(0) to produce the final, contextualized link embeddings H(L)

(Line 10). These embeddings are then used to compute the two main components of our total loss
function.

• The Hierarchical Prototypical Objective, LH, is computed based on the final embeddings
H(L) and the prototypes C. This involves first calculating the probabilistic assignments of
embeddings to prototypes, and then using these probabilities to compute the three syner-
gistic loss terms: the class-balanced discriminative loss (Lclass), the clustering regularizer
(Lcluster), and the separation regularizer (Lsep) (Line 12).

• The Cross-View Consistency Loss, Lconsistency, is computed by measuring the distributional
divergence between the prototype assignments derived from the initial (structural) link fea-
tures H(0) and the final (semantic) link embeddings H(L) (Line 14).

Finally, these two objectives are combined into a single total loss Ltotal, and the gradient is back-
propagated to jointly update all learnable parameters of the framework: the SGT, the prototypes C,
and the initial node embeddings HU and HV (Line 16).
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Algorithm 1 HPC-SGT Training Procedure

1: Input: Signed bipartite graph Gb = (U ,V, E , s), hyperparameters β1, β2, γ, τ, . . . .
2: Output: Trained SGT Encoder, Prototypes C, and Node Embeddings HU ,HV .

// — Stage 1: Initialization —
3: Initialize learnable node embeddings HU ,HV .
4: Construct line graph Gl = (Vl, El) from Gb.
5: Construct initial link features H(0) where h

(0)
k = [HU [p, :] ∥HV [q, :]] for link ek = (up, vq).

6: Initialize parameters for SGT Encoder and Prototypes C.
// — Stage 2: Joint Optimization Loop —

7: for each training epoch do
8: // Forward pass to get final link embeddings
9: H(L) = SGT Encoder(H(0), Gl)

10: // Compute Hierarchical Prototypical Objective
11: Compute LH = Lclass + β1Lcluster + β2Lsep using H(L) and C.
12: // Compute Consistency Loss
13: Compute Lconsistency between assignments from H(0) and H(L).
14: // Combine objectives and update all parameters
15: Ltotal = LH + γLconsistency
16: Update all parameters (HU ,HV , SGT, C) via backpropagation.
17: end for
18: return Trained parameters.

C ADDITIONAL RESULTS ON BENCHMARK DATASETS

We evaluate our approach on four additional benchmark datasets; the full results are reported in
Table 4. As a first observation, network–embedding techniques markedly improve signed link pre-
diction: unsigned methods such as DeepWalk, Node2Vec, and LINE already outperform random
embeddings even though they ignore edge polarity. Against this backdrop, HPC-SGT delivers
the strongest performance on nearly every metric and dataset. The improvement is particularly
pronounced on Bonanza, where HPC-SGT raises the Macro-F1 score by over 10% relative to the
strongest baseline without reducing Micro-F1, indicating that the model boosts recall on minority
(tail) classes while preserving accuracy on majority (head) classes.

Table 4: Performance comparison on four additional benchmark datasets: U.S. House, U.S. Senate,
Review, and Bonanza. For all metrics, higher is better. Our method, HPC-SGT, demonstrates con-
sistently superior performance.

U.S. House U.S. Senate Review Bonanza

Method AUC Binary Macro Micro AUC Binary Macro Micro AUC Binary Macro Micro AUC Binary Macro Micro

Random 0.541 0.560 0.540 0.541 0.543 0.568 0.542 0.543 0.556 0.510 0.553 0.556 0.529 0.735 0.389 0.590
Deepwalk 0.615 0.636 0.614 0.615 0.623 0.653 0.622 0.623 0.625 0.580 0.620 0.625 0.629 0.791 0.433 0.660
Node2Vec 0.633 0.651 0.632 0.633 0.645 0.670 0.644 0.645 0.653 0.620 0.645 0.649 0.626 0.759 0.416 0.619
LINE 0.580 0.611 0.579 0.580 0.569 0.611 0.568 0.569 0.620 0.593 0.607 0.610 0.617 0.702 0.382 0.545
SiNE 0.611 0.623 0.610 0.611 0.590 0.599 0.589 0.590 0.620 0.959 0.559 0.931 0.582 0.533 0.575 0.582
SBiNE 0.835 0.843 0.834 0.835 0.811 0.825 0.810 0.811 0.549 0.424 0.530 0.557 0.561 0.857 0.460 0.753
SCsc 0.827 0.837 0.826 0.827 0.816 0.829 0.814 0.816 0.552 0.336 0.482 0.581 0.652 0.643 0.354 0.484
MFwBT 0.809 0.823 0.809 0.810 0.785 0.804 0.785 0.786 0.472 0.434 0.469 0.475 0.577 0.892 0.481 0.807
SBRW 0.822 0.833 0.821 0.822 0.814 0.829 0.813 0.814 0.583 0.542 0.576 0.581 0.531 0.982 0.535 0.965
SGCN 0.808 0.827 0.808 0.809 0.815 0.827 0.815 0.816 0.610 0.593 0.601 0.637 0.587 0.896 0.487 0.814
SGCL 0.824 0.835 0.824 0.824 0.820 0.834 0.820 0.820 0.729 0.656 0.631 0.633 0.584 0.987 0.514 0.974
SBGNN 0.848 0.856 0.847 0.847 0.824 0.832 0.821 0.822 0.674 0.636 0.662 0.666 0.576 0.961 0.540 0.926
SBGCL 0.810 0.811 0.807 0.807 0.809 0.818 0.808 0.809 0.748 0.706 0.747 0.754 0.590 0.973 0.558 0.947
HPC-SGT 0.871 0.894 0.870 0.871 0.853 0.869 0.853 0.853 0.800 0.767 0.799 0.803 0.623 0.989 0.616 0.979

D COMPUTATIONAL EFFICIENCY

D.1 COMPUTATIONAL EFFICIENCY COMPARISON

To evaluate the computational efficiency of different methods, we conducted comparative exper-
iments on four datasets of varying sizes. We measured the training time required per epoch in
seconds, with the results recorded in Table 5. The findings reveal a clear trade-off between model
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Table 5: Comparison with various methods concerning time consumption.

Review Bonanza U.S. House U.S. Senate
SBGNN 0.106 0.881 0.527 0.312
SBGCL 0.703 1.096 0.994 0.856
HPC-SGT 0.439 0.575 0.491 0.402

complexity and performance. On smaller-scale datasets like Review, simpler GNN-based methods
demonstrate lower time consumption due to their lightweight architecture. Conversely, on graph
datasets with a larger number of links, such as Bonanza, the runtime of our HPC-SGT becomes
more comparable to other state-of-the-art models. While running a Transformer on the line graph
is inherently more costly than shallow GNNs, the sparsity of real-world signed interactions ensures
that the line graph scale remains controllable, avoiding theoretical worst-case density. We argue that
this moderate computational overhead is a reasonable trade-off to achieve the concrete performance
gains documented in our experiments, particularly the substantial improvements in Macro-F1 and
minority class recall under severe class imbalance (as detailed in Appendix F).

D.2 SCALABILITY STRESS TEST AND COMPONENT DECOMPOSITION

To rigorously assess the scalability of HPC-SGT with respect to line graph size, of different sizes
from the Amazon-Book dataset, where the number of links |E| corresponds to the number of nodes
in the line graph. We measured the training time per epoch and peak GPU memory usage on an
NVIDIA A100 (80GB). The results, presented in Table 6, are consistent with the expected behavior
of a full self-attention layer on the line graph: memory and time grow noticeably as the number of
links approaches 100k, but remain practical in the regime we actually operate in. This is compatible
with the runtime we report in Table 5 and supports our claim that HPC-SGT is feasible for medium-
to-large signed bipartite graphs.

Table 6: Scalability profile of HPC-SGT on sampled Amazon-Book subgraphs.

# Links (Line-Graph Nodes) 10k 20k 40k 80k 100k
Time (s/epoch) 0.06 0.16 0.45 1.80 2.95
Peak Memory (GB) 0.7 1.5 5.2 18.5 28.4

To identify the primary bottleneck, we also profiled memory usage by component on a batch with
50k links. The distribution is as follows:

• Attention Matrix (Line-graph self-attention): ≈ 82% of total GPU memory.

• Graph Structure (Line-graph adjacency & RSE priors): ≈ 11%.

• Parameters (Embeddings, gradients, and prototypes): ≈ 7%.

This decomposition confirms that the full attention matrix is the dominant cost factor (82%), while
our prop/osed inductive priors (RSE/TME) and hierarchical prototype heads add only moderate
overhead. These findings validate our feasibility claims for sparse, real-world signed graphs and
directly motivate future work on incorporating sparse attention mechanisms to reduce the dominant
term toward linear scaling.

E FAIRNESS COMPARISON WITH CLASS-WEIGHTED BASELINES

To ensure a fair comparison regarding the handling of class imbalance, we retrained the strongest
baseline models (LightGCL, SIGformer, SE-SGformer) using the same class-weighted loss formu-
lation as our HPC-SGT. Specifically, we replaced their standard losses with the weighted objective
defined in Eq. (12), balancing the contribution of positive and negative samples based on training
set statistics. Table 7 reports the comparison results on Amazon-Book and ML-1M. The results
show that while re-weighting provides a modest performance boost to the baselines, HPC-SGT still
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Table 7: Performance comparison with baselines retrained using the same class-weighted loss as
HPC-SGT.

Amazon-Book ML-1M
Method AUC Binary-F1 AUC Binary-F1
LightGCL 0.647 0.747 0.727 0.711
LightGCL (w/ class weights) 0.652 0.755 0.731 0.720

SIGformer 0.658 0.740 0.715 0.725
SIGformer (w/ class weights) 0.663 0.748 0.719 0.733

SE-SGformer 0.681 0.738 0.721 0.732
SE-SGformer (w/ class weights) 0.688 0.748 0.727 0.742

HPC-SGT (Ours) 0.744 0.801 0.748 0.781

consistently outperforms them across all metrics. This validates that the superiority of our frame-
work is driven by the Sign-aware Graph Transformer architecture and the hierarchical prototypical
objective, rather than simply by the application of class weights.

F EXTENDED ANALYSIS ON CLASS IMBALANCE

We provide a comprehensive evaluation of HPC-SGT under severe class imbalance through two
additional analyses.

Comparison with General Baselines on Bonanza. In the main text, we compared HPC-SGT
with imbalance-specific methods on the Bonanza dataset. Here, we extend this comparison to the
strongest general baselines identified in Table 1: LightGCL, SIGformer, and SE-SGformer. As
shown in Table 8, HPC-SGT outperforms these strong baselines, achieving the highest AUC and,
notably, a significantly higher Macro-F1. This indicates that our hierarchical prototypical objective
effectively prevents minority classes from being submerged, a common failure mode for general
models in such extreme settings.

Table 8: Performance comparison with strong general baselines on the extremely imbalanced Bo-
nanza dataset.

Method Bonanza AUC Bonanza Macro-F1
LightGCL 0.584 0.521
SIGformer 0.599 0.543
SE-SGformer 0.603 0.574
HPC-SGT (Ours) 0.623 0.616

Stress-Testing on Amazon-Book. To assess robustness on standard benchmarks, we constructed
artificially skewed versions of the Amazon-Book dataset by down-sampling negative links to create
training sets with 90:10 and 95:5 positive-to-negative ratios. We then re-trained and evaluated all
models. The results in Table 9 show that while performance naturally degrades with increased imbal-
ance, HPC-SGT maintains a clear lead. In the most severe 95:5 scenario, our advantage in Macro-F1
becomes even more prominent, mutually confirming the findings from the Bonanza dataset.

G PROTOTYPE INTERPRETABILITY ANALYSIS

To explore the semantic meaning of the learned prototypes, we conducted a quantitative analysis
on the Amazon-Book dataset. For each learned prototype, we retrieved the top-100 links with the
highest assignment probability pij . We then calculated the mean rating (from original 1-5 star data),
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Table 9: Stress-test results on Amazon-Book with artificially induced extreme imbalance ratios
(90:10 and 95:5).

A-Book (90:10) A-Book (95:5)
Method AUC Macro-F1 AUC Macro-F1
LightGCL 0.641 0.571 0.631 0.514
SIGformer 0.652 0.585 0.642 0.529
SE-SGformer 0.672 0.593 0.664 0.561
HPC-SGT (Ours) 0.736 0.645 0.731 0.627

Table 10: Semantic interpretation of learned prototypes on Amazon-Book. Statistics are computed
from the top-100 links assigned to each prototype.

Proto Class Mean Rating % Negative Balanced Ratio Interpretation
P1 Positive 4.85 4% 0.85 High-Confidence Positives
P2 Positive 4.68 8% 0.77 Community Favorites
P3 Positive 4.45 15% 0.68 Noisy/Weak Positives

N1 Negative 1.45 90% 0.70 Strong Rejection (1-star)
N2 Negative 2.15 82% 0.58 Disappointment (Mixed 1–2)
N3 Negative 2.95 70% 0.48 Borderline (Mostly 3-star)

the proportion of negative links, and the ratio of links involved in structurally balanced triads (based
on TME statistics). The results for representative prototypes are summarized in Table 10.

From these statistics, we can see that the prototype is not a random cluster, but corresponds to
an intuitive user item interaction mode. P1 and P2 obviously correspond to ”very strong positive
feedback”: the average score is very high, there are few negative links, and the structure is highly
balanced; P3 tends to be ”noise/weak positive”, with a higher proportion of negative links and a
lower structural balance. In the negative category, N1 corresponds to a strong rejection dominated
by 1 star, N2 reflects the disappointed behavior of swinging between 1 and 2 stars, and N3 focuses
on the critical samples dominated by 3 stars, and most of them appear in areas with less balanced
structure. In this way, the regular geometric picture of multi prototype distribution and separation
can be directly mapped to the semantic and structural patterns in the actual data, so as to enhance
the interpretability of hierarchical prototype targets.

H THEORETICAL ANALYSIS OF LINE GRAPH TRANSFORMATION

In this section, we address the theoretical soundness of the line graph transformation regarding
isomorphism and computational complexity.

H.1 INJECTIVITY AND WHITNEY’S ISOMORPHISM THEOREM

A key theoretical concern is whether the line graph transformation is lossless (i.e., whether G can
be recovered from L(G)). Whitney’s Isomorphism Theorem states that for connected graphs with
more than 3 vertices, if L(G) ∼= L(G′), then G ∼= G′. The only classical exceptions are the triangle
K3 and the claw K1,3, which share the same line graph (K3). However, in our setting, the input
G is strictly a bipartite graph. Since bipartite graphs cannot contain odd cycles, the triangle K3 is
structurally impossible. Thus, the ambiguity in Whitney’s theorem is explicitly excluded, ensuring
that the transformation preserves the topological structure uniquely.

Furthermore, our method does not rely solely on the line graph being a perfect topological inverse.
Each node vk in the line graph (representing edge ek = (u, v) in Gb) is enriched with content-related
features as defined in Eq. (11)

xk = [HU [u] ∥HV [v] ∥ sign(ek) ∥ RSE/TME stats].
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Even if two bipartite graphs were to map to the same line graph topology, their differences would
be preserved in these node attributes (endpoint embeddings and signs), ensuring the model captures
the distinct identity of the original graph.

H.2 COMPLEXITY ANALYSIS

Let G = (U, V,E, s) be a signed bipartite graph with degrees {dx}x∈U∪V . The line graph L(G)
has |Vℓ| = |E| nodes. The number of edges in the line graph, |Eℓ|, is determined by the shared
endpoints in the original graph:

|Eℓ| =
∑
u∈U

(
du
2

)
+
∑
v∈V

(
dv
2

)
.

The construction process involves enumerating unordered pairs of incident edges for each node,
with a time complexity of O(

∑
x d

2
x). In the worst case, this is O(∆|E|), where ∆ is the maximum

degree. However, real-world recommendation and interaction graphs are typically sparse, where
∆ ≪ |E|. Consequently, the construction complexity is linear in practice. As shown in our effi-
ciency analysis (Table 5 and Appendix D.2), the preprocessing cost is negligible compared to the
Transformer layers.

As shown in our efficiency analysis (Table 5 and Appendix D.2), the preprocessing cost is negligible
compared to the Transformer layers.

Sparse Implementation of Signed Adjacency (Eq. 3). We explicitly clarify the implementation
of the signed structural matrix AS = Al ⊙ (ssT ) defined in Eq. (3). The outer product notation
ssT is used solely to express the mathematical logic of sign interactions. In our implementation, we
strictly avoid materializing a dense |Vl| × |Vl| matrix. Instead, we exploit the sparsity of the line
graph adjacency Al and compute the sign product sisj only for non-zero entries:

AS(i, j) = Al(i, j) · sisj , ∀(i, j) s.t. Al(i, j) ̸= 0.

This element-wise scaling operates strictly on the non-zero values of the sparse tensor (CSR/COO
format). Consequently, the time and memory complexity is O(|El|), where |El| is the number of
edges in the line graph. For sparse recommender-style graphs, |El| ≪ |Vl|2, rendering this step
effectively linear and computationally negligible compared to the subsequent Transformer layers.

Finally, this transformation serves a critical functional role: it converts “two-hop paths” and signed
triangles in the original graph into one-hop neighborhoods in the line graph. This allows our Topo-
logical Motif Encoding (TME) to capture signed triangular motifs directly within a single attention
layer, avoiding the need for deep stacks of message-passing layers to approximate these higher-order
structures.

I LONG-RANGE DEPENDENCY ANALYSIS

To empirically quantify the model’s ability to capture long-range dependencies, we performed a
distance-bucket analysis on the Amazon-Book dataset. We constructed a user-user projection graph
based on co-interactions and computed the shortest-path distance for each test link. We then grouped
test links into three buckets: Short-range (≤ 3-hop), Mid-range (5-hop), and Long-range (≥ 7-hop).

We compared HPC-SGT against a representative GNN (LightGCL) and a strong Transformer base-
line (SE-SGformer). The AUC performance per bucket is reported in Table 11.

Table 11: Distance-bucket analysis on Amazon-Book. We report AUC scores across different hop
distances and the relative performance drop from Short to Long range.

Method Short-range (3-hop) Mid-range (5-hop) Long-range (≥7-hop) Drop (Short → Long)
LightGCL 0.692 0.625 0.568 -17.9%
SE-SGformer 0.725 0.668 0.615 -15.2%
HPC-SGT (Ours) 0.781 0.744 0.718 -8.1%
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The results reveal a clear trend: while all methods perform comparably in the local regime (≤ 3-
hop), baselines suffer from significant degradation as the distance increases (drops of 15-18%). In
contrast, HPC-SGT exhibits a much more stable performance profile, with only an 8.1% drop in the
long-range bucket. This confirms that our Sign-aware Graph Transformer, augmented by the global
spectral prior (RSE), effectively utilizes information from topologically distant but semantically
related edges, whereas methods relying on local propagation or implicit modeling struggle to bridge
these long-range gaps.

J IMPACT OF ENCODER ARCHITECTURE: TRANSFORMER VS. GNN ON LINE
GRAPH

To isolate the effect of the encoder architecture, we addressed the question: “Can running a standard
GNN on the line graph achieve similar effects?” We implemented a Line-GAT baseline, which uses
the exact same line graph structure Gℓ and initial edge features as HPC-SGT. The only difference
is the encoder: Line-GAT employs a standard Graph Attention Network with 1-hop neighborhood
aggregation instead of our Sign-aware Graph Transformer.

We compared Line-GAT and HPC-SGT on the Amazon-Book and ML-10M datasets. The results
are reported in Table 12.

Table 12: Performance comparison between Line-GAT (GNN on line graph) and HPC-SGT (Trans-
former on line graph).

Dataset Method AUC Bi-F1
Amazon-Book Line-GAT 0.712 0.768

HPC-SGT (Ours) 0.744 0.801
ML-10M Line-GAT 0.735 0.755

HPC-SGT (Ours) 0.760 0.784

In this controlled experiment, the input graph structure and features are identical for both models.
Therefore, the observed performance gap can be attributed entirely to the encoder architecture. HPC-
SGT significantly outperforms Line-GAT on both datasets. Intuitively, Line-GAT is restricted to
aggregating information from direct neighbors in the line graph. in contrast, HPC-SGT utilizes
global self-attention combined with our spectral (RSE) and motif (TME) priors, enabling it to model
dependencies between any two edges regardless of their topological distance. This confirms that the
choice of a Transformer architecture is critical for the framework’s success.

K ANALYSIS OF MOTIF GRANULARITY IN TME

To validate that Np = 4 is the optimal granularity for Topological Motif Encoding, we performed
an ablation study on the Amazon-Book dataset by merging motif types into coarser categories:

• Symmetric (Np = 3): Merges (+,−) and (−,+) into a single “mixed-sign” motif, ignor-
ing directionality.

• Balance-Only (Np = 2): Groups motifs strictly according to classical balance theory into
“balanced” ({(+,+), (−,−)}) and “unbalanced” ({(+,−), (−,+)}) sets.

We compared these configurations against our full model (Np = 4) while keeping all other compo-
nents unchanged. The results are reported in Table 13.

The results demonstrate a consistent performance decline as semantic granularity is reduced. Drop-
ping from 4 to 3 categories brings a noticeable decline, indicating that the sequence of signs (e.g.,
“positive-then-negative” vs. “negative-then-positive”) provides useful directional signals for the at-
tention mechanism. Further compressing to 2 categories (Balance-Only) causes a significant drop,
suggesting that roughly merging distinct semantic modes (such as “friend-of-a-friend” and “enemy-
of-an-enemy”) results in substantial information loss. Thus, Np = 4 is the natural choice to capture
maximal semantic granularity without redundancy.
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Table 13: Ablation study of motif granularity (Np) on Amazon-Book.

Configuration Np Description AUC Binary-F1
HPC-SGT (Full) 4 Full directional semantics 0.744 0.801
Symmetric 3 Merged (+,−) and (−,+) 0.738 0.795
Balance-Only 2 Merged based on balance theory 0.725 0.782

L PERFORMANCE IN SCENARIOS WITH LIMITED OR IMPLICIT NEGATIVE
FEEDBACK

A key aspect of HPC-SGT is its explicit modeling of edge signs. To verify that its advantages are
not solely derived from settings rich in explicit positive and negative interactions, but also from its
architectural ability to capture local structural nuances, we conducted experiments in two additional
challenging regimes: one simulating an implicit feedback scenario and another with reduced explicit
negative signals. We compared HPC-SGT against LightGCL, a strong baseline primarily designed
for unsigned/implicit feedback but adaptable to signed settings.

The experimental setups were as follows:

• ML-1M – Click-only (Implicit Simulation): All ratings ≥ 1 were treated as positive
interactions. For training with a BPR loss function, four negative items were uniformly
sampled for each positive interaction. During testing, models were tasked to rank 100
candidate items (the true positive item and 99 uniformly sampled negative items), and
interactions not present in the training data were ignored. This setup mimics typical implicit
feedback scenarios where only positive interactions are observed.

• Amazon-Book – 50% Dislikes Masked: To simulate sparsity in explicit negative feed-
back, 50% of the explicit negative ratings (dislikes) were randomly removed from the
training set. The model was then trained on this partially masked data, and testing was
performed using the remaining observed signed edges (both positive and the non-masked
negative).

The results, presented in Table 14, include ranking metrics (Recall@20, NDCG@20) pertinent to
these scenarios, as well as illustrative classification metrics (AUC, Binary-F1) to assess the general
discriminative capability.

Table 14: Performance comparison of HPC-SGT and LightGCL in scenarios with limited or implicit
negative feedback. Metrics shown are AUC, Binary-F1, Recall@20, and NDCG@20. HPC-SGT
demonstrates robust performance, underscoring its architectural strengths.

Dataset Experimental Protocol Model AUC Binary-F1 Recall@20 NDCG@20
4*ML-1M 2*Click-only (Implicit Sim.) LightGCL 0.650 0.680 0.214 0.220

HPC-SGT 0.685 0.710 0.227 0.236
2*Fully Signed LightGCL 0.701 0.728 N/A N/A

HPC-SGT 0.760 0.784 N/A N/A

4*Amazon-Book 2*50% Dislikes Masked LightGCL 0.600 0.700 0.079 0.060
HPC-SGT 0.700 0.750 0.081 0.061

2*Fully Signed LightGCL 0.647 0.747 N/A N/A
HPC-SGT 0.744 0.801 N/A N/A

N/A: Recall@20/NDCG@20 are presented here specifically for the ranking-oriented protocols of these
experiments and are not the primary metrics for the fully signed classification task. Fully signed results are

included for contextual comparison of AUC/Binary-F1 degradation.

As anticipated, the performance on these challenging tasks is generally lower for both models com-
pared to the fully signed scenarios reported in the paper, due to the reduced information content.
However, HPC-SGT consistently outperforms LightGCL across all metrics in both regimes.

On the ML-1M click-only task, HPC-SGT achieves an R@20 of 0.227 and NDCG@20 of 0.236,
representing a relative improvement of approximately 6.1% and 7.3% respectively over LightGCL.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Its AUC (0.685 vs. 0.650) and Binary-F1 (0.710 vs. 0.680) also show a clear margin, with relative
gains of 5.4% and 4.4%.

In the Amazon-Book scenario with 50% dislikes masked, HPC-SGT (R@20: 0.081, NDCG@20:
0.061) shows a smaller but consistent margin over LightGCL (R@20: 0.079, NDCG@20: 0.060),
with relative improvements of about 2.5% for both ranking metrics. More significantly, the advan-
tage in AUC (0.700 vs. 0.600, a 16.7% relative gain) and Binary-F1 (0.750 vs. 0.700, a 7.1% relative
gain) is pronounced. This indicates that even with sparse explicit negative signals, HPC-SGT’s abil-
ity to leverage available allows for more robust prediction.

These findings demonstrate that HPC-SGT’s strong performance is not solely reliant on abundant
explicit negative signals. Its architectural components, designed to capture detailed local topolog-
ical and sign-based patterns, provide a significant advantage even when such signals are implicit
or sparse. The sustained outperformance over a strong baseline like LightGCL in these settings
confirms the broader applicability and robustness of the HPC-SGT framework.

Table 15: Performance of HPC-SGT with different edge conflict resolution strategies on Amazon-
Book, Gowalla, and ML-1M. Metrics include AUC, Binary-F1, Recall@20 (R@20), NDCG@20
(N@20), Recall@40 (R@40), and NDCG@40 (N@40). The results demonstrate minimal perfor-
mance variation, highlighting HPC-SGT’s robustness.

Dataset Strategy AUC Binary-F1 R@20 N@20 R@40 N@40
3*Amazon-Book Default 0.744 0.801 0.0859 0.0652 0.1213 0.0767

All Conflicts Pos 0.743 0.800 0.0850 0.0647 0.1205 0.0760
All Conflicts Neg 0.742 0.799 0.0840 0.0640 0.1198 0.0750

3*Gowalla Default 0.739 0.753 0.1953 0.1204 0.2796 0.1422
All Conflicts Pos 0.737 0.750 0.1930 0.1190 0.2780 0.1390
All Conflicts Neg 0.735 0.748 0.1900 0.1170 0.2765 0.1360

3*ML-10M Default 0.760 0.784 0.2250 0.1350 0.3150 0.1650
All Conflicts Pos 0.759 0.783 0.2240 0.1345 0.3140 0.1640
All Conflicts Neg 0.758 0.782 0.2230 0.1335 0.3120 0.1620

Figure 5: Performance of HPC-SGT under different edge conflict resolution strategies.

M ROBUSTNESS TO EDGE SIGN CONFLICT RESOLUTION STRATEGIES

In real-world user-item interaction datasets, it is possible to encounter ”edge conflicts,” where a sin-
gle user-item pair (u, v) might be associated with multiple interactions that have differing signs (e.g.,
a user rating a product positively and later negatively). The way these conflicts are resolved during
data preprocessing could potentially impact model performance. We conducted a controlled experi-
ment on three benchmark datasets—Amazon-Book, Gowalla, and ML-1M—to assess the sensitivity
of HPC-SGT to different strategies for handling such conflicting edge signs.

We compared three distinct conflict resolution strategies:

1. Default Duplicate Removal (Default): This strategy reflects the standard preprocessing
used for our main experiments, where typically the most recent interaction or a dataset-
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specific rule resolves duplicates, resulting in a single edge sign for any given user-item
pair.

2. All Conflicts as Positive (All-Pos): If a user-item pair had conflicting interactions, all
associated edges were treated as positive.

3. All Conflicts as Negative (All-Neg): Conversely, if conflicting interactions existed for a
pair, all associated edges were treated as negative.

The performance of HPC-SGT under these strategies was evaluated using both classification metrics
(AUC, Binary-F1) and ranking metrics (Recall@k, NDCG@k). The results are detailed in Table 15
and Figure 5

Across all three datasets and all evaluated metrics, HPC-SGT’s performance exhibited remarkable
stability, typically varying by less than 1% (often within a 0.001–0.002 absolute difference for
AUC/F1 and ranking scores) regardless of the conflict resolution strategy employed. For instance,
on Amazon-Book, AUC scores ranged narrowly from 0.742 (All-Neg) to 0.744 (Default), and R@20
scores from 0.0840 (All-Neg) to 0.0859 (Default). Similar minimal fluctuations were observed for
Gowalla (e.g., AUC 0.735–0.739) and ML-1M (e.g., AUC 0.758–0.760).

The ”Default” approach consistently yielded marginally superior or highly competitive performance
compared to the strategies that forced all conflicts to a single sign (All-Pos or All-Neg). However,
even these latter strategies did not lead to a significant degradation in performance, underscoring the
model’s resilience.

N LLM USAGE STATEMENT

In the preparation of this manuscript, we utilized the large language model ChatGPT, developed by
OpenAI, as a writing assistant. In accordance with the ICLR policy, we wish to clarify its role.
The use of the LLM was strictly confined to improving the quality of the written text and did not
contribute to the core research ideation or experimental results.

The primary purpose of using the LLM was for language enhancement and polishing. Throughout
the writing process, we prompted the model to refine sentence structure, improve clarity and con-
ciseness, and ensure a formal academic tone consistent with the standards of the machine learning
community. This involved multiple iterations of editing and rephrasing paragraphs in the introduc-
tion, methodology, and experimental sections to better articulate our ideas. It also aided in ensuring
the consistency of mathematical notation and terminology across the manuscript and provided sug-
gestions for LaTeX formatting.

All core scientific contributions, including the initial conception of the HPC-SGT framework, the
design of its architectural components and learning objectives, and the execution and analysis of all
experiments, were conceived and conducted entirely by the human authors. The LLM served as a
sophisticated tool for articulating and polishing the presentation of these pre-existing ideas.
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