A SIGN-AWARE GRAPH TRANSFORMER WITH PROTO-TYPICAL OBJECTIVES FOR SIGNED LINK PREDICTION

Anonymous authors

000

001

002003004

006

008

010 011

012

013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

033

034

037

040

041

042

043

044

045

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Signed link prediction in bipartite graphs is a fundamental task with wide-ranging applications, yet it poses significant challenges. Current Graph Neural Networks are inherently local due to their message-passing nature, preventing them from capturing the long-range dependencies crucial for accurate prediction. Furthermore, they often fail to model complex real-world data distributions characterized by severe class imbalance and rich intra-class multimodality. To overcome these limitations, we propose the Hierarchical Prototypical Contrastive Signaware Graph Transformer (HPC-SGT). At its core, our framework features a Signaware Graph Transformer that operates on the line graph dual, leveraging novel spectral and motif-based inductive priors to learn structurally-aware global representations. This expressive encoder is optimized via a hierarchical prototypical objective, which learns a geometrically structured embedding space. It couples a class-balanced contrastive loss to robustly handle data imbalance with clustering and separation regularizers to explicitly model multi-modal class structures. The framework is unified by a cross-view consistency mechanism that grounds the learned semantic representations in the graph's foundational topology, bridging the structure-semantics gap. Extensive experiments on challenging benchmarks show that HPC-SGT significantly outperforms a wide range of state-of-the-art methods. Ablation studies further validate the contribution of each component, establishing HPC-SGT as a new, powerful, and principled solution for signed link prediction. Our code is available in the supplementary materials.

1 Introduction

Signed link prediction on bipartite graphs constitutes a fundamental research problem in network science and machine learning Koren et al. (2009); Zhao et al. (2015); Song et al. (2015), with profound implications for a multitude of real-world systems, as shown in Figure 1. These graphs, which model interactions between two distinct sets of entities—such as users and items in e-commerce Lin et al. (2024); Tang et al. (2016); Arrar et al. (2024), voters and bills in legislative systems Maier & Simovici (2022); Yin et al. (2019); Guo et al.

Figure 1: An illustrative example of the user-movie rating interaction in bipartite graphs.

(2025), or individuals and groups in social networks—are often endowed with signs (positive or negative) that encode the nature of the relationship, e.g., like versus dislike, or trust versus distrust. The ability to accurately forecast the sign of a new or unobserved link is paramount for applications ranging from personalized recommendation Wang et al. (2025) and fraud detection to maintaining the integrity of online communities Braunhofer et al. (2015); Massa & Avesani (2007); Chen et al. (2024a).

Initial approaches to signed link prediction were guided by social theories. Leskovec et al. (2010) and often relied on handcrafted features from local motifs Fu et al. (2021). While theoretically grounded, their inability to capture higher-order patterns and lack of end-to-end learning were addressed by the advent of Graph Neural Networks (GNNs) Wu et al. (2020). A range of methods, from the pioneering SGCN Derr et al. (2018) to subsequent attention-based (SiGAT Huang et al. (2019)) and contrastive variants SGCL Shu et al. (2021)), adapted the message-passing framework to learn powerful, sign-aware node representations. Despite their success, these GNNs inherit fundamental limitations. Their reliance on iterative message-passing inherently restricts their receptive field to local neighborhoods, rendering them ill-equipped to model the long-range dependencies that govern link formation Zhang et al. (2020); Wang & Wu (2024); Hang et al. (2024). Moreover, they typically employ standard objectives that fail to address the complex data distributions, such as severe class imbalance and intra-class multimodality, inherent to real-world networks.

To address these limitations, we propose the Hierarchical Prototypical Contrastive Sign-aware Graph Transformer (HPC-SGT). Our approach is centered on a novel Sign-aware Graph Transformer that operates on the line graph dual. This conceptual leap from a node-centric to a link-centric paradigm allows our model to reason over the entire link-space topology, thereby overcoming the locality constraints of GNNs. The SGT is uniquely empowered by graph-native inductive priors which inject principles of spectral balance theory and local motif awareness directly into the attention mechanism, enabling the capture of global, structurally-principled representations.

Such an expressive encoder demands an equally sophisticated learning objective, one capable of handling the complex data distributions that standard methods often ignore. We therefore design a hierarchical prototypical objective that sculpts the embedding space to reflect this complexity. It inherently handles class imbalance through a class-balanced discriminative loss while using geometric regularizers to model the multi-modal structure of each class. To ensure this powerful system remains faithful to the graph's foundational structure, we complete the framework with a cross-view consistency mechanism that bridges the critical structure-semantics gap, guaranteeing topological fidelity in the final representations.

Extensive experiments on four large-scale benchmarks validate the superiority of our framework. HPC-SGT consistently and significantly outperforms a wide array of state-of-the-art baselines, with the performance gains being particularly pronounced against strong GNN and Transformer-based competitors. This underscores the benefits of our model's global and structurally-aware architecture. Furthermore, rigorous ablation studies provide clear evidence for our design choices. We demonstrate that the removal of our graph-native inductive priors leads to a substantial drop in performance, confirming that these architectural innovations are the primary drivers of the model's success. The contributions of this work are threefold:

- We propose a novel Sign-aware Graph Transformer, equipped with principled graph-native inductive priors, that operates on the line graph to capture global, structurally-aware link representations.
- We design a hierarchical prototypical objective that synergistically handles both class imbalance and intra-class multimodality within a unified, probability-based framework.
- We introduce a cross-view consistency mechanism that regularizes the model by bridging the structure-semantics gap, ensuring topological fidelity in the learned representations.

2 Related Work

2.1 SIGNED BIPARTITE GRAPHS AND LINK PREDICTION

Signed graphs have gained considerable attention due to their significance in social networks and recommender systems Guo et al. (2020); Chen et al. (2020). The presence of both positive and negative links enriches these graphs with complex relational dynamics, making them a valuable resource for tasks such as signed link prediction, node classification, and community detection. Signed Graph Representation Learning (SGRL) has been proposed as an effective approach to capture the intricate patterns in signed graphs and better understand the coexistence of positive and negative relationships Wang et al. (2020); Shu et al. (2021). Early SGRL methods focused on random walk strategies and matrix factorization. Random walk-based approaches like DeepWalk Perozzi et al. (2014) and

node2vec Grover & Leskovec (2016) capture node proximity probabilistically, while matrix factorization Koren (2009) models signed interactions by decomposing adjacency matrices. As deep learning advanced, SiNE Wang et al. (2017) combined triangle motifs and balance theory to address positive/negative relationships. SGCN Derr et al. (2018) extended GCNs with balance theory for multi-hop signed link prediction. Further developments, such as SiGAT Huang et al. (2019) and SNEA Li et al. (2020), incorporated graph attention mechanisms, allowing more flexible weighting of node interactions. Recent methods, including SDGNN Huang et al. (2021b), SBGCL Zhang et al. (2023), and Trans-CGL Lin et al. (2023), leverage contrastive learning to enhance the robustness of signed graph representations.

Despite these advances, modeling balance theory in bipartite graphs remains a challenge due to its high space and time complexities, which become impractical as the graph size grows. Consequently, while these methods improve the prediction of link signs, they still struggle with scalability and efficiency in handling vast signed graphs Ortega et al. (2018); Lin et al. (2025).

2.2 Transformers and Line Graphs

To overcome the locality issue of GNNs, recent research has turned to the Graph Transformer architecture Li et al. (2024); Chen et al. (2024b); Zhao et al. (2025). Its global self-attention mechanism theoretically allows every node to interact with every other node, making it a promising candidate for capturing long-range dependencies. However, standard Transformers are topology-agnostic, and their effectiveness on graphs is highly dependent on the injection of explicit structural and positional encodings to make the attention mechanism aware of the underlying graph structure—a challenge our methodology directly addresses.

Parallel to this, the line graph transformation has emerged as a powerful technique for link-level tasks Xing & Makrehchi (2024). By converting edges from the original graph into nodes in a new graph, the line graph reframes signed link prediction as a node classification problem. This enables nodecentric architectures like GNNs or Transformers to directly model the interactions between links. While these advanced concepts are powerful individually, a unified framework that synergistically combines a structure-aware Graph Transformer on the line graph with learning objectives tailored for the complex distributions of signed links remains an open challenge.

3 Preliminary

A signed bipartite graph is denoted as $G = (\mathcal{V}, \mathcal{E}, s)$, where the vertex set $\mathcal{V} = U \cup V$ consists of two disjoint partitions of nodes, such as users U and items V. The edge set $\mathcal{E} \subseteq U \times V$ represents the interactions between these two sets of nodes. The sign function $s: \mathcal{E} \to \{+1, -1\}$ assigns a positive (e.g., like, purchase) or negative (e.g., dislike, negative review) sign to each interaction, where the set of all edges can be partitioned into positive and negative sets, $\mathcal{E} = \mathcal{E}^+ \cup \mathcal{E}^-$ with $\mathcal{E}^+ \cap \mathcal{E}^- = \emptyset$ Guo et al. (2020); Chen et al. (2020). The task of signed link prediction in this context assumes that the full edge set \mathcal{E} is partitioned into a set of observed edges, \mathcal{E}_{obs} , for which the signs are known, and a set of target edges, \mathcal{E}_{unk} , for which the signs are withheld for evaluation. Given the graph structure $(\mathcal{V}, \mathcal{E})$ and the known signs on \mathcal{E}_{obs} , the objective is to learn a predictive function f that infers the sign $y_{uv} \in \{+1, -1\}$ for each target edge $(u, v) \in \mathcal{E}_{\text{unk}}$. This is typically achieved by learning low-dimensional embeddings for all nodes that encode the complex structural patterns and sign information within the graph Perozzi et al. (2014).

4 METHODOLOGY

In this section, we present the technical details of our proposed framework, the Hierarchical Prototypical Contrastive Sign-aware Graph Transformer (HPC-SGT). Our approach is built upon a synergistic system of three core innovations designed to overcome the key limitations of existing methods in signed link prediction. We begin by detailing the architecture of our Sign-aware Graph Transformer, which operates on the line graph and incorporates novel inductive priors to capture global, structurally-aware representations. Next, we describe our Hierarchical Prototypical Learning Objective, a unified framework designed to handle both class imbalance and intra-class multimodality.

Figure 2: The integrated architecture of HPC-SGT. The framework learns global link representations using a Sign-aware Graph Transformer on the line graph. The entire model is unified and regularized by a Cross-View Co-training Mechanism for robust learning.

Finally, we introduce our Cross-View Consistency mechanism, a principled regularizer that ensures the learned representations are topologically faithful.

4.1 SIGN-AWARE GRAPH TRANSFORMER FOR GLOBAL LINK REPRESENTATION

To transcend the inherent locality of conventional GNNs, we propose a Sign-aware Graph Transformer (SGT) that operates on the line graph dual. This core component is distinguished by its novel graph-native inductive biases, which are specifically engineered for the unique properties of signed networks.

Line Graph Formulation. We first transform the input signed bipartite graph, formally defined as $G_b = (\mathcal{U}, \mathcal{V}, \mathcal{E}, s)$, into its line graph dual $G_l = (\mathcal{V}_l, \mathcal{E}_l)$. Here, $s: \mathcal{E} \to \{-1, +1\}$ is the sign function. This transformation allows the model to directly reason about link-level interactions. The vertex set \mathcal{V}_l corresponds to the edge set \mathcal{E} of the original graph, such that each vertex $v_k \in \mathcal{V}_l$ represents a unique edge $e_k \in \mathcal{E}$. The edge set \mathcal{E}_l is constructed based on edge incidence in G_b :

$$\mathcal{E}_l = \{ (v_i, v_j) \mid v_i, v_j \in \mathcal{V}_l, i \neq j, \text{ and } e_i \cap e_j \neq \emptyset \}, \tag{1}$$

where an edge is treated as a set of its two endpoints. Assuming initial node embeddings $\mathbf{H}_{\mathbf{U}} \in \mathbb{R}^{|\mathcal{U}| \times d/2}$ and $\mathbf{H}_{\mathbf{V}} \in \mathbb{R}^{|\mathcal{V}| \times d/2}$, we construct the initial feature matrix for the line graph, $\mathbf{X}_l \in \mathbb{R}^{|\mathcal{E}| \times d}$. The feature vector for a vertex v_k representing edge $e_k = (u_p, v_q)$ is the concatenation of its endpoint embeddings:

$$\mathbf{x}_k = \mathbf{X}_l[k,:] = [\mathbf{H}_{\mathbf{U}}[p,:] \parallel \mathbf{H}_{\mathbf{V}}[q,:]]. \tag{2}$$

Finally, the labels for the line graph vertices are defined by a vector $\mathbf{Y}_l \in \{-1, +1\}^{|\mathcal{E}|}$, where $y_k = s(e_k)$. This formulation effectively reframes signed link prediction as a node classification task on the line graph.

Graph-Native Inductive Priors. A canonical Transformer is inherently topology-agnostic, treating its inputs as an unstructured set and remaining oblivious to the rich relational information encoded in a graph's structure. To address this fundamental limitation, our primary theoretical contribution is the introduction of two principled, graph-native inductive priors that are injected directly into the self-attention mechanism. These priors are co-designed to furnish the Transformer with a multi-scale structural awareness of the signed link space, enabling it to reason about both global network-wide balance and local higher-order connectivity patterns.

Relational Spectral Encoding (RSE) serves as the global prior, designed to operationalize the principles of social balance theory within the spectral domain of the graph. To achieve this in a topologically sound manner, we first define the line graph's binary adjacency matrix, $\mathbf{A}_l \in \{0,1\}^{|\mathcal{V}_l| \times |\mathcal{V}_l|}$,

and a sign vector $\mathbf{s} \in \{-1, +1\}^{|\mathcal{V}_l|}$ where $s_k = \text{sign}(e_k)$. The topologically-aware signed adjacency matrix \mathbf{A}_S is then constructed via the Hadamard product:

$$\mathbf{A}_S = \mathbf{A}_l \odot (\mathbf{s}\mathbf{s}^T). \tag{3}$$

The signed Laplacian is defined as $\mathbf{L}_S = \mathbf{D}_{|S|} - \mathbf{A}_S$, where $[\mathbf{D}_{|S|}]_{ii} = \sum_j |\mathbf{A}_S(i,j)|$. We construct the RSE prior from the eigenvectors corresponding to the smallest d_h eigenvalues of \mathbf{L}_S :

$$\tilde{\mathbf{H}} = \text{EigVecs}_{\text{smallest } d_h}(\mathbf{L}_S), \qquad \mathbf{P}_s = \alpha_s \cdot \text{ZeroDiag}(\tilde{\mathbf{H}}\tilde{\mathbf{H}}^\top),$$
 (4)

where the columns of $\tilde{\mathbf{H}} \in \mathbb{R}^{|\mathcal{V}_l| \times d_h}$ are orthonormal, and $\alpha_s \in \mathbb{R}$ is a learnable scalar weight. We explicitly remove the diagonal of the outer product matrix to prevent the prior from dominating a node's self-attention. In implementation, we treat \mathbf{P}_s as a fixed structural bias by stopping gradients from flowing into $\tilde{\mathbf{H}}$. For the partial eigendecomposition, we employ the Lanczos algorithm on the large, sparse, and symmetric \mathbf{L}_S , yielding a complexity of approximately $\mathcal{O}(d_h \cdot K \cdot |\mathcal{E}_l|)$ for a small number of iterations K.

Topological Motif Encoding (TME) complements the global prior by providing fine-grained local structural information. This component moves beyond simple adjacency to capture the semantic role of higher-order network motifs. Specifically, we focus on signed triadic closures, which manifest as paths of exactly two hops in the line graph. We define $N_p=4$ distinct motif types based on the sign tuple of the edges forming a 2-hop path.

The TME prior, \mathbf{P}_p , is formulated as a learnable mechanism that aggregates information over all 2-hop paths between nodes v_i and v_j . Let $\mathcal{S}_{ij} = \{m \mid (v_i, v_m) \in \mathcal{E}_l \land (v_m, v_j) \in \mathcal{E}_l\}$ be the set of intermediate nodes connecting v_i and v_j . We first compute a multi-hot count vector \mathbf{o}_{ij} that sums the types of all such paths:

$$\mathbf{o}_{ij} = \sum_{m \in \mathcal{S}_{ij}} \text{onehot}(s(e_{im}), s(e_{mj})) \in \mathbb{N}^4,$$
(5)

where $s(e_{im})$ is the sign of the edge between nodes v_i and v_m . The final prior value is a learnable weighted sum of these counts, non-zero only for 2-hop neighbors:

$$\mathbf{P}_{p}(i,j) = \begin{cases} \alpha_{p} \cdot (\mathbf{o}_{ij}^{\top} \boldsymbol{\phi}) & \text{if } \operatorname{dist}_{l}(i,j) = 2\\ 0 & \text{otherwise,} \end{cases}$$
 (6)

where $\phi \in \mathbb{R}^4$ and $\alpha_p \in \mathbb{R}$ are learnable weights. This formulation allows the model to dynamically infer the importance of both the type and prevalence of local connectivity patterns. We keep (+,-) and (-,+) motifs distinct to respect the inherent directionality of the attention mechanism.

Transformer Encoder Architecture. The SGT encoder consists of a stack of L identical layers, each layer being composed of two main sub-modules: multi-head self-attention (MHA) and a position-wise feed-forward network (FFN). We employ residual connections around each sub-module, followed by layer normalization.

The first sub-module, MHA, is where our graph-native inductive priors are injected. The input link representations $\mathbf{H}^{(l-1)} \in \mathbb{R}^{|\mathcal{V}_l| \times d}$ are first linearly projected into queries, keys, and values for each of the N_h attention heads. For a given head h, the attention output is computed by augmenting the standard scaled dot-product attention with our structural priors:

$$\operatorname{head}_{h} = \operatorname{softmax} \left(\frac{(\mathbf{H}^{(l-1)} \mathbf{W}_{h}^{Q}) (\mathbf{H}^{(l-1)} \mathbf{W}_{h}^{K})^{T}}{\sqrt{d_{k}}} + \mathbf{P}_{s} + \mathbf{P}_{p} \right) (\mathbf{H}^{(l-1)} \mathbf{W}_{h}^{V}), \tag{7}$$

where $\mathbf{W}_h^Q, \mathbf{W}_h^K, \mathbf{W}_h^V \in \mathbb{R}^{d \times d_k}$ are the learnable projection matrices for head h, and $d_k = d/N_h$. The outputs of all heads are then concatenated and passed through a final linear projection to produce the MHA output:

$$MHA(\mathbf{H}^{(l-1)}) = Concat(head_1, \dots, head_{N_h})\mathbf{W}^O.$$
(8)

The full layer-wise update rule for transforming the input representations $\mathbf{H}^{(l-1)}$ to the output $\mathbf{H}^{(l)}$ at layer l is defined as follows, where FFN is a two-layer perceptron applied to each position independently:

$$\mathbf{H}' = \text{LayerNorm} \left(\mathbf{H}^{(l-1)} + \text{MHA}(\mathbf{H}^{(l-1)}) \right)$$
(9)

$$\mathbf{H}^{(l)} = \text{LaverNorm} \left(\mathbf{H}' + \text{FFN}(\mathbf{H}') \right). \tag{10}$$

The final output of the stack, $\mathbf{H}^{(L)}$, serves as the matrix of deeply contextualized and structurally-principled link representations used for downstream tasks.

4.2 HIERARCHICAL PROTOTYPICAL LEARNING OBJECTIVE

The structurally-principled representations $\mathbf{H}^{(L)}$ are optimized via a hierarchical objective. The theoretical premise of our approach is to reframe the learning problem as a probabilistic assignment over a set of learnable prototypes, a formulation designed to inherently address both class imbalance and intra-class multimodality. We map each link embedding $\mathbf{h}_i \in \mathbf{H}^{(L)}$ to a probability distribution over a set of prototypes $\mathcal{C} = \bigcup_c \mathcal{C}_c$. The foundation of our objective is the soft assignment probability p_{ij} of an embedding \mathbf{h}_i to a prototype \mathbf{c}_j , governed by a softmax over the negative squared Euclidean distance $d(\mathbf{h}_i, \mathbf{c}_j) = \|\mathbf{h}_i - \mathbf{c}_j\|_2^2$:

$$p_{ij} = P(\mathbf{c}_j | \mathbf{h}_i) = \frac{\exp(-d(\mathbf{h}_i, \mathbf{c}_j)/\tau)}{\sum_{k=1}^{|\mathcal{C}|} \exp(-d(\mathbf{h}_i, \mathbf{c}_k)/\tau)},$$
(11)

where τ is a temperature parameter. From this probabilistic foundation, we derive a composite loss \mathcal{L}_{H} with three synergistic components designed to sculpt the embedding space. The primary discriminative loss ($\mathcal{L}_{\mathrm{class}}$) applies a class-balanced cross-entropy to the marginalized class probability $P(y_i|\mathbf{h}_i) = \sum_{\mathbf{c}_k \in \mathcal{C}_{y_i}} p_{ik}$ to ensure accurate classification under imbalance:

$$\mathcal{L}_{\text{class}} = -\sum_{i=1}^{N} \alpha_{y_i} \log P(y_i | \mathbf{h}_i), \tag{12}$$

where α_{y_i} is a class-balancing weight. This is complemented by a clustering regularizer ($\mathcal{L}_{\text{cluster}}$), which minimizes the entropy of the assignment distribution p_{ij} to enforce cluster compactness:

$$\mathcal{L}_{\text{cluster}} = \frac{1}{N} \sum_{i=1}^{N} \left(-\sum_{j=1}^{|\mathcal{C}|} p_{ij} \log p_{ij} \right). \tag{13}$$

Finally, a separation regularizer (\mathcal{L}_{sep}) imposes a geometric prior on the prototypes themselves to ensure inter-class separation:

$$\mathcal{L}_{\text{sep}} = \sum_{\mathbf{c}_k \in \mathcal{C}_{\text{pos}}} \sum_{\mathbf{c}_j \in \mathcal{C}_{\text{neg}}} \exp(-d(\mathbf{c}_k, \mathbf{c}_j)). \tag{14}$$

These components are jointly optimized in a weighted sum: $\mathcal{L}_{H} = \mathcal{L}_{class} + \beta_1 \mathcal{L}_{cluster} + \beta_2 \mathcal{L}_{seb}$.

4.3 Joint Optimization with Cross-View Consistency

Training a deep and expressive encoder like the SGT presents a fundamental challenge: a potential divergence between the learned semantic space and the foundational graph topology. The encoder, in its pursuit of optimizing the primary objective, may learn powerful semantic representations that are not faithfully grounded in the intrinsic structure of the graph, a phenomenon we term the *structure-semantics gap*. To mitigate this and enhance generalization, we introduce a cross-view consistency mechanism. This is not merely a regularizer, but a principled component designed to enforce topological fidelity by ensuring that the semantic interpretations of links remain consistent with their structural origins.

Our framework provides two distinct vector-space perspectives or "views" for each link e_k : the foundational (structural) view, represented by the initial feature vector $\mathbf{h}_k^{(0)} \in \mathbf{X}_l$, and the advanced (semantic) view, represented by the final output vector $\mathbf{h}_k^{(L)}$ from the SGT encoder. The shared set of learnable prototypes $\mathcal C$ serves as a common latent vocabulary through which both views must interpret the data. We enforce consistency by aligning the probabilistic assignments of embeddings from both views to this shared vocabulary. The probability of an embedding \mathbf{h} being assigned to a prototype \mathbf{c}_j is given by:

$$P(\mathbf{c}_j|\mathbf{h}) = \frac{\exp(-\|\mathbf{h} - \mathbf{c}_j\|_2^2/\tau_c)}{\sum_{\mathbf{c}_m \in \mathcal{C}} \exp(-\|\mathbf{h} - \mathbf{c}_m\|_2^2/\tau_c)},$$
(15)

where τ_c is a temperature parameter. For a given link e_k , this yields two probability distributions over the prototypes: $\mathbf{P}_k^{(0)}$ from the foundational view $\mathbf{h}_k^{(0)}$, and $\mathbf{P}_k^{(L)}$ from the advanced view $\mathbf{h}_k^{(L)}$. The cross-view consistency loss then penalizes the divergence between these two interpretations using the symmetric Kullback-Leibler (KL) divergence:

$$\mathcal{L}_{\text{consistency}} = \frac{1}{2|\mathcal{V}_l|} \sum_{k=1}^{|\mathcal{V}_l|} \left(D_{\text{KL}}(\mathbf{P}_k^{(0)} || \mathbf{P}_k^{(L)}) + D_{\text{KL}}(\mathbf{P}_k^{(L)} || \mathbf{P}_k^{(0)}) \right). \tag{16}$$

Overall Objective. The entire HPC-SGT framework is then trained by jointly optimizing the hierarchical prototypical contrastive objective and the cross-view consistency loss. The final objective function is a weighted sum of these two components:

$$\mathcal{L}_{total} = \mathcal{L}_{H} + \gamma \mathcal{L}_{consistency}. \tag{17}$$

This joint optimization ensures that the SGT learns link representations that are not only discriminative and well-structured but also remain faithful to the ground-truth graph topology.

5 EXPERIMENTS

In this section, we empirically evaluate our proposed HPC-SGT framework. We first compare its performance against a wide range of state-of-the-art baselines on the task of signed link prediction. We then conduct detailed ablation studies to quantify the individual contributions of our core components. Finally, we analyze the framework's hyperparameter sensitivity and computational efficiency.

5.1 EXPERIMENTAL SETTINGS

Datasets and Baselines. We conduct experiments on four large-scale signed bipartite graph benchmarks: Amazon-Book McAuley et al. (2015), ML-1M Harper & Konstan (2015), ML-10M, and Gowalla Cho et al. (2011). We construct signed links following established protocols (Derr et al., 2018; Chen et al., 2024b). For rating-based datasets (Amazon-Book, MovieLens), we map user ratings ≥ 4 to positive (+1) links and those ≤ 3 to negative (-1). For the implicit check-in data from Gowalla, all existing interactions are considered positive, and we sample an equal number of unobserved user-location pairs as negative links. Detailed statistics for the resulting datasets are provided in Appendix A.1. We compare our framework, HPC-SGT, against fourteen state-of-the-art baselines spanning four categories: (i) Unsigned Methods, (ii) Early Signed Embeddings, (iii) GNN-based Models, and (iv) Transformer-based Architectures. Appendix A provides detailed statistics and descriptions.

Evaluation Metrics. Following established protocols (Zhang et al., 2023; Huang et al., 2021a), we evaluate performance on the signed link prediction task using four standard metrics: AUC, Binary-F1, Macro-F1, and Micro-F1. Higher values indicate superior performance. We use AUC as the primary metric for model selection, given its threshold-independent nature.

Implementation Details and Protocol. We adopt a standard transductive learning setup, splitting the links (nodes in the line graph) into 85% for training, 5% for validation, and 10% for testing. This standard link-based split, rather than a node-based one, ensures all node embeddings are learned during training while preventing label leakage, as the validation and test link instances are held out. For robustness, we report the mean performance over five independent runs with different random seeds. For a fair comparison, all models are initialized with identical 32-dimensional learnable node embeddings. Baselines operate on the original bipartite graph G_b , whereas our HPC-SGT operates on its line graph dual G_l . The final prediction score for a link e_i is its probability of belonging to the positive class, $P(y_i = +1|\mathbf{h}_i)$, which is computed by marginalizing over the positive prototypes as defined in our methodology. All hyperparameters for all models were optimized via a systematic grid search, maximizing the AUC score on the validation set.

5.2 Performance Comparison

Table 1 summarizes the performance comparison between our proposed HPC-SGT and a comprehensive set of baseline methods across four benchmark datasets. The results clearly demonstrate that

Table 1: Performance comparison on four signed bipartite datasets. Our proposed model, HPC-SGT, consistently outperforms all baseline methods across all metrics. The best results are highlighted in bold.

	Amazon-Book				ML-1M			ML-10M				Gowalla				
Method	AUC	Bi	Macro	Micro	AUC	Bi	Macro	Micro	AUC	Bi	Macro	Micro	AUC	Bi	Macro	Micro
DeepWalk	0.594	0.573	0.538	0.585	0.591	0.557	0.523	0.539	0.627	0.580	0.542	0.579	0.574	0.502	0.511	0.548
Node2Vec	0.547	0.656	0.488	0.543	0.635	0.582	0.609	0.611	0.654	0.671	0.551	0.562	0.536	0.614	0.494	0.587
LINE	0.588	0.593	0.517	0.567	0.628	0.578	0.541	0.602	0.621	0.612	0.581	0.589	0.601	0.589	0.502	0.596
SiNE	0.594	0.559	0.491	0.458	0.573	0.528	0.511	0.579	0.609	0.534	0.528	0.499	0.585	0.526	0.545	0.602
SBiNE	0.578	0.541	0.486	0.509	0.552	0.503	0.509	0.516	0.582	0.522	0.519	0.586	0.596	0.528	0.508	0.557
SCsc	0.581	0.436	0.427	0.537	0.589	0.484	0.479	0.581	0.648	0.489	0.509	0.574	0.577	0.488	0.478	0.559
SGCN	0.593	0.693	0.504	0.582	0.632	0.662	0.615	0.627	0.632	0.671	0.584	0.605	0.602	0.651	0.518	0.604
SGCL	0.613	0.710	0.502	0.604	0.632	0.673	0.662	0.652	0.631	0.698	0.579	0.645	0.604	0.668	0.508	0.617
SBGNN	0.603	0.720	0.552	0.612	0.652	0.699	0.653	0.674	0.639	0.702	0.601	0.638	0.611	0.672	0.597	0.629
SBGCL	0.637	0.734	0.587	0.640	0.685	0.702	0.678	0.680	0.652	0.711	0.628	0.688	0.605	0.698	0.625	0.667
LightGCL	0.647	0.747	0.601	0.642	0.727	0.711	0.655	0.736	0.701	0.728	0.681	0.694	0.645	0.694	0.677	0.665
SIGformer	0.658	0.740	0.617	0.652	0.715	0.725	0.688	0.721	0.729	0.731	0.689	0.708	0.659	0.711	0.698	0.672
SE-SGformer	0.681	0.738	0.621	0.668	0.721	0.732	0.704	0.728	0.715	0.724	0.702	0.701	0.684	0.704	0.685	0.694
HPC-SGT (Ours)	0.744	0.801	0.671	0.718	0.748	0.781	0.734	0.745	0.760	0.784	0.735	0.747	0.739	0.753	0.721	0.736

HPC-SGT establishes a new state-of-the-art on the task of link sign prediction. Across all datasets, HPC-SGT consistently surpasses GNN-based counterparts like LightGCL, demonstrating that the Transformer's global attention is more effective for capturing long-range dependencies than local message-passing. More notably, our framework also outperforms recent Transformer models such as SIGformer. This highlights the decisive advantage of our graph-native inductive priors. While generic Transformers can model global interactions, our SGT encoder is uniquely structured by principles of social balance and local motifs to learn more powerful and contextually-aware link representations.

Quantitatively, HPC-SGT demonstrates substantial gains on the primary AUC metric, achieving relative improvements of up to 6.3% on Amazon-Book and 5.5% on Gowalla over the strongest competitor. The significant improvements across all F1 metrics, which are sensitive to class imbalance, further underscore the efficacy of our hierarchical prototypical contrastive objective. Its ability to model multi-modal class structures while employing an explicit class-balancing mechanism results in a more robust and accurate decision boundary than standard classification losses.

5.3 ABLATION STUDY

We evaluate four removals on Amazon-Book and ML-1M: the spectral prior (RSE), the motif prior (TME), the multi-prototype head (replaced by a single prototype per class), and the cross-view consistency term. All runs share the same training protocol and hyperparameters as the full model. Table 2 shows that across both datasets, each ablation yields a consistent drop on ranking and F1 metrics, while the full HPC-SGT remains strongest. The trends are complementary: RSE improves global structure awareness and class balance; TME benefits short-range decisions reflected in microaveraged scores; the multi-prototype head bet-

Table 2: Ablation study of HPC-SGT's core components. Removing any module degrades performance, confirming its contribution. Best results are in bold.

		Amazo	n-Book	ζ	ML-1M					
Method	AUC	Bi	Ma	Mi	AUC	Bi	Ma	Mi		
w/o RSE w/o TME			0.602 0.622							
Single-Prototype	0.718	0.791	0.618	0.671	0.698	0.725	0.694	0.701		
w/o Cross-View	0.701	0.784	0.630	0.689	0.717	0.719	0.684	0.723		
HPC-SGT	0.744	0.801	0.671	0.718	0.739	0.753	0.721	0.736		

ter captures intra-class variability than a single prototype; and the consistency term regularizes the encoder by aligning structural and semantic views. These effects appear in both benchmarks, indicating that the components address distinct failure modes rather than overlapping the same gain.

5.4 PARAMETER ANALYSIS

We examine four hyperparameters that map directly to the model design: the spectral capacity of the global prior (d_h) , the number of prototypes per class (K_c) , the cross-view consistency weight (γ) , and the assignment-entropy weight (β_1) . Each sweep varies a single parameter while holding the others fixed to the main configuration; unless swept, we set β_1 =0.2 and d_h =32. The curves (AUC

and Bi-F1) show a consistent pattern. Increasing d_h improves performance up to a clear knee and then saturates, indicating that a modest set of spectral components is sufficient to carry the long-range balance signal. Varying K_c confirms the utility of explicit multi-prototype modeling: moving from one to a small set of prototypes strengthens decision boundaries, after which gains diminish as the head becomes over-parameterized. The consistency term exhibits a broad plateau, with moderate γ yielding the best trade-off between anchoring the encoder to the structural view and preserving flexibility. For β_1 , mid-range values avoid both diffuse assignments and premature peaking, and produce more stable training.

5.5 CLASS IMBALANCE.

432

433

434

435

436

437

438

439 440 441

442 443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462 463

464 465 466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

To evaluate the performance of HPC-SGT in addressing extreme class imbalance issues, we select the Bonanza dataset for our experiments, which exhibits the largest disparity between the number of positive and negative We compare HPC-SGT with several existing methods that address class imbalance among graph nodes, including ImGAGN, GraphENS, and GraphSHA. To process the signed bipartite graph, we transform it into a line graph before applying the aforementioned methods. The experimental results are shown in Figure 4. It is observed that HCP-SGT significantly outperforms ImGAGN Wang et al. (2024), GraphENS Shi et al.

Figure 3: Sensitivity analysis of key hyper-parameters on model performance.

(2024), and GraphSHA. This demonstrates that HPC-SGT is better at balancing performance among different classes, particularly excelling in the precise identification of the tail class.

6 Conclusion

In this paper, we introduced HPC-SGT, a novel framework for signed link prediction. Extensive experiments and ablation studies validated that HPC-SGT establishes a new state-of-the-art on multiple benchmark datasets. We demonstrated that its success stems from a principled co-design of its components. Sign-aware Graph Transformer operates on the line graph with novel inductive priors to capture global dependencies inaccessible to standard GNNs. This powerful encoder is guided by a hierarchical prototypical objective that synergistically handles

Figure 4: Comparison on BONANZA under severe class imbalance.

complex data, using a class-balanced loss to manage imbalance and geometric regularizers to model multimodality. The framework's robustness is further enhanced by a cross-view consistency mechanism that ensures topological fidelity. Acknowledging the computational cost of the Transformer as a limitation, a key direction for future work is the exploration of more efficient sparse attention mechanisms. Extending the framework to dynamic graphs and further investigating the interpretability of the learned prototypes are also promising research avenues.

ETHICS STATEMENT

The authors of this work have adhered to the ICLR Code of Ethics. Our research is conducted on publicly available benchmark datasets commonly used for evaluating signed link prediction models. These datasets contain anonymized user-item interactions, and our study does not involve any direct experimentation with human subjects.

We acknowledge that link sign prediction models, including HPC-SGT, have potential for dual use. While they can be applied beneficially to enhance recommendation systems or identify supportive communities, they could also be misused to infer contentious social relationships or amplify polarization. Furthermore, as our model is trained on real-world data, it may inherit and potentially amplify existing societal biases present in that data. A thorough investigation into the fairness and potential biases of the learned representations is an important direction for future research. We are committed to the responsible development and application of machine learning technologies.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. To this end, we provide the main source code for our HPC-SGT framework, model configurations, and experiment scripts in the supplementary materials. The core methodology, including the architecture of our Sign-aware Graph Transformer and the formulation of our hierarchical learning objective, is detailed in Section 4. A step-by-step training procedure is provided in pseudocode in Appendix B. All experimental settings, including descriptions of the publicly available benchmark datasets, evaluation protocols, and a comprehensive list of hyperparameter values, are documented in Section 5 and the Appendix.

REFERENCES

- Djihad Arrar, Nadjet Kamel, and Abdelaziz Lakhfif. A comprehensive survey of link prediction methods. *The journal of supercomputing*, 80(3):3902–3942, 2024.
- Matthias Braunhofer, Mehdi Elahi, and Francesco Ricci. User personality and the new user problem in a context-aware point of interest recommender system. In *Information and Communication Technologies in Tourism 2015: Proceedings of the International Conference in Lugano, Switzerland, February 3-6, 2015*, pp. 537–549. Springer, 2015.
- Fenxiao Chen, Yun-Cheng Wang, Bin Wang, and C-C Jay Kuo. Graph representation learning: a survey. *APSIPA Transactions on Signal and Information Processing*, 9:e15, 2020.
- Ming Chen, Yajian Jiang, Xiujuan Lei, Yi Pan, Chunyan Ji, and Wei Jiang. Drug-target interactions prediction based on signed heterogeneous graph neural networks. *Chinese Journal of Electronics*, 33(1):231–244, 2024a.
- Sirui Chen, Jiawei Chen, Sheng Zhou, Bohao Wang, Shen Han, Chanfei Su, Yuqing Yuan, and Can Wang. Sigformer: Sign-aware graph transformer for recommendation. In *Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 1274–1284, 2024b.
- Eunjoon Cho, Seth A Myers, and Jure Leskovec. Friendship and mobility: user movement in location-based social networks. In *Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining*, pp. 1082–1090, 2011.
- Tyler Derr, Yao Ma, and Jiliang Tang. Signed graph convolutional networks. In 2018 IEEE International Conference on Data Mining (ICDM), pp. 929–934. IEEE, 2018.
- Kun Fu, Tingyun Mao, Yang Wang, Daoyu Lin, Yuanben Zhang, Junjian Zhan, Xian Sun, and Feng Li. Ts-extractor: large graph exploration via subgraph extraction based on topological and semantic information. *Journal of visualization*, 24:173–190, 2021.
- Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In *Proceedings* of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855–864, 2016.

- Qingyu Guo, Fuzhen Zhuang, Chuan Qin, Hengshu Zhu, Xing Xie, Hui Xiong, and Qing He. A survey on knowledge graph-based recommender systems. *IEEE Transactions on Knowledge and Data Engineering*, 34(8):3549–3568, 2020.
 - Xuan Guo, Pengfei Jiao, Danyang Shi, Jie Li, and Jinpeng Wang. Learning node representations via sketching the generative process with events benefits link prediction on heterogeneous networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025.
 - Jinquan Hang, Zhiqing Hong, Xinyue Feng, Guang Wang, Guang Yang, Feng Li, Xining Song, and Desheng Zhang. Paths2pair: Meta-path based link prediction in billion-scale commercial heterogeneous graphs. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 5082–5092, 2024.
 - F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. *Acm transactions on interactive intelligent systems (tiis)*, 5(4):1–19, 2015.
 - Junjie Huang, Huawei Shen, Liang Hou, and Xueqi Cheng. Signed graph attention networks. In Artificial Neural Networks and Machine Learning–ICANN 2019: Workshop and Special Sessions: 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings 28, pp. 566–577. Springer, 2019.
 - Junjie Huang, Huawei Shen, Qi Cao, Shuchang Tao, and Xueqi Cheng. Signed bipartite graph neural networks. In *Proceedings of the 30th ACM international conference on information & knowledge management*, pp. 740–749, 2021a.
 - Junjie Huang, Huawei Shen, Liang Hou, and Xueqi Cheng. Sdgnn: Learning node representation for signed directed networks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35, pp. 196–203, 2021b.
 - Yehuda Koren. The bellkor solution to the netflix grand prize. *Netflix prize documentation*, 81 (2009):1–10, 2009.
 - Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender systems. *Computer*, 42(8):30–37, 2009.
 - Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting positive and negative links in online social networks. In *Proceedings of the 19th international conference on World wide web*, pp. 641–650, 2010.
 - Lu Li, Jiale Liu, Xingyu Ji, Maojun Wang, and Zeyu Zhang. Se-sgformer: A self-explainable signed graph transformer for link sign prediction. *arXiv preprint arXiv:2408.08754*, 2024.
 - Yu Li, Yuan Tian, Jiawei Zhang, and Yi Chang. Learning signed network embedding via graph attention. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 4772–4779, 2020.
 - Hongxiang Lin, Ruiqi Jia, and Xiaoqing Lyu. Gated attention with asymmetric regularization for transformer-based continual graph learning. In *Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 2021–2025, 2023.
 - Hongxiang Lin, Yixiao Zhou, Huiying Hu, Zhicheng He, Runzhi Wu, and Xiaoqing Lyu. Graph matching based graph self-supervised learning for molecular property prediction. In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 7092–7094. IEEE, 2024.
 - Hongxiang Lin, Yixiao Zhou, Huiying Hu, and Xiaoqing Lyu. Improving link sign prediction in signed bipartite graphs via balanced line graphs. In *Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 2607–2611, 2025.
 - Cristina Maier and Dan Simovici. Bipartite graphs and recommendation systems. *Journal of Advances in Information Technology-in print*, 2022.
 - Paolo Massa and Paolo Avesani. Trust-aware recommender systems. In *Proceedings of the 2007 ACM conference on Recommender systems*, pp. 17–24, 2007.

- Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based recommendations on styles and substitutes. In *Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 43–52, 2015.
 - Antonio Ortega, Pascal Frossard, Jelena Kovačević, José MF Moura, and Pierre Vandergheynst. Graph signal processing: Overview, challenges, and applications. *Proceedings of the IEEE*, 106 (5):808–828, 2018.
 - Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations. In *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining*, pp. 701–710, 2014.
 - Meilun Shi, Enguang Zuo, Hanwen Qu, and Xiaoyi Lv. Graphuc: Predictive probability-based graph-structured data augmentation model for class imbalance node classification. In 2024 4th International Conference on Electronic Information Engineering and Computer Science (EIECS), pp. 933–936, 2024. doi: 10.1109/EIECS63941.2024.10800434.
 - Lin Shu, Erxin Du, Yaomin Chang, Chuan Chen, Zibin Zheng, Xingxing Xing, and Shaofeng Shen. Sgcl: Contrastive representation learning for signed graphs. In *Proceedings of the 30th ACM International Conference on Information & Knowledge Management*, pp. 1671–1680, 2021.
 - Dongjin Song, David A Meyer, and Dacheng Tao. Efficient latent link recommendation in signed networks. In *Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 1105–1114, 2015.
 - Jiliang Tang, Charu Aggarwal, and Huan Liu. Recommendations in signed social networks. In *Proceedings of the 25th International Conference on World Wide Web*, pp. 31–40, 2016.
 - George Yuanji Wang, Srisharan Murugesan, and Aditya Prince Rohatgi. Gan-tat: A novel framework using protein interaction networks in druggable gene identification, 2024. URL https://arxiv.org/abs/2501.01458.
 - Qu Wang and Hao Wu. Dynamically weighted directed network link prediction using tensor ring decomposition. In 2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 2864–2869. IEEE, 2024.
 - Suhang Wang, Jiliang Tang, Charu Aggarwal, Yi Chang, and Huan Liu. Signed network embedding in social media. In *Proceedings of the 2017 SIAM international conference on data mining*, pp. 327–335. SIAM, 2017.
 - Tianming Wang, Xiaojun Wan, and Hanqi Jin. Amr-to-text generation with graph transformer. *Transactions of the Association for Computational Linguistics*, 8:19–33, 2020.
 - Yifan Wang, Yangzi Yang, Shuai Li, Yutao Xie, Zhiping Xiao, Ming Zhang, and Wei Ju. Gmr-rec: Graph mutual regularization learning for multi-domain recommendation. *Information Sciences*, 703:121946, 2025.
 - Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A comprehensive survey on graph neural networks. *IEEE transactions on neural networks and learning systems*, 32(1):4–24, 2020.
 - Chen Xing and Masoud Makrehchi. Line graph is the key: An exploration of line graph on link prediction with social networks. In 2024 11th International Conference on Behavioural and Social Computing (BESC), pp. 1–7, 2024. doi: 10.1109/BESC64747.2024.10780611.
 - Ruiping Yin, Kan Li, Guangquan Zhang, and Jie Lu. A deeper graph neural network for recommender systems. *Knowledge-Based Systems*, 185:105020, 2019.
 - Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-bert: Only attention is needed for learning graph representations. *arXiv preprint arXiv:2001.05140*, 2020.
 - Zeyu Zhang, Jiamou Liu, Kaiqi Zhao, Song Yang, Xianda Zheng, and Yifei Wang. Contrastive learning for signed bipartite graphs. In *Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 1629–1638, 2023.

Wayne Xin Zhao, Sui Li, Yulan He, Edward Y Chang, Ji-Rong Wen, and Xiaoming Li. Connecting social media to e-commerce: Cold-start product recommendation using microblogging information. *IEEE Transactions on Knowledge and Data Engineering*, 28(5):1147–1159, 2015.

Yumeng Zhao, Hongxiang Lin, Shuo Wen, Junjie Shen, and Bei Hua. Sma-gnn: A symbol-aware graph neural network for signed link prediction in recommender systems. In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 2*, pp. 3957–3967, 2025.

REFERENCES

- Djihad Arrar, Nadjet Kamel, and Abdelaziz Lakhfif. A comprehensive survey of link prediction methods. *The journal of supercomputing*, 80(3):3902–3942, 2024.
- Matthias Braunhofer, Mehdi Elahi, and Francesco Ricci. User personality and the new user problem in a context-aware point of interest recommender system. In *Information and Communication Technologies in Tourism 2015: Proceedings of the International Conference in Lugano, Switzerland, February 3-6, 2015*, pp. 537–549. Springer, 2015.
- Fenxiao Chen, Yun-Cheng Wang, Bin Wang, and C-C Jay Kuo. Graph representation learning: a survey. *APSIPA Transactions on Signal and Information Processing*, 9:e15, 2020.
- Ming Chen, Yajian Jiang, Xiujuan Lei, Yi Pan, Chunyan Ji, and Wei Jiang. Drug-target interactions prediction based on signed heterogeneous graph neural networks. *Chinese Journal of Electronics*, 33(1):231–244, 2024a.
- Sirui Chen, Jiawei Chen, Sheng Zhou, Bohao Wang, Shen Han, Chanfei Su, Yuqing Yuan, and Can Wang. Sigformer: Sign-aware graph transformer for recommendation. In *Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 1274–1284, 2024b.
- Eunjoon Cho, Seth A Myers, and Jure Leskovec. Friendship and mobility: user movement in location-based social networks. In *Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining*, pp. 1082–1090, 2011.
- Tyler Derr, Yao Ma, and Jiliang Tang. Signed graph convolutional networks. In 2018 IEEE International Conference on Data Mining (ICDM), pp. 929–934. IEEE, 2018.
- Kun Fu, Tingyun Mao, Yang Wang, Daoyu Lin, Yuanben Zhang, Junjian Zhan, Xian Sun, and Feng Li. Ts-extractor: large graph exploration via subgraph extraction based on topological and semantic information. *Journal of visualization*, 24:173–190, 2021.
- Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In *Proceedings* of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855–864, 2016.
- Qingyu Guo, Fuzhen Zhuang, Chuan Qin, Hengshu Zhu, Xing Xie, Hui Xiong, and Qing He. A survey on knowledge graph-based recommender systems. *IEEE Transactions on Knowledge and Data Engineering*, 34(8):3549–3568, 2020.
- Xuan Guo, Pengfei Jiao, Danyang Shi, Jie Li, and Jinpeng Wang. Learning node representations via sketching the generative process with events benefits link prediction on heterogeneous networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025.
- Jinquan Hang, Zhiqing Hong, Xinyue Feng, Guang Wang, Guang Yang, Feng Li, Xining Song, and Desheng Zhang. Paths2pair: Meta-path based link prediction in billion-scale commercial heterogeneous graphs. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 5082–5092, 2024.
- F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. *Acm transactions on interactive intelligent systems (tiis)*, 5(4):1–19, 2015.

- Junjie Huang, Huawei Shen, Liang Hou, and Xueqi Cheng. Signed graph attention networks. In Artificial Neural Networks and Machine Learning–ICANN 2019: Workshop and Special Sessions: 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings 28, pp. 566–577. Springer, 2019.
 - Junjie Huang, Huawei Shen, Qi Cao, Shuchang Tao, and Xueqi Cheng. Signed bipartite graph neural networks. In *Proceedings of the 30th ACM international conference on information & knowledge management*, pp. 740–749, 2021a.
 - Junjie Huang, Huawei Shen, Liang Hou, and Xueqi Cheng. Sdgnn: Learning node representation for signed directed networks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35, pp. 196–203, 2021b.
 - Yehuda Koren. The bellkor solution to the netflix grand prize. *Netflix prize documentation*, 81 (2009):1–10, 2009.
 - Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender systems. *Computer*, 42(8):30–37, 2009.
 - Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting positive and negative links in online social networks. In *Proceedings of the 19th international conference on World wide web*, pp. 641–650, 2010.
 - Lu Li, Jiale Liu, Xingyu Ji, Maojun Wang, and Zeyu Zhang. Se-sgformer: A self-explainable signed graph transformer for link sign prediction. *arXiv preprint arXiv:2408.08754*, 2024.
 - Yu Li, Yuan Tian, Jiawei Zhang, and Yi Chang. Learning signed network embedding via graph attention. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 4772–4779, 2020.
 - Hongxiang Lin, Ruiqi Jia, and Xiaoqing Lyu. Gated attention with asymmetric regularization for transformer-based continual graph learning. In *Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 2021–2025, 2023.
 - Hongxiang Lin, Yixiao Zhou, Huiying Hu, Zhicheng He, Runzhi Wu, and Xiaoqing Lyu. Graph matching based graph self-supervised learning for molecular property prediction. In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 7092–7094. IEEE, 2024.
 - Hongxiang Lin, Yixiao Zhou, Huiying Hu, and Xiaoqing Lyu. Improving link sign prediction in signed bipartite graphs via balanced line graphs. In *Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 2607–2611, 2025.
 - Cristina Maier and Dan Simovici. Bipartite graphs and recommendation systems. *Journal of Advances in Information Technology-in print*, 2022.
 - Paolo Massa and Paolo Avesani. Trust-aware recommender systems. In *Proceedings of the 2007 ACM conference on Recommender systems*, pp. 17–24, 2007.
 - Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based recommendations on styles and substitutes. In *Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 43–52, 2015.
 - Antonio Ortega, Pascal Frossard, Jelena Kovačević, José MF Moura, and Pierre Vandergheynst. Graph signal processing: Overview, challenges, and applications. *Proceedings of the IEEE*, 106 (5):808–828, 2018.
 - Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations. In *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining*, pp. 701–710, 2014.
 - Meilun Shi, Enguang Zuo, Hanwen Qu, and Xiaoyi Lv. Graphuc: Predictive probability-based graph-structured data augmentation model for class imbalance node classification. In 2024 4th International Conference on Electronic Information Engineering and Computer Science (EIECS), pp. 933–936, 2024. doi: 10.1109/EIECS63941.2024.10800434.

- Lin Shu, Erxin Du, Yaomin Chang, Chuan Chen, Zibin Zheng, Xingxing Xing, and Shaofeng Shen. Sgcl: Contrastive representation learning for signed graphs. In *Proceedings of the 30th ACM International Conference on Information & Knowledge Management*, pp. 1671–1680, 2021.
- Dongjin Song, David A Meyer, and Dacheng Tao. Efficient latent link recommendation in signed networks. In *Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 1105–1114, 2015.
- Jiliang Tang, Charu Aggarwal, and Huan Liu. Recommendations in signed social networks. In *Proceedings of the 25th International Conference on World Wide Web*, pp. 31–40, 2016.
- George Yuanji Wang, Srisharan Murugesan, and Aditya Prince Rohatgi. Gan-tat: A novel framework using protein interaction networks in druggable gene identification, 2024. URL https://arxiv.org/abs/2501.01458.
- Qu Wang and Hao Wu. Dynamically weighted directed network link prediction using tensor ring decomposition. In 2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 2864–2869. IEEE, 2024.
- Suhang Wang, Jiliang Tang, Charu Aggarwal, Yi Chang, and Huan Liu. Signed network embedding in social media. In *Proceedings of the 2017 SIAM international conference on data mining*, pp. 327–335. SIAM, 2017.
- Tianming Wang, Xiaojun Wan, and Hanqi Jin. Amr-to-text generation with graph transformer. *Transactions of the Association for Computational Linguistics*, 8:19–33, 2020.
- Yifan Wang, Yangzi Yang, Shuai Li, Yutao Xie, Zhiping Xiao, Ming Zhang, and Wei Ju. Gmr-rec: Graph mutual regularization learning for multi-domain recommendation. *Information Sciences*, 703:121946, 2025.
- Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A comprehensive survey on graph neural networks. *IEEE transactions on neural networks and learning systems*, 32(1):4–24, 2020.
- Chen Xing and Masoud Makrehchi. Line graph is the key: An exploration of line graph on link prediction with social networks. In 2024 11th International Conference on Behavioural and Social Computing (BESC), pp. 1–7, 2024. doi: 10.1109/BESC64747.2024.10780611.
- Ruiping Yin, Kan Li, Guangquan Zhang, and Jie Lu. A deeper graph neural network for recommender systems. *Knowledge-Based Systems*, 185:105020, 2019.
- Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-bert: Only attention is needed for learning graph representations. *arXiv preprint arXiv:2001.05140*, 2020.
- Zeyu Zhang, Jiamou Liu, Kaiqi Zhao, Song Yang, Xianda Zheng, and Yifei Wang. Contrastive learning for signed bipartite graphs. In *Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 1629–1638, 2023.
- Wayne Xin Zhao, Sui Li, Yulan He, Edward Y Chang, Ji-Rong Wen, and Xiaoming Li. Connecting social media to e-commerce: Cold-start product recommendation using microblogging information. *IEEE Transactions on Knowledge and Data Engineering*, 28(5):1147–1159, 2015.
- Yumeng Zhao, Hongxiang Lin, Shuo Wen, Junjie Shen, and Bei Hua. Sma-gnn: A symbol-aware graph neural network for signed link prediction in recommender systems. In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 2*, pp. 3957–3967, 2025.

A DATASETS AND EXPERIMENTAL SETTINGS

A.1 Datasets

Table 3 lists the basic statistics for every signed bipartite graph used in our study. The four core benchmarks analysed in the main paper—Amazon-Book, ML-10M, Gowalla, and MovieLens-1M—cover e-commerce, location-based social check-ins, and movie-rating domains. To gauge scalability and robustness, we further consider five supplementary signed graphs of varying size and sparsity: Bonanza (e-commerce buyer/seller ratings), U.S. House and U.S. Senate (congressional roll-call votes), and two phases of a computer-science Review dataset (pre- and post-rebuttal).

Table 3: Statistics of the signed bipartite graphs used in this work. |U| / |V| denote the two node partitions; $|E| = |E^+| + |E^-|$. Positive/negative ratios follow the sign definitions in each source.

Dataset	U	V	E	$\% E^+ $	$\% E^- $	Domain
Amazon-Book	35,736	38,121	1,960,674	0.806	0.194	E-commerce
ML-10M	69,878	10,677	10,000,054	0.589	0.411	Movies
Gowalla	37,000	11,500	$3,500,000^{\dagger}$	0.612	0.388	LBSN
MovieLens-1M	6,040	3,952	1,000,209	0.575	0.425	Movies
Bonanza	7,919	1,973	36,543	0.980	0.020	E-commerce
U.S. House	515	1,281	114,378	0.540	0.460	Politics
U.S. Senate	145	1,056	27,083	0.553	0.447	Politics
Review (Pre.)	182	304	1,170	0.403	0.597	Peer review
Review (Final)	182	304	1,170	0.397	0.603	Peer review

A.2 BASELINE DESCRIPTIONS

To provide a comprehensive comparison, we evaluate HPC-SGT against four families of existing techniques. All baselines are trained and tuned under the unified protocol described in the paper; hyper-parameter grids follow the ranges recommended by the original authors.

- (i) Heuristic / unsigned methods. DeepWalk, Node2Vec, and LINE learn node embeddings from unsigned random walks or edge sampling, entirely disregarding polarity. Once the embeddings are obtained, the representation of a candidate edge is formed by concatenating the two endpoint vectors and feeding the result into a logistic classifier. Although these models cannot reason about positive versus negative semantics, they establish a structural lower bound and clarify how much benefit arises purely from sign information.
- (ii) Early signed embeddings. SiNE, SBiNE, and SCsc extend skip-gram training with sign-aware constraints. SiNE introduces a margin-based triplet loss that forces positively connected nodes to be closer than negatively connected ones. SBiNE tailors this idea to bipartite topology by preserving sign-specific first- and second-order proximity. SCsc adds social-balance regularisers that push the geometry of embeddings toward structurally balanced configurations. All three methods remain shallow and scalable, yet their expressiveness is limited by the absence of higher-order message passing.
- (iii) GNN-based models. SGCN propagates messages through disjoint positive and negative channels, explicitly following balance theory at each layer. SGCL introduces a contrastive loss that pulls together node pairs appearing in balanced triads and pushes apart those in unbalanced ones. SBGNN augments standard graph convolutions with learnable sign masks, while SBGCL combines this architecture with contrastive regularisation to sharpen sign discrimination. LightGCL streamlines the same principles into a parameter-efficient design that reduces memory without sacrificing accuracy. These models capture high-order structures but still aggregate over the entire graph, leaving local sign motifs partly diluted and node roles implicit.
- (iv) Transformer-style architectures. SIGformer applies multi-head self-attention to signed graphs, masking attention weights with polarity-aware filters to preserve balance constraints even

at long range. SE-SGformer extends this blueprint with self-explainable heads that highlight path patterns responsible for each prediction. Both architectures rely on global attention, which can blur local context and incurs quadratic memory growth with graph size.

A.3 IMPLEMENTATION DETAILS

Experimental Setup. All experiments were conducted on a server equipped with an NVIDIA A100 GPU. Our proposed HPC-SGT framework was implemented using PyTorch and the PyTorch Geometric (PyG) library. For all baseline models, we utilized their officially released code where available or re-implemented them faithfully according to their original papers to ensure a rigorous and fair comparison.

HPC-SGT Configuration and Training. Unless otherwise specified, we set the embedding dimension to d=32 for all models. For our HPC-SGT, the Sign-aware Graph Transformer encoder consists of L=3 layers, with $N_h=4$ attention heads in each MHA module. The hidden dimension of the FFN was set to 256. We applied a dropout rate of 0.1 throughout the encoder. For our graph-native inductive priors, the spectral dimension for RSE was set to $d_h=32$.

The hierarchical prototypical objective is configured with $K_c=4$ prototypes per class and a temperature of $\tau=0.1$ for the probabilistic assignment. The loss weights were set to $\beta_1=0.2$ for the clustering regularizer and $\beta_2=0.1$ for the separation regularizer. For the cross-view consistency mechanism, the temperature was set to $\tau_c=1.0$ and the loss weight to $\gamma=0.1$. All models were trained using the AdamW optimizer with a learning rate of 1×10^{-3} and a weight decay of 1×10^{-5} , managed by a cosine annealing scheduler. We used a batch size of 1024 and trained for up to 200 epochs, with an early stopping patience of 20 epochs based on the validation set's AUC score.

B ALGORITHM DETAILS

Algorithm 1 provides a detailed outline of the training procedure for our proposed HPC-SGT framework. The process is divided into two main stages: initialization and the main training loop, where all components are jointly optimized.

Stage 1: Initialization (Lines 3-6). Before training, we first construct the line graph dual G_l from the input signed bipartite graph G_b . The initial node embeddings for the original graph, \mathbf{H}_U and \mathbf{H}_V , are initialized as learnable parameters. These are then used to construct the initial feature matrix for the line graph, $\mathbf{H}^{(0)}$, by concatenating the endpoint embeddings for each corresponding link. Finally, the parameters of the SGT Encoder and the set of learnable prototypes \mathcal{C} are initialized.

Stage 2: Joint Optimization Loop (Lines 8-16). The main training is performed by jointly optimizing all learnable parameters within a training loop. In each epoch, the SGT Encoder first processes the initial link features $\mathbf{H}^{(0)}$ to produce the final, contextualized link embeddings $\mathbf{H}^{(L)}$ (Line 10). These embeddings are then used to compute the two main components of our total loss function.

- The Hierarchical Prototypical Objective, \mathcal{L}_H , is computed based on the final embeddings $\mathbf{H}^{(L)}$ and the prototypes \mathcal{C} . This involves first calculating the probabilistic assignments of embeddings to prototypes, and then using these probabilities to compute the three synergistic loss terms: the class-balanced discriminative loss (\mathcal{L}_{class}), the clustering regularizer ($\mathcal{L}_{cluster}$), and the separation regularizer (\mathcal{L}_{sep}) (Line 12).
- The Cross-View Consistency Loss, $\mathcal{L}_{\text{consistency}}$, is computed by measuring the distributional divergence between the prototype assignments derived from the initial (structural) link features $\mathbf{H}^{(0)}$ and the final (semantic) link embeddings $\mathbf{H}^{(L)}$ (Line 14).

Finally, these two objectives are combined into a single total loss \mathcal{L}_{total} , and the gradient is backpropagated to jointly update all learnable parameters of the framework: the SGT, the prototypes \mathcal{C} , and the initial node embeddings \mathbf{H}_U and \mathbf{H}_V (Line 16).

Algorithm 1 HPC-SGT Training Procedure

- 1: **Input:** Signed bipartite graph $G_b = (\mathcal{U}, \mathcal{V}, \mathcal{E}, s)$, hyperparameters $\beta_1, \beta_2, \gamma, \tau, \ldots$
- 2: **Output:** Trained SGT Encoder, Prototypes C, and Node Embeddings \mathbf{H}_U , \mathbf{H}_V . //- Stage 1: Initialization —
- 3: Initialize learnable node embeddings $\mathbf{H}_U, \mathbf{H}_V$.
- 4: Construct line graph $G_l = (\mathcal{V}_l, \mathcal{E}_l)$ from G_b .
- 5: Construct initial link features $\mathbf{H}^{(0)}$ where $\mathbf{h}_k^{(0)} = [\mathbf{H}_U[p,:] \parallel \mathbf{H}_V[q,:]]$ for link $e_k = (u_p, v_q)$.
- 6: Initialize parameters for SGT Encoder and Prototypes C.
- // Stage 2: Joint Optimization Loop —
- 7: for each training epoch do
- 8: // Forward pass to get final link embeddings
- 9: $\mathbf{H}^{(L)} = \mathbf{SGT} \cdot \mathbf{Encoder}(\mathbf{H}^{(0)}, G_l)$
- 10: // Compute Hierarchical Prototypical Objective
- 11: Compute $\mathcal{L}_{H} = \mathcal{L}_{class} + \beta_1 \mathcal{L}_{cluster} + \beta_2 \mathcal{L}_{sep}$ using $\mathbf{H}^{(L)}$ and \mathcal{C} .
- 12: // Compute Consistency Loss
- 13: Compute $\mathcal{L}_{\text{consistency}}$ between assignments from $\mathbf{H}^{(0)}$ and $\mathbf{H}^{(L)}$.
- 14: // Combine objectives and update all parameters
- 15: $\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{H}} + \gamma \mathcal{L}_{\text{consistency}}$
 - 16: Update all parameters $(\dot{\mathbf{H}}_U, \mathbf{H}_V, \mathbf{SGT}, \mathcal{C})$ via backpropagation.
- 17: **end for**

18: **return** Trained parameters.

C ADDITIONAL RESULTS ON BENCHMARK DATASETS

We evaluate our approach on four additional benchmark datasets; the full results are reported in Table 4. As a first observation, network–embedding techniques markedly improve signed link prediction: unsigned methods such as DeepWalk, Node2Vec, and LINE already outperform random embeddings even though they ignore edge polarity. Against this backdrop, HPC-SGT delivers the strongest performance on nearly every metric and dataset. The improvement is particularly pronounced on *Bonanza*, where HPC-SGT raises the Macro-F1 score by over 10% relative to the strongest baseline without reducing Micro-F1, indicating that the model boosts recall on minority (tail) classes while preserving accuracy on majority (head) classes.

Table 4: Performance comparison on four additional benchmark datasets: *U.S. House, U.S. Senate, Review,* and *Bonanza*. For all metrics, higher is better. Our method, HPC-SGT, demonstrates consistently superior performance.

	U.S. House				U.S. Senate			Review				Bonanza				
Method	AUC	Binary	Macro	Micro	AUC	Binary	Macro	Micro	AUC	Binary	Macro	Micro	AUC	Binary	Macro	Micro
Random	0.541	0.560	0.540	0.541	0.543	0.568	0.542	0.543	0.556	0.510	0.553	0.556	0.529	0.735	0.389	0.590
Deepwalk	0.615	0.636	0.614	0.615	0.623	0.653	0.622	0.623	0.625	0.580	0.620	0.625	0.629	0.791	0.433	0.660
Node2Vec	0.633	0.651	0.632	0.633	0.645	0.670	0.644	0.645	0.653	0.620	0.645	0.649	0.626	0.759	0.416	0.619
LINE	0.580	0.611	0.579	0.580	0.569	0.611	0.568	0.569	0.620	0.593	0.607	0.610	0.617	0.702	0.382	0.545
SiNE	0.611	0.623	0.610	0.611	0.590	0.599	0.589	0.590	0.620	0.959	0.559	0.931	0.582	0.533	0.575	0.582
SBiNE	0.835	0.843	0.834	0.835	0.811	0.825	0.810	0.811	0.549	0.424	0.530	0.557	0.561	0.857	0.460	0.753
SCsc	0.827	0.837	0.826	0.827	0.816	0.829	0.814	0.816	0.552	0.336	0.482	0.581	0.652	0.643	0.354	0.484
MFwBT	0.809	0.823	0.809	0.810	0.785	0.804	0.785	0.786	0.472	0.434	0.469	0.475	0.577	0.892	0.481	0.807
SBRW	0.822	0.833	0.821	0.822	0.814	0.829	0.813	0.814	0.583	0.542	0.576	0.581	0.531	0.982	0.535	0.965
SGCN	0.808	0.827	0.808	0.809	0.815	0.827	0.815	0.816	0.610	0.593	0.601	0.637	0.587	0.896	0.487	0.814
SGCL	0.824	0.835	0.824	0.824	0.820	0.834	0.820	0.820	0.729	0.656	0.631	0.633	0.584	0.987	0.514	0.974
SBGNN	0.848	0.856	0.847	0.847	0.824	0.832	0.821	0.822	0.674	0.636	0.662	0.666	0.576	0.961	0.540	0.926
SBGCL	0.810	0.811	0.807	0.807	0.809	0.818	0.808	0.809	0.748	0.706	0.747	0.754	0.590	0.973	0.558	0.947
HPC-SGT	0.871	0.894	0.870	0.871	0.853	0.869	0.853	0.853	0.800	0.767	0.799	0.803	0.623	0.989	0.616	0.979

D COMPUTATIONAL EFFICIENCY

To evaluate the computational efficiency of different methods, we conducted comparative experiments on four datasets of varying sizes. We measured the training time required per epoch in seconds, with the results recorded in Table 5. The findings reveal a clear trade-off between model complexity and performance. On smaller-scale datasets like Review, simpler GNN-based methods demonstrate lower time consumption due to their lightweight architecture. Conversely, on graph

Table 5: Comparison with various methods concerning time consumption.

	Review	Bonanza	U.S. House	U.S. Senate
SBGNN	0.106	0.881	0.527	0.312
SBGCL	0.703	1.096	0.994	0.856
HPC-SGT	0.439	0.575	0.491	0.402

datasets with a larger number of links, such as Bonanza, the runtime of our HPC-SGT becomes more comparable to other state-of-the-art models, indicating that its computational overhead is a justified trade-off for its significant gains in predictive accuracy.

E PERFORMANCE IN SCENARIOS WITH LIMITED OR IMPLICIT NEGATIVE FEEDBACK

A key aspect of HPC-SGT is its explicit modeling of edge signs. To verify that its advantages are not solely derived from settings rich in explicit positive and negative interactions, but also from its architectural ability to capture local structural nuances, we conducted experiments in two additional challenging regimes: one simulating an implicit feedback scenario and another with reduced explicit negative signals. We compared HPC-SGT against LightGCL, a strong baseline primarily designed for unsigned/implicit feedback but adaptable to signed settings.

The experimental setups were as follows:

• ML-1M – Click-only (Implicit Simulation): All ratings ≥ 1 were treated as positive interactions. For training with a BPR loss function, four negative items were uniformly sampled for each positive interaction. During testing, models were tasked to rank 100 candidate items (the true positive item and 99 uniformly sampled negative items), and interactions not present in the training data were ignored. This setup mimics typical implicit feedback scenarios where only positive interactions are observed.

• Amazon-Book – 50% Dislikes Masked: To simulate sparsity in explicit negative feedback, 50% of the explicit negative ratings (dislikes) were randomly removed from the training set. The model was then trained on this partially masked data, and testing was performed using the remaining observed signed edges (both positive and the non-masked negative).

The results, presented in Table 6, include ranking metrics (Recall@20, NDCG@20) pertinent to these scenarios, as well as illustrative classification metrics (AUC, Binary-F1) to assess the general discriminative capability.

Table 6: Performance comparison of HPC-SGT and LightGCL in scenarios with limited or implicit negative feedback. Metrics shown are AUC, Binary-F1, Recall@20, and NDCG@20. HPC-SGT demonstrates robust performance, underscoring its architectural strengths.

Dataset	Experimental Protocol	Model	AUC	Binary-F1	Recall@20	NDCG@20
4*ML-1M	2*Click-only (Implicit Sim.)	LightGCL HPC-SGT	0.650 0.685	0.680 0.710	0.214 0.227	0.220 0.236
	2*Fully Signed	LightGCL HPC-SGT	0.701 0.760	0.728 0.784	N/A N/A	N/A N/A
4*Amazon-Book	2*50% Dislikes Masked	LightGCL HPC-SGT	0.600 0.700	0.700 0.750	0.079 0.081	0.060 0.061
	2*Fully Signed	LightGCL HPC-SGT	0.647 0.744	0.747 0.801	N/A N/A	N/A N/A

N/A: Recall@20/NDCG@20 are presented here specifically for the ranking-oriented protocols of these experiments and are not the primary metrics for the fully signed classification task. Fully signed results are included for contextual comparison of AUC/Binary-F1 degradation.

As anticipated, the performance on these challenging tasks is generally lower for both models compared to the fully signed scenarios reported in the paper, due to the reduced information content. However, HPC-SGT consistently outperforms LightGCL across all metrics in both regimes.

On the ML-1M click-only task, HPC-SGT achieves an R@20 of 0.227 and NDCG@20 of 0.236, representing a relative improvement of approximately 6.1% and 7.3% respectively over LightGCL. Its AUC (0.685 vs. 0.650) and Binary-F1 (0.710 vs. 0.680) also show a clear margin, with relative gains of 5.4% and 4.4%.

In the Amazon-Book scenario with 50% dislikes masked, HPC-SGT (R@20: 0.081, NDCG@20: 0.061) shows a smaller but consistent margin over LightGCL (R@20: 0.079, NDCG@20: 0.060), with relative improvements of about 2.5% for both ranking metrics. More significantly, the advantage in AUC (0.700 vs. 0.600, a 16.7% relative gain) and Binary-F1 (0.750 vs. 0.700, a 7.1% relative gain) is pronounced. This indicates that even with sparse explicit negative signals, HPC-SGT's ability to leverage available allows for more robust prediction.

These findings demonstrate that HPC-SGT's strong performance is not solely reliant on abundant explicit negative signals. Its architectural components, designed to capture detailed local topological and sign-based patterns, provide a significant advantage even when such signals are implicit or sparse. The sustained outperformance over a strong baseline like LightGCL in these settings confirms the broader applicability and robustness of the HPC-SGT framework.

Table 7: Performance of HPC-SGT with different edge conflict resolution strategies on Amazon-Book, Gowalla, and ML-1M. Metrics include AUC, Binary-F1, Recall@20 (R@20), NDCG@20 (N@20), Recall@40 (R@40), and NDCG@40 (N@40). The results demonstrate minimal performance variation, highlighting HPC-SGT's robustness.

Dataset	Strategy	AUC	Binary-F1	R@20	N@20	R@40	N@40
3*Amazon-Book	Default	0.744	0.801	0.0859	0.0652	0.1213	0.0767
	All Conflicts Pos	0.743	0.800	0.0850	0.0647	0.1205	0.0760
	All Conflicts Neg	0.742	0.799	0.0840	0.0640	0.1198	0.0750
3*Gowalla	Default	0.739	0.753	0.1953	0.1204	0.2796	0.1422
	All Conflicts Pos	0.737	0.750	0.1930	0.1190	0.2780	0.1390
	All Conflicts Neg	0.735	0.748	0.1900	0.1170	0.2765	0.1360
3*ML-10M	Default	0.760	0.784	0.2250	0.1350	0.3150	0.1650
	All Conflicts Pos	0.759	0.783	0.2240	0.1345	0.3140	0.1640
	All Conflicts Neg	0.758	0.782	0.2230	0.1335	0.3120	0.1620

Figure 5: Performance of HPC-SGT under different edge conflict resolution strategies.

F ROBUSTNESS TO EDGE SIGN CONFLICT RESOLUTION STRATEGIES

In real-world user-item interaction datasets, it is possible to encounter "edge conflicts," where a single user-item pair (u,v) might be associated with multiple interactions that have differing signs (e.g., a user rating a product positively and later negatively). The way these conflicts are resolved during data preprocessing could potentially impact model performance. We conducted a controlled experi-

ment on three benchmark datasets—Amazon-Book, Gowalla, and ML-1M—to assess the sensitivity of HPC-SGT to different strategies for handling such conflicting edge signs.

We compared three distinct conflict resolution strategies:

- Default Duplicate Removal (Default): This strategy reflects the standard preprocessing
 used for our main experiments, where typically the most recent interaction or a datasetspecific rule resolves duplicates, resulting in a single edge sign for any given user-item
 pair.
- All Conflicts as Positive (All-Pos): If a user-item pair had conflicting interactions, all associated edges were treated as positive.
- All Conflicts as Negative (All-Neg): Conversely, if conflicting interactions existed for a
 pair, all associated edges were treated as negative.

The performance of HPC-SGT under these strategies was evaluated using both classification metrics (AUC, Binary-F1) and ranking metrics (Recall@k, NDCG@k). The results are detailed in Table 7 and Figure 5

Across all three datasets and all evaluated metrics, HPC-SGT's performance exhibited remarkable stability, typically varying by less than 1% (often within a 0.001–0.002 absolute difference for AUC/F1 and ranking scores) regardless of the conflict resolution strategy employed. For instance, on Amazon-Book, AUC scores ranged narrowly from 0.742 (All-Neg) to 0.744 (Default), and R@20 scores from 0.0840 (All-Neg) to 0.0859 (Default). Similar minimal fluctuations were observed for Gowalla (e.g., AUC 0.735–0.739) and ML-1M (e.g., AUC 0.758–0.760).

The "Default" approach consistently yielded marginally superior or highly competitive performance compared to the strategies that forced all conflicts to a single sign (All-Pos or All-Neg). However, even these latter strategies did not lead to a significant degradation in performance, underscoring the model's resilience.

G LLM USAGE STATEMENT

In the preparation of this manuscript, we utilized the large language model ChatGPT, developed by OpenAI, as a writing assistant. In accordance with the ICLR policy, we wish to clarify its role. The use of the LLM was strictly confined to improving the quality of the written text and did not contribute to the core research ideation or experimental results.

The primary purpose of using the LLM was for language enhancement and polishing. Throughout the writing process, we prompted the model to refine sentence structure, improve clarity and conciseness, and ensure a formal academic tone consistent with the standards of the machine learning community. This involved multiple iterations of editing and rephrasing paragraphs in the introduction, methodology, and experimental sections to better articulate our ideas. It also aided in ensuring the consistency of mathematical notation and terminology across the manuscript and provided suggestions for LaTeX formatting.

All core scientific contributions, including the initial conception of the HPC-SGT framework, the design of its architectural components and learning objectives, and the execution and analysis of all experiments, were conceived and conducted entirely by the human authors. The LLM served as a sophisticated tool for articulating and polishing the presentation of these pre-existing ideas.