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Abstract

Large Vision-Language Models (LVLMs) can rea-
son effectively over both textual and visual in-
puts, but they tend to hallucinate syntactically
coherent yet visually ungrounded contents. In
this paper, we investigate the internal dynamics
of hallucination by examining the tokens logits
ranking throughout the generation process, re-
vealing three key patterns in how LVLMs pro-
cess information: (1) gradual visual informa-
tion loss – visually grounded tokens gradually
become less favored throughout generation, and
(2) early excitation – semantically meaningful to-
kens achieve peak activation in the layers earlier
than the final layer. (3) hidden genuine informa-
tion – visually grounded tokens though not be-
ing eventually decoded still retain relatively high
rankings at inference. Based on these insights,
we propose VISTA (Visual Information Steering
with Token-logit Augmentation), a training-free
inference-time intervention framework that re-
duces hallucination while promoting genuine in-
formation. VISTA works by combining two com-
plementary approaches: reinforcing visual infor-
mation in activation space and leveraging early
layer activations to promote semantically mean-
ingful decoding. Compared to existing methods,
VISTA requires no external supervision and is
applicable to various decoding strategies. Ex-
tensive experiments show that VISTA on aver-
age reduces hallucination by about 40% on eval-
uated open-ended generation task, and it con-
sistently outperforms existing methods on four
benchmarks across four architectures under three
decoding strategies. Code is available at: https:
//github.com/LzVv123456/VISTA
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1. Introduction
Large Vision-Language Models (LVLMs) (Dai et al., 2023;
Bai et al., 2023; Chen et al., 2023; Zhu et al., 2023; Liu
et al., 2024c) have revolutionized multimodal AI by en-
abling seamless integration of visual and textual informa-
tion, powering applications from interactive assistance to
autonomous systems (Lin et al., 2023; Yang et al., 2024;
Lai et al., 2024). However, LVLMs frequently hallucinate
semantically coherent yet visually ungrounded contents,
hindering their reliability in real-world applications.

Though LVLM hallucination is considered multifaceted (Liu
et al., 2024d), a critical cause stems from the overwhelm-
ing influence of language priors over visual contexts, and
has been studied from the perspective of attention pat-
terns (Huang et al., 2024; Liu et al., 2024f) and distribution
divergence within logits space (Leng et al., 2024; Favero
et al., 2024). Despite these insights, it remains unclear how
hallucination emerges and propagates during the generation
process.

Inspecting Token Dynamics in LVLMs. In this work, we
take a novel perspective by examining LVLM’s generation
dynamics through the lens of token logits ranking. Given
an image its corresponding description (produced by an
LVLM), we identify three categories of tokens (elaborated
in Sec. 3.4):

• Hidden Genuine Tokens – tokens that are missing in
generated contents yet clearly visible from visual input;

• Decoded Genuine Tokens – tokens that appear in contin-
uation with visual groundings;

• Hallucinated Tokens – tokens extracted from the hallu-
cinated contents within generation.

We then track each token type’s corresponding logits rank-
ings throughout the generation across temporal (Fig. 1 left)
and layer sequences (Fig. 1 right). Our analysis makes three
prominent observations:

• (OBS-1) Gradual Visual Information Loss. As gener-
ation progresses, genuine token rankings gradually de-
cline while hallucinated tokens are surfaced (see Fig. 1
left and Fig. 2). This aligns with recent findings (Yue
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Figure 1. Analysis of token logits ranking patterns across 500 ran-
domly selected images from MSCOCO dataset. Higher ranking
indicates higher generation probability. Left: Average token rank-
ing from the last five layers, showing temporal progression across
early, mid, and late generation stages. Right: Layer-wise evolution
of token rankings averaged across all time steps, demonstrating
early-excitation phenomenon.

et al., 2024; Favero et al., 2024), exhibiting increasing
hallucination in late generation phase. We hypothesize
that this occurs as accumulated language priors in resid-
ual streams progressively dilute visual information, lead-
ing to syntactically coherent but visually ungrounded
generation.

• (OBS-2) Early Excitation of Semantically Mean-
ingful Tokens. Semantically meaningful tokens 1

exhibit peak excitation in penultimate layer (Fig. 1
right) or within a window of layers preceding the fi-
nal layer (Fig. 2). In contrast, the final layer prioritizes
functional tokens like “this”, “a”, and other stop-
words, suggesting that the model’s decision process
may overemphasize syntactic elements in its final stage.

• (OBS-3) Hidden Genuine Information. LVLMs may
perceive more visual clues than they express. We ob-
serve that hidden genuine tokens, though not eventually
decoded, consistently maintain relatively high rankings
(around 5K in a 32K vocabulary) during the course of
generation (see Fig. 1).

Reducing Hallucination of LVLMs. Inspired by above
findings, we propose VISTA (Visual Information Steering
with Token-logit Augmentation), a simple and novel
training-free framework that can be applied on top of var-
ious decoding methods to reduce hallucination while pro-
moting genuine information. VISTA introduces two com-
plementary modules: Visual Steering Vector (VSV) that
counteracts gradual visual information loss by extracting
and reinforcing visual cues in activation space, and Self-
Logits Augmentation (SLA) which utilizes early excitation
patterns to prioritize semantically meaningful tokens. VSV
and SLA work synergistically and can effectively mitigate
hallucination in LVLMs.

Technical Contributions. This study presents the first sys-
tematic investigation of token dynamics in LVLMs through
the lens of token logits ranking, revealing novel insights
into how visual information is processed and potentially

1We refer to categorized tokens as semantically meaningful
tokens since we primarily focus on identifying objects, attributes,
and relations as detailed in Appendix A.

Hallucination increase

Gradual visual information lossEarly excitation

Figure 2. Token ranking heatmaps for a representative image,
demonstrating the evolution of token rankings across model layers
(vertical axis) and generation steps (horizontal axis). Darker colors
indicate higher ranking. The visualization reveals both gradual
visual information loss and early excitation phenomena.

lost during generation. Building on these insights, we pro-
pose VISTA, an inference-time intervention framework that
incorporates two complementary modules. The effective-
ness of VISTA is validated through comprehensive exper-
iments across multiple architectures (e.g., LLaVA, Shikra,
MiniGPT-4, InstructBLIP) and evaluation protocols (open-
ended generation, visual question answering), demonstrat-
ing significant reduction in hallucination (up to around 40%
for open-ended generation). Our approach is notably effi-
cient as it requires no additional training or model modi-
fications, making it readily applicable to existing LVLM
deployments.

2. Methodology
In this section, we first establish the notions and knowledge
foundation in Sec. 2.1, followed by the elaboration of token
ranking analysis in Sec. 2.2. We then present the proposed
VSV and SLA methods in Sec. 2.3 and 2.4, respectively.

2.1. Preliminaries

Conditional Generation of LVLMs. Suppose that an
LVLM consists of a vision encoder and a cross-modal in-
terface that projects visual inputs into a sequence of visual
tokens Xv. Given an input image, the complete prompt to-
kens Xc are constructed by concatenating system message
tokens Xs (can be empty), visual tokens Xv , and query to-
kens Xq: Xc = concat(Xs,Xv,Xq). At each time step
t, the model samples a new token xt according to the proba-
bility distribution conditioned on both the input context Xc

and previously generated tokens X<t = {xi}t−1
i=1:

xt ∼ p(xt|Xc,X<t) = softmax(H(hL
t−1)), (1)

where H denotes the model’s head layer and hL
t−1 indi-

cates the hidden state from the last layer L at time step
t−1. Above formulation suggests that the dilution or insuffi-
ciency of visual information in hL

t−1 can bias the generation
towards hallucination.
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Residual Stream. Taking the mathematical interpretation
from Elhage et al. (2021), we view layer-wise hidden states
as residual streams that evolve recursively:

hl
t = hl−1

t + al
t +ml

t, (2)

where l is the layer index, al
t and ml

t represent the output
activation of integrated multi-head attention (MHA) layer
and feed-forward network (FFN), respectively. Within this
framework, MHAs facilitate information fusion across dif-
ferent residual streams, while FFNs access and integrate
learned parametric knowledge (Geva et al., 2021; Dai et al.,
2022). Residual stream provides a natural interface for
monitoring and controlling information flow, making it par-
ticularly suitable for hallucination analysis and mitigation.

Logit Lens. The head layer H is by default applied on
top of last layer hidden states hL. However, thanks to
the gradual evolvement of hidden states within residual
streams (Chuang et al., 2024), applyingH to hidden states
of earlier layers l < L remains effective, even without addi-
tional training (Gurney, 2023). This practice is commonly
referred to as “logit lens” and can be used to decipher inter-
mediate states.

2.2. Token Ranking Analysis

To systematically investigate how visual information is pro-
cessed during generation, we propose a token ranking analy-
sis framework that tracks the relative importance of different
tokens throughout the generation process.

Identification of Target Tokens. For each given image-
description pair where the text description is generated by
an LVLM (e.g., LLAVA-1.5 (Liu et al., 2024a)), we utilize
gpt-4o (Hurst et al., 2024) as the oracle model to identify
three categories of words referencing both visual and textual
contents. A word is a

• decoded genuine word if it appears in the continuation
and align with visual evidence;

• hidden genuine word if it is visually evident but not
included in the continuation;

• hallucinated word if it appears in continuation but lacks
visual grounding.

Collected words are then tokenized to form our analysis sets.
Implementation details are included in Appendix A.

Token Ranking via Logit Lens. To analyze token dynamics
during generation, we apply the logit lens H(hl

t) to each
layer l and time step t. Given token x, we calculate its
ranking position among all possible tokens according to:

Rl
t(x) = rank(H(hl

t), x), (3)

where Rl
t(x) represents the position of token x in the

probability-ordered sequence of all tokens at time step t

and layer l. A lower rank indicates higher probability. This
operation produces a 2D ranking matrix for each token with
vertical and horizontal axes indicating layers and time steps,
respectively. We aggregate these matrices across tokens
within each category to obtain category-specific ranking
patterns, as shown in Fig. 2.

For temporal analysis, we quantize time sequence into three
equal-sized buckets, i.e., early, mid, and late, and com-
pute average rankings within each bucket across 500 ran-
domly sampled images from MS COCO dataset (Lin et al.,
2014). This temporal view (Fig. 1 left) reveals that visually
grounded information is gradually sinking while halluci-
nated contents are surfaced. We further average rankings
across all time steps within a layer to provide a layer-wise
perspective (Fig. 1 right), which exhibits that semantically
meaningful tokens achieve peak excitation in the penulti-
mate layer. We refer readers to Appendix A.3 for a dis-
cussion of why token ranking analysis is desirable and its
limitations.

2.3. Visual Steering Vector (VSV)

Being aware of the challenge from gradual visual informa-
tion loss, it is of critical importance to retain visual cues
throughout the generation. A promising method involves in-
creasing attention weights distributed on visual tokens (Liu
et al., 2024f). Nevertheless, this operation simultaneously
introduces undesired parametric priors cumulated in residual
streams of visual tokens. Drawing inspiration from steering
vectors in LLMs (Turner et al., 2023; Zou et al., 2023; Liu
et al., 2024e; Li et al., 2024), we propose Visual Steering
Vector (VSV) to steer the generation of LVLM towards the
direction with visual groundings without amplifying inher-
ent language biases.

VSV Construction. The core logic behind VSV is
to extract a directional vector within activation space
without introducing disturbing language priors. To this
end, we construct VSV via a contrastive process using
paired context sequences: a “positive” context Xp =
concat(Xs,Xv,Xq) containing visual tokens Xv, and
a “negative” counterpart Xn = concat(Xs,Xq) that dis-
cards visual tokens while preserving other elements. Both
sequences are processed by a vectorization function F ,
which forwards the given token sequence through the LVLM
and takes the residual stream from the last token. Visual
steering vector (VSV) can be computed as:

Vsteer = Vp − Vn = {vl
steer}Ll=1, (4)

where Vp = F(Xp) and Vn = F(Xn). Here, vl
steer refers

to the steering vector for layer l.

Inference-time Intervention. During inference, we inject
the visual steering vector into the residual stream at each

3
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Figure 3. Architectural overview of VISTA. VISTA introduces two
complementary mechanisms: VSV extracts and reinforces visual
grounding information (Vs) at inference, and SLA leverages early-
layer semantic information to guide token generation. Note: While
three separate forward passes are shown for illustration purpose,
they can be avoided in implementation.

generation step:

h̃l
t = hl

t + λvl
s, l ∈ [1, L], (5)

with λ controlling the intervention strength, balancing visual
fidelity against natural generation. To maintain stability, we
normalize the modified hidden states:

h̃l
t = h̃l

t ·
∥hl

t∥2
∥h̃l

t∥2
, l ∈ [1, L]. (6)

Unlike steering vectors in LLMs that capture abstract con-
cept in an amortized fashion leveraging a group of con-
trastive pairs (Zou et al., 2023), VSV computes the steering
vector per image basis to preserve crucial visual details
unique to each input image.

Remark on Difference with Existing Contrastive Strat-
egy. Existing contrastive strategy (Li et al., 2022; Leng et al.,
2024) necessitates a second negative logits distribution to
contrast the final layer logits at all generation steps. VSV,
on the other hand, extracts a steering vector priori using
only the context tokens, and is applied to all layers (Fig. 3).
In practice, formatting prompt and general negative prompt
(e.g., Describe the image in detail.) can be
forwarded only once and cached for future usage, making
VSV remarkably efficient (see Table 5).

2.4. Self-Logits Augmentation (SLA)

Motivated by early excitation phenomenon (Fig. 1 right),
where semantically meaningful tokens show stronger activa-
tion in penultimate layer, we propose Self-Logits Augmen-
tation (SLA) to promote the decoding of such tokens.

Augmentation Logits. To elicit the rich semantic informa-
tion present in the late layers, we calculate “augmentation
logits” oaug

t at each decoding time step t. These are obtained
by applying the head layerH to the hidden states of the w
layers prior to the final layer and averaging their logits:

oaug
t =

1

w

L−1∑
l=L−w

H(hl
t), (7)

where w indicates the window size. In practice, larger w
leads to improved performance (see Table 4). We hypothe-
size that this is due to the ever-evolving logits distributions
within late layers, especially for those semantically mean-
ingful tokens (Chuang et al., 2024), and applying a larger w
smooths the distribution and provides nuanced information.

Logits Ensemble. Augmentation logits are then integrated
with the final layer logits through weighted aggregation:

õt = (1− γ) · oL
t + γ · oaug

t , (8)

where oL
t = H(hL

t ) is the logits of the last layer, and
γ ∈ [0, 1] is a constant coefficient controlling the influence
of early-layer information–when γ = 0, the model reduces
to standard generation, while γ = 1 would rely entirely
on early-layer logits. The next token is then sampled from
the output distribution xt ∼ softmax(õt−1). Notably, SLA
seeks to promote the decoding of more semantically mean-
ingful tokens than truthful tokens as done in DoLa (Chuang
et al., 2024). It works synergistically with the VSV module,
enhancing overall performance (see Fig. 6).

3. Experiments
In this section, we empirically validate VISTA across four ar-
chitectures, three decoding strategies, and four benchmarks.
We first present the experimental configuration (Sec. 3.1),
followed by an extensive evaluation on hallucination-
specific and general-purpose benchmarks (Sec. 3.2 and 3.3).
We then analyze VISTA’s effectiveness in addressing the
observed phenomena (Sec. 3.4) and conclude with compre-
hensive ablation studies (Sec. 3.5).

3.1. Experimental Setup

Model Architectures. We evaluate VISTA on four represen-
tative LVLMs with distinct architectural designs: LLAVA-
1.5 (Liu et al., 2024a) and Shikra (Chen et al., 2023), which
employ linear projections for visual-textual alignment, and
MiniGPT-4 (Zhu et al., 2023) and InstructBLIP (Dai et al.,
2023), which utilize Q-former (Li et al., 2023a) for cross-
modal interaction.

Decoding Strategies. To demonstrate VISTA’s versatility
as an inference-time intervention method, we verify it across
three widely used decoding protocols: (1) greedy decoding,
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Table 1. CHAIR hallucination evaluation results. We compare VISTA to state-of-the-art training-free methods that do not rely on external
supervision. Maximum new token is set to 512. Best and second best results are bolded and underlined, respectively. “-” indicates the
result is not supported by released implementation.

Decoding Method LLAVA-1.5 (Liu et al., 2024a) MiniGPT-4 (Zhu et al., 2023) Shikra (Chen et al., 2023) InstructBLIP (Dai et al., 2023)

CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓

Greedy

Vanilla 46.4 12.1 35.2 10.7 56.8 14.8 38.0 10.7
DoLa (Chuang et al., 2024) 45.4 11.9 - - 60.0 15.1 - -
VCD (Leng et al., 2024) 47.4 13.0 - - - - 45.8 12.8
PAI (Liu et al., 2024f) 22.8 7.0 29.2 10.9 40.8 11.0 - -
VISTA (ours) 20.4 6.9 19.8 6.0 31.4 9.7 27.4 8.1

Beam Search

Vanilla 49.0 12.5 33.0 11.0 53.8 14.4 37.8 10.7
VCD (Leng et al., 2024) 49.8 12.4 - - - - 49.2 13.7
OPERA (Huang et al., 2024) 45.2 12.4 26.8 9.3 39.6 12.2 50.2 13.9
PAI (Liu et al., 2024f) 22.3 6.8 31.6 11.2 41.6 10.4 - -
VISTA (ours) 17.4 6.3 18.4 6.4 32.2 9.5 26.8 7.8

Nucleus Sampling

Vanilla 53.2 15.1 34.8 11.2 56.4 15.9 46.6 13.1
DoLa (Chuang et al., 2024) 47.2 14.0 - - 56.6 16.3 - -
VCD (Leng et al., 2024) 60.8 16.2 - - - - 57.0 16.0
PAI (Liu et al., 2024f) 30.2 10.3 31.8 13.2 43.2 12.0 - -
VISTA (ours) 24.0 8.2 18.4 6.4 31.8 9.7 29.4 9.1

which selects the highest probability token at each step, (2)
beam search with a beam size of 5, maintaining multiple
generation hypotheses, and (3) nucleus sampling with top-
p=0.9. Temperature is fixed at 1.0 for all scenarios.

Baselines. Besides three vanilla decoding strategies, we
set aside VISTA with several SoTA hallucination miti-
gation methods that can operate without external super-
vision. DoLa (Chuang et al., 2024) signifies a internal
(across layers) contrastive strategy within logits space, while
VCD (Leng et al., 2024) presents a parallel contrastive
method across time steps. OPERA (Huang et al., 2024) is a
powerful technique tailored for the beam search. PAI (Liu
et al., 2024f) is another inference-time intervention method
that is most comparable to ours. We reproduce all base-
line results using identical evaluation data and settings (e.g.,
prompt, temperature). Methods without official supports for
certain architectures and decoding strategies are omitted to
prevent implementation bias.

Implementation Details. We employ the following config-
uration across all experiments unless stated otherwise. The
VSV strength parameter λ is set to 0.17 for both LLAVA-1.5
and InstructBLIP, 0.1 for MiniGPT-4, and 0.12 for Shikra.
The SLA mixing coefficient γ is consistently set to 0.3, with
a window size w = 5 for aggregating early-layer logits. We
search the hyperparameters of λ and γ on a holdout valida-
tion set containing 100 images from MSCOCO to balance
between generation quality and hallucination reduction.

3.2. Results on Object Hallucination Benchmarks

We first evaluate VISTA on two widely adopted benchmarks
that assess object hallucination: CHAIR (Rohrbach et al.,
2018) for open-ended generation and POPE (Rohrbach et al.,
2018) for targeted visual question answering.

CHAIR Evaluation. Caption Hallucination Assessment
with Image Relevance (CHAIR) (Rohrbach et al., 2018)

provides a systematic framework for evaluating object hal-
lucination in image captioning tasks. CHAIR assesses
caption accuracy by comparing mentioned objects against
ground-truth labels, with hallucinations defined as objects
present in captions but absent from ground truth. The met-
ric operates at two levels: instance-level (CHAIRI) and
sentence-level (CHAIRS): CHAIRI = |{hallucinated object}|

|{object}|

and CHAIRS = |{caption w/ hallucinated objects}|
|{caption}| . Following es-

tablished protocol (Huang et al., 2024; Liu et al., 2024f), we
evaluate on 500 randomly sampled images from MSCOCO
2014 validation set, using the prompt “Please help me
describe the image in detail” with maximum
generation length of 512 tokens.

Results in Table 1 show that VISTA significantly reduces
hallucination in open-ended generation task, outperforming
existing inference-time intervention method and other con-
trastive decoding methods by a substantial margin. VISTA
brings around 40% relative improvement upon correspond-
ing vanilla decoding methods. Notably, while PAI (Liu
et al., 2024f) shows less efficacy for sampling-based de-
coding, VISTA excels across all decoding strategies. We
attribute this robust performance to the contrastive design
and the choice of activation space steering which is not
hinged with any specific decoding strategy.

POPE Evaluation. The Polling-based Object Probing Eval-
uation (POPE) (Rohrbach et al., 2018) examines object hal-
lucination through targeted visual questions of the form “Is
there a <object> in the image?”. The bench-
mark comprises three splits of increasing difficulty: random
objects selected from a general vocabulary, frequently oc-
curring objects chosen from common categories, and ad-
versarially selected objects that are contextually plausible
but absent from images. We evaluate on the COCO subset,
reporting average accuracy and F1 scores across all splits.
Since POPE evaluation is formulated as short VQA format
and the response is simply Yes or No, the gradual visual
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Table 2. Evaluation results on POPE benchmark across four LVLMs. Results show averaged accuracy and F1 scores computed across
random, popular, and adversarial object splits. Best and second best results are bolded and underlined, respectively.

Decoding Method LLAVA-1.5 (Liu et al., 2024a) MiniGPT-4 (Zhu et al., 2023) Shikra (Chen et al., 2023) InstructBLIP (Dai et al., 2023)

Avg. Accuracy ↑ Avg. F1 ↑ Avg. Accuracy ↑ Avg. F1 ↑ Avg. Accuracy ↑ Avg. F1 ↑ Avg. Accuracy ↑ Avg. F1 ↑

Greedy

Vanilla 84.79 85.61 76.76 76.82 81.32 82.01 84.36 84.64
DoLa (Chuang et al., 2024) 84.92 85.67 - - 81.13 81.94 - -
VCD (Leng et al., 2024) 84.80 85.65 - - - - 84.81 85.28
PAI (Liu et al., 2024f) 85.85 86.08 75.64 77.57 81.30 80.81 - -
VISTA (ours) 86.15 86.29 77.06 77.80 82.44 82.47 84.87 84.95

Beam Search

Vanilla 85.45 84.93 73.68 72.40 81.73 82.10 84.38 83.71
VCD (Leng et al., 2024) 85.85 85.90 - - - - 84.90 84.43
OPERA (Huang et al., 2024) 85.68 85.83 74.81 75.42 82.18 82.49 85.31 85.51
PAI (Liu et al., 2024f) 86.27 85.91 73.83 74.63 81.90 81.08 - -
VISTA (ours) 85.83 85.95 75.96 77.17 82.54 82.52 85.78 85.74

Nucleus Sampling

Vanilla 81.26 82.40 60.56 62.04 78.94 80.18 78.83 79.74
DoLa (Chuang et al., 2024) 81.20 82.44 - - 79.49 80.72 - -
VCD (Leng et al., 2024) 81.08 82.22 - - - - 79.61 80.43
PAI (Liu et al., 2024f) 81.92 83.16 61.26 63.40 79.25 79.87 - -
VISTA (ours) 85.35 85.54 66.96 68.05 81.01 81.15 83.11 83.27

Table 3. Overall performance scores on MME full evaluation set.
Higher scores indicate better general capability across perception,
reasoning, and knowledge-based tasks.

Decoding Method LLAVA-1.5 MiniGPT-4 Shikra InstructBLIP

Greedy Vanilla 1752.35 969.93 1101.50 1355.25
VISTA 1771.87 1041.66 1256.22 1364.05

Beam Vanilla 1749.57 869.74 1223.44 1357.02
VISTA 1763.15 1062.48 1323.25 1366.57

Nucleus Vanilla 1625.22 845.30 1069.60 1397.71
VISTA 1738.56 1069.37 1254.31 1447.36

information loss is not evident. We therefore adjust VSV
strength to λ = 0.01 to reduce VSV’s impact.

Results in Table 2 demonstrate VISTA’s consistent superi-
ority across models and decoding strategies. Under greedy
decoding, VISTA achieves average accuracies of 86.15%,
77.06%, 82.44%, and 84.87% for LLAVA-1.5, MiniGPT-4,
Shikra, and InstructBLIP respectively, consistently outper-
forming both vanilla decoding and PAI. The improvements
are particularly pronounced in nucleus sampling, where
VISTA achieves significant gains over vanilla decoding
across all models: from 81.26% to 85.35% (+4.09%) for
LLAVA-1.5, 60.56% to 66.96% (+6.40%) for MiniGPT-4,
and similarly substantial improvements for other architec-
tures. These results highlight VISTA’s particular efficacy in
excavating genuine information under stochastic sampling
settings, while maintaining strong performance in determin-
istic decoding strategies like greedy and beam search.

3.3. Results on Comprehensive Benchmarks

We further validate VISTA on MMHal-Bench (Sun et al.,
2023) and MME (Fu et al., 2023), two challenging bench-
marks that examine diverse aspects of model behavior.

MMHal-Bench Evaluation. MMHal-Bench (Sun et al.,
2023) provides a specialized framework for assessing hal-
lucination in LVLMs through 96 carefully designed image-
question pairs. The benchmark spans eight distinct cate-
gories: object attributes (ATTR), adversarial objects (ADV),
comparisons (COMP), counting (COUNT), spatial relations

(SPAT), environmental inferences (ENV), holistic descrip-
tions (HOL), and others (OTHER). Unlike conventional
VQA evaluations, MMHal-Bench emphasizes logical rea-
soning and complex visual understanding, providing a rigor-
ous test of hallucination mitigation in challenging scenarios.
Model responses are evaluated using GPT-4 for alignment
with ground-truth answers. We compare VISTA with PAI
and vanilla decoding methods for this evaluation.

The results in Fig. 4 demonstrate VISTA’s consistent effec-
tiveness across all evaluated LVLMs. Compared to vanilla
methods, VISTA achieves substantial improvements on
average scores, with LLAVA-1.5 and InstructBLIP show-
ing the most pronounced gains (∼20% and ∼30% rela-
tive improvement, respectively). VISTA particularly ex-
cels in challenging categories such as environmental in-
ference (ENV), attribute perception (ATTR) and counting
(COUNT), where visual grounding is crucial for accurate
responses. While PAI shows competitive performance on
specific architectures, VISTA maintains more consistent im-
provements across both model architectures and question
types. This robust performance across diverse tasks indi-
cates that VISTA effectively addresses hallucination while
preserving general visual-language capabilities. Results un-
der beam search and nucleus sampling (see Appendix B)
exhibit similar performance patterns, confirming VISTA’s
robustness across different decoding strategies.

MME Evaluation. To assess whether hallucination mitiga-
tion affects general model capabilities, we evaluate VISTA
on MME (Fu et al., 2023), a comprehensive benchmark en-
compassing 14 distinct visual-language abilities. MME tests
perception, reasoning, and knowledge integration through
carefully curated image-question pairs, providing a holistic
view of model performance. We conduct full-set evaluation
across all architectures and decoding strategies.

As shown in Table 3, VISTA, although initially crafted for
addressing hallucination, demonstrates broad benefits be-
yond its primary objective. Performance improvements are
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Figure 4. Performance comparison on MMHal-Bench across different question categories: attributes (ATTR), adversarial objects (ADV),
comparisons (COMP), counting (COUNT), spatial relations (SPAT), environmental inference (ENV), holistic descriptions (HOL), and
others (OTHER). Scores are computed using GPT-4 evaluation protocol.
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Figure 5. Cross-stage token ranking comparison between greedy
and VISTA on LLAVA-1.5. VISTA effectively promotes the rank-
ing of genuine tokens while depressing hallucination tokens.

consistent across architectures and decoding methods, with
particularly striking gains in challenging scenarios. Un-
der nucleus sampling, MiniGPT-4’s performance improves
substantially from 845.30 to 1069.37, while LLAVA-1.5
maintains strong performance with significant improvement
from 1625.22 to 1738.56. These comprehensive gains sug-
gest that VISTA’s approach to maintaining visual grounding
enhances fundamental visual-language integration mecha-
nisms, leading to better overall model behavior.

3.4. On Solving Gradual Visual Information Loss

Our analysis in Sec. 2.2 identifies gradual visual informa-
tion loss as a substantial challenge for long sequence gen-
eration. To validate VISTA’s effectiveness in addressing
this issue, we compare token logits rankings w/ and w/o
VISTA throughout generation. According to Fig. 5, VISTA
not only improves the average ranking of hidden genuine
tokens throughout generation but also reverses the concern-
ing trend of hallucinated tokens, reducing their prominence
in mid and late stages where hallucination typically occurs.
Not surprisingly, VISTA also maintains a high ranking for
decoded genuine tokens since VSV captures all visual clues
of an image and reinforces them at all time steps. This quan-
titative evidence directly demonstrates VISTA’s capability
in maintaining visual grounding throughout the generation
process. (see Appendix A.4 for additional results).

Case Study. Qualitative analysis further supports our quanti-
tative findings above. We kindly refer readers to Appendix C
for a collection of qualitative examples.

Table 4. Impact of window size on SLA performance. Layer ranges
(X-31) indicate the span of layers used for logit augmentation,
where X varies from 27 to 31. CS and CI denote CHAIRS and
CHAIRI metrics, respectively.

γ
31-31 30-31 29-31 28-31 27-31

CS CI F1 CS CI F1 CS CI F1 CS CI F1 CS CI F1

0.1 48.2 13.9 76.2 48.6 12.7 77.7 46.8 12.6 77.4 46.2 12.2 74.4 45.8 11.3 77.6
0.2 56.6 16.4 75.3 49.4 14.4 76.5 47.4 12.7 77.3 46.8 12.1 77.7 43.2 11.7 77.6
0.3 62.0 18.8 72.9 55.4 15.7 75.9 49.2 14.2 76.5 45.8 12.4 77.9 42.8 11.3 78.4
0.4 61.2 18.2 73.3 57.6 15.7 75.3 52.6 14.5 76.1 48.8 13.5 77.0 46.6 12.3 77.2

3.5. Ablation Study

To thoroughly investigate the effectiveness of VISTA, we
gauge the practical latency of VISTA, and analyze how
different VSV strength (λ) and SLA mixing ratio (γ) affect
the model’s performance in terms of hallucination reduction
(CHAIR-S and CHAIR-I metrics) and overall quality (F1
score). Results are in Fig. 6. Additional ablation results are
deferred to Appendix B.2.

Table 5. Measure of throughput and latency on LLAVA-1.5.
Greedy decoding strategy is applied and listed as baseline.

Methods Greedy VCD PAI VISTA (ours)

Latency (ms/token) ↓ 28.54 (×1.0) 58.34 (×2.04) 57.78 (×2.02) 36.32 (×1.27)
Throughput (token/s) ↑ 35.04 (×1.0) 17.14 (×0.49) 17.31 (×0.49) 27.53 (×0.79)

Efficiency. The greedy decoding latency in Table 5 shows
that VISTA is more efficient than the other test-time inter-
vention strategy PAI and contrastive decoding strategy like
VCD.

VSV Strength (λ). As we vary injection strength λ from
0.0 to 0.18, both CHAIR-S and CHAIR-I scores improve
significantly. However, using inappropriate scale (see Fig. 6)
will cause clear degradation in F1, suggesting overemphasis
on visual features can harm generation quality.

SLA Mixing Ratio (γ). The impact of γ is studied across
values from 0 to 0.4, revealing that moderate values of
γ (0.2-0.3) yield the best balance between hallucination
reduction and generation quality, and higher γ values (≤ 0.4)
leads to degraded performance, hinting on the importance
of syntactic information.

Synergy & Robustness. As visualized in Fig. 6, there
exists a synergistic relation between λ and γ. Moderate
values of both parameters consistently outperform extreme
settings of either component alone. Notably, generation
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Figure 6. Ablation matrices for VSV strength (λ) and SLA mixing ratio (γ) on Shikra. Brighter color signifies the better performance.
Red boxes highlight the parameter combinations we used. F1 score is included to demonstrate the overall generation quality.

quality remains stable (F1>72.0) across a broad range of
parameter combinations, demonstrating the robustness of
our approach. This complementarity suggests that VSV and
SLA address different aspects of the hallucination problem.

Window Size in SLA (w). In Table 4, we explore win-
dow size from one layer up to five layers across different
mixing ratios. As shown, larger window size generally re-
duces hallucination, and the optimal configuration achieves
both strong hallucination reduction and the highest F1 score
(78.4). Interestingly, we observe an inverse relationship
between window size and optimal γ values, suggesting that
while broader layer spans capture richer visual information,
they require more conservative mixing ratios to maintain
generation stability.

4. Related Work
Hallucination Mitigation in LVLMs. Hallucination – the
generation of content that is irrelevant, factually incorrect, or
inconsistent with visual inputs (Bai et al., 2024) – represents
a fundamental challenge in LVLM development. Research
has identified three primary sources: limitations in visual
encoder capabilities (Tong et al., 2024; Liu et al., 2024b; Shi
et al., 2024), excessive reliance on learned parametric knowl-
edge (Li et al., 2023b; Zhou et al., 2023; Leng et al., 2024;
Huang et al., 2024), and noisy training data (Liu et al., 2023;
Yu et al., 2024). Mitigation approaches span training-based
solutions with refined datasets (Yue et al., 2024; Jiang et al.,
2024), post-processing techniques including revision (Yin
et al., 2023; Zhou et al., 2023) and verification (Chen et al.,
2024; Sun et al., 2023), and inference-time interventions
like Visual Contrastive Decoding (Leng et al., 2024) and
enhanced attention methods (Liu et al., 2024f). Recent stud-
ies revealing “text inertia” (Liu et al., 2024f), where models
generate similar hallucinations without visual input, high-
light concerning reliance on learned text patterns. While
these findings advance our understanding, how hallucina-
tion propagates through model architectures remains elusive,
and existing solutions often require external supervision and
are hinged with specific decoding strategies.

Contrastive Decoding in LVLMs. Contrastive decod-
ing, originally introduced in NLP (Li et al., 2022; Shi
et al., 2023), has emerged as a promising approach for
reducing hallucination in LVLMs. Recent adaptations of

this technique have explored various contrasting strategies:
VCD (Leng et al., 2024) introduces visual-specific contrasts
by crafting noisy visual tokens as negative samples, while
DoLa (Chuang et al., 2024) innovates by contrasting logits
distributions from different layers within the same model, us-
ing divergence measurements to dynamically select contrast-
ing layers. Taking a temporal perspective, M3ID (Favero
et al., 2024) proposes a ”horizontal” strategy that contrasts
current logits with those from previous timesteps. Other
approaches extend contrastive techniques to attention mech-
anisms (Woo et al., 2024). While these methods primarily
operate in the logits space, our VISTA takes a different
approach by performing contrasts in the activation space
and intervening at residual streams. This earlier-stage in-
tervention strategy offers an efficient alternative that can
complement existing decoding methods.

5. Conclusion and Limitations
This study investigates the hidden life of tokens in
Large Vision Language Models (LVLMs) and introduces
VISTA (Visual Information Steering with Token-logit
Augmentation), a lightweight approach to mitigate halluci-
nation. Through systematic analysis, we reveal that visual
information gradually attenuates during text generation, but
can be effectively restored through our framework’s visual
information steering and strategic use of early-layer log-
its. Extensive experimentation across diverse architectures
and decoding strategies demonstrates that our framework
significantly reduces hallucination while preserving genera-
tion quality. These findings not only illuminate the hidden
dynamics of LVLM behavior but also establish visual infor-
mation steering as a promising direction for enhancing the
reliability of multimodal AI systems.

Limitations. VISTA is subject to several limitations. First,
while VISTA demonstrates robustness across a range of hy-
perparameter values, optimal settings may vary across dif-
ferent architectures. Second, the effectiveness of VSV relies
on the quality of visual cues extracted by the LVLM’s vision
encoder – models with weak visual encoding capabilities
may see reduced benefits. Third, the current implementation
focuses on addressing hallucination in single-round tasks;
adaptation to interactive scenarios like visual dialogue may
require additional considerations.
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Impact Statement
This research advances methods for making large vision-
language models more trustworthy and reliable through mit-
igating hallucination. While the proposed method demon-
strates promising results, its effectiveness is subject to the
inherent capability of large vision-language model, and im-
proper usage may adversely affect model’s performance.
To the best of our knowledge, there are no ethical or other
concerns that need to be addressed.
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GPT-4o Prompt

You are a vision-language evaluator. Given an image and an AI-generated description, perform the following tasks:

1. List clearly visible contents in the image that are not mentioned in the description.
2. List hallucinated contents in the description that are not present in the image.
3. List contents accurately described in the description that match the image.

For each task, include objects, object properties (e.g., color, count, position), and relationships between objects. You must answer
each content with a single word, separating different contents by commas. If no contents apply, write ”None”. Make sure there is
no overlapping words between three tasks.

Answer 1: [Missing contents]
Answer 2: [Hallucinated contents]
Answer 3: [Accurate contents]

Table 6. The prompt used for GPT-4o to identify genuine and hallucinated words.

A. Implementation Details for Token Ranking Analysis
A.1. Prompt for GPT-4o

We employ GPT-4o as our oracle model for identifying three categories of tokens: hidden genuine tokens, decoded genuine
tokens, and hallucinated tokens. The precise prompting strategy used to elicit these classifications is detailed in Table 6.

A.2. Additional Implementation Details

A detailed token analysis algorithm is provided in Algorithm 1.

Token Processing. As shown in Algorithm 1, we derive genuine and hallucinated tokens from their corresponding word-level
classifications. In cases where a single word decomposes into multiple tokens under the model’s tokenization scheme, we
adopt the first token as a representative proxy for the entire word. This approach ensures consistent handling of multi-token
words while maintaining analytical tractability.

Ranking Aggregation Protocol. When computing cross-stage token rankings (visualized in Fig. 1 left), we implement a
focused aggregation strategy that considers only the final five layers of the model, deliberately excluding rankings from
earlier layers. This methodological choice mitigates the inherent embedding disparity between the model’s decoding layer
and preceding layers. Since the LLM’s decoding head is specifically trained on final-layer hidden states, the reliability
of token rankings decreases with distance from this layer. Consequently, we restrict our analysis to a window of layers
proximate to the final layer to ensure robust and meaningful ranking estimates.

A.3. Advantages of Token Ranking Analysis

Why Not Attention? While attention matrices have been extensively studied in LVLM hallucination research to understand
information flow patterns and inform mitigation strategies (Huang et al., 2024; Liu et al., 2024f), our token ranking
methodology offers several distinct advantages. Previous work, such as PAI (Liu et al., 2024f), has attributed hallucination
phenomena like “text inertia” to insufficient attention allocation to visual tokens. However, this interpretation is potentially
confounded by the presence of “anchor tokens” (Wang et al., 2023; Huang et al., 2024) that aggregate and redistribute
information across the network. The existence of these information hubs means that reduced attention weights on visual
tokens, particularly in later layers where visual information can be accessed indirectly through anchor positions, may not
necessarily indicate information loss.

Token ranking analysis, by contrast, provides more direct insights into the model’s processing of visual information. Through
explicit tracking at the token level, this approach enables quantitative measurement of visual information preservation
throughout the generation process. The methodology reveals gradual visual information degradation patterns that might be
obscured in attention-based analyses. Furthermore, token ranking analysis uncovers previously unobserved phenomena such
as hidden genuine information and early excitation patterns, which are not readily distinguishable through attention analysis
alone. These capabilities make token ranking analysis particularly well-suited for investigating the mechanisms underlying
hallucination in LVLMs.
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Algorithm 1 Token Ranking Analysis Framework
Require: Image I , LVLM model M , Oracle model O
Ensure: Token ranking matrices R for each category

1: /* Generate description using LVLM */
2: D ←M(I)
3: /* Classify tokens using Oracle */
4: Wdec,Whid,Whal ← O(I,D) {decoded, hidden, hallucinated}
5: Tdec, Thid, Thal ← Tokenize(Wdec,Whid,Whal)
6: for each token category Tc in {Tdec, Thid, Thal} do
7: for t = 1 to |D| do
8: for l = 1 to L do
9: hl

t ← GetHiddenState(M, l, t) {Eq. 3}
10: logits← H(hl

t) {Eq. 4}
11: for each token x in Tc do
12: Rl

t(x)← rank(logits, x) {per Eq. 4}
13: end for
14: end for
15: end for
16: end for
17: /* Compute stage-wise aggregation */
18: for each stage s in {early,mid, late} do
19: for each category c in {dec, hid, hal} do
20: Ts ← GetTimeSteps(s) {timesteps in stage s}
21: Lf ← GetFinalLayers() {final 5 layers}
22: R̄c

s ← mean({Rl
t(x) | t ∈ Ts, l ∈ Lf , x ∈ Tc})

23: end for
24: end for
output R {Ranking matrices for all categories}

Limitations. Our token ranking analysis approach also pose certain limitations:

1. Oracle Model Reliability: While GPT-4o serves as our oracle for identifying genuine and hallucinated content, this
process can introduce potential biases and uncertainties. The oracle model’s classifications may not perfectly align
with human judgments, and its own biases could influence the categorization of tokens. This is particularly challenging
for nuanced cases where the distinction between genuine and hallucinated content is subtle.

2. Embedding Space Discrepancy: Another limitation arises from applying the LLM’s decoding head to hidden states
from earlier layers. Since the decoding head is specifically trained on final-layer representations, there exists an
embedding space misalignment when analyzing preceding layers. This discrepancy becomes more pronounced for
layers distant from the final layer, potentially leading to less reliable token rankings in earlier stages of the network.
While our analysis mitigates this by focusing on layers proximate to the last layer, the issue remains inherent to the
methodology.

Despite above limitations, our analysis provides valuable insights into LVLM’s behavior and has proven effective in
motivating our hallucination mitigation approach.

A.4. Additional Token Ranking Analysis

In the main text, we present token ranking analysis results for LLAVA-1.5. Here, we extend this analysis to other architectures
to demonstrate the generalizability of our observations. As shown in Fig. 7, the cross-stage token ranking analysis on Shikra
exhibits similar patterns to those observed in LLAVA-1.5, with genuine tokens experiencing gradual rank degradation while
hallucinated tokens become increasingly prioritized across generation stages. The layer-wise analysis presented in Fig. 8
further corroborates the early excitation phenomenon, where semantic tokens achieve peak activation in layers preceding the
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Figure 7. Cross-stage token ranking on Shikra.
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Figure 8. Layer-wise token rankings on Shikra.

final decoding layer. Fig. 9 presents a comparative analysis between vanilla decoding and VISTA (greedy-based) on Shikra.
The results demonstrate VISTA’s effectiveness in maintaining the ranking of genuine tokens throughout the generation
process while simultaneously suppressing the promotion of hallucinated tokens. This pattern is consistent with our findings
for LLAVA-1.5, suggesting that the phenomena we identified and the effectiveness of our mitigation strategy generalize
across different LVLM architectures. The consistency of these patterns across architectures with distinct design choices
(linear projector in Shikra versus Q-former in other models) provides strong evidence for the fundamental nature of these
phenomena in LVLM generation dynamics.

B. Additional Experiments
B.1. MMHal-Bench Results For Other Decoding Strategies

We further report results of MMHal-Bench under beam search (Fig. 10) and nucleus sampling (Fig. 11). As demonstrated in
figures, VISTA consistently improves overall performance across all evaluated LVLMs under both decoding strategies. The
performance trends remain consistent with those observed under greedy decoding in the main text, further validating the
robustness of our approach across different inference strategies. These comprehensive results demonstrate that VISTA’s
mechanisms for maintaining visual grounding and promoting semantic richness are effective regardless of the chosen
decoding strategy.
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Figure 10. Performance comparison on MMHal-Bench using beam search.
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Figure 12. Ablation matrices for VSV strength (λ) and SLA mixing ratio (γ) on MiniGPT-4. Brighter color signifies the better performance,
and red boxes highlight the parameter combinations used in Table 1. F1 score is included to indicate the overall generation quality.
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Figure 13. Ablation matrices for VSV strength (λ) and SLA mixing ratio (γ) on LLAVA-1.5. Brighter color signifies the better performance,
and red boxes highlight the parameter combinations used in Table 1. F1 score is included to indicate the overall generation quality.
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Figure 14. Ablation matrices for VSV strength (λ) and SLA mixing ratio (γ) on InstructBLIP. Brighter color signifies the better
performance, and red boxes highlight the parameter combinations used in Table 1. F1 score is included to indicate the overall generation
quality.
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B.2. Additional Ablation Results

In addition to the ablation studies presented in the main text, we further provide detailed ablation results on LLAVA-
1.5, MiniGPT-4, and InstructBLIP to validate our hyperparameter choices. Figure 12 presents the ablation matrices for
MiniGPT-4, examining the impact of VSV strength (λ) and SLA mixing ratio (γ) on CHAIRS, CHAIRI, and F1 scores. The
results reveal similar trends to those observed in Shikra, though with a slightly lower optimal λ value of 0.1, suggesting
architecture-specific sensitivity to visual steering. For LLAVA-1.5 (Figure 13), the ablation matrices demonstrate particularly
strong performance improvements with stronger VSV value (λ = 0.17). The InstructBLIP results (Figure 14) show robust
performance across a broader range of parameter combinations, with optimal performance achieved at λ = 0.17 and γ = 0.3,
matching the configuration used for LLAVA-1.5.

Across all architectures, we observe a consistent pattern where moderate values of both VSV strength and SLA mixing
ratio yield the best balance between hallucination reduction and generation quality. This consistency, despite architectural
differences, validates the generality of our approach while highlighting the need for architecture-specific fine-tuning of
hyperparameters for optimal performance.

C. Case Study
In this section, we extend our qualitative evaluation across all four architectures to demonstrate VISTA’s effectiveness in
reducing hallucination while promoting genuine information. Figures 15-18 present comparative examples between vanilla
decoding and VISTA for LLAVA-1.5, MiniGPT-4, Shikra, and InstructBLIP respectively. For each example, hallucinated
content is highlighted in red, while genuine information that was previously omitted or wrongly described but successfully
recovered by VISTA is marked in blue. The examples demonstrate VISTA’s consistent ability to reduce hallucination across
different architectures while eliciting pertinent visual details that vanilla decoding fails to capture.
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Greedy: The image captures a young boy in a baseball uniform, 
standing at home plate and holding a baseball bat, ready to 
swing. He is surrounded by a crowd of people, including 
teammates and spectators, who are watching the game intently. 
There are several chairs placed around the field, with some of 
them occupied by the spectators. A baseball glove can be 
seen on the ground, likely belonging to one of the 
players. The scene is lively and filled with anticipation as the 
young boy prepares to hit the ball.

VISTA: The image depicts a baseball game in progress with a 
young boy standing at home plate, holding a baseball bat and 
preparing to hit the ball. The boy is wearing a baseball uniform 
and is the main focus of the scene. There are several people 
in the background, some of them sitting on benches and 
others standing around the field. A few of the spectators 
are holding handbags, and a few are wearing hats. The 
scene captures the excitement and anticipation of the game.

Greedy: The image features a red stop sign with a unique 
message written on it. The sign reads "Sook Sook Eee It Stop," 
which is a playful variation of the standard "Stop" message. The 
sign is placed on a pole, and it is situated in front of a 
building. The scene also includes a tree in the background, 
adding to the overall atmosphere of the location.

VISTA: The image features a red stop sign with a playful 
message written on it. The sign is positioned on a pole, and the 
message reads "Sook So So Stop." The sign is located in a 
street setting, with a tree in the background.

Greedy: The image features a man wearing a helmet and riding 
a black motorcycle down a street. He is the main focus of the 
scene, with the motorcycle taking up a significant portion of the 
image. The man appears to be enjoying his ride, possibly 
commuting or traveling down the road. In the background, 
there are a few other people visible, but they are not the 
main subject of the image. The street appears to be 
relatively empty, with no other vehicles or significant 
obstacles visible.

VISTA: The image features a person riding a motorcycle on a 
street. The person is wearing a helmet and a backpack, 
ensuring safety while riding. The motorcycle is black and 
occupies a significant portion of the scene. The person is 
positioned in the middle of the image, with the motorcycle taking 
up the majority of the frame.

Greedy: The image features a red and yellow train traveling 
down the tracks, with a large silver train car following 
behind it. The train is moving along the tracks, and there are 
several other trains visible in the background, 
indicating a busy train station. In addition to the trains, 
there are multiple people scattered throughout the 
scene, likely waiting for their respective trains or 
simply passing by. Some of these individuals are closer 
to the foreground, while others are further away, giving 
a sense of depth to the image.

VISTA: The image features a train traveling on a train track. 
The train is a silver and red color, with a yellow front. The 
train is moving along the tracks, and there are multiple train 
tracks visible in the scene. The train is positioned in the 
middle of the scene, and the tracks are spread across the entire 
image.

LLAVA-1.5

Figure 15. Case study for LLAVA-1.5.
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Greedy: The image shows a woman in a blue dress and white 
hat holding a tennis racket on a tennis court. The woman is 
standing on the left side of the court and the net is in the 
background. There are trees in the background and the sky is 
visible in the top right corner of the image. The woman is 
wearing white shoes and her hair is pulled back into a ponytail. 
The racket is held with both hands and the woman is ready to 
serve the ball.

VISTA: The image shows a woman in a blue dress and white 
tennis shoes on a tennis court. She is holding a tennis racket 
in her right hand and is about to serve the ball. There are trees 
in the background.

Greedy: The image shows a person riding a green dirt bike in 
the air, with a cloudy sky in the background. The person is 
wearing a black helmet, black gloves, and a green jumpsuit. 
The bike has a black frame and green accents, and it is 
being ridden by a person in black boots and gloves. The dirt in 
the background is brown and there are some trees in the 
distance.

VISTA: The image shows a person on a green dirt bike in the 
air, riding over a dirt hill. The person is wearing a green helmet 
and a green jumpsuit. The background is a dirt hill with a few 
small dirt mounds on it.

Greedy: The image shows a man sitting on the hood of a car 
with his feet on the ground. He is wearing a white shirt and blue 
jeans and is talking on a cell phone. In the background, there 
is a dark sky and some trees. The car is a black sedan with 
its hood open.

VISTA: The image shows a man sitting on a car in a dark area. 
He is wearing a white shirt and blue jeans. The car in the 
background is a black car. The man is holding a cell phone to his 
ear. The image is taken at night.

Greedy: The image shows a group of sheep standing in a 
muddy field. The sheep are all white and appear to be of a 
similar age and size. They are standing in a circle, with their 
heads facing inward and their tails tied together. In the 
center of the circle is a large pile of hay or straw, which 
appears to have been stacked up by the sheep. The sky is 
cloudy and there are trees in the background.

VISTA: The image shows a group of sheep standing in a muddy 
field. The sheep are all white and appear to be in a group. There 
is a pile of hay in the foreground, and in the background there 
are trees and a blue sky. The sheep appear to be in the 
process of eating the hay.

MiniGPT-4

Figure 16. Case study for MiniGPT-4.
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Greedy: The image features two young girls sitting together at a 
dining table, enjoying their donuts. One girl is on the left side of 
the table, while the other is on the right. They both appear to be 
quite content with their treats. There are two chairs in the 
scene, with one being occupied by the girl on the left 
and the other chair by the girl on the right. The table they 
are seated at is quite long, extending across the image. There is 
also a cup placed on the table near the right side.

VISTA: The image features two young girls, one with glasses, 
enjoying donuts at a table. They are both holding their respective 
donuts, with one girl on the left and the other on the right. The 
girls are positioned in the middle of the scene, and it appears they 
are also sitting on a chair. There is a chair visible in the 
background, but it is not the main focus of the scene. The overall 
atmosphere of the image is that of enjoying a shared treat 
together.

Greedy: The image features the iconic Big Ben clock tower in 
London, with a cloudy sky overhead. The tower is part of the 
Houses of Parliament and stands strong against the backdrop. 
There is a large tree in the foreground, partially obscuring the 
view of the clock. Several birds can be seen flying near the 
clock tower, with one bird perched at the top left corner 
and two more birds flying closer to the bottom left of 
the image. The birds' presence adds a lively touch to 
the scene.

VISTA: The image features a cloudy sky, a towering building, 
and a large clock on the side of the building. The clock is visible, 
along with the tower's overall size, making it a prominent feature 
of the scene. The sky appears to be a mix of various 
shades, including gray, beige, and even slightly blue, 
creating a picturesque setting for the scene.

Greedy: The image captures a man skiing down a snow-
covered slope on a mountain. He is wearing an orange helmet 
and is skiing near a cluster of trees. The skier appears to be 
enjoying the downhill run as he moves quickly through the snow. 
In addition to the skier, there are two backpacks visible 
in the scene. One is located near the left side of the 
skier, while the other is positioned closer to the middle 
of the image. The presence of backpacks suggests that 
the skier might be carrying some gear or supplies for 
his skiing adventure.

VISTA: The image features a snowy mountain slope bustling 
with activity. There is a skier, specifically, who is skiing down the 
snow-covered slope. The skier is wearing an orange helmet and is 
also riding on skis, making their way through the snowy 
landscape. The skier's ski poles can be seen in their hand 
while skiing. The scene also highlights the presence of trees 
surrounding the skiing area, adding to the picturesque quality of 
the scene. The trees add to the lively atmosphere of the area, 
making this a great spot for skiing and exploring.

Greedy: The image features a man wearing a black shirt and a 
purple tie. He is standing in a room with a wooden floor and a 
painting on the wall. The man appears to be wearing glasses, 
which adds to his distinguished look. In the background, 
there are two TVs visible. One is placed on the left side 
of the room, while the other is located closer to the 
center. Additionally, there are two books in the scene, 
one on the floor near the man and the other further to 
the right. The overall setting suggests a well-decorated 
living space.

VISTA: The image shows a young man wearing a black shirt 
and a purple tie. He is standing confidently, with a slight 
smile on his face. The man appears to be wearing glasses, 
which are tinted black. He is positioned in the middle of the 
frame, and there is a box nearby. The man's tie is purple, and 
it is tucked under his shirt.

Shikra

Figure 17. Case study for Shikra.
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Greedy: The image features a dog and a cat playing in the 
ocean, with the dog splashing in the water and the cat 
watching from a distance. The dog is positioned closer 
to the water, while the cat is further away, possibly 
observing the dog's playful behavior. The water is foamy 
and bubbly, indicating a lively scene of the animals enjoying the 
ocean.

VISTA: Two dogs are playing in the ocean, with one dog 
splashing in the water and the other dog enjoying the 
waves. The dogs are in the ocean, splashing and playing in the 
waves, with one dog in the foreground and the other in the 
background. The dogs are having a fun time in the ocean, 
enjoying the water and the playful waves.

Greedy: The image features a man standing on a sandy beach, 
flying a kite in the sky. He is wearing a red shirt and is holding 
the kite string, which is stretched out in the air. The kite is flying 
high above the man, creating a beautiful sight against the clear 
blue sky. The beach is surrounded by water, with a body of water 
visible in the background. There are several people in the 
scene, including a woman and a child, who are also 
enjoying the beach and the kite flying.

VISTA: A man is standing on a beach, flying a kite in the sky. 
He is wearing a red shirt and is focused on flying the kite, which 
is high up in the sky. The man is in a relaxed and enjoyable 
setting, enjoying the sunny day and the serene atmosphere of 
the beach. The kite is a colorful and playful addition to the 
scene, adding to the overall sense of fun and leisure.

Greedy: The image features a brown horse standing in a grassy field, 
with a white bird perched on its back. The bird is positioned on the 
horse's back, with its wings spread out, and its body resting 
on the horse's neck. The horse and the bird are both standing in 
the field, with the bird's head slightly turned towards the left side of 
the image. The grassy field is filled with various plants and shrubs, 
creating a lush and natural setting. 

VISTA: There is a brown horse standing in a grassy field, with a white 
bird perched on its back. The horse and bird are both in the foreground 
of the scene, with the bird resting on the horse's back. The horse 
is positioned in the middle of the field, with the bird on its back, and the 
background features a rolling landscape with hills and a 
distant horizon. The scene depicts a peaceful moment in a natural 
setting, with the horse and bird enjoying a relaxing moment in the 
grassy field.

Greedy: The image features a person standing in the snow, holding a 
snowboard. The snowboard is positioned on the ground next to the 
person, who is wearing a blue jacket and pants. There are several 
snowboards visible in the scene, with one placed on the ground and 
another on a snowboard rack. The snowboard rack is 
located on the left side of the image, with a few snowboards 
placed on it. The snowboard rack is likely used to store and 
organize the snowboards for easy access during 
snowboarding activities.

VISTA: A woman is standing in the snow, wearing a blue and white 
jacket, and holding a snowboard in her hands. She is posing 
for a photo in a winter setting, likely in a snowy field or on a 
ski slope. There are several other snowboards visible in the scene, 
likely belonging to other people or in the background. The 
snowboard in the foreground is a red and black snowboard, 
and the woman is smiling as she poses for the picture.

InstructBLIP

Figure 18. Case study for InstructBLIP.
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