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Abstract

Tabular data is widely utilized in a wide range of real-world applications. The
challenge of few-shot learning with tabular data stands as a crucial problem in
both industry and academia, due to the high cost or even impossibility of annotat-
ing additional samples. However, the inherent heterogeneity of tabular features,
combined with the scarcity of labeled data, presents a significant challenge in
tabular few-shot classification. In this paper, we propose a novel approach named
Diffusion-based Representation with Random Distance matching (D2R2) for tabu-
lar few-shot learning. D2R2 leverages the powerful expression ability of diffusion
models to extract essential semantic knowledge crucial for denoising process. This
semantic knowledge proves beneficial in few-shot downstream tasks. During the
training process of our designed diffusion model, we introduce a random distance
matching to preserve distance information in the embeddings, thereby improving
effectiveness for classification. During the classification stage, we introduce an
instance-wise iterative prototype scheme to improve performance by accommodat-
ing the multimodality of embeddings and increasing clustering robustness. Our
experiments reveal the significant efficacy of D2R2 across various tabular few-shot
learning benchmarks, demonstrating its state-of-the-art performance in this field.

1 Introduction

Learning with a large set of data with only a few labeled samples is an essential requirement for
industry and academia, primarily due to the high cost of annotating samples. However, accurately clas-
sifying new data with a scantily labeled training set and an unlabeled training set poses a formidable
challenge, as the effectiveness of statistical and modern deep learning systems in supervised learning
heavily relies on the large size of the labeled set [36]. This underscores the need for research in
few-shot learning in situations where labeled data is scarce. For example, in one-shot learning, each
class of the training set contains only one labeled sample, and the goal is to classify new test samples.
While few-shot learning has garnered considerable attention in computer vision (CV) [9, 21] and
natural language processing (NLP) [30, 31], it remains relatively under-explored in the field of tabular
data. Nevertheless, few-shot learning holds great importance in the context of tabular data, as limited
labeled tabular data is inherently common in many real-world applications, such as fraud detection
[7], disease diagnosis [40], and social science [27]. However, modeling with limited labeled tabular
data presents three significant challenges.
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The first challenge is due to the scarcity of labeled training samples, which leads to a deficient
understanding of the test class. In this case, semantic knowledge, encompassing general and low-
frequency information not tied to any particular task, can be highly beneficial in few-shot learning
[39, 52, 56]. This is because representing a class with limited labeled samples inherently involves
ambiguity, necessitating the use of semantic knowledge acquired from unlabeled ones to refine the
class definition and address this ambiguity. Although for CV [21] and NLP [31], semantic knowledge
can be effectively derived based on the learned spatial structure patterns between pixels or tokens, it
is more challenging to extract semantic knowledge for tabular data, since they typically lack local
relationships between columns.

The second challenge arises from the diverse characteristics of tabular features. Tabular data comprises
numerical and categorical features. Numerical features contain ordinal values but have multiple
modes, while categorical features present distinct and incomparable values. Many existing statistical
and deep neural network models struggle to effectively handle these mixed data types. This challenge
underscores the importance of simultaneously modeling continuous and categorical features.

The third challenge pertains to the utilization of prototype classification with tabular data. Numerous
approaches suggest employing average embeddings of the labeled support set for classification
[49, 11, 28]. However, the limited labeled support samples lead to large variance and imprecision of
the prototypes, highlighting the need for more information from unlabeled samples. Additionally,
embeddings from the same class may exhibit multimodal behavior (see Figure 3 for examples), which
means that using the average embeddings of one class could result in inaccurate classification results.

In addressing the aforementioned challenges of few-shot learning, significant efforts have been
made over the past decade. One approach employs a meta-learning scheme. A common method
is to generate a pseudo-label for each unlabeled data and then train the model using pseudo-label
[25, 43, 28]. Other approaches utilize self-generated tasks, such as CACTUs [19], UMTRA [22] and
Meta-GMVAE [24]. However, despite the effectiveness of prior works on image datasets, we find
that applying each method to the tabular domain is highly non-trivial. These methods often assume
uniformity in feature types and rely on strong spatial and sequential relationships among features,
which do not hold for tabular data. For instance, augmentation techniques are readily applicable to
images, where spatial relationships between pixels can be leveraged, as shown by UMTRA [22].
However, such techniques are difficult to apply to tabular data, which lacks these structural patterns
[4]. STUNT [28] is designed for tabular data using a proxy-based approach. However, this methods
may struggle to acquire useful semantic knowledge due to the disparities between the constructed
tasks and the target task, leading to diminished performance for testing. Moreover, it applies the
same methods to both numerical and categorical features, neglecting the unique information in
different types of data. This oversight hampers the model’s effectiveness. Recent studies have showed
that self-supervised learning can leverage unlabeled datasets to acquire semantic knowledge and
transferable representations of images [16] and languages [14]. However, these approaches heavily
rely on augmentation schemes. For tabular data, the heterogeneous feature types pose challenges for
augmentation, and only a few methods have been proposed for tabular data. State-of-the-art methods
along this line include VIME [55], SCARF [4], SubTab [47].

In this work, we propose a novel framework named Diffusion-based Representation with Random
Distance Matching (D2R2) for tabular few-shot learning. D2R2 extracts representations by training
a designed conditional diffusion model and aligning the distances from various random projection
spaces. Subsequently, we introduce the instance-wise iterative prototype to conduct few-shot clas-
sification, which addresses the multimodal behavior of embeddings and enables the creation of a
robust classifier. Finally, we design an unsupervised validation scheme to address the absence of the
labeled validation set for hyperparameter selection. Different from meta-learning and self-supervised
learning methods, D2R2 does not relies on self-generated tasks or augmentation schemes, but instead
uses a general training process. The D2R2 framework offers the following advantages:

Considering the first challenge mentioned earlier, we avoid to rely on proxy methods or augmentation
methods, which are limited by the lack of local relationships in tabular data. Instead, we create an
information bottleneck for extracting semantic knowledge, named D2R2, which leverages the strong
expressiveness of the diffusion model and distance information from pairwise comparison. Firstly,
we modify the diffusion model to serve as a representation extractor. The powerful expressiveness
of diffusion model enables the extraction of semantic knowledge crucial to denoising. And the
information bottleneck induced by conditional information, obtains low-frequency information over
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details. This approach outperforms alternative representation learning and meta-learning methods,
as demonstrated by our experiments. Moreover, the representations exhibit robustness due to the
introduction of designed diffusion noise schedule and subsequent denoising process, which reinforces
their stability against tabular column perturbations.

Nevertheless, relying solely on diffusion-based representations may not provide sufficient distance
information to build a subsequent prototype classifier, which classifies test samples based on their
distance between prototypes. Hence, we introduce a random distance matching (RDM) loss during the
training of the diffusion model to obtain the distance information. One intuition of applying RDM is
that if the class structure can be characterized by certain distance information, the embeddings should
preserve such distance structure. Another intuition is that if two samples belong to the same class in
the ground truth, their embeddings should appear similar from any perspective. Random distance
matching achieves these ideas by projecting data into diverse random spaces, which encompass class
structure information. Consequently, if two data points are close in multiple random spaces, they
are highly likely to belong to the same class. Besides, two distinct Random Distance matching are
designed for continuous and discrete features based on their characteristics, respectively. In this way,
we can simultaneously model numerical and categorical features within one model, addressing the
second challenge mentioned earlier. Overall, our newly designed D2R2 training process not only
extracts high-quality semantic knowledge for few-shot learning but also reveals distance information
for prototype classification, while remaining adaptive to mixture types of tabular data.

Moreover, during the classification phase, we predict the class of a test sample to be the same as
the class of the nearest prototype. Given that the embedding of a single class may demonstrate
multimodality, we introduce a novel instance-wise iterative prototype. This approach tackles the issue
of multimodal behavior by creating several prototypes within one class and improving the robustness
of prototypes by iterative refinement, resolving the third challenge previously mentioned.

Lastly, to address the absence of a labeled validation set in unsupervised learning for hyperparameter
selection, we devise a validation scheme by generating pseudo-labels for the unlabeled dataset using
soft k-means clustering of raw features.

Our contribution is summarized as follows:

• To the best of our knowledge, we are the first to propose a specifically designed diffusion method
to learn semantic knowledge for tabular data.

• We propose an innovative framework, D2R2, to extract representations in tabular few-shot learning,
which is built upon the designed diffusion process and random distance matching. D2R2 not
only captures high-quality semantic knowledge, but also incorporates distance information for the
subsequent prototype classifier. Moreover, it adapts well to mixture types of tabular data.

• To further improve few-shot classification performance, we introduce a novel classifier with
instance-wise iteration prototypes. This classifier is able to construct highly accurate and stable
prototypes, while also revealing the multimodal behavior of a single class.

• We conduct extensive experiments to evaluate our framework for tabular few-shot learning, com-
paring our method with 15 state-of-the-art literature baselines across nine datasets. Among various
tabular datasets, D2R2 outperforms other baselines by a significant margin.

2 Related work

Supervised and Semi-supervised learning. Some supervised classifiers have strong ability to learn
from limited samples. Methods along this line include CatBoost [35], TabPFN [18], a transformer-
based network designed to make predictions on a small tabular dataset; k-nearest neighbor classifier
(kNN) [32], the nearest neighbor prototype classifier. However, they are inadequate in few-shot
learning because they are not intended to learn the semantic knowledge. Semi-supervised learning
frameworks are designed to improve model generalization by creating a strong connection between
limited labeled samples and unlabeled samples, including Mean Teacher (MT) [46], Interpolation
Consistency Training (ICT) [48], and Meta Pseudo Labels (MPL) [33]. In semi-supervised learning,
a model trains on labeled data and then predicts labels for unlabeled data. However, this method
requires more labeled data than few-shot learning contexts.
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Few-shot meta-learning. Few-shot learning aims to train models to adapt to downstream tasks with
minimal labeled examples. This can be accomplished by employing meta-learning techniques on
related tasks, enabling the acquisition of prior knowledge that can be utilized to solve new tasks
[50]. Existing deep few-shot methods can be divided into three main categories. First, optimization-
based meta-learning methods [5, 15, 26, 29] devise a proficient optimization strategy that adapts to
downstream tasks effectively. Second, metric-based methods [13, 30, 34, 51] concentrate on latent
space to derive meaningful feature embeddings, and then make predictions based on the similarity
between support and query embeddings. Third, data generative strategies emphasize creating more
varied samples to train a more precise classifier. Most research on few-shot meta-learning focuses on
NLP and CV tasks, such as CACTUs [19] and UMTRA [22], while a small subset tackles tabular
few-shot learning. STUNT [28] meta-learns generalizable knowledge from self-generated tasks on an
unlabeled tabular training set. However, these methods may generate ineffective semantic knowledge
because of the gap between the self-generated tasks and the testing task.

Self-supervised learning. Our research addresses scenarios where an unlabeled training set and a
small labeled support set (K-shot) are used to predict class labels for a test query set, as detailed
in Section 3 of our paper. Self-supervised learning is particularly effective at developing robust
representations from unlabeled data [8, 37]. These approaches focus on pre-training the representation
by utilizing domain-specific inductive biases, like the spatial relationships in images. Notably, prior
research has demonstrated the effectiveness of self-supervised learning in few-shot scenarios relative
to meta-learning techniques [12]. Chen et al. [10] added an autoencoder in the diffusion process
and Yang et al.[53] introduces a latent Denoising Autoencoder architecture where the learned
representations are used for Denoising Autoencoder, but the Autoencoder reconstruction process is
less suitable for tabular data as discussed in STUNT [28]. Other works on self-supervised learning
schemes rely on augmentation schemes. It is unclear how to extend such methods to the tabular domain
due to the heterogeneous characteristics of tabular datasets. Moreover, for tabular data, multimodal
and categorical features make augmentation difficult, and few effective methods have been proposed
in tabular data setting. Recent state-of-the-art tabular learning augmentation techniques include
masking cell: VIME [55], constructing subsets: SubTab [47], and contrastive learning: SCARF [4].
However, they fail to deliver substantial performance enhancements for few-shot tabular learning in
our experiments. Rather, we train the unlabeled dataset through an unsupervised diffusion framework
that does not rely on the effect of augmentation.

3 Problem definition

In this paper, we explore few-shot learning for tabular classification.Tabular data refers to the dataset
organized in tables, which is a structured format that presents information in rows and columns. Such
data can be represented as D = {xi}ni=1 ⊂ Rd consisting of n instances and d dimensional features.
Each data instance xi = (x1

i , x
2
i , ..., x

d
i ) may or may not hold strong relationship among features.

The features in tabular data typically vary, comprising both numerical and categorical labels.

Our study on tabular few-shot learning focus on a very typical scenario in this field, adhering to the
definition outlined in STUNT [28]. We have an unlabeled training set Du = {xu

i }
Nu
i=1 and a limited

labeled support set S = {(xs
i , y

s
i )}

NS
i=1, xs

i ∈ Rd and ysi ∈ {1, 2, ..., C} represent inputs and class
labels, respectively. We assume that Nu ≫ NS . Our goal is to predict the class labels of testing
query setQ = {xq

i }
NQ

i=1. In the N -way K-shot setting, the classification is conducted with N targeted
classes and each class in the support set has K labeled samples. Such scenarios are common in
critical applications like credit risk assessment [7] and diagnosing patients with rare diseases [40].

4 Methodology

In this section, we introduce the overall design of the framework Diffusion-based Representation
learning with Random Distance matching (D2R2) in detail. In order to leverage the semantic
knowledge extraction capabilities of diffusion models, D2R2 employs a conditional diffusion model
on the unlabeled dataset to learn an embedding space (Section 4.1). In order to enhance the clustering
ability of the embedding space, facilitating subsequent classification, we modify the training process
of the diffusion model, in order to ensure that the distances between instances align across the
embedding space and various projected spaces. (Section 4.2). Figure 1 illustrates aforementioned
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Figure 1: The diagram depicts the training process of the embedding space. Specifically, after a
noise perturbation, each instance undergoes mapping via an embedding function zθ. The embedding
is then incorporated into a conditional diffusion model for noise prediction. The parameters of the
noise model ϵϕ and the embedding function zθ are concurrently optimized using the reconstruction
loss. Additionally, the instance is subjected to mapping through a random linear projection into an
alternate metric space. Two distinct Random projections are generated for numerical and categorical
features, respectively. We align the distances in the embedding space and the random projection space
using the RDM loss to ensure that the embedding function effectively preserves distance information,
which is beneficial for downstream classification tasks.

training process. In the classification stage, we construct a novel instance-wise iterative classifier
to predict the testing samples on the learned embedding space (Section 4.3). Finally, due to the
absence of a validation set for above unsupervised embedding space learning, we propose to use
pseudo-label validation on the unlabeled dataset to select hyperparameters (Section 4.4). A summary
of the training algorithm of D2R2 is presented in Appendix A.

4.1 Diffusion-based representation Learning

Diffusion-based generative models [42, 17, 44, 45] are latent variable models that use a Markovian
noising and parameterized denoising process to model the data distribution thus generate realistic
samples. Details of diffusion models are provided in the appendix B. The diffusion process for a
given sample x0 is defined as xt =

√
ᾱtx0 +

√
1− ᾱtϵ, where ϵ ∼ N (0, I), ᾱt =

∏t
t′=1(1− β′

t),
βt is a pre-defined variance schedule, and the timestep t is known. The true noise is ϵ(xt, t,x0) =
1/
√
1− ᾱt(xt −

√
ᾱtx0). Following DDPMs [17], the denoising model can be implemented by

neural networks with learnable parameters ϕ by directly predicting the noise ϵ:

LDDPM(ϕ) = Et,x0
||ϵϕ(xt, t)− ϵ||22, (1)

Diffusion models can be extended to conditional generative models ϵϕ(xt, t, c) by inserting the
conditional information c to generate specific class samples [45, 1].

We now present the diffusion-based representation learning part of D2R2. We employ the diffusion
models in a distinct way different from generation. We modify the diffusion model and repurposing
it to act as representation extractor. Specifically, we represent the trainable embedding function
as zθ : Rd → Rp, where zθ(x0) maps the noiseless input x0 to the latent space of dimension p.
Formally, the reconstruction loss for the diffusion-based representation learning is

Lrecon(ϕ, θ) = Et,x0,xt ||ϵϕ(xt, t, zθ(x̃0))− ϵ||22, (2)

where ϵϕ is a trainable noise model, and x̃0 is an augmentation version of the noiseless data input x0.
In our method, we use Gaussian noise perturbation x̃0 = x0 + σN (0, 1). For numerical features we
set σi to be the standard deviation of numerical features in Du, and for categorical (one-hot) features,
we use a fixed σi to smooth the one-hot indicator values.

Reasons that the designed diffusion model can extract semantic knowledge come from twofold. Firstly,
the diffusion model with powerful expressiveness encodes the information needed for denoising.
Specifically, in conditional diffusion models, the noise reconstruction loss Et,x0,xt

||ϵϕ(xt, t, c)− ϵ||22
trains the noise prediction function ϵϕ(xt, t, c) to predict the true noise ϵ(xt, t,x0) given the noisy
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sample xt, the knowing t and the condition information c. If c = x0, we could expect ϵϕ can almost
perfectly recover ϵ. By replacing the conditional information c by a function zθ(x0) that maps to an
embedding space with lower dimension than x0, we introduce an information bottleneck to the noise
reconstruction process. This forces zθ to extract effective information for denoising from x0, leading
to representation learning through the noise reconstruction loss (2) .

From another perspective, it is pointed out the noise reconstruction loss (2) can be expressed
equivalently as the weighted noisy score matching loss Et,x0,xt [λ(t)||sϕ −∇xt log pσ(t)(xt|x0)||22]
[1], where the weights λ(t) = σ2(t) are determined by the noise scale σ(1) < σ(2) < ... < σ(T ).
The choice of noise scale σ(t) controls the granularity of the embedding function. We focus on larger
timesteps thus extract the low-frequency semantic information rather than details.

4.2 Random distance matching

The acquired latent representation zθ from equation (2) is utilized for subsequent classification
tasks, which heavily rely on distance information between the clusters within the embedding space.
Although zθ(x0) learned through conditional diffusion models already exhibits clustering properties
[1] to a certain extent, the learned embeddings do not prioritize capturing distance information
between class structures, potentially hindering the effectiveness for downstream classification tasks.
Taking inspiration that representations can be learned by training neural networks to predict distances
in a randomly projected space [49], we propose the random distance matching (RDM) loss to align
pairwise distances between the embedding space and a randomly projected space Rr. Here we
suppose that if two samples belong to the same class in the ground truth, their embeddings should be
close to each other, which is reflected by the randomly projected features from any perspectives.

Specifically, we consider the random linear projections W ∈ Rr×d with each element wi,j sampled
i.i.d. from a fixed distribution. The RDM loss is as follows:

Lrdm(θ) = Ex0,x′
0,W
||d(zθ(x0), zθ(x

′
0))− d(Wx0,Wx′

0)||2, (3)

where x0,x
′
0 are any two unlabeled data points sampled from Du and d is a metric. Since the

dimensions and the scales of the two matching spaces might not be the same, we choose d to be the
cosine distance.

Furthermore, in order to handle hybrid tabular data types, which involve both numerical and cate-
gorical features, we sample random projections from various distributions according to the specific
feature types. We consider samples with dnum numerical features and dcat categorical features. For
numerical features, we sample a projection Wnum ∈ Rr1×dnum from symmetric uniform distribution:
wi,j ∼i.i.d. Unif(−A,A); for categorical features, we sample a projection Wcat ∈ Rr2×dcat from
Bernoulli distribution: wi,j ∼i.i.d. Bernoulli(p). Considering both types of features, our random
linear projection is defined as:

Wx0 := concat(Wnum[x0]num,Wcat[x0]cat), (4)
where [x0]num, [x0]cat are the numerical and categorical parts of x0, respectively.

Overall, we define a novel diffusion-based representation learning loss as follows:
LD2R2(ϕ, θ) = Lrecon(ϕ, θ) + α · Lrdm(θ), (5)

where α is a hyperparameter to balance the noise prediction loss and RDM loss. We train ϕ and θ to
minimize LD2R2 over the unlabeled dataset Du. The trained embedding function zθ(x0) is used as
the representation function for the downstream classification tasks. Loss function LD2R2 considers
learning of embeddings from two different angles. Diffusion models possess strong generative
capabilities, compelling the reconstruction loss Lrecon(ϕ, θ) to ensure that the learned embedding zθ
captures high-quality semantic information, which significantly influences the data distribution. The
random distance loss Lrdm(θ) adjusts the embedding to accommodate the distances between data
points in a random projection space, thereby improving the clustering capability of the embedding
space, rendering it suitable for subsequent classification tasks.

4.3 Instance-wise iterative prototype

Given the trained embedding function zθ(x) and the labeled support set S = {(xs
i , y

s
i )}

NS
i=1, we

define the instance-wise prototype of support samples in the embedding space as ci = zθ(x
s
i ), where

i = 1, 2, .., Ns. We can predict the label of a query sample to be the same as the nearest prototype.
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Figure 2: An illustration of the rationale behind instance-wise prototype. (a): In 2-shot scenarios,
shapes represent the ground-truth classes in the embedding space, while the gray-colored objects await
classification. (b): If the embedding of the circle class is not unimodal, averaging the prototypes leads
to erroneous center suggestions and fails to classify the embeddings. (c): Considering instance-wise
prototypes, each prototype contributes to the classification of nearby embeddings without generating
erroneous centers.

The rationale for employing instance-wise prototypes instead of center-specific prototypes [41, 11],
which averages the K-shot embeddings inside the j-th class as cj = 1

K

∑
ys
i=j zθ(x

s
i ) , is that

embeddings from the same class may exhibit multimodality, while center-specific prototypes can
only represent a uni-modal pattern, which might result in incorrect classification results (see Figure
2 for an illustration). On the other hand, in the few-shot learning scenarios, the scarcity of support
samples brings large variance of prototypes, leading to unstable and imprecise classification outcomes.
Drawing inspiration from the soft k-means algorithm [38], we leverage the weighted average of the
query embeddings and support embeddings to create robust prototypes iteratively, referred to as the
instance-wise iterative prototypes.

At the beginning, we initialize each prototype as the embedding of each support instance as c(0)i =
ci = zθ(x

s
i ), where i = 1, 2, .., Ns. At the l-th iteration step, the probability that the query x ∈ Q

belonging to the i-th prototype is:

p
(l)
θ (i|x;S) = exp(−||zθ(x)− c

(l)
i ||22/τ)∑

xi′∈S exp(−||zθ(x)− c
(l)
i′ )||22/τ)

, (6)

Then we update the prototypes at the (l + 1)-th iteration based on the weighted average of query
embeddings:

c
(l+1)
i =

c
(l)
i +

∑
x∈Q p

(l)
θ (i|x;S) · zθ(x)

1 +
∑

x∈Q p
(l)
θ (i|x;S)

. (7)

After the L-th iteration, we predict the class of a query sample x to be the same class of the nearest
prototype:

ŷ = argmax
ys
i

p
(L)
θ (i|x;S). (8)

4.4 Pseudo-label validation

One challenge in the proposed unsupervised learning lies in the lack of a labeld validation set for
hyper-parameter tuning. For example, in 1-shot classification, the only one labeled sample is used
for training, with no additional labeled samples available for validation. We tackle this problem by
generating pseudo labels for the unlabeled dataset using soft k-means of raw features.

Formally, we sample a validation setDval ⊂ Du. During each validation process, we randomly sample
K ′ points {xk}K

′

k=1 ⊂ Dval, which are regarded as pseudo support samples, forming K ′ distinct
classes, i.e., Sval = {(xs

k, y
s
k = k)}K′

k=1. We regard the remaining unlabeled samplesQval = Dval\Sval
as pseudo query samples. Next, pseudo-labels are generated for Qval by applying instance-wise
iterative prototype classification (Section 4.3) to the raw feature space, and those pseudo-labels serve
as the “ground-truth” labels for the query set Qval. Subsequently, we employ D2R2 on the validation
set {Sval,Qval} to predict the “ground-truth” labels of Qval. We assess the validation performance to
select hyperparameters for the training iteration.
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5 Experiments

5.1 Experimental settings

For all the datasets, we randomly split 80% of the data for training and the remaining 20% for testing.
As for N -way K-shot scenario, the support set is constructed by randomly selecting N ×K samples,
with K samples from each of the N classes from the training sets. Additionally, 20% of the training
data is utilized for validation and hyperparameter tuning. We use one-hot encoding for categorical
features and min-max scaling for numerical features, except for income data, for which we use
standardized scaling (see Appendix D.2 for details). All experiment settings of baselines and D2R2
are the same as STUNT [28] for fair comparison. Details are provided in Appendix D.32.

Datasets. We select nine datasets from the OpenML-CC18 benchmark [3, 6] to validate the per-
formance of D2R2. Table 3 shows a summary of the datasets. Optdigits, mfeat-karhunen, diabetes
contain and breast only numerical features; dna and mfeat-pixel consist of only categorical features;
income, cmc and nomao contain both numerical and categorical features. A summary of the dataset
information is provided in Appendix Table D.1.

Baselines. In order to assess the efficacy of our D2R2 framework, we compare the performance of
D2R2 with four types of baselines, whose details are provided in Appendix E.

i. Supervised learning methods. We compare with established supervised learning methods such as
CatBoost [35], k-nearest neighbors (kNN) classifier [32] according to the prototype, and TabPFN
[18], a transformer-based network designed to make predictions on a small tabular dataset.

ii. Semi-supervised learning methods. Such methods include Mean Teacher(MT) [46], Interpolation
Consistency Training (ICT) [48], Pseudo-Label [25] and Meta Pseudo Labels (MPL) [33].

iii. Few-shot meta-learning methods. We consider recent state-of-the-art meta-learning approaches
such as CACTUs [19], UMTRA [22], SES [54] and STUNT [28]. STUNT is designed for
tabular data while others are designed for image data, whose network structures are modified for
tabular data[28].

iv. Self-supervised learning methods. We compare with the state-of-the-art self-supervised methods
for tabular data, including VIME[55], SubTab [47], SCARF [4], TabTransformer [20]. We utilize
representations acquired from those models to conduct Center Prototype Classification [11].

5.2 Overall evaluation results

We compare our framework D2R2 with other state-of-the-art supervised, semi-supervised, self-
supervised and meta-learning methods. The classification accuracy of all methods is presented in
Table 1. In particular, we carry out experiments under two few-shot settings: N -way 1-shot and
N -way 5-shot. We report the mean accuracy across 100 random seeds.

We note that our D2R2 framework significantly outperforms baseline methods across diverse datasets.
A Wilcoxon signed-ranks test is employed (Appendix D.5) to further demonstrate the statistical
significance of comparison. When comparing the accuracy of the D2R2 with that of the best baseline
on all datasets, Wilcoxon’s P-value is below 0.05, significantly indicating the effectiveness of D2R2.

In the case of the diabetes, optdigit and karkunen datasets, where all features are numerical, STUNT
method outperforms other baselines, while D2R2 demonstrates substantial improvement. In the
high-dimensional dataset optdigit, D2R2 improves accuracy by 39% compared to the supervised
method Catboost, 23% compared to the semi-supervised method Mean Teacher, 5% compared to the
meta-learning method STUNT, and 22% compared to other self-supervised methods like SubTab.
On the other hand, for pixel and dna datasets, which only contain categorical features, meta-learning
such as UMTRA and SES are almost ineffective, while D2R2 still demonstrates superior accuracy,
outperforming all other methods in both one-shot and five-shot settings. Similarly, for the large size
dataset income, encompassing both numerical and categorical features, our framework consistently
achieves a high classification accuracy of 72.08%, surpassing the leading baseline STUNT by 19%.
In summary, it can be concluded that D2R2 demonstrates a robust capability to address few-shot

2Code available at https://github.com/Carol-cloud-project/D2R2
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Table 1: Reported test accuracy is the mean value across 100 random seeds. Asterisked (⋆) baselines
refer to the reported scores in STUNT[28]. Bold number and the underlined number denote the
highest score and the second best score, respectively. Empty data is either because the dataset exceeds
the input data dimension limits of TabPFN or there are no reported scores in STUNT [28].

Method cmc diabetes dna income karkunen optdigits pixel nomao brest

#shot=1

CatBoost 36.03 56.74 39.15 57.55 53.24 58.30 54.74 63.62 69.71
TabPFN 35.37 53.35 - - 46.02 55.74 - - -
KNN 35.39 58.50 42.20 51.45 54.61 65.60 60.79 63.51 71.87
Mean Teacher(*) 35.58 58.05 46.58 60.63 54.57 66.10 61.02 64.23 71.92
ICT(*) 36.53 58.08 46.55 61.83 58.37 69.12 60.88 - -
Pseudo-Label(*) 34.97 57.03 44.26 60.52 49.44 61.50 56.12 62.39 69.92
MPL(*) 35.13 57.39 44.22 60.85 47.66 61.52 56.01 64.28 71.33
SubTab 36.23 58.22 46.98 62.45 50.22 62.01 60.34 67.63 72.94
VIME 35.90 58.99 51.23 61.82 59.81 69.26 63.28 64.75 70.11
SCARF 35.39 55.64 57.86 57.94 60.96 63.31 63.93 68.90 75.32
RTDL 34.34 58.15 47.99 53.61 58.25 62.78 62.87 68.33 76.38
UMTRA(*) 35.46 57.64 25.13 57.23 49.05 49.87 34.26 - -
SES(*) 34.59 59.97 39.56 56.39 49.19 56.30 49.19 69.52 74.89
CACTUs(*) 36.10 58.92 65.93 64.02 65.59 71.98 67.61 71.49 75.24
STUNT(*) 37.10 61.08 66.20 63.52 71.20 76.94 79.05 71.54 76.92
D2R2 42.88 63.94 68.00 75.82 72.08 81.13 81.34 79.47 77.69

#shot=5

CatBoost 39.89 64.51 60.20 67.99 77.94 83.07 83.38 75.32 77.06
TabPFN 38.31 64.06 - - 76.59 81.68 - - -
KNN 37.65 65.61 61.16 62.19 80.08 84.16 84.75 73.78 79.43
Mean Teacher(*) 37.73 65.45 61.47 67.05 81.08 86.66 85.24 74.78 81.26
ICT(*) 38.09 65.47 63.37 70.13 84.58 87.01 86.12 - -
Pseudo-Label(*) 37.49 64.46 60.06 66.26 78.60 83.71 82.94 72.87 78.91
MPL(*) 37.47 64.51 59.65 67.61 77.85 83.70 82.39 73.20 79.54
SubTab 39.81 68.26 62.49 72.14 70.88 83.27 80.41 76.15 82.74
VIME 39.83 67.64 71.29 72.19 19.42 83.21 85.24 74.96 85.81
SCARF 37.75 68.66 62.75 66.09 69.96 85.67 81.32 77.65 84.42
RTDL 37.59 64.27 45.49 64.92 60.43 82.58 76.13 73.61 79.66
UMTRA(*) 38.05 64.41 25.08 65.78 67.28 73.29 51.32 - -
SES(*) 39.04 66.61 52.25 68.27 74.80 78.46 74.80 76.50 84.73
CACTUs(*) 38.81 66.79 81.52 72.03 82.20 85.92 85.25 78.33 86.90
STUNT(*) 40.40 69.88 79.18 72.69 85.45 88.42 89.08 81.49 86.82
D2R2 43.39 73.52 82.38 76.02 84.96 90.73 91.06 82.69 88.27

Table 2: Ablation study of three components: diffusion representation (DR), random distance
matching (RDM) and instance-wise iterative prototype (IP). We also conduct the center-specific
prototype version of D2R2 (D2R2-c).We report the test accuracy (%) under 100 random seeds.

Dataset RDM DR DR+RDM RDM+IP DR+IP D2R2-c D2R2
opt (1-shot) 49.05 72.38 77.41 26.66 76.87 - 81.13
dna (1-shot) 45.43 57.14 61.29 26.03 56.17 - 68.00
cmc (1-shot) 35.50 35.19 38.69 34.90 34.48 - 42.88
opt (5-shot) 70.26 88.64 89.61 51.31 89.32 87.12 90.73
dna (5-shot) 47.72 71.84 73.03 32.16 79.24 81.39 82.38
cmc (5-shot) 36.04 35.62 40.81 36.27 35.74 43.39 43.39
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tabular data classification tasks, regardless of the number of shots, dataset size, feature dimension, or
the proportion of categorical features.

We speculate that the superior performance of D2R2 is attributed to the effective learned representation
of inputs along with the instance-specific prototypes. Upon visual examination of D2R2’s embeddings
in Figure 3, we observe clustering characteristics from point clouds, which demonstrating the
embeddings’ effectiveness for classification. Besides, we note the presence of multimodality in the
embeddings, supporting the rationale for introducing the instance-wise prototypes.

5.3 Ablation study

We conduct an ablation study to demonstrate the efficacy of three components in D2R2, namely the
diffusion representation (DR), random distance matching (RDM), and the instance-wise iterative
prototype (IP). We compare the complete D2R2 design (DR+RDM+IP) with frameworks that exclude
one or two of these components. We also conduct the center-specific prototype version of D2R2
(D2R2-c), which utilizes average embeddings of K-shot samples as prototype. The results of the
ablation study are presented in the Table 2.

Based on the results, D2R2 surpasses all other variants, indicating that all three components col-
lectively contribute to its superior performance. Specifically, removing the diffusion representation
results in a significant degradation in performance, highlighting the crucial contribution of diffusion
representation in capturing semantic knowledge. We also observe that DR+RDM shows the second
best performance, highlighting the importance of incorporating random distance matching in the
diffusion training process. Comparing with a center-specific prototype version of D2R2 (D2R2-c),
we observe that the instance-wise prototypes leads to improvement results in optdigit and dna.

Figure 3: The t-SNE visualizations depict the D2R2 representations, with point clouds illustrating the
embeddings of 1000 randomly selected samples, color-coded based on their respective class labels.
We observe that the embeddings exhibit multimodal patterns. For instance, in the dna dataset, the red
class is distributed in both the bottom right corner and the top left corner.

6 Conclusion

In this paper, we introduce D2R2, an innovative framework to address few-shot tabular challenges.
The core idea of D2R2 is to utilize the strong expressive abilities of diffusion model, along with a
random distance matching to construct representation learners. This method captures the semantic
knowledge of unlabeled data and generate effective embeddings for downstream classification tasks,
meanwhile adapting to the mixture feature types of the tabular data. Additionally, to accommodate
multimodalities of embeddings, we devise the instance-wise iterative prototype classifier using labeled
data. Furthermore, a pseudo-label validation scheme is designed for hyper-parameter selection. The
superior performance of D2R2 is presented on diverse datasets, demonstrating the effectiveness of
D2R2 over other baselines. We hope that our work will inspire new avenues for research in the field
of diffusion model representation learning on tabular datasets.
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A Algorithm

Algorithm 1 Training D2R2

Require: Unlabeled dataset Du = {xi}Nu
i=1, perturbation scale σ, batch size B, diffusion horizon

T , noise schedule {βt}Tt=1, {αt} = {1− βt}, {ᾱt} = {
∏t

t′=1 αt′}, number of numerical features
dnum, number of categorical features dcat, feature dimension d = dnum + dcat, learning rates γ1, γ2,
hyperparameters: α, p,A.

Initialize: noisy network ϵϕ, embedding network zθ
while not done do

Sample two batchs of unlabeled data x,x′ ∼ Du.
Sample a perturbation copy x̃ ∼ x+ σN (0, 1).
Sample timestep t ∼ 1, 2, ..., T and noise ϵ ∼ N (0, 1).
Compute the noisy sample xt =

√
ᾱtx+

√
1− ᾱtϵ.

Lrecon(ϕ, θ) = ||ϵϕ(xt, t, zθ(x̃))− ϵ||22.
Sample matrix Wn ∈ Rd×r1 with (Wn)ij ∼i.i.d. Unif(−A,A).
Sample matrix Wc ∈ Rd×r2 with (Wc)ij ∼i.i.d. Bernoulli(p).
Compute Wx = Concat(Wn[x]num,Wc[x]cat),
Compute Wx′ = Concat(Wn[x

′]num,Wc[x
′]cat),

Lrdm(θ) = ||cosine(zθ(x), zθ(x′))− cosine(Wx,Wx′)||2,
ϕ← ϕ− γ1

B · ∇ϕLrecon(ϕ, θ).
θ ← θ − γ2

B · [∇θLrecon(ϕ, θ) + α∇θLrdm(θ)].
end while

return Embedding function zθ.

Algorithm 2 Pseudo-label Validation

Require: Unlabeled validation set Dval = {xi}Nv
i=1, number of pseudo-classes K ′, number of

iteration I

for i = 1, 2, ...I do
Sample K ′ points {xi}K

′

i=1 ∈ Dval.
Form support set S = {(xi, i)}K

′

i=1.
Form query set Q = Dval \ {xi}K

′

i=1.
Create instance-wise iterative prototype classifier f(·|,S,Q) using the raw feature vectors.
Create pseudo-label in Q ← {(xi, f(xi|S))|xi ∈ Q}.

end for
return Pseudo support set S, pseudo query set Q

B Diffusion Models

Diffusion-based generative models [42, 17, 44, 45] are latent variable models that use a Markovian
noising and parameterized denoising process to model the data distribution. The forward noising
process of horizon T follows a pre-defined variance schedule β1, ..., βT that encodes data distribution
x0 ∼ p(x):

q(xt|xt−1) = N (
√
1− βtxt−1, βtI), (9)

and assume the prior q(xt) ∼ N (0, I). The reverse denoising process is modeled as pϕ(x0:T ) :=

N (xt; 0, I)
∏T

t=1 pϕ(xt−1|xt) with learnable parameters ϕ. Following DDPMs [17], the denoising
model can be implemented by neural networks directly predicting the noise ϵ:

LDDPM(ϕ) = Et,x0
||ϵϕ(xt, t)− ϵ||22, (10)

where xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I) and ᾱt =

∏t
t′=1(1 − β′

t). Diffusion models can be
straightforwardly extended to conditional generative models ϵϕ(xt, t, c) by inserting the conditional
information c [45, 1].
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C Random Linear Projection

We generate random matrices from different distributions to cater for the numerical features and
categorical features separately. In order to integrate the projections derived from numerical and
categorical spaces, it is necessary to select A (for Uniform(−A,A)) and p (for Bernoulli(p)) in a
consistent manner to equitably consider the information from heterogeneous type. In this paper,
we adjust the random weights according to the consistent activation variance, that is we set A =√

3p(1− p) and treat p as a hyperparameter, and re-weight the matrices according to the number of
columns, i.e., Wnum ←Wnum/

√
dnum,Wcat ←Wcat/

√
dcat. Such choice of parameters preserve the

variance of the row-sum of projection matrices . Additionally, we sample Wnum ∈ Rdnum×dnum and
Wcat ∈ Rdcat×dcat to get rid of the need to treat r1, r2 in Algorithm (1) as hyperparameters. We leave
the study of different random matrices to the future work.

D Experiment details

D.1 Dataset Information

Table 3: Datasets information. The table shows the instances number, the number of features
(numerical features, categorical features) and the number of classes of each dataset.

Dataset # Instances # Features (num., cate.) # Classes
optdigit 5620 64 (64,0) 10
karkunen 2000 64 (64,0) 10
diabetes 768 8 (8,0) 2
pixel 2000 240 (0,240) 2
dna 3186 180 (0,180) 3
cmc 1473 9 (2,7) 3
income 48842 14 (6,8) 2
nomao 34465 118 (90,28) 2
brest 286 24481(24481,0) 2

D.2 Data normalization

For income dataset, we apply standardized scaling to each numerical feature xi:

xi ←
xi − µ(xi)

σ(xi)
. (11)

And we employ min-max scaling numerical features of other datasets:

xi ←
xi −min(xi)

max(xi)−min(xi)
. (12)

D.3 Hyperparameter Details

We employ fully connected layers with identical layer counts and hidden dimensions to model the
diffusion noise and the embedding function. The training procedure for the diffusion model follows
the same approach as in DDPM [17]. The configuration for the diffusion model and neural networks
(NN) are as following:

In our experiments, we search three hyperparameters during the validation process.

All other experiment settings of D2R2 and other baseline are the same as STUNT [28] for fair
comparison.

D.4 Choosing Noise Levels

The timestep t = 1, ..., T indicates noise levels in diffusion models. In our experimental analysis, we
have noted a trend where performance sees an improvement with an increase in t during the initial
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Table 4: Model configurations.

Parameter Setting Description
T 10 Diffusion timesteps.
βt vp [45] Noise schedule.
Hidden dims 512 Dimension of dense layers.
Layers 3 Number of dense layers.
Optimizer Adam [23] -
Batch Size 256 -
Learning Rate 0.0003 -

Table 5: Hyperparameter search range

Parameter Range Description
α linespace(0.1, 0.1, 5) RDM weight.
dz {5, 10, 20, 40, 80} Embedding dimension
τ linespace(0.1, 0.1, 2) Temperature in equ. (6)

stages. However, this trend of performance enhancement plateaus after the first few timesteps, which
tends to stabilize with minimal fluctuations, as shown in Table 6. As t approaches T , noise levels
rise, thus effective denoising requires that all information about x0 be thoroughly encoded, which
contains the most information about the data class. We focus on larger timesteps thus extract the
low-frequency semantic information rather than details. Thus in our experiments, we selected the last
step T for all datasets.

Table 6: Performance Across Different Timesteps
Dataset Shot First Step Middle Step 80th percentile Step Last Step Average of All Steps

optdigits 1 72.39 79.21 80.93 81.13 80.66
optdigits 5 84.57 88.67 91.73 90.73 89.66

cmc 1 37.19 42.26 42.18 42.88 42.74
cmc 5 36.28 42.73 42.89 43.39 42.37

D.5 Wilcoxon Test

The Wilcoxon signed-ranks test is a statistical method used to compare the means of two related
groups when assumptions of normal distribution are not met. Particularly useful for paired data, it
involves ranking the absolute differences between paired observations and calculating a test statistic
for assessing significance. The procedure includes the following:

i. Calculate the differences: Di = Xi − Yi, where Xi and Yi are paired observations.

ii. Rank |Di| from the smallest to the largest, resolving ties by averaging ranks.

iii. Calculate signed ranks: Assign positive ranks to positive differences and negative ranks to
negative differences.

iv. Calculate the test statistic W , which is the sum of the positive or negative ranks, depending
on which sum is smaller.

v. Compare W to critical values: Determine significance by comparing W to critical values
from the Wilcoxon signed-ranks table or using statistical software.

In summary, the test helps identify if a significant difference exists between the groups’ means, even
when data doesn’t meet assumptions for parametric tests.

D.6 Model Complexity

The model complexity is manageable through our framework’s utilization of two neural networks:
the embedding network and the noise prediction network, both of which are demonstrated as 3-layer
MLPs in our paper. These settings (hidden dimensions, embedding dimensions and model structure)
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can be adjusted to meet different needs. In terms of computational efficiency, The main time-
consuming factor after the embedding model is the calculation of the instance-wise iterative prototype.
For an N -way K-shot problem with L iterations and a query set of size Q, the computation complexity
is O(NKLQ). In few-shot learning, where N,K,L are small, the computation complexity is linear
in the size of the query set.

E Baseline Details

we compare with supervised learning methods such as CatBoost [35], k-nearest neighbors (kNN)
[32], which denotes the nearest neighbor classifier according to the prototype of the input data, and
TabPFN [18], which is a transformer that that solves small tabular classification problems.

Mean Teacher (MT) [46] is a semi-supervised learning framework designed to enhance model
generalization by establishing a robust interaction between labeled and unlabeled samples. This
framework draws inspiration from the "teacher-student" training approach, where the "teacher" refers
to a model averaging multiple student model predictions, while the "student" is the model being
trained.

Interpolation Consistency Training (ICT) [48] uses MT framework. While ICT aims to improve the
model performance by augmenting additional data points through interpolation, with the expectation
that the model’s predicted values align consistently with the interpolated labels.

Meta Pseudo Labels [33] continually adjusts the teacher model based on feedback from the student
model’s performance on labeled datasets. Both teacher and student models are trained concurrently,
with the teacher model learning to generate improved pseudo-labels while the student model learns
from these pseudo-labels.

VIME[55] is a form of self-supervised learning that derives valuable representations by intentionally
corrupting random features and subsequently predicting the corrupted location. We utilize VIME
representations for conducting k-nearest neighbor classification.

SubTab [47] employs three effective pretext task losses, namely, reconstruction loss, contrastive
loss, and distance loss, as part of its self-supervised learning methodology. We utilize SubTab
representations for conducting k-nearest neighbor classification.

SCARF [4] takes a SimCLR-like [8] contrastive loss between the sample and its corrupted version.
We utilize SubTab representations for conducting k-nearest neighbor classification.

TabTransformer [20] is built upon self-attention based Transformers. The Transformer layers trans-
form the embeddings of categorical features into robust contextual embeddings to achieve high
prediction accuracy in tabular context. Experiments shows that TabTransformer performs better
than TabNet [2]. We utilize TabTransformer representations for conducting k-nearest neighbor
classification.

CACTUs [19] creates episodic tasks by dividing the features extracted from an earlier-trained
unsupervised feature embedding network using various objective functions, and then trains the
few-shot learner on these tasks.

UMTRA [22] employs a domain-specific data augmentation approach to create synthetic tasks for
the meta-learning stage. In doing so, the episodic tasks that are formed are constrained by the data
augmentation strategy.

SES [54] considers the augmented sample as part of the same pseudo-class and implements robust
strategies for unsupervised meta-learning, which include ample episodic sampling, challenging mixed
supports, and task-specific projection heads.

F Limitations

Our approach is tailored to the specific characteristics of tabular data, including data scarcity, multiple
modalities, mixed feature types, and sensitivity to changes in column order. Thus it is only effective
in scenarios involving tabular data, and may not work well for CV and NLP tasks.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: By clearly stating the main claims in the abstract and introduction, the reader
is able to understand the purpose and significance of the paper, as well as the specific
contributions and scope of the research.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: By openly discussing these limitations, we are aware of the potential short-
comings.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: Due to the complex architecture of diffusion models, it is typically hard to
analyze the theoretical behaviors, such as convergence rates, of our proposed model and
other diffusion-based models. Thus, we leave it for future work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully disclose all the information needed to reproduce the main
experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the training and test details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports statistical significance of the experiments by Wilcoxon
signed-ranks test.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provide sufficient information on the computer resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Discussing both potential positive and negative societal impacts of the research
is important for providing a comprehensive evaluation.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The assets used in the paper have been explicitly mentioned and received
proper acknowledgment from the owners.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We propose a new model in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: There is no potential risk incurred by study participants.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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