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ABSTRACT

Cryogenic electron tomography (Cryo-ET) is a powerful method for visualizing
cellular structures in their native state (Lucic et al., |2005), but its effectiveness is
limited by anisotropic resolution caused by the missing-wedge problem, compli-
cating the interpretation of tomograms. IsoNet (Liu et al. [2022), a deep learning
method, addresses these challenges by iteratively reconstructing missing-wedge
information and improving the signal-to-noise ratio of tomograms. However,
IsoNet relies on recursively updating its predictions, which can result in train-
ing instability and potential model collapse. In this study, we present CryoGEN,
an enhanced energy-based method that effectively addresses resolution anisotropy
without requiring recursive subtomogram generation. Our approach is about 70x
faster and offers a more stable and consistent methodology. Applying CryoGEN to
various datasets, including immature HIV particles and ribosomes, demonstrates
its capability to enhance structural interpretability. Moreover, CryoGEN holds
significant potential for improving the functional interpretation of cellular tomo-
grams in future high-resolution Cryo-ET studies, thereby providing substantial

value and advancing progress in biological research.

1 INTRODUCTION

(a) WBP-reconstructed (b) IsoNet-corrected (baseline)

(c¢) CryoGEN-corrected (ours) (d) Real structure

Figure 1: Reconstructed 3D structure comparison
among (a) WBP (b) IsoNet and (c) our method
using simulated CryoET data of (d) C13 Vippl
stacked rings (EMDB:18424).

Cryo-ET is a cutting-edge technique that en-
ables the visualization and analysis of the three-
dimensional (3D) structure of biomolecules,
cellular components, and even entire organ-
isms in a near-native, hydrated state with near-
atomic resolution. It offers unique insights into
the molecular organization within cells, facil-
itating the precise identification and in-depth
study of individual proteins and their interac-
tions at subnanometer resolution. Recogniz-
ing the potential of Cryo-ET, the developers of
AlphaFold3 (Abramson et al.| |2024)) anticipate
that the increased availability of high-quality
experimental data from this technique will sig-
nificantly improve the model’s performance in
unraveling the complexity of molecular regula-
tion within cells.

The rapid frozen, hydrated sample is imaged in
a transmission electron microscope (TEM) as
it is tilted through a series of angles, captur-
ing a set of two-dimensional (2D) projections
known as a “#ilt series”. These 2D images are

then computationally reconstructed into a 3D model or tomogram of the sample. The most com-
monly used tomographic reconstruction technique is weighted back-projection (WBP) (Raderma-
cher},2006). However, due to the mechanical limitations of the TEM stage, the tilt range is typically
restricted to around +60°. This limited tilt range results in a “missing wedge” in Fourier space,
where data is not properly collected. The missing wedge leads to anisotropic resolution in the final
WBP-reconstructed tomogram, as illustrated in Figure |I| (a), with the lowest resolution along the
z-axis (the direction of the electron beam). This manifests as distortions and elongation of features
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in the reconstructed 3D structure, making it challenging to accurately interpret the sample’s native
architecture. Figure|2|illustrates the core process of Cryo-ET.

Electron Beam

Indeed, the missing wedge effect is a funda-
mental limitation of Cryo-ET, as it is inherent

W 7 TEM Stage to the data collection process. Efforts to mit-
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Tilt Series low signal-to-noise ratio (SNR) due to the low
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Fourier ‘WBP L A . . .
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computational strategies alone are insufficient
to fully recover the lost information caused by

the missing wedge, often leading to poor reconstructions with significant artefacts and distortions.
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Figure 2: Cryo-ET imaging and reconstruction.

We introduce CryoGEN, a generative method that leverages energy models and deep learning neu-
ral networks. Our contributions can be summarized in three key aspects: a more precise problem
formulation compared to previous work, the development of a novel framework for isotropic recon-
struction in electron tomography, and improved generation quality by incorporating an energy-based
model into our framework. This integration offers flexibility and compatibility with techniques such
as generative adversarial networks (Goodfellow et al.l 2014)).

To be more specific, our approach consists of three main phases: first, we approach the problem
from a probabilistic modeling perspective; second, we design an energy model E' to capture the
distribution of missing-wedge subtomograms; and third, we train a prediction model gy, a neural
network parameterized by 6, to generate complete tomograms by combining the missing-wedge
input with the energy model. Figure [I] provides an illustrative example where we compare our
method with WBP and IsoNet (Liu et al., [2022), two state-of-the-art techniques.

The remainder of the paper is organized as follows: the Related Work section formulate Cryo-ET
reconstruction from Bayesian perspective and further explains how it could be linked to energy-
based models. The Motivation section outlines the rationale behind our method, accompanied by
several illustrative examples. The Methodology section presents the objective and the complete
algorithm. The Experiment section applies our method to real tomogram cases, and the final section
provides the conclusion.

2 RELATED WORK
2.1 CRYO-ET RECONSTRUCTION

Recently, deep learning-based methods have shown promise in recovering missing information and
improving the signal-to-noise ratio, leading to higher contrast. IsoNet (Liu et al.|[2022) has achieved
notable success in filling in missing data, and many recent approaches build on it with minor mod-
ifications. Additionally, Noise2Noise-based denoising techniques, such as CryoCARE (Buchholz
et al.,[2019), Topaz (Bepler et al.,[2020), and Warp (Tegunov & Cramer;,[2019), have significantly en-
hanced volume clarity. More recently, several approaches (Wiedemann & Heckel,2024; Zeng et al.,
2024])) have attempted to address denoising and missing wedge correction simultaneously, achieving
performance comparable to two-step methods. However, current missing wedge correction tech-
niques remain suboptimal, as they only partially restore the missing information, highlighting the
need for more powerful tools.
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2.2 BAYESIAN FRAMEWORK

In this context, we consider the original data  drawn from the domain X', with the corresponding
observation y from domain ). Specifically:

* ) represents the observation domain, with its data distribution denoted by p,, where y ~ p,
corresponds to a WBP-reconstructed tomogram with a missing wedge.

* X represents the source domain, with its data distribution denoted by p,, where x ~ p, corre-
sponds to an original sample whose missing wedge has been properly filled in.

We define a Cryo-ET transmission imaging operator Ty, resulting in Y = {7y (x) | x € X'}. The
imaging process is typically formulated as:

y:TM($)+6na €n NN(O70721[)7 (])

where ¢,, represents additive Gaussian noise with zero mean and variance U%I . Notably, Ty, is
generally a many-to-one operator. Our objective is to determine the x that generates the observed
under-sampled y, which constitutes a classical inverse problem.

Notice that Equation (1)) can be rewritten as:
y ~N(Tar(x),001) )
By applying Bayes’ theorem, we have p(z|y) « p(y|z) - p(z), which leads to:
log p(z|y) = log p(y|z) + log p(x) + constant. 3)

However, the distribution p(z) is inaccessible in the Cryo-ET reconstruction scenario, which is also
a limitation of current state-of-the-art methods. These issues will be addressed after we introduce
the energy model in the following section.

2.3 ENERGY-BASED MODELS

Energy-based models (EBMs) (Lecun et al., [2000) are a type of probabilistic framework that for-
mulates machine learning problems using the concept of energy. An energy function assigns lower
energy values to configurations that are more likely or preferable, and higher energy values to less
likely or undesirable configurations. The system’s objective is to identify the states that minimize
the energy and shape the energy landscape accordingly.

After defining the non-negative energy function F, the Boltzmann distribution (Boltzmann) [1974)
can be expressed in terms of E as p,(x) = £ exp(—E(x)), where Z is the normalization constant,
also referred to as the partition function. In this paper, we directly apply generative adversarial
networks (GANs) (Goodfellow et al., [2014) to model this probabilistic framework, although other
approaches, such as contrastive learning (Chen et al.,2020), could also be explored.

3  MOTIVATION

For each observation y € ), we can obtain the optimal z* through Equation

1

57 [T (@) = yll3 + log p(2) @)

x*(y) = arg maxlogp(z|y) = arg max | —
TEX rEX

However, since the sampling or optimization process is slow, a natural idea is to shift the objective
towards finding a parameterized function gy with parameters 6 that learns the mapping gy : y —
2*(y). This approach, which focuses on learning the mapping directly, is not immediately obvious
but is fundamentally similar to the methods like (Johnson et al.l[2016)) (i.e., using a neural network
to learn the high-probability targets rather than generating them iteratively on the fly). This concept
also forms the foundation of IsoNet (Liu et al.,[2022) and its variants (Buchholz et al.,|2019)), whose
limitations we will discuss shortly, along with an explanation of why incorporating a generative
model may be necessary. We consider a straightforward scenario with a single observation sample,
that is, ) = {yo}. We assume that both x; and x5 map exactly to yo under the operation Ty, so:

I Tar(21) = yoll3 =0, || Tar(z2) — yoll3 = 0.
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Thus, the likelihood is maximized when x lies on the line connecting x; and x5, as a result of the

. 1 . . o
linear property of 73;. Furthermore, we also assume 0% < 1 lz1 — 22||3 (i.e., this may indicate that
the features are relatively distinct in X) and define the prior distribution of x as the following:

p(l’) _ 1 exp [ — Hl’ B .’E1||2 +exp | — ||.’E B x2||2
2V 2mo? 202 202 ’

Alternatively, this can be expressed using mixture of Gaussian distributions:

1
p(x) = 3 N(z | 21,0%]) + N(z | 22,0°1)],
where N (z|z;,02I) denotes a single Gaussian distribution centered at x; with covariance matrix
o21. We seek to maximize the posterior p(gg(vo)|yo), but according to IsoNet’s steps (as described
in Appendix [A.T)), the objective ultimately reduces to solving:

_ 1
6 = argmin 5 (Ilge(yo) — =113 + llge(yo) — 2[13) -

This formulation seeks the parameter 6 that minimizes the mean squared error between the function’s
output go(yo) between both z; and z». However, this leads to g5(yo) = % (z1 + 22), and thus

|l = 2o?

p (l‘ = 9@(@0)) = \/2;7 €xXp ( 802) . )

This result may be unfavorable because

p(x =21 OI‘J?:J?Q):; [1+exp (—W)} ) (6)
2V 2mo? 20

It can be shown that Equation (3)) yields a lower probability compared to Equation (6) under our
assumptions, meaning that the result learned by g;(1/0) is worse than directly choosing either x; or
x9. This typically happens when the probability density function of the prior distribution is non-
convex, and thus simply averaging the minima lacks meaningful interpretation, highlighting a key
limitation we have observed with IsoNet. By introducing an energy function as E(x) = — log p(x),
the situation is depicted in Figure a), where it is demonstrated that E(3(zq + x2)) does not
correspond to a low-energy state.

The core issue stems from the one-to-many
mapping, making it impossible to define a func-
tion that maps a single observation y to all pos-
sible minima x’s. In other words, the prob-
lem arises because the cardinality of go())
cannot exceed that of ), leading to the un-
desired outcome. A straightforward way to
address this issue is by introducing a random
Yo noise through input augmentation. By adding
noise to the input, represented as y + €4, where
€g ~ N(0,021) and the support of €, lies in the
90 (Yo + €2) whole real space (which has uncountably infi-
nite cardinality).

Domain Y

Domain X By combining the energy model E along with

T 90(y + €,), we generate distributions that could
(b) Find a minimum match the desired target distribution, allowing
us to identify an appropriate minimum rather
than averaging across multiple minima. Addi-
tionally, this approach eliminates the need for real-time sampling and thus offers similar advantages
to IsoNet while effectively addresses the previously noted issue. As shown in Figure[3(b), the added
noise €, helps guide the model toward different low-energy states, as we minimize E, directing
the model to a local minimum instead of averaging multiple minima. More interestingly, we will
demonstrate that this can be effectively approached as a generative task, as shown in Equation (9 in
the next section.

Figure 3: Limitations of IsoNet formulation.
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4 METHODOLOGY

We define the desired source space as X = {z € X | Tys(z) € Y}, with the goal that go generates
samples within X'. However, we cannot directly train the energy model on the domain A" due to the
lack of real data; instead, we can only train it on observation space ). Consequently, if a generated
sample z lies within X, its energy F(Tas(x)) should be low. Afterward, we define the distribution
Dy using the trained energy model through the Boltzmann distribution, as described earlier.

Drawing inspiration from (Lecun et al., [2006), we do not explicitly define the energy function.
Instead, we learn the energy function in a manner similar to contrastive learning, assigning low
energy to samples and high energy to other regions. This method belongs to the class of implicit
probabilistic models (Diggle & Gratton, [1984). In this section, we first define the objective to
achieve this goal, followed by the presentation of the complete algorithm.

4.1 OBIJECTIVE

We integrate two components for training our model: the consistency loss and the posterior maxi-
mization. The consistency loss, akin to the original loss used in IsoNet, may benefit the early stages
of training but could negatively impact final model performance due to its drawbacks as mentioned
in Section |3} In contrast, the energy penalty is a more sophisticated choice, but it converges more
slowly.

4.1.1 CONSISTENCY LOSS

In general, we can assume that gy serves as an approximate inverse function of 7. Therefore, we
first introduce a consistency loss to ensure that the inverse condition is met.:

A
'R D IR ogsoTaro R(ge(y) +en) — 90(w)ll3 ] ,

RER
(7

where o denotes the composition of functions. However, if 7, is not a one-to-one mapping, which
is likely the case, the issue outlined in Section [3]may arise. To address this during training, we can
gradually reduce the weight A of Equation (7).

Consistency Loss = EywpyymN(O_’gil

Remark. Equation closely resembles the objective function of IsoNet (Liu et al., [2022), except
that there is no refinement step. Conversely, we decrease the penalty term A for enforcing recon-
struction, which fundamentally distinguishes our method from theirs.

4.1.2 MAXIMUM A POSTERIOR

Next, our goal is to generate results that maximize the log posterior log p(z|y) by incorporating
the previously discussed energy penalty term. The objective is to minimize the error on X using a
model trained on the ). Therefore, we must ensure that F(7s(z)) is low when T (z) € ) and high
otherwise. Moreover, we assume that if € X, then R(z) € X as well, where R denotes a rotation
operation selected from a predefined set of rotations R detailed in Appendix[A.2] Consequently, for
x € X, UIT\ > rer E(Tar o R(x)) should result in a low energy state as well. Therefore, we can

define the posterior as:
1

. 1
Posterior = ]Eywpy,eNN(o,ogI) —@ Z E(TmoRoge(y+eg)) + 357 | Tar 0 go(y + €4) — yH% ,
ReR n
®)

where o2 is a hyperparameter introduced in Equation .

4.2 ENERGY MODEL

The energy model E can be derived through several approaches. In this work, we opt to use GANs
(Goodfellow et al., 2014). Specifically, we define our energy model E, as the discriminator pro-
posed in (Goodfellow et al., [2014), which, like gy, is typically represented by parameterized neural
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networks. This approach allows us to train both the energy model £ and gy simultaneously. Con-
sequently, the energy model is learned through adversarial training, as described in Equation (9):
max min By p, evp.e,nA(0,027) |R\ Z E(TvoRogo(y+eg) —E(y+e) ©))
RER

Furthermore, we consider a similar formulation as (Arjovsky & Bottoul 2017)). Let y follow the
distribution p,, with support on Y, and let € be an absolutely continuous distribution with density pe.
Then, the distribution p,, . is also absolutely continuous with density:

Py+e(2) = Eyp, [Pe(z —y)] = /y pe(z —y)dpy (10)

\z yH

Especially, If € ~ N(0,021), then Py+e(2) o [ e dpy, and Equation (@) reaches Nash

equilibrium when py, (2 ) Dy+e(2), as follows

pga |R| / / z TaroRogg(y+eg) 'peg (eg) py(y) deg dy (11)

yeyY cR4 RER
This result is analogous to the conclusion presented in the original GAN paper by (Goodfellow et al.}
2014), but in this case, the data distribution is obtained by convolving the original data distribution
with a Gaussian.

4.3 ALGORITHM

The complete CryoGEN algorithm consists of two stages: training and inference. First, we train a
generative model gy to minimize the pre-trained energy model. Then, we use this generative model
to fill in the missing wedges of tomograms.

Building on the idea from Section .1} we combine both the consistency loss and posterior terms.
The complete algorithm for training CryoGEN is presented in Algorithm I}

Algorithm 1 Train prediction model.

Require: Tomogram dataset ), noise levels o2, 37% > 0, estimated noise variance o2, penalty

term A > 0, energy model s : RY — R*, prediction model gy : R — R?, learning rate 7).
repeat
Randomly generate noise €, e, €, ~ N'(0,0°1), N'(0,021), N'(0,041).
Set f(¢,0) = — Ey (Twr 0 Ro go(y + €9)) +1/207 - [ Tar © go(y + €g) — yll3
Update ¢ < ¢ — 1+ 5-[Eg(y +¢) — f(¢,0)]
Update 0 < 0 — - £ [f($,0) = X~ |[R™" 0 gg o Tas © R (9o (y) + €n) — [90r ()] 113]
Reduce the penalty term A and assign the value of 6 to ¢’
until convergence
return gy

At the inference stage, we begin by cropping the complete tomogram into multiple overlapping
subtomograms, which are then processed through gy to yield refined subtomograms. These refined
subtomograms are subsequently reassembled into a complete tomogram, with the overlapping re-
gions averaged using a weighted approach to mitigate edge effects.

5 EXPERIMENT

In this section, we compare our method to the state-of-the-art missing wedge correction technique,
IsoNet, across various experiments. First, we validate our hypothesis using simple shapes, as de-
tailed in Section [5.1] Next, we evaluate our algorithm on a simulated dataset and compare it with
other approaches in Section Finally, we apply our method to real-world examples to assess its
robustness, as discussed in Section[5.3] Implementation and data processing details are provided in
the Appendix, where we present results from the latest simultaneous missing wedge correction and
denoising method, DeepDeWedge (Wiedemann & Heckell 2024) as well.

6
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5.1 SIMPLE SHAPES

First, we apply the algorithm to simple shapes to demon-
strate its effectiveness. The data is synthetically gener-
ated, with the ground truth available. Specifically, we cre-
ate a 3D sphere and a triangular prism with an artificially
introduced missing wedge. To further clarify, we trans-
form the X-Z slice into the Fourier domain to highlight
the presence of the missing wedge as shown in Figure ]

(a) Sphere. (b) Prism.

Our goal is to fill in these missing wedge regions, and we

will demonstrate that our algorithm significantly outper- Figure 4: Central Fourier slice of the

original missing-wedged shapes.

forms the baseline in this task. It can be observed that the
generated synthetic images exhibit lower resolution in the directions corresponding to the missing
wedge (the X-Y slice closely matches the ground truth as designed) as illustrated in Figure[5]
Central XY Slice Central X-Z Slice Central Y-Z Slice WC ﬁrst apply bOth ISONCt and CI'YOGEN to the
: —~ two shapes, with the results shown in Figure [§]
Both methods aim to restore the corrupted re-
gions. While IsoNet successfully reconstructs
the sphere, some artefacts remain, and it fails to
restore the prism, producing a distorted oval in
(a) Original missing-wedged sphere. the X-Z and Y-Z slices. In contrast, CryoGEN
Central X Slice Central XZ Slice Central ¥Z Slice achieves an almost perfect restoration of both
shapes, with the slices closely resembling the
original clean images. Our experiments reveal
that CryoGEN can effectively recover more of
the missing wedge regions and capture high-
frequency signals.
(b) Original missing-wedged prism. Next, to quantitatively assess the performance,
Figure 5: Original missing-wedged shapes. we compute the Peak Signal—.to—'N O.ise Ratio
(PSNR) and the Structural Similarity Index
(SSIM) between the ground truth and the generated results. The definitions of PSNR and SSIM
are provided in Appendix[A:3.1] We present the corrupted datasets, comparing the results corrected
by IsoNet and DeepDeWedge to those corrected by CryoGEN. As demonstrated in Table [T} our
method consistently outperforms the baseline.
Table 1: Quantitative evaluation of image quality for tomography reconstructions using different

methods, comparing PSNR and SSIM metrics (higher values indicating better performance for both
metrics) on sphere, prism and Vippl assembly datasets.

Data State| __SPhere Prism Vippl assembly

|[PSNR SSIM PSNR SSIM PSNR SSIM

Corrupted | 21.12 0.8113 14.82 0.6931 26.68 0.8000
Iso-corrected | 22.98 0.8770 19.11 0.8857 27.12 0.8191
Dewedge-corrected | 23.17 0.8824 21.10 0.9278 28.75 0.8758
CryoGEN-corrected | 29.19 0.9706 32.69 0.9949 30.65 0.9199

5.2  SIMULATED DATA

In this section, we applied our algorithm to more complex protein assemblies. Following the ap-
proach of IsoNet, we first evaluated our performance on the publicly available atomic model apo-
ferritin (PDB:6Z6U) [2020). Additionally, we selected the recently published electron
microscopy dataset of C13 Vippl stacked rings (EMDB:18424) (Junglas et all,[2024). The results
show that CryoGEN delivers more consistent outcomes in both the spatial and Fourier domains.
Additionally, CryoGEN demands significantly less training time compared to IsoNet.

Apoferritin. We performed reconstructions using the atomic model of apoferritin (PDB:6Z6U),
a widely-used benchmark in high-resolution CryoGEN. The simulated maps were then randomly
rotated in ten different directions, and a missing wedge was applied in Fourier space, resulting in
simulated subtomograms with missing wedge artefacts. In this experiment, CryoGEN delivered
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Central X-Y Slice Central X-Z Slice Central Y-Z Slice Central X-Y Slice Central X-Z Slice Central Y-Z Slice
(a) IsoNet-corrected sphere. (b) IsoNet-corrected prism.
Central X-Y Slice Central X-Z Slice Central Y-Z Slice Central X-Y Slice Central X-Z Slice Central Y-Z Slice
(c) CryoGEN-corrected sphere. (d) CryoGEN-corrected prism.

Figure 6: CryoGEN and IsoNet corrected shapes.

considerably better results than IsoNet, while also reducing the training time significantly. This
improvement is clearly visible when visualizing the low-density volume using ChimeraX (Goddard
2018), as shown in Figure 7}

aw o

(@) WBP reconstructed missing-  (b) Structure generated by IsoNet,  (c) Structure generated by Cryo-
wedged apoferritin, displaying  displaying a corrupted region with ~ GEN, showing a much smoother
both corrupted and missing re-  visible inconsistencies in the low-  and coherent low-density volume
gions in the low-density volume. density volume. representation.

Figure 7: Comparison of low-density volumes generated by WBP (a), IsoNet (b) and CryoGEN (c).

C13 Vippl1 Stacked Rings. We evaluated our method on the recently published C13 Vipp1 stacked
rings dataset (EMDB:18424), which represents complex assemblies. This dataset was sourced from
the Electron Microscopy Data Bank (wwPDB Consortium).

Central Fourier Slice Central X-Y Slice  Central X-Z Slice  Central Y-Z Slice

(a) IsoNet-corrected Vippl assembly.

Central Fourier Slice Central X-Y Slice  Central X-Z Slice  Central Y-Z Slice

(b) CryoGEN-corrected Vippl assembly.
Figure 8: CryoGEN and IsoNet corrected Vippl assembly.

8
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In line with IsoNet, we randomly rotate the tomography to create ten different samples before intro-
ducing missing wedge corruption. The results, as shown in Table [T} confirm that CryoGEN outper-
forms IsoNet, achieving superior PSNR and SSIM. We present the original results in Figure[T] along
with both spatial and Fourier domain comparisons in Figure |8] In the Fourier domain, CryoGEN
captures essential details more accurately and produces more consistent and symmetrical results.
Additionally, the volume generated by IsoNet still contains corrupted regions, whereas CryoGEN
produces a much smoother result in the spatial domain.

5.3 REAL-WORLD EXAMPLES

In this section, we apply the method to real-world examples to evaluate its effectiveness. We use
a well-known Cryo-ET particle selection benchmark, specifically the dataset of purified ribosomes
(Zhang et all, 2016)), as well as the virus-like particle dataset of immature HIV-1 in both single-
particle and tomography reconstruction 2016). CryoGEN minimizes the ringing effect
and achieves significantly higher contrast, while offering better compensation for the missing wedge
compared to IsoNet’s irregular distribution. Moreover, CryoGEN completes the process in just two
hours, compared to IsoNet’s 20-hour runtime on an NVIDIA V100.

(a) IsoNet-corrected purified ribosomes. (¢) CryoGEN-corrected purified ribosomes.

(b) Central Fourier slice of the IsoNet-corrected (d) Central Fourier slice of the CryoGEN-
purified ribosomes. corrected purified ribosomes.

Figure 9: Comparison of IsoNet-corrected and CryoGEN-corrected purified ribosomes, including
their corresponding central fourier slices. The CryoGEN-corrected images exhibit higher contrast
and reduced high-frequency features. While both methods effectively fill in the missing wedge, the
IsoNet correction shows an irregular distribution of high-frequency components in the central re-
gion, whereas CryoGEN achieves a more consistent distribution.

Purified Ribosomes. The ribosomes dataset is commonly used as a Cryo-ET benchmark. We col-
lected all seven tilt series from the EMPIAR-10045 dataset and applied the same preprocessing
steps as IsoNet, detailed in Appendix [A.7.5] Figure 9] shows the correction results for both IsoNet
and CryoGEN. Ribosomes in the CryoGEN-corrected volume appear clearer and exhibit higher con-
trast, which significantly aids in particle selection. Additionally, there is less noise and fewer sharp
artifacts in the background. Notably, the IsoNet-corrected volume displays a frequency spectrum
with an irregular concentration of high-frequency components in the central region, introducing no-
ticeable noise and artifacts. In contrast, the CryoGEN-corrected volume shows a much smoother
and more consistent frequency distribution, with better control over central frequencies. The more
symmetrical pattern suggests reduced distortion and better alignment with the expected smooth be-
havior, indicating improved data integrity.
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(a) IsoNet-corrected immature HIV capsid. (¢) CryoGEN-corrected immature HIV capsid.

(b) Central Fourier slice of the IsoNet-corrected (d) Central Fourier slice of the CryoGEN-
immature HIV capsid. corrected immature HIV capsid.

Figure 10: Comparison of IsoNet-corrected and CryoGEN-corrected immature HIV capsids, along
with their corresponding central fourier slices. The IsoNet-corrected images display noticeable
ringing effects and bright white artefacts, while the CryoGEN images show minimal noise and a
smoother background. Both methods fill in the missing wedge region, but the IsoNet correction
results in more pronounced line artefacts.

HIV Capsid. The results of HIV capsid dataset are presented in Figure[I0] Following IsoNet’s pre-
processing procedure, we collected three tilt series from the EMPIAR-10164 dataset and processed
the volume as detailed in Appendix[A.7.6] The CryoGEN-corrected HIV capsid is noticeably clearer
than the IsoNet-corrected version, with minimal noise and a much smoother background. In con-
trast, the IsoNet-corrected volume exhibits a pronounced ringing effect around the gold beads, with
bright rings surrounding them and unwanted white dust scattered throughout the image. Our algo-
rithm effectively eliminates all these artefacts. Additionally, CryoGEN compensates for the missing
wedge region more effectively than IsoNet. As shown in the top windows of Figure|10|(a) and Fig-
ure [10] (¢), the virus particle in the CryoGEN-corrected volume is more intact, with fewer defects
compared to the IsoNet-corrected version. In the Fourier domain, while both methods attempt to fill
the missing wedge region, IsoNet’s correction introduces more noticeable line artefacts.

6 CONCLUSION

In this work, we introduce CryoGEN, a method for addressing the missing wedge problem in Cryo-
ET using energy-based models. Our approach not only converges faster and more reliably than
state-of-the-art techniques but also delivers significantly improved results. Moreover, even though
developed for Cryo-ET, CryoGEN presents a more general framework for solving inverse problems
by incorporating an energy model as a core component. To the best of our knowledge, this is the
first energy-based framework proposed for tackling inverse problems in Cryo-ET reconstruction
from a probabilistic perspective. Finally, our framework can integrate other advanced energy-based
methods, such as Wasserstein GANs (Arjovsky et al,[2017) and energy-based diffusion models
[2023), significantly broadening its potential applications. In the future, we plan to extend our
method to efficiently handle larger and more complex datasets.
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A APPENDIX

A.1 ALGORITHM FLOWCHART
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Figure 11: Algorithm flowchart of (a) IsoNet and (b) CryoGEN

IsoNet formulates the task of filling y’s missing wedge information to reconstruct x as an inpainting
problem, solving it in a self-supervised manner as illustrated in Figure[TT} It trains a U-Net, denoted
as gg, where 6 represents trainable parameters, following these steps:

1. y is processed by gy to obtain a missing-wedge-filled & = go(y).

2. 7 is rotated by a rotation operator R, randomly selected from a pre-defined rotation set R,
and then subjected to a missing wedge by a simulated 7, operation: § = Tps o R(Z).

3. gis fed to gy, yielding & = go(7).
4. The inpainted part is extracted by (1 — Tjs)(Z) and added with Tps o R(y), then rotated
back to get § = R™((1 — Tar)(2) + Tar o R(y))

5. ¢ and y form paired data to train gy, with y serving as ground truth. During training, no
gradient is generated from gy (y).

6. These steps are iterated until convergence.

By constructing (4, y) pairs, IsoNet effectively makes a one-to-one mapping assumption of T;.
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A.2 ROTATION LIST DEFINED IN THE ISONET

The cropped subtomograms are cube-shaped with six faces, resulting in 24 possible rotations for
reorientation. However, we exclude the four rotations that maintain the same missing wedge in the
X-Z direction as the original, unrotated subtomogram. Further details and a schematic diagram are

provided in the supplementary information of IsoNet (Liu et al., [2022).

A.3 ADDITIONAL RESULTS
A.3.1 ADDITIONAL RESULTS FOR SECTION [5.1]

Formally, ¥ represents the predicted volume, and v* denotes the ground truth. PSNR and SSIM are
defined as follows:

(2up 0+ + C1)(2050+ + C2)
(1 + pie + C1)(0F + o5 + Co)

I X
PSNR = 10 loglo m, SSIM('U, ’U*) =

In the PSNR formula, I, represents the maximum possible pixel value, which we define as the

maximum value of the ground truth image.

In the SSIM formula:

* ug and ., are the mean intensities of images ¢ and v*.
* 02 and o2, are the variances of images © and v*.
* 04, 1S the covariance between images v and v*.

¢ (4 and C5 are small constants used to stabilize the division when the denominator is close to zero.

The central Fourier slices of the corrected sphere and prism are displayed in Figure while the

original clean sphere and prism are shown in Figure[I3]

(a) Central fourier slice of the (b) Central fourier slice of the
IsoNet-corrected sphere. IsoNet-corrected prism.

(c) Central fourier slice of the (d) Central fourier slice of the
CryoGEN-corrected sphere. CryoGEN-corrected prism.

Figure 12: Central fourier slices of sphere and prism. The IsoNet’s corrected has less information
both at low and high-frequency signals with missing regions, while CryoGEN fills in most of the
missing wedge. It is consistent with the spatial domain results.
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Central Fourier Slice Central X-Y Slice  Central X-Z Slice  Central Y-Z Slice

(a) Orignal clean prism.

Central Fourier Slice Central XY Slice  Central X-Z Slice  Central Y-Z Slice

(b) Original clean prism.

Figure 13: Original clean shapes.

Compared to the corrected tomograms, the CryoGEN-corrected versions more closely resemble the
original clean shapes.

A.3.2 ADDITIONAL RESULTS FOR SECTION[3.2]

Central Fourier Slice Central X-Y Slice  Central X-Z Slice  Central Y-Z Slice
“‘ (6’ } “'3
) v\ ‘Qb:y

(a) Original missing wedged apoferritin.

Central Fourier Slice Central XY Slice  Central X-Z Slice  Central Y-Z Slice
\ i
{a.n (kv\

(b) IsoNet-corrected apoferritin.

Central Fourier Slice Central X Slice  Central X-Z Slice  Central Y-Z Slice

B o ¢

(c) CryoGEN-corrected apoferritin.

Figure 14: Missing wedged, CryoGEN and Iso-Net corrected apoferritin.
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We present the central X-Y, X-Z, Y-Z slices, as well as the central Fourier slices for the corrupted,
IsoNet-corrected, and CryoGEN-corrected volumes in Figure[T4] In the IsoNet-corrected X-Y slice,
there are faint white artifacts in the background, consistent with Figure [7} and line artifacts in the
X-Z slice, which are absent in the CryoGEN-corrected results. Additionally, the central Fourier slice
of the IsoNet-corrected volume displays a distinct borderline, which is not present in the CryoGEN-
corrected slice.

Central Fourier Slice Central XY Slice  Central X-Z Slice  Central Y-Z Slice

Figure 15: Original clean Vippl assembly.

The original clean Vippl assembly are shown in Figure T3]

A.3.3 RECONSTRUCTION FROM NOISY SAMPLES

We also demonstrated the robustness of our algorithm under higher noise levels, such as SNR = 0.2.
The results are presented in Figure [T6 Even in this challenging scenario, CryoGEN outperforms
IsoNet, demonstrating its strong denoising capabilities.

Central Fourier Slice Central X-Y Slice Central X-Z Slice Central Y-Z Slice

(a) Original noisy Vippl assembly.

Central Fourier Slice Central X-Y Slice Central X-Z Slice Central Y-Z Slice

(b) IsoNet-corrected Vippl assembly.

Central Fourier Slice Central X-Y Slice Central X-Z Slice Central Y-Z Slice

(c) CryoGEN-corrected Vippl assembly.
Figure 16: CryoGEN and IsoNet corrected noisy Vippl assembly SNR = 0.2.
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A.4 ADDTIONAL RESULTS BY DEEPDEWEDGE

First, we present the DeepDeWedge-corrected simple shapes in Figure[T7] where defects similar to
those in the IsoNet-corrected versions are apparent. Both methods exhibit spatial domain artifacts,
resulting in distorted volumes, and neither DeepDeWedge nor IsoNet effectively fills in the missing
information in Fourier space.

Central Fourier Slice Central X-Y Slice  Central X-Z Slice  Central Y-Z Slice

oo

(a) DeepDeWedge-corrected sphere.
Central Fourier Slice Central X-Y Slice  Central X-Z Slice  Central Y-Z Slice

(b) DeepDeWedge-corrected prism.

Figure 17: DeepDeWedge-corrected shapes.

Next, the DeepDeWedge-corrected simulated data is displayed in Figure [T8] Similar to IsoNet,
DeepDeWedge encounters the same issues, generating faint shadows and distinct line artifacts in the
background, as well as a noticeable borderline in the central Fourier slice.

Finally, we test the DeepDeWedge on the real-world examples as shown in Figure [I9 The
DeepDeWedge-corrected ribosomes exhibit the same irregular distribution of high-frequency com-
ponents in the central region and yield unsatisfactory results for the HIV capsid, with noticeable
artifacts. A potential reason for the poor performance on the HIV capsid may be the loss of infor-
mation caused by even-odd splits.

Central Fourier Slice Central XY Slice  Central X-Z Slice  Central Y-Z Slice

Fanl

&

(a) DeepDeWedge-corrected apoferritin.
Central Fourier Slice Central X Slice  Central X-Z Slice  Central Y-Z Slice

(b) DeepDeWedge-corrected Vippl assembly.

Figure 18: DeepDeWedge-corrected simulated data.
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(a) DeepDeWedge-corrected purified ribosomes. (c) DeepDeWedge-corrected HIV capsid.

(b) Central fourier slice of the DeepDeWedge- (d) Central fourier slice of the DeepDeWedge-
corrected purified ribosomes. corrected HIV capsid.

Figure 19: DeepDeWedge-corrected ribosomes and HIV capsid, along with their corresponding
central Fourier slices.

A.5 VISUALIZATION OF A SINGLE RIBOSOME

In Figure 0] we present the visual-
o . ization of a single ribosome. While
! " the IsoNet results may appear to show
x more details in 2D grayscale im-
Average ages, as illustrated in Figure [ this

G could be due to noise-to-signal ra-

IsoNet

tio issues or the enhanced denois-
ing capabilities of CryoGEN (see Ap-
pendix [A:33). Moreover, the com-

lsoNet CryoGEN parison highlights that IsoNet results
o & : \ still suffer from residual effects of the
PR missing wedge problem, which Cryo-
GEN effectively addresses.

A.6 IMPLEMENTATION DETAILS

Average
Following the struct2map

GAN (Zhang et al} [2024), the

Figure 20 Slngle Ribosome Visualizal‘ion.’ We Compared architecture Consists of a generator
CryoGen with IsoNet and the averaged results of all ribo-  and  discriminator with  specific
somes across two examples at different rotation angles. design choices. The generator is a

modified U-Net architecture, known as U-Net++, which enhances the standard U-Net with dense
skip connections for improved performance (Zhou et all 2018). The discriminator is composed of
four 3D convolutional layers, each using a 3 x 3 x 3 kernel. Following the final convolutional layer,
an adaptive average pooling layer reduces the dimensions of the feature map to 1 x 1 x 1. This
output is then flattened and fed into a series of three fully connected layers, with ReLU activations
between each layer. The final layer produces a single output, which serves as the result of binary
classification.

The CryoGEN are trained with the Adam optimizer (Kingma & Bal, [2015) with batch size one for
simulated shapes and protein subtomograms and with batch size 4 for real-world examples. The
learning rate is set to 10~* with a linear warm-up phase in the initial one-tenth steps, which is
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followed by a linear decay schedule thereafter. Different from IsoNet, which progressively increases
the noise scale, we apply random noise levels across all training steps. Specifically, a random number
is sampled from a uniform distribution within the range (0,1] and multiplied by the set noise scale
for each step. Additionally, the penalty term A is kept constant during the first epoch and then decays
linearly throughout the subsequent epochs.

A.7 EXPERIMENT DETAILS

A.7.1 SPHERE

A hollow sphere with an outer diameter of 70 pixels and a thickness of 4 pixels is positioned at
the center of a 140x140x 140 volume. Corruption is applied by setting values to zero within the
missing wedge angles in Fourier space. For training, the volume is split into ten 96x96x96 pixel
subtomograms with randomly chosen origins. These subtomograms are then randomly cropped to
64 x 64 x 64 pixels before being input into the models.

A.7.2 PRISM

A prism with a thickness of 20 pixels is placed inside a 96x96x96 volume. It is randomly rotated
in ten directions. Corrupted prisms are generated by setting zero values within the missing wedge
angles in Fourier space. The entire volume is directly fed into the model during training.

A.7.3 SIMULATED APOFERRITIN

Ten randomly rotated apoferritin datasets are downloaded from a link provided by IsoNet and gen-
erated using ChimeraX’s molmap function. During training, the datasets are directly fed into the
model without further modifications.

A.7.4 SIMULATED STACKED RINGS

C13 Vippl stacked ring data are downloaded from the EMDB database and binned twice, resulting
in 200x200x200 pixels. The data is randomly rotated in ten different directions. Corrupted stacked
rings are generated by setting zero values within the missing wedge angles in Fourier space. For
training, the data is split into ten 96x96x96 pixel subtomograms with random zero origins, then
randomly cropped to 64 x 64 x 64 pixels before being fed into the models.

A.7.5 RIBOSOMES

Ribosome data is downloaded from the EMPIAR database and binned six times, yielding a pixel size
of 13.02 A. IsoNet’s deconvolution is applied, following the same procedure as described by (Liu
et al.} 2022). To ensure that subtomograms contain sufficient data, IsoNet’s mask generation tool
is used to extract subtomograms with at least 40% non-zero pixels based on the density mask. For
training, a tomogram is split into seventy 80x80x 80 pixel subtomograms, resulting in a total of 490
subtomograms. These are randomly cropped to 64 x 64 x 64 pixels before being fed into the models.

A.7.6 HIV CAPSID

Raw tilt series for the HIV capsid is downloaded from the EMPIAR database. The movie stacks are
drift-corrected and reconstructed using the WBP algorithm, aided by the latest tomogram processing
tools such as Aretomo2. The processed tomograms, TS-01, TS-43, and TS-45, are then subjected
to IsoNet’s deconvolution, following the procedure outlined by (Liu et al. 2022)). IsoNet’s mask
generation tool is applied to ensure that each subtomogram contains at least 50% non-zero pixels.
During training, each tomogram is split into one hundred 96 x 96 x 96 pixel subtomograms, resulting
in 300 subtomograms. These are randomly cropped to 64 x 64 x 64 pixels before being fed into the
models.
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