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HOLMES &WATSON: A Robust and Lightweight
HTTPS Website Fingerprinting through HTTP Version Parallelism

Anonymous Author(s)

Abstract
Website Fingerprinting (WF) is a traffic analysis technique that
aims to identify websites visited by users through the analysis of en-
crypted traffic patterns. Existing approaches often exhibit limited ro-
bustness against network variability and concept drift, resulting in
significant performance degradation under real-world HTTPS con-
ditions. Moreover, these methods typically require large-scale train-
ing datasets and substantial computational resources, which further
increases the complexity of deployment. In this paper, we propose
HOLMES, a novel approach that exploits HTTP version parallelism
to extract enhanced application-layer features. These features, in-
cluding the number of web resources transmitting in various HTTP
versions, expose up to 4.28 bits of information—surpassing 98%
of previously reported features and demonstrate increased stabil-
ity across varying network conditions. Complementary to this,
we introduce WATSON, a lightweight classification method based
on lazy learning, which substantially reduces the dependency on
large training datasets. To further enhance the identification ac-
curacy, we incorporate two fingerprint-specific distance metrics
that ensure high intra-class similarity. Our experimental evaluation
demonstrates that HOLMES &WATSON significantly enhance both
robustness and efficiency, achieving an average accuracy of 87.7%
with only a single sample per website, marking an improvement of
over 15% compared to state-of-the-art methods.

CCS Concepts
• Networks → Network privacy and anonymity; Applica-
tion layer protocols; • Security and privacy→ Pseudonymity,
anonymity and untraceability.

Keywords
Website fingerprinting, HTTP version parallelism, Protocol analysis,
Lazy learning
ACM Reference Format:

1 INTRODUCTION
The increasing adoption of HTTPS has significantly improved user
privacy by encrypting communication content. However, adver-
saries can still deduce web activities by exploiting side-channel
information, such as DNS queries [32], the TLS Server Name In-
dication (SNI) field [89], and corresponding server IP addresses
[53]. To mitigate these privacy vulnerabilities, privacy-enhancing
technologies such as encrypted DNS (DoH [34], DoT [23], DoQ
[36]) and TLS Encrypted Client Hello (ECH [17, 62]) have been in-
troduced. Additionally, the increasing prevalence of IP co-location,
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Figure 1: Five main kinds of methods to identify websites
from encrypted traffic: (a) Using IP addresses with entropy-
basedmatching. (b) Using traffic trace sequence features with
deep learning. (c) Using traffic statistical features with ma-
chine learning. (d) Using TLS SNI parameters. (e) Using web
resource features with lazy learning.

largely facilitated by content delivery networks (CDNs), has further
diminished the effectiveness of IP-based identification methods[6].

While these countermeasures reduce the efficacy of traditional
side-channel attacks, they do not fully eliminate the risk posed
by traffic analysis. Notably, website fingerprinting (WF) attacks
continue to represent a significant threat [5, 21, 29, 31, 65, 70, 87].
WF enables adversaries to analyze patterns in encrypted traffic and
infer the websites a user visits [67]. Although the majority of re-
search on WF has been concentrated on anonymity networks, such
as Tor [24], there is growing interest in applying these techniques
to HTTPS due to their potential impact on encrypted web traffic.

However, existingWF attacks struggle in realistic HTTPS scenar-
ios due to their reliance on unrealistic assumptions [15, 39, 81] that
conflict with the actual nature of HTTPS traffic. These assumptions
often include stable network conditions, the absence of concept
drift, and the availability of large labeled datasets, all of which
are misaligned with the dynamic and diverse nature of network
traffic. While several work have demonstrated high accuracy in
controlled environments [7, 29, 52, 58, 70, 71], their performance
degrades substantially in realistic HTTPS scenarios. For instance,
Juarez et al. [15] showed that concept drift leads to a significant
reduction in WF accuracy, and our experiments corroborate this
finding, revealing a 20% drop in accuracy under varying network
conditions (§4.4). Furthermore, the training process for a typical
WF classifier requires over 10 days of data collection [71], which
presents significant limitations for its practical deployment.

We argue that the limitations mentioned above largely stem from
inadequate feature extraction layer. ExistingWF attacks mainly rely
on transport-layer features, such as packet direction sequences and
inter-packet delays. As shown in Figure 1, these features, situated at

1
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the transport layer of the TCP/IP model, are distant from the actual
characteristics of website resources, making them more vulnerable
to network condition changes and less robust [85]. Moreover, these
transport-layer features are often sparse and fragmented, requiring
complex machine learning or deep learning models, as well as large
training datasets, which limits their practicality [13].

To address these challenges, we propose a novel WF method that
leverages features at the application layer. Despite content encryp-
tion and multiplexing in HTTPS, signals such as resource count and
connection numbers can be inferred from the browser request side
[3, 48]. More importantly, we identified a growing phenomenon in
the modern internet ecosystem: HTTP version parallelism. Due
to multiple HTTP versions running concurrently without manda-
tory upgrades, website owners independently choose which version
to adopt. This results in distinct patterns across HTTP versions
for different websites, as illustrated in Figure 2(a). By expanding
the feature space with HTTP version parallelism, we significantly
enhance the distinguishing power of application-layer features;
for instance, the quantity of HTTP/2 resources alone reveals 4.28
bits of information (see Figure 2(b)), exceeding 98% of existing fea-
tures. Moreover, these features demonstrate greater stability across
varying network conditions, as shown in Figure 2(c).

Based on the identified features, we propose a rich and robust
website fingerprint representation—H123 fingerprint—utilizing
characteristics such as web resource quantity, HTTP versions, and
loading sequences. To differentiate websites using this representa-
tion, we employ a hybrid distance metric that combinesWasserstein
distance and a modified Longest Common Subsequence (LCS) met-
ric, assigning different weights to enhance their contributions to
fingerprint similarity assessment. Considering practical require-
ments for a lightweight solution, we adopt a Lazy Learning para-
digm (e.g., k-Nearest Neighbor [18]) that computes predictions on
demand, eliminating the need for prior model training [2]. This ap-
proach allows for rapid deployment and flexible adjustments to the
monitored set of websites. Moreover, by relying on direct distance
measurements rather than model fitting, our method requires only
a minimal number of reference samples for effective WF attack.
Notably, our approach attains an average accuracy of 87.7% with
only one sample per website, reflecting an enhancement of more
than 15% compared to current state-of-the-art methods.

Our contributions are as follows:
• We are the first to identify and analyze the privacy risks posed

by application-layer features under the context of modern
HTTP version parallelism. We propose the HTTP resOurce
extrapoLating Method under Encrypted Scheme (HOLMES),
which extracts these features without decryption, enabling the
generation of robust and information-dense H123 fingerprints.

• We present the WAsserstein and Textual Similarity-based
recOgNizer (WATSON), a lightweight website fingerprinting
attack method based on lazy learning and specific distance mea-
sures that performs well even in few-shot scenarios.

• We collect and publish1 a comprehensive dataset containing
over 1.5TB of HTTPS traffic, covering 220,000 samples from
80,000 websites across 12 experimental scenarios. This is the first
HTTPSWF dataset to include traffic generated under challenging

1The dataset will be released before publishing.

0.98 𝑪𝑽 =
𝝈

𝝁
× 𝟏𝟎𝟎%

2. Requesting web resources
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2 3

×
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2 3 ×40

1. Accessing to 
different websites

Url Type Protocol

google.com document h1

www.google.com document h2

www.google.com script h2

fonts.gstatic.com font h2

www.google.com webp h3

www.google.com png h3

www.google.com ping h3

www.google.com ping h3

www.gstatic.com script h2

www.gatstic.com stylesheet h2
…

3. Loading web resources

In request order

1 HTTP/1 2 HTTP/2

3 HTTP/3

(a) Unique HTTP Version Sequence Used by Different Websites 

(b) Analysis of Feature Information Leakage↑ (c) Analysis of Feature Coefficient of Variation↓

Figure 2: HTTPVersion Parallelism and Privacy Implications.
(a) Demonstrate HTTP version parallelism in popular websites. (b)
Assess the information leakage [45] potential caused by the quantity
of HTTP resources in relation to a known 3043-dimensional feature
set (300 monitored websites). (c) Use the coefficient of variation
[60] to illustrate the intra-class stability of various features in cross-
network conditions.

network conditions, from multiple mainstream browsers, and
with more realistic monitored website sets.
• We conducted comprehensive experiments, comparing our

method with state-of-the-art approaches, demonstrating its ef-
fectiveness, robustness, and lightweight nature. We release the
source code of H&W [4].

2 BACKGROUND AND MOTIVATION
2.1 HTTP Version Parallelism
The HyperText Transfer Protocol (HTTP) is fundamental to web
browsing, enabling the transfer of content between clients and
servers. Over time, HTTP evolved from HTTP/1.1 [26], which in-
troduced persistent connections and chunked transfer encoding,
to HTTP/2 [76] and HTTP/3 [8], which improved performance.
HTTP/2’s multiplexing and header compression reduced latency,
while HTTP/3’s use of QUIC [38] enhanced security and reliability.
These advancements support modern encrypted web traffic, form-
ing the backbone of HTTPS [61], where HTTP works with TLS or
QUIC to protect user data from eavesdropping.

The phenomenon of concurrent HTTP versions has been some-
what acknowledged by the scientific community, primarily not in
the context of privacy concerns. Discussions on the IETF mailing
list regarding HTTP/3 have highlighted the challenges for browser
and server implementers in maintaining support for all HTTP ver-
sions [37]. Nonetheless, we argue that the inevitability, ubiquity,
and distinctiveness of HTTP version parallelism position it as a
critical factor in potential privacy leakage.

2
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Figure 3: The overview of HOLMES &WATSON.

Inevitability of HTTP Version Parallelism. Despite the in-
creasing adoption of HTTP/3 due to its efficiency and stability,
many websites continue to support older versions for compatibility
[78]. Furthermore, the specific connection establishment process
of HTTP/3 complicates its direct adoption; in most cases, an ini-
tial connection is made using an older HTTP version to exchange
necessary information, after which data transmission rights are
negotiated in a competitive manner [8, 50].
Ubiquity of HTTP Version Parallelism. In our survey of the
top 100,000 websites (see Appendix B), we found that over 80%
utilize at least two HTTP versions, with nearly half employing
all three—HTTP/1.1, HTTP/2, and HTTP/3—during a single visit.
This widespread parallelism has become a standard characteristic
of modern web traffic.
Distinctiveness of HTTP Version Parallelism. Figure 2 illus-
trates how diverse patterns of HTTP version usage can form unique
signatures. By combining various HTTP versions and the number of
resources, these patterns create privacy risks that can be exploited
to identify websites. This underscores the necessity for further
investigation into how HTTP version parallelism impacts privacy.

2.2 Threat Model
This study follows an attacker capability assumption similar to that
in existingWF research [5, 11, 35, 70, 87]. We assume a local passive
eavesdropper (e.g., an ISP) positioned along the communication
path between the user’s terminal and the website server. The eaves-
dropper can monitor but not alter, delay, drop, or decrypt traffic,
aiming to identify whether the user is visiting a monitored website
and, if so, which one.

We also account for realistic environmental constraints faced
by attackers, such as monitoring multiple website sets instead of
focusing only on popular sites [33], using fewer samples for WF
attacks [51, 71, 87], and testing under varying network conditions
[5, 65, 87] and concept drift [5, 21, 33, 68]. Variations in browser
behavior [35] and potential defense mechanisms [66, 68] are also
considered. To maintain comparability with previous work and
concentrate on privacy breaches, our attacks focus on websites’
homepages. Although this may not fully represent real-world user
behavior [15], Mitseva et al.[49] recently proposed a generalizable
framework that could be applied to extend existing methods and
address these limitations in future research.

3 METHODOLOGY
Unlike existing WF attacks, our approach extracts features at the
traffic flow level [54]. Specifically, we generate a unified set of fin-
gerprint features for each flow identified by a five-tuple: <source
IP, source port, destination IP, destination port, protocol>. This anal-
ysis at the flow level offers a balance between the efficiency of
packet-level features and the information richness of session-level
features.

Figure 3 outlines the core components of our approach. In the
following sections, we describe HOLMES for feature extraction and
WATSON for fingerprinting attacks, following the typical steps of
a WF attack.

3.1 HOLMES
As a first step, we define the direction of packets sent by the client
as out and those received by the client as in. In typical HTTPS
scenarios, a network connection first undergoes a transport-layer
handshake, followed by a security-layer handshake, before entering
the application-layer request-response cycle. The encryption at the
security layer introduces packet obfuscation, which complicates
efforts to focus solely on theHTTP phase [44]. Based on our analysis
of protocol specifications, we identify the start of the HTTP phase
as the first ‘application data’ TLS packet in the out direction, or, for
HTTP/3, the first short-header QUIC packet in the out direction.

Moreover, we observe that metadata within the traffic can reveal
the HTTP version and even the number of resources requested. This
is because content encryption does not alter the HTTP request-
response pattern, which varies across HTTP versions. Multiplexing,
which affects the merging of responses, does not obscure the num-
ber of resources, as it can still be inferred from the request-side
signals. Figure 12 offers a visual explanation of these characteristics.

3.1.1 Inferring HTTP Versions. HTTP/3 uses the novel QUIC pro-
tocol as its transport layer, enabling a simple distinction between
HTTP/3 and earlier versions by checking whether QUIC (UDP) is
in use. HTTP/1 lacks multiplexing (though pipelining exists, it is
not widely supported by browsers [16, 83]), meaning that HTTP/1
requests and responses occur sequentially. This pattern is reflected
in the first two packets of the HTTP phase, where we always see
an "out" request followed by an "in" response. In contrast, HTTP/2
sends a "preface" packet before the first request to establish mul-
tiplexing configurations, resulting in the first two packets both
being "out" requests. Thus, by observing the direction of the first

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW’25, April 2025, Sydney, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

two packets in the HTTP phase, we can easily distinguish between
HTTP/1 and HTTP/2.

3.1.2 Inferring Resource Quantity. We propose using the number
of "out" packets in the HTTP phase to estimate the number of
web resources requested. Through further protocol analysis and
empirical testing across multiple browsers, we identify two main
sources of estimation bias: (1) Setup/control packet bias—in HTTP/2
and HTTP/3, additional setup packets and control frames are sent,
leading to an overestimation of resource count. We address this by
filtering out small packets that do not carry actual content. (2) HTTP
request method bias—when requests are sent via POST, browsers
may split the request header and body into multiple packets, even
though only one resource is being requested. We disregard this
bias, as it consistently occurs and does not significantly affect the
inference process.

Based on these observations, we design protocol state machines
that implement these rules to accurately infer resource quantities
across different HTTP versions. Details of this state machine design
are presented in Appendix C.

3.1.3 Constructing H123 fingerprint. The H123 fingerprint is con-
structed by encoding each connection (i.e., traffic flow) based on its
HTTP version and corresponding resource quantity. For 𝑥 connec-
tions, let HTTP𝑖 ∈ {1, 2, 3} represent the HTTP version of the 𝑖-th
connection, and 𝑅𝑖 denote the resource quantity. The fingerprint is
represented by a matrix 𝐹 ∈ R3×𝑥 , where each column corresponds
to a connection, and the rows represent HTTP/1, HTTP/2, and
HTTP/3.

The value 𝐹𝑣,𝑖 at row 𝑣 and column 𝑖 is defined as:

𝐹𝑣,𝑖 =

{
𝑅𝑖 , if HTTP𝑖 = 𝑣

0, otherwise
(1)

where 𝑣 ∈ {1, 2, 3}. This matrix encodes the HTTP version and
resource quantity for each connection, forming theH123 fingerprint.
Additionally, it is interesting to observe how different websites
perform under the proposed H123 fingerprint. To illustrate this
more clearly, we provide examples of H123 fingerprints for some
of the most popular websites in Appendix D.

3.2 WATSON
3.2.1 Lazy Learning. Lazy learning (also known as instance-based
learning) defers the training process to the prediction stage, unlike
eager learning models such as decision trees or neural networks,
which build a model during training [2]. In lazy learning, the algo-
rithm makes predictions by comparing a new sample directly with
stored reference samples, computing similarity or distance metrics
to assign the sample to a category.

In the context ofWF attacks, lazy learning offers the advantage of
not requiring model pre-training, thus allowing for flexible addition
or updating of website categories and samples [71, 80]. Additionally,
by computing distances at the prediction stage, the method avoids
overfitting risks commonly associated with insufficient training
data.

To improve the efficiency of lazy learning, especially with large
datasets, we introduced a resource-based sample pre-selection pro-
cess. During prediction, a band-pass filter is applied to the reference

[2ℎ1, 10ℎ3, 6ℎ2, 18ℎ3, 1ℎ1, 1ℎ1, 9ℎ2]

[2ℎ1, 10ℎ3, 6ℎ2, 1ℎ1, 18ℎ3, 1ℎ1, 9ℎ2]

[2ℎ1, 10ℎ3, 6ℎ2, 18ℎ3, 1ℎ1, 1ℎ1, 9ℎ2]

[2ℎ1, 10ℎ3, 6ℎ2, 8ℎ3, 10ℎ3, 1ℎ1, 1ℎ1, 9ℎ2]

[2ℎ1, 10ℎ3, 6ℎ2, 18ℎ3, 1ℎ1, 1ℎ1, 9ℎ2]

[1ℎ1, 2ℎ1, 10ℎ3, 6ℎ2, 18ℎ3, 1ℎ1, 1ℎ1, 9ℎ2]

a. Sequence Permutation

c. Misalignment

b. Division / Aggregation

Figure 4: H123 Fingerprint Characterizes. Here for the sake of
simplicity we have compressed the http version information into a
one-dimensional representation.

set, retaining only samples whose resource quantities fall within
20% of the target sample’s total. This optimization reduces unnec-
essary distance calculations, resulting in an approximately 85%
reduction in comparisons during our experiments.

3.2.2 Distance Metrics: Wasserstein and LCSS. Accurate classifi-
cation in WF attacks requires distance metrics that capture the
unique characteristics of encrypted web traffic. Our analysis of
H123 fingerprints identified three primary forms of intra-class vari-
ability: sequence permutation, division/aggregation, and temporal
misalignment (as shown in Figure 4). These variations, though sub-
tle, are intrinsic to fingerprint data and must be accounted for in our
classification method. To address these issues, we designed a com-
posite distance metric using Wasserstein distance [77] and LCSS
(Longest Common Similar Subsequence) distance, tailored
specifically to handle these types of variability.

Wasserstein Distance (also known as Earth Mover’s Distance)
measures the difference between two probability distributions. It
calculates the minimum "work" required to transform one distri-
bution into another, considering the spatial relationship between
elements. This makes it particularly suitable for addressing small
shifts in sequence elements or aggregation/division patterns in
fingerprint data. The distance is calculated using the following
formula:

𝑊 (𝑃,𝑄) = inf
𝛾 ∈Γ (𝑃,𝑄 )

∫
|𝑥 − 𝑦 |𝑑𝛾 (𝑥,𝑦) (2)

where 𝑃 and 𝑄 are probability distributions, and 𝛾 represents a
transport plan.

LCSS Distance measures local similarity by identifying com-
mon subsequences between two sequences. It captures variations in
temporal sequences, such as the misalignment of elements, which
are common in H123 fingerprints. We introduce a relaxed simi-
larity threshold, allowing for slight deviations between elements
to account for these shifts. The similarity criterion, denoted as 𝜖 ,
ensures robustness against small misalignments between subse-
quences. The adjusted LCSS distance improves sensitivity to local
patterns while handling sequence-level discrepancies effectively.

The combination of these two metrics, weighted appropriately,
provides a tailored measure for comparing website fingerprints,
improving classification accuracy and robustness. Detailed pseu-
docode for the implementation of these distance measures is pro-
vided in Appendix E.
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3.2.3 Classification Strategy. In a closed-world scenario, where all
categories are known, we adopt the classical Nearest Neighbor (NN)
approach to classify a test sample based on the closest reference
sample. This method provides high classification accuracy within
the range of known categories.

In contrast, the open-world scenario introduces the challenge
of unknown categories. To address this, we combine the K-Nearest
Neighbors (KNN) algorithm with the Gini coefficient [12] to assess
whether a test sample belongs to any reference category. Specifi-
cally, we calculate the distances to the 2N nearest reference samples
for the test sample, where N represents the number of reference
samples per category.

The Gini coefficient, which measures inequality, helps us assess
the distribution of these distances. If the test sample belongs to
a known category, we expect the 2N nearest samples to include
N samples with much smaller distances, representing the same
category, and N samples with larger distances, representing other
categories. This leads to an unequal distribution of distances and a
lower Gini coefficient. Conversely, if the test sample does not be-
long to any known category, the distances will be more uniformly
distributed, leading to a higher Gini coefficient. By setting a thresh-
old on the Gini coefficient, we can reliably distinguish between
samples that belong to the monitored set and those that do not.

4 EXPERIMENTAL EVALUATION
4.1 Datasets
In the absence of an appropriate public dataset for HTTPS WF
research, we created a comprehensive dataset that encompasses
12 distinct scenarios and includes over 220,000 website visits. This
robust dataset serves as a platform for evaluating the efficacy of
both the H&W method and state-of-the-art attacks. Details of the
dataset are presented in Table 1.

Closed-World (CW) dataset. As in most related work [33, 49,
70], we first construct attack scenarios for popular websites based
on the most recent Tranco top-site ranking list [56]. We focus on
and collect data from the top 1600 websites, which, to our knowl-
edge, constitutes the closed-world dataset with the largest number
of categories involved. In addition, we consider more realistic sce-
narios of interest to attackers, including a random selection of 320
websites from the top 10k websites of the Tranco list; and a scenario
that simulates network censorship by conducting a WF attack on
320 websites from the Citizenlab list [43], which are known to be
susceptible to such scrutiny.

Bandwidth dataset. For our experimental setup across network
conditions, we have designed a collection process from the top
(Tranco list) 200 websites under three scenarios informed by recent
networkmeasurement studies [9, 57, 73]:unconstrained, starlink-
like, and slow. Subsequently, we conduct cross-validation to assess
the robustness of our method within these varied conditions. For
details on the selected network conditions and implementation,
refer to Appendix F.

Browser dataset. As in related work [35, 68], we selected the
two most prevalent cross-platform browsers [74], Google Chrome
and Mozilla Firefox, to construct our dataset. Given that Microsoft
Edge utilizes the same rendering engine as Chrome, it was deemed
non-distinctive for our purposes and thus excluded. To capture a

Table 1: Overview of datasets. For OW datasets, one sample per
website; for other datasets, 40 samples per website.

Task Scenario # Websites # Samples Task Scenario # Websites # Samples

CW
popular 1600 64,000

Browser
chrome 200 8,000

random 320 12,800 chrome-legacy 200 8,000
censorship 320 12,800 firefox 200 8,000

Bandwidth
unconstrained 200 8,000 Time-

Drift
18-day 200 8,000

starlink-like 200 8,000 30-day 200 8,000
slow 200 8,000 OW open world 80,000 80,000

broader range of user update practices, we also included a legacy
Chrome (v104) along with the latest Chrome (v126) and Firefox
(v129). Across different scenarios, we collected traffic data from the
top (Tranco list) 200 websites.

Time-Drift dataset. During the data collection process, we
purposefully introduced time intervals, which naturally led to the
above three datasets exhibiting concept drift. Specifically, we ini-
tiated the collection of the Bandwidth dataset on the 18th day
and the Browser dataset on the 30th day following the completion
of the CW dataset. To construct a temporal sequence dataset, we
selected the CW-popular dataset (0 day) as a temporal reference
and combined it with the Bandwidth-unconstrained dataset (18
days later) and the Browser-chrome dataset (30 days later). Con-
sistency in the collection environment across these datasets ensures
the comparability of our temporal analysis.

Open-World (OW) dataset and Supplementary data. We
selected the first 80,000 unique websites from the Tranco list that
were not previously collected to serve as the open-world scenario.
Additionally, we have supplementary data consisting of the top
400 websites, each with 40 samples, collected half a year ago. This
additional data only serves two specific purposes: (1) independent
hyperparameter tuning for the H&W method, and (2) acting as
essential pre-training data for Triplet Fingerprinting [71].

During the data collection process, we followed the methodology
established in prior work [5, 49, 70], excludingwebsites that failed to
load, displayed CAPTCHA, had no meaningful content, or involved
fewer than 50 packets. These sites are generally not of interest
to attackers since they lack practical relevance for users [49]. In
line with previous research [66, 68], we employed an automated
approach using Selenium (v4.15.2) to control Chrome browser (v126)
(except for the browser dataset) and visit the homepage of each
website. This method produces more realistic traffic compared to
tools like wget or curl. The network traffic generated during the
process was captured using tcpdump.

Following the recommendation in [39], we used a round-robin
fashion during data collection to ensure more realistic and repre-
sentative traffic. We deployed 10 Amazon cloud servers running
Ubuntu 24.04 to execute the data collection in parallel batches. For
the open-world scenario, each website was accessed once, whereas
for other scenarios, we collected 50 samples per website and re-
tained 40 valid samples. After each round of data collection, we
conducted a separate DNS resolution for all web resources to build
IP-WF [33].

4.2 Experimental Setup
4.2.1 Optimization of Hyperparameters. We independently opti-
mized hyperparameters for H&W using supplementary data,
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Table 2: Closed-world: Accuracy (%) of WF attacks across different datasets in a few-shot scenario. We bolded results over 95% as
sufficiently reliable for attacks and marked the best results in each scenario.

Attacks N=1 BST1=20 hours N=2 BST=40 hours N=3 BST=60 hours N=10 BST=8 days N=30 BST=25 days Time Overhead2

pop. rand. cens. pop. rand. cens. pop. rand. cens. pop. rand. cens. pop. rand. cens. train↓ pred.↑
k-FP [29] 40.1 ± 0.6 50.3 ± 0.5 58.3 ± 0.9 60.2 ± 0.1 70.6 ± 0.4 76.9 ± 1.0 69.5 ± 0.2 80.3 ± 0.7 84.0 ± 0.5 84.2 ± 0.1 90.8 ± 0.4 92.8 ± 0.2 90.6 ± 0.3 94.9 ± 0.6 95.9 ± 0.3 10.9s >5k
DF [70] 16.7 ± 2.2 38.6 ± 1.2 29.0 ± 1.4 39.7 ± 1.9 53.5 ± 1.1 49.5 ± 0.7 58.0 ± 1.1 82.9 ± 0.4 62.1 ± 0.4 91.9 ± 0.3 96.9 ± 0.1 93.1 ± 0.5 98.0 ± 0.2 99.0 ± 0.2 98.6 ± 0.4 254.4s 3,765
TF [71] 57.3 ± 0.4 69.7 ± 0.9 66.9 ± 0.7 67.9 ± 0.3 79.3 ± 0.8 74.3 ± 0.5 72.6 ± 0.4 83.3 ± 0.5 78.8 ± 0.5 79.7 ± 0.2 88.8 ± 0.4 83.3 ± 0.3 81.8 ± 0.3 90.9 ± 0.3 84.8 ± 0.3 205.9s 873
RF [65] 10.6 ± 1.1 40.2 ± 0.9 33.2 ± 1.9 37.0 ± 1.0 56.9 ± 1.2 52.3 ± 1.4 46.1 ± 1.1 78.1 ± 0.4 74.0 ± 1.0 78.3 ± 0.5 91.1 ± 0.6 87.0 ± 0.8 89.5 ± 0.9 97.8 ± 0.4 96.0 ± 0.5 26.5s >5k
k-FP+ 64.1 ± 1.0 69.4 ± 1.2 76.5 ± 1.3 87.1 ± 0.3 90.8 ± 0.3 92.6 ± 0.3 93.0 ± 0.1 95.2 ± 0.5 95.8 ± 0.4 98.0 ± 0.1 98.3 ± 0.2 98.8 ± 0.2 99.1 ± 0.1 99.5 ± 0.1 99.4 ± 0.1 16.3s >5k
DF+ 15.6 ± 1.5 46.9 ± 2.1 38.7 ± 1.1 44.8 ± 1.2 56.6 ± 1.5 56.4 ± 1.2 63.6 ± 1.2 83.5 ± 0.5 68.8 ± 1.0 94.3 ± 0.3 97.6 ± 0.1 96.3 ± 0.4 98.5 ± 0.1 99.5 ± 0.1 99.4 ± 0.1 277.5s 4,298

IP-WF (primary) [33] 52.4 ± 0.2 60.3 ± 0.2 74.7 ± 0.5 52.4 ± 0.3 62.7 ± 0.4 76.9 ± 0.5 53.2 ± 0.4 64.1 ± 0.4 77.4 ± 0.6 54.0 ± 0.3 66.4 ± 0.3 78.7 ± 0.3 54.9 ± 0.2 67.1 ± 0.2 79.2 ± 0.2 - >5k
IP-WF [33] 65.2 ± 0.3 64.9 ± 0.2 81.4 ± 0.4 68.3 ± 0.6 67.8 ± 0.3 84.7 ± 0.4 69.4 ± 0.4 70.0 ± 0.5 85.6 ± 0.8 72.5 ± 0.2 73.8 ± 0.3 89.0 ± 0.3 73.4 ± 0.2 74.9 ± 0.1 90.2 ± 0.2 50.1s 4,023

IP-WF (ideal) 79.5 ± 0.5 79.3 ± 0.6 85.2 ± 0.5 84.3 ± 1.0 84.9 ± 0.4 88.4 ± 0.5 87.0 ± 0.5 87.4 ± 0.5 89.5 ± 0.7 92.1 ± 0.3 93.8 ± 0.4 93.8 ± 0.7 93.9 ± 0.2 96.2 ± 0.2 95.0 ± 0.1 50.1s 3,819

HOLMES

Cosine 42.4 ± 1.6 48.9 ± 0.7 53.8 ± 1.8 52.2 ± 1.2 61.9 ± 1.1 62.2 ± 1.1 59.5 ± 0.8 69.2 ± 0.7 67.2 ± 0.8 75.0 ± 0.8 82.7 ± 0.4 82.1 ± 0.4 82.4 ± 0.6 91.2 ± 0.5 89.7 ± 0.5 - >5k
Edit 73.9 ± 0.8 83.3 ± 0.5 77.8 ± 0.4 82.6 ± 0.6 90.3 ± 0.7 85.5 ± 0.5 85.5 ± 0.6 93.3 ± 0.6 89.2 ± 0.7 93.3 ± 0.4 97.0 ± 0.3 94.2 ± 0.6 96.4 ± 0.4 98.6 ± 0.3 96.4 ± 0.2 - 1,091

Wasserstein 80.1 ± 0.6 88.3 ± 0.6 82.4 ± 1.0 86.1 ± 0.7 92.9 ± 0.8 86.7 ± 0.6 88.3 ± 0.6 96.3 ± 0.5 89.1 ± 0.9 94.1 ± 0.4 98.1 ± 0.3 94.4 ± 0.6 96.6 ± 0.3 98.9 ± 0.2 95.5 ± 0.5 - >5k
LCSS 78.8 ± 1.1 87.6 ± 1.4 81.0 ± 1.2 87.9 ± 1.0 91.9 ± 0.7 88.7 ± 0.7 89.3 ± 0.6 95.2 ± 0.5 89.9 ± 0.8 95.1 ± 0.4 97.2 ± 0.5 95.1 ± 0.8 97.8 ± 0.4 98.7 ± 0.4 96.2 ± 0.6 - 2,819

WATSON 85.3 ± 0.8 90.4 ± 1.0 87.3 ± 0.8 91.9 ± 0.6 95.8 ± 1.0 92.9 ± 0.7 94.4 ± 0.7 96.4 ± 0.5 94.6 ± 0.4 96.7 ± 0.3 98.6 ± 0.3 96.4 ± 0.3 98.7 ± 0.3 99.5 ± 0.2 97.6 ± 0.2 - 2,068
1 Bootstrap time is the total time required to initiate a comprehensive WF attack, including data collection and model training.
2 Time overhead when validated on popular datasets with N=3. We record the training time and prediction throughput (websites/second).

ensuring no involvement of test sets from later validation experi-
ments to avoid data leakage. We ultimately selected the maximum
length of the H123 fingerprint (L) as 50, set the similarity threshold
for the LCSS distance (𝜖) to 0.24, and assigned equal weights of 0.5
for both distance measures.

4.2.2 WF attacks for comparison. To make a comprehensive com-
parison, we selected 5 state-of-the-art WF attacks: k-FP [29], DF
[70], TF [71], RF [65], and IP-WF [33]. Each was implemented using
the authors’ released code, and fine-tuned for fairness in our exper-
iments. We also introduced several optimizations: enabling packet
length features in k-FP for better performance in HTTPS scenarios
(k-FP+), mapping packet length information onto trace sequences
to enhance DF (DF+), and constructing an ideal IP-WF scenario by
utilizing IP addresses from browser logs rather than traffic flows to
eliminate interference, thereby estimating the upper accuracy limit
of this attack. All WF attacks were executed on a server running
Ubuntu 23.10, equipped with an NVIDIA A100 80GB GPU, Intel
Xeon 2.9GHz CPU, and 128GB RAM. To avoid random errors, we
applied k-fold cross-validation to all attacks.

4.2.3 Metrics. Weadopt the evaluationmetrics from [70]. In closed-
world tasks Accuracy is used to assess the performance of WF
attacks in multi-class classification of monitored websites. In open-
world tasks, while WF attacks still involve multi-class classification,
we focus more on their ability to distinguish monitored websites
from unmonitored ones. Thus, we treat it as a binary classification
problem and use Precision, Recall, and F1-score as evaluation
metrics. Compared to TPR and FPR, these metrics are more robust
in handling class imbalance, as they provide a more comprehensive
assessment of both positive and negative class performance.

4.3 Closed-world Evaluation
We first evaluate H&W in a closed-world scenario, assuming the
clients visit only a set of monitored sites of interest to the attacker.
The evaluation results are presented in Table 2.

Experiment 1:WF attacks with different data distributions.
Traditional WF attacks require a large, regularly updated dataset,
leading to excessive bootstrap time that renders the attack impracti-
cal for adversaries [71]. We evaluated the performance of various
methods under different training sample sizes, with N = {1, 2, 3, 10,

30}, where the first four settings represent typical few-shot learning
tasks. Results show that H&W achieves an attack accuracy (average
across different monitored sets) of 87.7% with N = 1 . This implies
that using H&W, an attacker only needs to visit each monitored
site once to launch an effective WF attack, significantly outper-
forming the best existing IP-WF method, which achieves 70.5%. As
N increases, the accuracy of all WF attacks improves. With N =
30 (bootstrap time exceeding 25 days), k-FP+ achieves the highest
accuracy of 99.3%. Although H&W was not designed for this sce-
nario, it still achieves a top-tier performance of 98.6%, while the
widely discussed IP-WF under HTTPS scenarios delivers a mediocre
performance, achieving only 79.5%.

Experiment 2: WF attacks with different monitored sets.
We evaluated the performance of various attacks across different
monitored website sets to comprehensively assess their applica-
bility in more realistic and diverse scenarios. H&W consistently
performed well, achieving, e.g., 95.8% accuracy in the random set
with 320 websites using only two training samples. There is a posi-
tive correlation between the number of websites in the monitored
set and attack difficulty, as most attacks performed worse on the
popular set compared to the random and censorship sets. In com-
parisons across sets with the same number of websites, H&W, DF,
TF, and RF slightly outperformed in the random set, while k-FP
performed better in the censorship set. IP-WF showed a notable
advantage in the censorship set, likely due to the more distinct IP
addresses of the websites, with less IP co-location observed.

Experiment 3: Time overhead analysis. The training time
and prediction throughput of an attack are crucial factors that
influence its practicality. Frequent changes in website resources
necessitate periodic data updates and retraining, and long training
times can compromise the attack’s timeliness. We conducted exper-
iments on a high-performance computing platform, recording both
training times and prediction throughput (websites/second) for
various attacks. Notably, H&W, a lightweight, distance-based lazy
learning method, requires no parameterized model training, elimi-
nating training time overhead and allowing flexibility for periodic
updates or incremental learning. In contrast, other methods require
extensive training (e.g., TF requires pre-training, and IP-WF needs
entropy fingerprint training), with deep learning-based approaches
typically being the most time-consuming. In the prediction phase,
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we evaluated the throughput of each method, which better reflects
their performance in real-world scenarios. Across all website finger-
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Figure 5: Comparison of attack robustness across network
conditions with N = 10 in the Bandwidth dataset.

printing attack methods, prediction throughput reached acceptable
levels. H&W, for example, can handle at least 2,000 website visits
per second, demonstrating its efficiency in high-traffic situations.

Experiment 4: H&W with different distance metrics. The
results in table 2 show that Wasserstein distance and LCSS signifi-
cantly outperform cosine distance and edit distance in distinguish-
ing H123 fingerprints. By combining these two distances, WATSON
achieves an average accuracy improvement of 3%, demonstrating
their complementary nature in handling fingerprint features and
enhancing overall performance.

4.4 Robustness Evaluation
Evaluating the robustness of attack methods in realistic settings is
essential. As in prior work, we focus on cross-network conditions
scenario [5, 65, 87] and concept drift scenario [5, 21, 33, 68].

Experiment 1: WF attacks under cross-network conditions.
We performed cross-training and validation of various attacks on
three typical network condition datasets: unconstrained, starlink-
like, and slow. The results on the diagonal of Figure 5 show the
performance of baseline attacks without cross-training, with k-
FP+ and H&W achieving the best results. The off-diagonal results
indicate that all attack methods experience varying degrees of per-
formance degradation under cross-network conditions, with band-
width changes (unconstrained-slow) having a significantly greater
impact than packet loss changes (unconstrained-starlink). Notably,
H&W performs better than existing methods under cross-network
conditions, thanks to the application-layer resource features of
H123 being independent of network conditions, which enhances its
robustness. Additionally, k-FP+ and RF exhibit the most severe ac-
curacy decline due to their features being strongly correlated with
loading time, while IP-WF demonstrates the highest stability under
cross-network conditions but with mediocre attack performance.

Experiment 2: WF attacks under concept drift. When a
website’s contents (such as images or ads) are updated, its traffic
representation changes accordingly. This results in growing dis-
crepancies between training data and actual attack data over time,
a phenomenon known as concept drift [27]. Figure 6(b) illustrates

0.91

0.81 0.79

0.98 0.9 0.88

(a) Concept drift of websites (b) Comparison of WF attacks

Figure 6: Evaluation of concept drift in the Time dataset. (a)
Cosine distance measures concept drift’s impact on traffic features,
shown by the empirical CDF of average distances for the same site.
(b) Shows the robustness and stability of different attacks under
concept drift.

how the attack performance of the initial model varies after 18
and 30 days. The figure shows that as the time interval increases,
concept drift intensifies, which directly leads to a decrease in attack
performance across all methods. Furthermore, increasing the num-
ber of training samples (from N=1 to N=10) does not alleviate the
effects of concept drift. Notably, with only 1 training sample and a
30-day interval, H&W still achieves nearly 80% attack accuracy. For
N=10, although k-FP+ and H&W both achieve over 98% accuracy
without concept drift, k-FP+’s accuracy drops to 72% after 30 days
of concept drift, while H&W maintains 88% accuracy.

4.5 Open-world Evaluation
The open-world scenario offers a more realistic assessment of WF
attacks by accounting for the vast, unexhausted range of websites
users might visit. We simulate a more practical setting by using
the CW-censorship dataset as the monitored set to reflect the
potential of real-world network censors, and we consider N = {1, 2,
3, 10} as training samples, with the rest used for testing. Initially,
we evaluate various attacks using a random sample of 10k websites
from the OW dataset as the unmonitored test set. We then further
assess the impact of a larger open-world set on H&W performance.

Experiment 1: WF attacks in the open-world scenario. As
shown in Table 3, in the open-world scenario, network censors
using H&W can achieve over 85% micro F1 with just one training
sample, significantly outperforming k-FP+ and DF+ in few-shot
settings. While IP-WF excels in distinguishing between monitored
and unmonitored sets, its performance declines when identifying
specific websites. With increased training costs, H&W achieves
92.1% binary F1 and 94.2% micro F1 with N=10, slightly below the
performance of k-FP+ and DF+.

Experiment 2: H&W deep dive in the open-world scenario.
As with previous works [49, 70, 71], we analyze H&W’s perfor-
mance in larger open-world scenarios. We assert that increasing
the number of open-world websites does not affect the training
data but instead expands the number of negative samples in the test
set. As the number of negative samples grows, more are incorrectly
classified as positive, leading to a decrease in precision, though
recall remains unaffected. Figure 7(a) shows the relationship be-
tween H&W’s attack performance and the size of the open world
for N = {1, 10}. The P-R curve, representing attack performance,
gradually declines as the number of negative samples increases.
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Table 3: Open-world: Binary and micro F1 (%) of WF attacks.

Att. N = 1 N = 2 N = 3 N = 10
binary1 micro2 binary micro binary micro binary micro

k-FP+ 79.3 ± 0.8 77.9 ± 1.0 81.5 ± 0.4 87.1 ± 0.4 85.1 ± 0.5 90.4 ± 0.4 92.8 ± 0.3 95.8 ± 0.2
DF+ 46.0 ± 1.1 43.1 ± 1.1 65.0 ± 0.5 60.7 ± 0.8 81.4 ± 0.5 75.3 ± 0.6 93.9 ± 0.3 95.1 ± 0.3

IP-WF 88.1 ± 0.5 84.7 ± 0.4 89.5 ± 0.5 87.1 ± 0.4 90.1 ± 0.1 87.9 ± 0.3 91.2 ± 0.1 90.1 ± 0.2
H&W 84.7 ± 0.6 85.9 ± 0.6 88.2 ± 0.7 90.5 ± 0.7 90.2 ± 0.6 92.4 ± 0.5 92.1 ± 0.5 94.2 ± 0.4

1 measures the attack’s ability to distinguish monitored vs. unmonitored websites.
2 measures detailed classification performance with website-specific identification.

(a) Impact of a larger open world (b) Discriminability of Websites in OW

Figure 7: In-depth analysis of H&W in open world. (a) Analyze
the impact of unmonitored website quantity on H&W attack per-
formance. (b) Examine the distinguishability between monitored
and unmonitored sets in H&W and optimal threshold selection.

With 80,000 unmonitored websites, H&W still demonstrates rea-
sonable performance under N = 10, achieving a precision of 70.2%
and recall of 81.0%. Figure 7(b), on the other hand, shows the cu-
mulative distribution curves of Gini coefficient values for samples
processed by H&W in both monitored and unmonitored sets. The
clear distinction between the two curves demonstrates H&W’s
strong discriminative ability.

4.6 Case Study: Applicability of H&W
H&W, as an attack method utilizing application-layer fingerprint
features, presents an interesting and meaningful area of study re-
garding its applicability under various factors. We primarily explore
the effects of different website characteristics, browser types, and
defense strategies on H&W performance. To ensure generalizabil-
ity, we conducted experiments on the CW-random and Browser
datasets with N = {1, 10}.

We first analyzed target websites, collecting data on resource
quantity, connection quantity, and HTTP version density (mea-
sured by the Shannon entropy [64] of the version sequence). The
cumulative distribution of these metrics is shown in Figure 8. We
constructed value intervals based on quartiles and conducted inde-
pendent training and testing of H&W within these intervals. The
results in Table 4 indicate that websites with resource and connec-
tion quantities in the (Q2, Q3] range are more vulnerable to the
attack. Additionally, HTTP version density positively correlates
with attack performance, meaning websites using multiple HTTP
versions are more susceptible to H&W than those using only one.
As websites adopt higher HTTP versions or as new versions emerge,
version parallelism will intensify, making H&W increasingly threat-
ening.

We validated H&W across three major browsers, showing strong
performance on all. While it performed slightly worse on Firefox
than Chrome, it still achieved over 98% accuracy with N = 10.
We also evaluated the impact of padding-based defense strategies,
finding that known defenses reduced attack accuracy by about 3%,

Table 4: Case study: Impact of website characteristics.

Main Factors [0, Q1] (Q1, Q2] (Q2, Q3] (Q3, max]

Resource Quantity N = 1 83.8 ± 1.5 87.5 ± 0.6 91.1 ± 0.9 86.8 ± 1.7
N = 10 95.5 ± 1.1 98.6 ± 0.3 98.7 ± 0.3 98.1 ± 0.8

Connection Quantity N = 1 83.2 ± 1.0 87.8 ± 1.7 90.7 ± 1.3 88.2 ± 1.6
N = 10 94.9 ± 0.8 98.0 ± 0.8 99.1 ± 0.4 98.5 ± 0.3

HTTP Version Diversity N = 1 83.7 ± 1.4 88.8 ± 1.1 89.3 ± 1.4 90.6 ± 1.3
N = 10 96.2 ± 0.3 98.2 ± 0.5 98.3 ± 0.3 99.2 ± 0.2

Figure 8: Distribution of main factors in H123 fingerprints.
The distribution of resource and connection quantities is affected
by the maximum fingerprint length (L = 50). HTTP version density
is represented by the Shannon entropy of the version sequence.

maintaining a practical 95.5%. For detailed experimental setup and
analysis, refer to Appendix G.

The above study demonstrates that H&W is not only lightweight
and robust at the method level but also applicable across different
server- and client-side environments. It is important to highlight
that existing typical defense strategies are insufficient to mitigate
H&W attacks, and with the growth of version parallelism, the threat
will increase.

5 DISCUSSION AND CONCLUSION
This study utilized the phenomenon of HTTP version parallelism
in HTTPS traffic to propose a novel fingerprinting method based
on H123 fingerprints. We believe this approach can extend to other
layers with protocol version parallelism, such as in TLS (e.g., TLS
1.2 and TLS 1.3) and the coexistence of IPv4 and IPv6. Combining
multiple layers of protocol information could reveal more insights,
further exacerbating privacy risks in encrypted traffic.

In our implementation of H123 fingerprints, we assumed equal
importance for each fingerprint part. However, inspired by recent
research on early detection [20, 90], we suggest assigning more
weight to the earlier parts—given their stability and reliability—to
enhance accuracy. Additionally, leveraging the characteristics of
H123 fingerprints summarized in Figure 4 for data augmentation
[5, 86] could further strengthen attack performance. This weighted
approach and data augmentation represent promising directions
for future work.

In conclusion, this paper introduced amethod for HTTPSwebsite
fingerprinting using HTTP version parallelism, proving highly ef-
fective in small-sample scenarios and achieving robust performance
with just one sample per monitored website. The experimental re-
sults demonstrated resilience across various network conditions
and an ability to handle concept drift. As version parallelism grows
with the adoption of different protocol versions, the privacy risks
identified are likely to become more significant, highlighting the
need for further research to mitigate these emerging threats.
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[27] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. 2014. A survey on concept drift adaptation. ACM computing surveys
(CSUR) 46, 4 (2014), 1–37.

[28] Jiajun Gong and Tao Wang. 2020. Zero-delay lightweight defenses against
website fingerprinting. In 29th USENIX Security Symposium (USENIX Security 20).
717–734.

[29] Jamie Hayes and George Danezis. 2016. k-fingerprinting: A robust scalable
website fingerprinting technique. In 25th USENIX Security Symposium (USENIX
Security 16). 1187–1203.

[30] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. 2009. Website
fingerprinting: attacking popular privacy enhancing technologies with the multi-
nomial naïve-bayes classifier. In Proceedings of the 2009 ACM workshop on Cloud
computing security. 31–42.

[31] Andrew Hintz. 2002. Fingerprinting websites using traffic analysis. In Interna-
tional workshop on privacy enhancing technologies. Springer, 171–178.

[32] Nguyen Phong Hoang, Arian Akhavan Niaki, Jakub Dalek, Jeffrey Knockel,
Pellaeon Lin, Bill Marczak, Masashi Crete-Nishihata, Phillipa Gill, and Michalis
Polychronakis. 2021. How Great is the Great Firewall? Measuring China’s
{DNS} Censorship. In 30th USENIX Security Symposium (USENIX Security 21).
3381–3398.

[33] Nguyen Phong Hoang, Arian Akhavan Niaki, Phillipa Gill, and Michalis Poly-
chronakis. 2021. Domain name encryption is not enough: Privacy leakage via
IP-based website fingerprinting. arXiv preprint arXiv:2102.08332 (2021).

[34] Paul E. Hoffman and Patrick McManus. 2018. DNS Queries over HTTPS (DoH).
RFC 8484. https://doi.org/10.17487/RFC8484

[35] Guodong Huang, Chuan Ma, Ming Ding, Yuwen Qian, Chunpeng Ge, Liming
Fang, and Zhe Liu. 2023. Efficient and low overhead website fingerprinting
attacks and defenses based on TCP/IP traffic. In Proceedings of the ACM Web
Conference 2023. 1991–1999.

[36] Christian Huitema, Sara Dickinson, and Allison Mankin. 2022. DNS over Dedi-
cated QUIC Connections. RFC 9250. https://doi.org/10.17487/RFC9250

[37] IETF. [n. d.]. QUICMailing List Archive. https://mailarchive.ietf.org/arch/browse/
quic/. Accessed: 2024-09-26.

[38] Jana Iyengar and Martin Thomson. 2021. QUIC: A UDP-Based Multiplexed and
Secure Transport. RFC 9000. https://doi.org/10.17487/RFC9000

[39] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel Greenstadt. 2014.
A critical evaluation of website fingerprinting attacks. In Proceedings of the 2014
ACM SIGSAC conference on computer and communications security. 263–274.

[40] Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and Matthew Wright.
2016. Toward an efficient website fingerprinting defense. In Computer Security–
ESORICS 2016: 21st European Symposium on Research in Computer Security, Her-
aklion, Greece, September 26-30, 2016, Proceedings, Part I 21. Springer, 27–46.

[41] George Kadianakis. 2012. Packet size pluggable transport and traffic morphing.
Technická Zpráva (2012), 03–004.

[42] Sunjae Kim and Wonjun Lee. 2023. HTTP Steady Connections for Robust Web
Acceleration. In Proceedings of the ACM Web Conference 2023. 3154–3163.

[43] Citizen Lab and Others. 2014. URL testing lists intended for dis-
covering website censorship. https://github.com/citizenlab/test-lists
https://github.com/citizenlab/test-lists.

[44] Hyunwoo Lee, Doowon Kim, and Yonghwi Kwon. 2021. TLS 1.3 in practice: How
TLS 1.3 contributes to the internet. In Proceedings of the Web Conference 2021.
70–79.

[45] Shuai Li, Huajun Guo, and Nicholas Hopper. 2018. Measuring information
leakage in website fingerprinting attacks and defenses. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security. 1977–1992.

[46] FoxIO LLC. 2023. JA4+ Network Fingerprinting. https://github.com/FoxIO-
LLC/ja4 Accessed: 2023-09-20.

[47] Liming Lu, Ee-Chien Chang, and Mun Choon Chan. 2010. Website fingerprint-
ing and identification using ordered feature sequences. In Computer Security–
ESORICS 2010: 15th European Symposium on Research in Computer Security, Athens,
Greece, September 20-22, 2010. Proceedings 15. Springer, 199–214.

[48] Gargi Mitra, Prasanna Karthik Vairam, Patanjali Slpsk, Nitin Chandrachoodan,
and V Kamakoti. 2020. Depending on HTTP/2 for privacy? Good luck!. In
2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 278–285.

[49] Asya Mitseva and Andriy Panchenko. 2024. Stop, Don’t Click Here Anymore:
Boosting Website Fingerprinting By Considering Sets of Subpages. In 33rd
USENIX Security Symposium (USENIX Security 24). 4139–4156.

[50] Marcin Nawrocki, Pouyan Fotouhi Tehrani, Raphael Hiesgen, Jonas Mücke,
Thomas C Schmidt, and Matthias Wählisch. 2022. On the interplay between
TLS certificates and QUIC performance. In Proceedings of the 18th International
Conference on emerging Networking EXperiments and Technologies. 204–213.

[51] Se Eun Oh, Nate Mathews, Mohammad Saidur Rahman, Matthew Wright, and
Nicholas Hopper. 2021. GANDaLF: GAN for data-limited fingerprinting. Pro-
ceedings on Privacy Enhancing Technologies 2021, 2 (2021).

[52] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, Andreas Zin-
nen, Martin Henze, and Klaus Wehrle. 2016. Website Fingerprinting at Internet
Scale.. In NDSS.

9

https://anonymous.4open.science/r/H123-Website-Fingerprinting-6387/
https://anonymous.4open.science/r/H123-Website-Fingerprinting-6387/
https://doi.org/10.17487/RFC9114
https://www.chromium.org/developers/design-documents/network-stack/http-pipelining/
https://www.chromium.org/developers/design-documents/network-stack/http-pipelining/
https://github.com/openssl/openssl/tree/feature/ech
https://github.com/openssl/openssl/tree/feature/ech
https://developer.chrome.com/docs/devtools/settings/throttling
https://developer.chrome.com/docs/devtools/settings/throttling
https://doi.org/10.17487/RFC8310
https://doi.org/10.17487/RFC8310
https://doi.org/10.17487/RFC9112
https://doi.org/10.17487/RFC8484
https://doi.org/10.17487/RFC9250
https://mailarchive.ietf.org/arch/browse/quic/
https://mailarchive.ietf.org/arch/browse/quic/
https://doi.org/10.17487/RFC9000
https://github.com/citizenlab/test-lists
https://github.com/citizenlab/test-lists
https://github.com/FoxIO-LLC/ja4
https://github.com/FoxIO-LLC/ja4


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW’25, April 2025, Sydney, Australia Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[53] Simran Patil and Nikita Borisov. 2019. What can you learn from an IP?. In
Proceedings of the Applied Networking Research Workshop. 45–51.

[54] Vern Paxson. 1994. Empirically derived analytic models of wide-area TCP con-
nections. IEEE/ACM transactions on Networking 2, 4 (1994), 316–336.

[55] Julien Piet, DubemNwoji, and Vern Paxson. 2023. Ggfast: Automating generation
of flexible network traffic classifiers. In Proceedings of the ACM SIGCOMM 2023
Conference. 850–866.

[56] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Kor-
czyński, and Wouter Joosen. 2018. Tranco: A research-oriented top sites ranking
hardened against manipulation. arXiv preprint arXiv:1806.01156 (2018).

[57] Cloudflare radar team. 2024. Worldwide Internet Quality. https://radar.cloudflare.
com/quality. Accessed: 2024-09-12.

[58] Mohammad Saidur Rahman, Payap Sirinam, Nate Mathews, Kantha Girish Gan-
gadhara, and Matthew Wright. 2019. Tik-tok: The utility of packet timing in
website fingerprinting attacks. arXiv preprint arXiv:1902.06421 (2019).

[59] Aaditya Ramdas, Nicolás García Trillos, and Marco Cuturi. 2017. On wasserstein
two-sample testing and related families of nonparametric tests. Entropy 19, 2
(2017), 47.

[60] George F Reed, Freyja Lynn, and Bruce D Meade. 2002. Use of coefficient of
variation in assessing variability of quantitative assays. Clinical and Vaccine
Immunology 9, 6 (2002), 1235–1239.

[61] Eric Rescorla. 2000. HTTP Over TLS. RFC 2818. https://doi.org/10.17487/
RFC2818

[62] Eric Rescorla, Kazuho Oku, Nick Sullivan, and Christopher A. Wood. 2024. TLS
Encrypted Client Hello. Internet-Draft draft-ietf-tls-esni-22. Internet Engineering
Task Force. https://datatracker.ietf.org/doc/draft-ietf-tls-esni/22/ Work in
Progress.

[63] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem, and Wouter
Joosen. 2017. Automated website fingerprinting through deep learning. arXiv
preprint arXiv:1708.06376 (2017).

[64] Claude Elwood Shannon. 1948. A mathematical theory of communication. The
Bell system technical journal 27, 3 (1948), 379–423.

[65] Meng Shen, Kexin Ji, Zhenbo Gao, Qi Li, Liehuang Zhu, and Ke Xu. 2023. Sub-
verting website fingerprinting defenses with robust traffic representation. In
32nd USENIX Security Symposium (USENIX Security 23). 607–624.

[66] Meng Shen, Yiting Liu, Liehuang Zhu, Xiaojiang Du, and Jiankun Hu. 2020.
Fine-grained webpage fingerprinting using only packet length information of
encrypted traffic. IEEE Transactions on Information Forensics and Security 16
(2020), 2046–2059.

[67] Meng Shen, Ke Ye, Xingtong Liu, Liehuang Zhu, Jiawen Kang, Shui Yu, Qi Li,
and Ke Xu. 2022. Machine learning-powered encrypted network traffic analysis:
A comprehensive survey. IEEE Communications Surveys & Tutorials 25, 1 (2022),
791–824.

[68] Sandra Siby, Ludovic Barman, Christopher Wood, Marwan Fayed, Nick Sullivan,
and Carmela Troncoso. 2023. Evaluating practical QUIC website fingerprinting
defenses for the masses. Proceedings on Privacy Enhancing Technologies (2023).

[69] Sandra Siby, Marc Juarez, Claudia Diaz, Narseo Vallina-Rodriguez, and Carmela
Troncoso. 2019. Encrypted DNS–> privacy? A traffic analysis perspective. arXiv
preprint arXiv:1906.09682 (2019).

[70] Payap Sirinam, Mohsen Imani, Marc Juarez, and MatthewWright. 2018. Deep fin-
gerprinting: Undermining website fingerprinting defenses with deep learning. In
Proceedings of the 2018 ACM SIGSAC conference on computer and communications
security. 1928–1943.

[71] Payap Sirinam, Nate Mathews, Mohammad Saidur Rahman, andMatthewWright.
2019. Triplet fingerprinting: More practical and portable website fingerprinting
with n-shot learning. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. 1131–1148.

[72] Jean-Pierre Smith, Luca Dolfi, Prateek Mittal, and Adrian Perrig. 2022. {QCSD}:
A {QUIC}{Client-Side}{Website-Fingerprinting} Defence Framework. In 31st
USENIX Security Symposium (USENIX Security 22). 771–789.

[73] StarlinkStatus.space. 2024. Starlink Status. https://starlinkstatus.space/. Accessed:
2024-09-12.

[74] Statcounter Global Stats. 2024. Desktop Browser Market Share Worldwide.
https://gs.statcounter.com/browser-market-share/desktop/worldwide. Accessed:
2024-09-12.

[75] Qixiang Sun, Daniel R Simon, Yi-Min Wang, Wilf Russell, Venkata N Padman-
abhan, and Lili Qiu. 2002. Statistical identification of encrypted web browsing
traffic. In Proceedings 2002 IEEE Symposium on Security and Privacy. IEEE, 19–30.

[76] Martin Thomson and Cory Benfield. 2022. HTTP/2. RFC 9113. https://doi.org/
10.17487/RFC9113

[77] Cédric Villani et al. 2009. Optimal transport: old and new. Vol. 338. Springer.
[78] W3Techs. 2024. HTTP/3 - Usage Statistics of HTTP/3 for Websites. https:

//w3techs.com/technologies/details/ce-http3 Accessed: 2024-01-21.
[79] David Wagner, Bruce Schneier, et al. 1996. Analysis of the SSL 3.0 protocol. In

The Second USENIX Workshop on Electronic Commerce Proceedings, Vol. 1. 29–40.
[80] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg. 2014.

Effective attacks and provable defenses for website fingerprinting. In 23rd USENIX
Security Symposium (USENIX Security 14). 143–157.

[81] Tao Wang and Ian Goldberg. 2016. On realistically attacking tor with website
fingerprinting. Proceedings on Privacy Enhancing Technologies (2016).

[82] Tao Wang and Ian Goldberg. 2017. {Walkie-Talkie}: An efficient defense against
passive website fingerprinting attacks. In 26th USENIX Security Symposium
(USENIX Security 17). 1375–1390.

[83] Wikipedia. 2024. HTTP pipelining. https://en.wikipedia.org/wiki/HTTP_
pipelining Accessed: 2024-09-30.

[84] Charles V Wright, Fabian Monrose, and Gerald M Masson. 2006. On inferring
application protocol behaviors in encrypted network traffic. Journal of Machine
Learning Research 7, 12 (2006).

[85] HuaWu, QiuyanWu, Guang Cheng, Shuyi Guo, Xiaoyan Hu, and Shen Yan. 2021.
SFIM: Identify user behavior based on stable features. Peer-to-Peer Networking
and Applications 14, 6 (2021), 3674–3687.

[86] Renjie Xie, Yixiao Wang, Jiahao Cao, Enhuan Dong, Mingwei Xu, Kun Sun, Qi Li,
Licheng Shen, and Menghao Zhang. 2023. Rosetta: Enabling robust tls encrypted
traffic classification in diverse network environments with tcp-aware traffic
augmentation. In Proceedings of the ACM Turing Award Celebration Conference-
China 2023. 131–132.

[87] Yi Xie, Jiahao Feng, Wenju Huang, Yixi Zhang, Xueliang Sun, Xiaochou Chen,
and Xiapu Luo. 2024. Contrastive Fingerprinting: A NovelWebsite Fingerprinting
Attack over Few-shot Traces. In Proceedings of the ACM on Web Conference 2024.
1203–1214.

[88] Diwen Xue, Michalis Kallitsis, Amir Houmansadr, and Roya Ensafi. 2024. Fin-
gerprinting Obfuscated Proxy Traffic with Encapsulated {TLS} Handshakes. In
33rd USENIX Security Symposium (USENIX Security 24). 2689–2706.

[89] Hiroaki Yamauchi, Akihiro Nakao, Masato Oguchi, Shu Yamamoto, and Saneyasu
Yamaguchi. 2020. Service identification based on SNI analysis. In 2020 IEEE 17th
Annual Consumer Communications & Networking Conference (CCNC). IEEE, 1–6.

[90] Pengwei Zhan, Liming Wang, and Yi Tang. 2021. Website fingerprinting on early
QUIC traffic. Computer Networks 200 (2021), 108538.

A Related work
The foundational premise of WF asserts that unique traffic charac-
teristics can distinguish websites, even when the traffic is encrypted
or obscured. This concept emerged in the 1990s [79], and was first
prominently featured in academic discourse by Andrew Hintz, who
analyzed the number and sizes of web resources to conduct finger-
printing [31]. Concurrent studies also leveraged network resource
metrics for differentiation [14, 75].

The advent of application-layer pipelining and multiplexing,
alongside advancements in privacy technologies like the Tor net-
work, rendered early fingerprinting techniques less effective, redi-
recting focus to transport-layer packet features. Herrmann et al.
[30] employed frequency analysis of packet sizes in conjunction
with Bayesian classifiers to execute fingerprinting within ssh tunnel.
Subsequent research utilized edit distance on packet size sequences
for website identification [11, 47]. Wang et al. combined a man-
ual feature set of 4226 features with k-nearest neighbor classifiers
for WF attacks [80], while Hayes and Danezis [29] proposed k-FP
method, which used a refined set of 150 features with random forest
models for the same proposal. The introduction of deep learning
techniques to WF by [1] has marked a significant evolution in the
field, with subsequent research leveraging a variety of advanced
deep learning models. These include convolutional neural networks
[7, 63, 70], triplet networks [71], and generative adversarial net-
works [51], establishing a new research trajectory and representing
the state-of-the-art in performance.

Building on the extensive evolution of WF techniques over the
past two decades, targeted research on refining fingerprinting fea-
tures has emerged as a critical focus within the domain. Panchenko
et al. [52] introduced the CUMUL fingerprint, which leverages
cumulative representations of packet sizes. Rahman et al. [58] de-
veloped the tik-tok attack, significantly utilizing the temporal char-
acteristics of website packets. Shen et al. [65] proposed a robust
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Figure 9: HTTP Version Parallelism Measurement. Venn dia-
gram showing the percentage of parallelism of various http versions
for top 100k sites. The discrete, overlap, and inclusive in the bar
chart represent that these websites use only one http version, use
two http versions, and use three http versions in their web resources,
respectively.

fingerprinting feature based on time-window analysis. Beyond the
traditional focus on transport layer information for WF, Siby et
al. [69] introduced WF using side-channel encrypted DNS traffic;
Nguyen et al. [33] constructed fingerprints combining IP addresses
with browser rendering characteristics for large-scale WF. Li et
al. [45] evaluated the website fingerprints themselves, proposing
WeFDE method using information quantification theory to reason-
ably assess the information leakage of fingerprints, avoiding the
potential biases of model selection and accuracy judgment.

The research most aligned with the methodologies in this paper
involves inferring protocol semantics from encrypted traffic [3, 25,
42, 55, 84, 88], utilizing attributes not concealed by encryption.

B Measurement of HTTP Version Parallelism
across Top 100k Websites

In our study, we conducted extensive measurements of HTTP ver-
sion parallelism on the real internet to demonstrate the widespread
occurrence of this phenomenon. Specifically, we automated access
to the top 100k websites from the Tranco top-site ranking list. By
retrieving browser log information, we assessed whether the access
attempts were successful and recorded the HTTP version infor-
mation used for each network resource within a single visit. Our
definition of HTTP version parallelism is as follows: if the set of
HTTP versions used across all network resources within a website
contains only one element, we refer to this as "discrete"; if the set
contains two elements, we call it "overlap"; and if network resources
use HTTP/1.1, HTTP/2, and HTTP/3 concurrently, we describe this
situation as "conclusive".

The measurement results, as shown in Figure 9, indicate that
nearly 80% of the websites exhibit HTTP version parallelism.

Idle

Settings

get_pkt

Standby

𝜺

Request

get_s_pkt

get_l_pkt
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EndEOF
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𝜺
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Counter
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𝜺

End

Counter
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get_pkt

read_counter

a. HTTP/1 b. HTTP/2 c. HTTP/3

EOF

Figure 10: Protocol State Machines Designed for Different
HTTP Versions. In the diagram, ellipses represent system states,
rounded rectangles indicate state transition conditions, and rectan-
gles with cut corners denote functions bound to a specific state.

Table 5: Explanation of Protocol State Machine Elements

Identifier Type Description
Idle state Initial state of the protocol state machine

Request state Client requests a resource
Standby state Waiting for event trigger standby
Preface state Client sends preface packet
Settings state Client sends settings packet
End state Final state of the protocol state machine

get_pkt transition Retrieve any packet
get_s_pkt transition Retrieve short packet
get_l_pkt transition Retrieve long packet

EOF transition Process to end of file
𝜖 transition Automatic state transition

Counter variable Resource quantity counter
counter++ function Increment operation on counter

read_counter function Read counter value

Among these, over half of the websites show a relatively severe
phenomenon: every version of the HTTP currently in use coex-
ists among all their network resources. Additionally, we found
that websites utilizing the HTTP/3 protocol almost invariably ex-
hibit version parallelism, which can be attributed to the fact that
new technologies are typically deployed incrementally. Our find-
ings regarding the use of the HTTP/3 protocol diverge from other
authoritative results [78]. This discrepancy arises because those
studies focus on the homepage resource’s support for the protocol,
whereas our discussion encompasses the application of the protocol
across all network resources of the website.

C Inferring resource quantity using protocol
state machines

Our protocol state machines keep meticulous track of the state of
encrypted traffic, as shown in Figure 10. The state machines start
processing packets from the client in the idle state and recognize re-
source requests based on the transition conditions defined in Table
5. When a packet meets these conditions and triggers a resource
request state, the corresponding counter is incremented. This ap-
proach focuses only on the number of resources transmitted in
the data stream and is not affected by encryption masking content
information.
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It is worth noting that the packets generated by the application
layer control features introduced by HTTP/2 and HTTP/3 are in-
dependent of the number of network resources. We blocked these
control packets using two main methods: (1) adding an initial step
that does not inflate the counter to offset the effect of the setting
packet, and (2) using packet size thresholds that filtered out control
packets during resource transfers (in particular, packets below 40
bytes in HTTP/2 and packets below 120 bytes in HTTP/3).

D Examples of H123 fingerprints

[   1,   0,   0,   0,   0,   0] - h1

[   0,   1,   0,   1,   2,   1] - h2

[   0,   0, 20,   0,   0,   0] - h3

[   0,   0,   0,   0,   0] - h1

[   3, 10,   0,   0,   0] - h2

[   0,   0,   3,   9, 13] - h3

[   0,   0,   0,   4,   0,  …,     0,   0,   0] - h1

[   7,   0,   2,   0,   2,  …,     0,   0,   1] - h2

[   0, 17,   0,   0,   0,  …,     3, 14,   0] - h3

[   0,   0,   0,   0,   0,   0] - h1

[   4,   0, 17,   0,   0,   1] - h2

[   0, 26,   0,   1,   2,   0] - h3

[   0,   0,   0,   0,   0] - h1

[   2,   0,   1,   1,   0] - h2

[   0, 22,   0,   0, 40] - h3

[   0,   0,   0,   6,   3,  …,     1,   0,   0] - h1

[   3,   0,   3,   0,   0,  …,     0,   1,   2] - h2

[   0, 34,   0,   0,   0,  …,     0,   0,   0] - h3

[   0,   0,   0,   0,   0,   2] - h1

[   3,   3,   0,   0,   1,   0] - h2

[   0,   0, 82,   3,   0,   0] - h3

[   1,   0,   0,   0,   5,  …,     0,   5,   0] - h1

[   0,   3,   0,   2,   0,  …,     0,   0,   6] - h2

[   0,   0,   2,   0,   0,  …, 115,   0,   0] - h3

[   0,   0,   0,   0,   0,  …,     0,   0,   0] - h1

[   2,   2,   4,   4,   0,  …,     1,   1,   1] - h2

[   0,   0,   0,   0,   2,  …,     0,   0,   0] - h3

[   1,   0,   0,   0,   0,  …,   0,   0,   0] - h1

[   0,   3,   6,   5,   2,  …,   1,   1,   3] - h2

[   0,   0,   0,   0,   0,  …,   0,   0,   0] - h3

google.com:

L=6

facebook.com:

L=5

youtube.com:

L=20

instagram.com:

L=6

cloudflare.com:

L=5

fastly.net:

L=52

bing.com:

L=6

spotify.com:

L=23

wordpress.com:

L=15

zoom.us:

L=20

Figure 11: H123 Fingerprint examples. Some of the fingerprints
in the figure are not shown completely due to length reasons, with
"L" indicating the length of the fingerprints.

Figure 11 presents real examples of H123 fingerprints for the 10
most frequently visited websites. These fingerprints combine the
sequence of HTTP versions and the sequence of resource quantity
generated during a website visit, resulting in a final fingerprint form
of 3×L dimensions (where rows represent different HTTP versions,
and columns represent each network flow). These examples of H123
fingerprints demonstrate two characteristics: (1) H123 fingerprints
are concise and direct, stemming from their direct representation
of the characteristics at the website’s network resource layer; (2)
H123 fingerprints are distinguishable. The quantity of network re-
sources and the distribution of HTTP versions vary across different
websites, creating a vast fingerprint space.

E WATSON Distance-metric Pseudocode
Wasserstein distance, also known as Earth Mover’s Distance (EMD),
is a method used in mathematics and data science to measure the
difference between two probability distributions and is widely ap-
plied in various scenarios. We interpret the H123 fingerprint as
a discrete distribution and calculate the one-dimensional Wasser-
stein distance for resource sequences of different HTTP versions,
averaging the three results in the end. The one-dimensional Wasser-
stein distance for discrete distributions, as required in our case, has
been proven to be equivalent to the cumulative distribution func-
tion (CDF) distance between two sequences [59], which greatly
enhances computational efficiency and theoretical simplicity. Fur-
thermore, based on preliminary experimental results, we decided to
sort the sequence data numerically before computing the Wasser-
stein distance. The pseudocode for calculating the Wasserstein
distance is shown in Algorithm 1

Algorithm 1 Wasserstein Distance
Require: Two H123 fingerprints 𝐹1 and 𝐹2
Ensure: Normalized Wasserstein distance
1: 𝑊 ← 0 {Sum of Wasserstein distances}
2: 𝑇 ← 0 {Total sum of 𝐹1 elements for normalization}
3: for 𝑖 = 0 to 2 do
4: 𝐶1 ← ComputeCumulativeDistribution(Sort(𝐹1 [𝑖]))
5: 𝐶2 ← ComputeCumulativeDistribution(Sort(𝐹2 [𝑖]))
6: 𝑊 ← 𝑊 + ∑

𝑗 |𝐶1 [ 𝑗] − 𝐶2 [ 𝑗] | {Accumulate the absolute
differences}

7: 𝑇 ← 𝑇 + ∑𝑗 𝐹1 [𝑖] [ 𝑗] {Accumulate the total sum of 𝐹1 ele-
ments}

8: end for
9: 𝑊 ← 𝑊

𝑇
{Normalize the Wasserstein distance}

10: return 𝑊

Algorithm 2 LCSS Distance
Require: Two H123 fingerprints 𝐹1 and 𝐹2, similarity threshold 𝜖
Ensure: Normalized LCSS distance
1: Initialize LCS matrix 𝑑𝑝 with size (𝑙𝑒𝑛(𝐹1) + 1) × (𝑙𝑒𝑛(𝐹2) + 1)
2: for 𝑖 = 1 to 𝑙𝑒𝑛(𝐹1) do
3: for 𝑗 = 1 to 𝑙𝑒𝑛(𝐹2) do
4: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝜖 ·max(𝐹1 [𝑖 − 1], 𝐹2 [ 𝑗 − 1]) {Calculate simi-

larity threshold}
5: if |𝐹1 [𝑖 − 1] − 𝐹2 [ 𝑗 − 1] | ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
6: 𝑑𝑝 [𝑖] [ 𝑗] ← 𝑑𝑝 [𝑖 − 1] [ 𝑗 − 1] + 1
7: else
8: 𝑑𝑝 [𝑖] [ 𝑗] ← max(𝑑𝑝 [𝑖 − 1] [ 𝑗], 𝑑𝑝 [𝑖] [ 𝑗 − 1])
9: end if
10: end for
11: end for
12: Compute LCSS by tracing back through 𝑑𝑝 matrix
13: return 1 − sum of LCSS

sum of 𝐹1

The Longest Common Subsequence (LCS) algorithm is a method
used to find the longest shared subsequence between two sequences.

12



1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

HOLMES & WATSON: A Robust and Lightweight
HTTPS Website Fingerprinting through HTTP Version Parallelism WWW’25, April 2025, Sydney, Australia

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Table 6: Detail of network conditions.

Scenario Upload
Bandwidth

Download
Bandwidth

Network
Latency

Packet
Loss Rate

Unconstrained >500mbps >500mbps <10ms <1%
Starlink-like 8mbps 70mbps 50ms 6%

Slow 300kbps 800kbps 350ms 3%

It has broad applications in fields such as text comparison and data
mining. In our application scenario, sequence elements (the number
of resources) may exhibit minor variations due to various reasons,
making the traditional LCS algorithm less suitable, as it requires
exact matching of sequence elements. To address this issue, we pro-
pose the Longest Common Similar Subsequence (LCSS) distance,
which introduces a similarity threshold, allowing for certain varia-
tions in the elements of the sequence. This distance focuses more
on assessing the overall similarity of non-sparse sequences, and we
choose to use network resource sequence fingerprints (which do not
explicitly label HTTP versions) for measurement. The pseudocode
for calculating LCSS distance is shown in Algorithm 2.

F Bandwidth dataset
Cross-network condition scenarios (where there are significant
differences between the network environments during training and
testing data collection) are considered a major challenge in making
WF attacks practical [5, 15, 87]. Since it is impossible to cover all
possible network conditions, we designed three network scenarios
with typical differences and used them for cross-validation of the
attack method (training the model in one network condition and
testing it in others).

We primarily considered the following four network perfor-
mance metrics: Upload Bandwidth, Download Bandwidth, Network
Latency and Packet Loss Rate. As shown in Table 6, the first sce-
nario is unconstrained, representing a good network environment
typical for most users. This setup is based on network measurement
results from Cloudflare Radar [57]. The second scenario is starlink-
like, simulating users accessing websites via Starlink’s commercial
satellite internet service. According to the measurement results in
[9], Starlink is characterized by relatively slow speeds and higher
packet loss rates. The final scenario is slow, which simulates condi-
tions in countries with poor network infrastructure or in situations
of sustained slow network speeds due to congestion, characterized
by low bandwidth and high latency.

During data collection phase, to accurately simulate these net-
work conditions, we referred to the Chrome Developer documenta-
tion [22] and used Chrome’s network throttling feature to create
custom network conditions.

G Case study: browsers and defense strategies
In this section, we will provide a detailed overview of H&W’s
applicability across different browsers and the impact of existing
defense mechanisms on its attack performance.

G.1 Attack performance on different browsers
We conducted cross-training and testing of H&W on the Browser
dataset, with results presented in Table 7. Training and testing on

Table 7: Evaluation results on different browsers.

Scenario Individual Cross-version Cross-browser
N = 1 N = 10 N = 1 N = 10 N = 1 N = 10

Chrome 88.4 ± 0.6 98.6 ± 0.3 62.2 ± 1.2 73.3 ± 1.2 4.9 ± 0.9 6.8 ± 0.5
Chrome-legacy 87.5 ± 0.9 98.2 ± 0.3 58.9 ± 1.1 74.6 ± 1.2 - -

Firefox 83.6 ± 1.8 98.0 ± 0.5 - - 4.2 ± 0.9 6.3 ± 0.7

the same data distribution (within the same browser) yielded rea-
sonable results across different browser scenarios; for instance, in
Chrome with N = 1, the attack accuracy was 88.4%. When N in-
creased to 10, the attack accuracy exceeded 98% across all browsers.
We observed a slight decrease in accuracy on Firefox, likely due to
the greater diversity of control frames triggered during resource
loading, which complicates resource inference.

Initially, we expected H&W to demonstrate strong cross-browser
capability since it extracts application layer resource features. How-
ever, the actual results showed high sensitivity to changes in data
distribution when switching browsers. In cross-browser version
experiments, we noted about a 20% drop in accuracy, and H&W
became ineffective in cross-browser tests. This is attributed to sig-
nificant differences in how Chrome and Firefox handle website
resources, leading to noticeable discrepancies in the resource se-
quences extracted by HOLMES for the same website.

We must emphasize that cross-browser applicability remains
an open problem in website fingerprinting attacks. Similar to the
results in [68], we conducted the same cross-browser validation for
k-FP+ and obtained comparable outcomes, with an accuracy of 6.5%
when N = 10. To address the challenges of cross-browser scenarios,
we suggest incorporating samples from multiple browsers during
the training phase or using JA4 fingerprinting [46] to identify the
browser before conducting the attack. However, these considera-
tions are beyond the scope of this paper and will be left for future
work.

Table 8: Evaluation results under padding-based defense.

Scenario k-FP+ DF+ H&W
N = 1 N = 10 N = 1 N = 10 N = 1 N = 10

No defense 69.4 ± 1.2 98.3 ± 0.2 46.9 ± 2.1 97.6 ± 0.1 90.4 ± 1.0 98.6 ± 0.3
Defense with prior know. 50.3 ± 0.5 90.8 ± 0.4 38.6 ± 1.2 96.9 ± 0.1 81.0 ± 1.2 95.5 ± 0.7

Defense without prior know. 3.5 ± 1.0 6.4 ± 0.6 2.1 ± 1.1 5.9 ± 0.6 5.7 ± 0.9 6.9 ± 0.9

G.2 Attack performance under defense
strategies

In existing research on anonymous networks, various advanced
WF defenses have been proposed to counter WF attacks. These
strategies typically introduce perturbations to standard traffic char-
acteristics by adding redundant packets [28, 40], delaying transmis-
sions [10, 82], or splitting application flows [19]. However, the use
of these defenses in anonymous networks relies on bidirectional
cooperation within the system, meaning that the perturbations
added by the Tor client must be removed at the relay nodes so that
the traffic reaching the actual server is free of these disturbances. In
contrast, there is no such communication mechanism or protocol
in standard HTTPS that enables coordinated defense between the
client and server to implement these advanced traffic defenses.

Packet padding is a simple yet effective method of traffic ob-
fuscation [41]. In the context of standard HTTPS, some studies
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Figure 12: Network Protocol Stack in HTTP Version Parallelism Scenario. HTTP/1.1 and HTTP/2 protocols can use TLS 1.2 and TLS
1.3, respectively, as their security layers; HTTP/3 can only use QUIC as its security layer.

have explored using the padding mechanism provided by QUIC at
the transport layer to introduce server-agnostic defense perturba-
tions [68, 72]. Although this technique has not yet been adopted
by mainstream browsers, we simulate this feasible defense strategy
and evaluate its impact on WF attacks. Specifically, we use the
CW-random dataset, padding each packet to its maximum length
to construct a defense dataset. Existing work often assumes that
attackers have prior knowledge of the defense strategies being im-
plemented [65, 70], meaning they can train models on the defense
dataset. We also consider a more challenging scenario where the
attacker is unaware of the defense strategy.

We evaluated the performance of k-FP+, DF+, and H&W under
the defense mechanism. First, we trained and tested on the dataset
without packet padding as a performance baseline. Next, we as-
sessed the performance of various methods when the attackers

had prior knowledge of the defense strategy. As shown in Table 8,
packet-padding defenses did not effectively mitigate website finger-
printing attacks under adversarial conditions. For instance, when
N= 10, the accuracy of H&W remained at 95.5%, only about 3%
lower compared to the scenario without defense.

In the experiments where attackers were unaware of the de-
fense implementation, most website fingerprinting methods be-
came nearly ineffective, losing practical utility. This is because the
packet-padded test data introduced significant distribution differ-
ences compared to the original training data. However, it is impor-
tant to emphasize that users cannot rely on attackers’ ignorance
of the defense strategy. Instead, efforts should focus on developing
more robust defense mechanisms.
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