uPC: Scaling Predictive Coding to
100+ Layer Networks

Francesco Innocenti El Mehdi Achour
School of Engineering and Informatics UMBG6P College of Computing
University of Sussex, UK Rabat, Morocco
F.Innocenti@sussex.ac.uk elmehdi.achour@um6bp.ma
Christopher L. Buckley

School of Engineering and Informatics
University of Sussex, UK
VERSES AI Research Lab
Los Angeles, CA, USA
c.l.buckley@sussex.ac.uk

Abstract

The biological implausibility of backpropagation (BP) has motivated many alterna-
tive, brain-inspired algorithms that attempt to rely only on local information, such
as predictive coding (PC) and equilibrium propagation. However, these algorithms
have notoriously struggled to train very deep networks, preventing them from
competing with BP in large-scale settings. Indeed, scaling PC networks (PCNs)
has recently been posed as a challenge for the community [48]. Here, we show
that 100+ layer PCNss can be trained reliably using a Depth-uP parameterisation
[72, 3] which we call “xPC”. By analysing the scaling behaviour of PCNs, we
reveal several pathologies that make standard PCNs difficult to train at large depths.
We then show that, despite addressing only some of these instabilities, uPC allows
stable training of very deep (up to 128-layer) residual networks on simple classifi-
cation tasks with competitive performance and little tuning compared to current
benchmarks. Moreover, uPC enables zero-shot transfer of both weight and activity
learning rates across widths and depths. Our results serve as a first step towards
scaling PC to more complex architectures and have implications for other local
algorithms. Code for xPC is made available as part of a JAX library for PCNs. !

1 Introduction

Backpropagation (BP) is arguably the core algorithm behind the success of modern Al and deep
learning [52, 29]. Yet, it is widely believed that the brain cannot implement BP due to its non-local
nature [34], in that the update of any weight requires knowledge of all the weights deeper or further
downstream in the network. This fundamental biological implausibility of BP has motivated the study
of many local algorithms, including predictive coding (PC) [37, 36, 54, 63], equilibrium propagation
[59, 74], and forward learning [20], among others [33, 43, 8]. These algorithms offer the potential
for more energy efficient Al and have been argued to outperform BP in more biologically relevant

'https://github.com/thebuckleylab/jpc [23].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/thebuckleylab/jpc

H=8 —°e— H=16 —*— H=32 —e— H=64 —e— H =128 PC
H=38 H=16 H=32 —— H=64 —— H =128 uPC
- =— H =128 BP

H =128 —
(=} e
I Y =
[w0ty o 90
= 1071 Dons ~ e —o
2 — £ P
= \ —10’“&’ (@] - - _ - —e
1025 .“ E _———-—
102107 1 10 10% 10° S 50 ~— - =
Activity Ir (@]
O
H =16 ©
4+
. g o
- o
£ =
.g % l_
= £

3

Im'”
107t R 10 &= = = = = = = * - = ==== -
\\ i 300 600 900
10{65 107' 1 10 10? 10 !

Training iteration

Activity Ir

Figure 1: uPC enables stable training of 100+ layer ResNets with zero-shot learning rate transfer.
(Right) Test accuracy of ReLU ResNets with depths H = {8,16, 32, 64,128} trained to classify
MNIST for one epoch with standard PC, ;/PC and BP with Depth-uP (see §A.4 for details). Solid
lines and shaded regions indicate the mean and +1 standard deviation across 3 different random
seeds. These results hold across other activation functions (see Fig. A.16). See also Figs. A.17-A.19
for asymptotic results with 128-layer ReLU networks trained for multiple epochs on MNIST, Fashion-
MNIST and CIFARI10. (Left) Example of zero-shot transfer of the weight and activity learning rates
from 16- to 128-layer Tanh networks. See Figs. 5 & A.31-A.32 for an explanation and the complete
transfer results across widths as well as depths.

settings such as online and continual learning [61]. However, local learning rules have notoriously
struggled to train large and especially deep models on the scale of modern Al applications.”

For the first time, we show that very deep (100+ layer) networks can be trained reliably using a
Depth-pP-inspired parameterisation [72, 3] of PC which we call “pPC” (Fig. 1). To our knowledge,
no networks of such depth have been trained before with a local algorithm. Indeed, this has
recently been posed as a challenge for the PC community [48]. We start by showing that the
standard parameterisation of PC networks (PCNs) is inherently unscalable in that (i) the inference
landscape becomes increasingly ill-conditioned with model size and training time, and (ii) the
forward initialisation of the activities vanishes or explodes with the depth. We then show that, despite
addressing only the second instability, uPC is capable of training up to 128-layer fully connected
residual networks (ResNets) on standard classification tasks with competitive performance and little
tuning compared to current benchmarks (Fig. 1). Moreover, uPC enables zero-shot transfer of both
the weight and activity learning rates across widths and depths (Fig. 5). We make code for uPC
available as part of a JAX library for PCNs at https://github. com/thebuckleylab/jpc [23].

The rest of the paper is structured as follows. Following a brief review of the maximal update
parameterisation (P) and PCNs (§2), Section 3 exposes two distinct pathologies in standard PCNs
which make training at large scale practically impossible. Motivated by these findings, we then
suggest a minimal set of desiderata for a more scalable PCN parameterisation (§4). Section 5 presents
experiments with ©PC, and Section 6 studies a specific regime where PC converges to BP. We
conclude with the limitations of this work and promising directions for future research (§7). For space
reasons, we include related work and additional experiments in Appendix A, along with derivations,
experimental details and supplementary figures.

Mt is possible that these algorithms are more suited to alternative, non-digital hardware, but their scalability
can still be investigated on standard GPUs. Indeed, the issues we expose with the standard parameterisation of
PCNs can be argued to be hardware-independent (§3.1).

https://github.com/thebuckleylab/jpc

1.1 Summary of contributions

* We show that ©PC, which reparameterises PCNs using Depth-uP [72, 3], allows stable
training of very deep (100+ layer) ResNets on simple classification tasks with competitive
performance and little tuning compared to current benchmarks [48] (Figs. 1 & A.17-A.18).

» PC also empirically enables zero-shot transfer of both the weight and activity learning
rates across widths and depths (Figs. 5 & A.31-A.32).

* We achieve these results by a theoretical and empirical analysis of the scaling behaviour of
the inference landscape and dynamics of PCNs (§3), revealing the following two pathologies:

— the inference landscape becomes increasingly ill-conditioned with model size (Fig. 2)
and training time (Fig. 3) (§3.1); and

— the forward pass of standard PCNs vanishes or explodes with the depth (§3.2).

» To address these instabilities, we propose a minimal set of desiderata that PCNs should
aim to satisfy to be trainable at scale (§4), revealing an apparent trade-off between the
conditioning of the inference landscape and the stability of the forward pass (Fig. 4). This
analysis can be applied to other inference-based algorithms (§A.2.5).

* To better understand pPC, we study a theoretical regime where the ¢ /PC energy converges to
the mean squared error (MSE) loss and so PC effectively implements BP (Theorem 1, Fig.
6). However, we find that uPC can successfully train deep networks far from this regime.

2 Background

2.1 The maximal update parameterisation (uP)

The maximal update parameterisation was first introduced by [70] to ensure that the order of the
activation or feature updates at each layer remains stable with the width V. This was motivated by
the lack of feature learning in the neural tangent kernel or “lazy” regime [27], where the activations
remain practically unchanged during training [6, 31]. More formally, uP can be derived from the
following 3 desiderata [70]: (i) the layer preactivations are Oy (1) at initialisation, (ii) the network
output is O (1) during training, and (iii) the layer features are also Oy (1) during training.’

Satisfying these desiderata boils down to solving a system of equations for a set of scalars (commonly
referred to as “abcd”) parameterising the layer transformation, the (Gaussian) initialisation variance,
and the learning rate [7 1, 44]. Different optimisers and types of layer lead to different scalings. One
version of pP (and the version we will be using here) initialises all the weights from a standard
Gaussian and rescales each layer transformation by 1/,/N,_1, with the exception of the output
which is scaled by 1/Ny,_;. Remarkably, uP allows not only for more stable training dynamics but
also for zero-shot hyperparameter transfer: tuning a small model parameterised with uP guarantees
that optimal hyperparameters such as the learning rate will transfer to a wider model [69, 42].

More recently, uP has been extended to depth for ResNets (“Depth-uP”) [72, 3], such that transfer

is also conserved across depths L. This is done by mainly introducing a 1/ V'L scaling before each
residual block. Extensions of standard pP for other algorithms have also been proposed [25, 26, 14, 9].

2.2 Predictive coding networks (PCNs)

We consider the following general parameterisation of the energy function of L-layered PCNs [5]:

L
1
F= §: §||ze — agWyoy(2ze-1) — Tezp || %
=1

with weights W, € RNexNe—1 - activities z, € R™V¢ and activation function ¢,(-). Dense weight
matrices could be replaced by convolutions, all assumed to be initialised i.i.d. from a Gaussian
(Wy)ij ~ N(0,be) with variance scaled by b,. We omit multiple data samples to simplify the
notation, and ignore biases since they do not affect the main analysis, as explained in §A.2.1. We
also add scalings a, € R and optional skip or residual connections set by 7, € {0, 1}.

*Throughout, we will use Oy, (1) to mean ©,,(1) such that the activations neither explode nor vanish with n.

Linear

O

2t 22 23 2% 25 268 27

2t 22 23 2% 25 26 27 2t 22 23 2% 25 26 27

H H , H

\

/

Figure 2: Wider and particulary deeper PCNs have a more ill-conditioned inference landscape.
We plot the condition number of the activity Hessian «(H,) (lower is better) of randomly initialised
fully connected networks as a function of the width /N and depth H (see §A.4 for details). Insets
show 2D projections of the landscape of selected networks around the linear solution (Eq. 4) along
the maximum and minimum eigenvectors of the Hessian F(z* + aVyin + SVmax). Note that the
ill-conditioning is much more extreme for ResNets (see Fig. A.22). Results were similar across
different seeds.

The energy of the last layer is defined as F; = %||zL — arWror(zr_1)||? for some target

z;, =y € R%= while the energy of the first layer is F; = %||z1 — a1 W1zo||?, with some optional
input zg := x € R%= for supervised (vs unsupervised) training.* We will refer to PC or SP as the
“standard parameterisation” with unit premultipliers a;, = 1 for all ¢ and standard initialisations
[30, 11, 18] such as by = 1/Ny_1, and to pPC as that which uses (some of) the scalings of Depth-z.P
(§2.1). See Table 1 for a summary.

We fix the width of all the hidden layers N = N; = --- = Ny where H = L — 1 is the number
of hidden layers. We use 8 := {vec(W,)}l_, € RP to represent all the weights with p as the total
number of parameters and z = {z,}L, € RVH to denote all the activities free to vary. Note that,
depending on the context, we will use both H and L to refer to the network depth.

PCNss are trained by minimising the energy (Eq. 1) in two separate phases: first with respect to the
activities (inference) and then with respect to the weights (learning),

Infer: min F 2) Learn: main]-". 3

Inference acts on a single data point and is generally performed by gradient descent (GD), z;11 =
z; — BV, F with step size 5. The weights are often updated at numerical convergence of the inference
dynamics, when V,F ~ 0. Our theoretical results will mainly address the first optimisation problem
(Eq. 2), namely the inference landscape and dynamics, but we discuss and numerically investigate
the impact on the learning dynamics (Eq. 3) wherever relevant.

3 Instability of the standard PCN parameterisation

In this section, we reveal through both theory and experiment that the standard parameterisation
(SP) of PCNs suffers from two instabilities that make training and convergence of the PC inference
dynamics (Eq. 2) at large scale practically impossible. First, the inference landscape of standard PCNs
becomes increasingly ill-conditioned with model size and training time (§3.1). Second, depending

“Many of our theoretical results can be extended to the unsupervised case (see §A), but for ease of presentation
we will focus on the supervised case.

SWe distinguish between pPC and Depth-pP for brevity, to encapsulate both the algorithm and the parameter-
isation in a single acronym.

Linear Tanh ReLLlU

Training iteration Training iteration Training iteration

80 H

60

40

20 ﬁ

100 500 900 100 500 900 100 500 900
Training iteration Training iteration Training iteration

Test accuracy (%)
B
o

Test accuracy (%)
»
o

Test accuracy (%)

Figure 3: The inference landscape of PCNs grows increasingly ill-conditioned with training. We
plot the condition number of the activity Hessian (Eq. 5) (fop) as well as test accuracies (bottom) for
fully connected networks of depths H € {8, 16, 32} during one epoch of training. All networks had
width NV = 128 and were trained to classify MNIST (see §A.4 for more details). Similar results are
observed for ResNets (Fig. A.9) and Fashion-MNIST (Fig. A.23). Solid lines and shaded regions
indicate the mean and standard deviation over 3 random seeds.

on the model, the feedforward pass either vanishes or explodes with the depth (§3.2). The second
problem is shared with BP-trained networks, while the first instability is unique to PC and likely any
other algorithm performing inference minimisation (§A.2.5).

3.1 Ill-conditioning of the inference landscape

Here we show that the inference landscape of standard PCNs becomes increasingly ill-conditioned
with network width, depth and training time. As reviewed in §2.2, the inference phase of PC (Eq. 2)
is commonly performed by GD. For a deep linear network (DLN, Eq. 1 with ¢, = I for all £), one
can solve for the activities in closed form as shown by [26],

V. F=H,z—b=0 — z*=H]'b 4)

where (Hy), == 0>F é@zwzk e RWWH)X(NH) s the Hessian of the energy with respect to the
activities, and b € RV# js a sparse vector depending only on the data and associated weights (see
§A.2.1 for details). Eq. 4 shows that for a DLN, PC inference is a well-determined linear problem.(‘

For arbitrary DLNs, one can also prove that the inference landscape is strictly convex as the Hessian
is positive definite’, H, > 0 (Theorem A.1; see §A.2.2 for proof). This makes intuitive sense since
the energy (Eq. 1) is quadratic in z. The result is empirically verified for DLNs in Figs. A.5-A.7 and
appears to generally hold for nonlinear networks (see Figs. A.7 & A.22).

For such convex problems, the convergence rate of GD is known to be given by the condition number
of the Hessian [4, 41], K(Hz) = |Amax|/|Amin|- Intuitively, the higher the condition number, the more
elliptic the level sets of the energy J(z) become, and the more iterations GD will need to reach the
solution (see Fig. A.21), with the step size bounded by the highest curvature direction 8 < 2/Apax
(see Fig. A.10 for an example). For non-convex problems, it can still be useful to have a notion of
local conditioning [e.g. 73].

What determines the condition number of H,? Looking more closely at the structure of the Hessian

I+a? WI W, =k

82.7: _ —ak+1wk+1, {—k=1 (5)
02,02y, o —CL[+1W£L1, {—k=-1"
0, else

SThis contrasts with the weight landscape (@), which grows nonlinear with the depth even for DLNs [22].
"We note that this was claimed to be proved by [39]; however, they only showed that the block diagonals of
the Hessian are positive definite, ignoring the layer, off-diagonal interactions.

one realises that it depends on two main factors: (i) the network architecture, including the width NV,
depth L and connectivity; and (ii) the value of the weights at any time during training 6;. We first
find that the inference landscape of standard PCNs becomes increasingly ill-conditioned with the
width and particularly depth (Fig. 2), and extremely so for ResNets (Fig. A.22). See also §A.2.3 for a
random matrix theory analysis of the scaling behaviour of the initialised Hessian eigenspectrum with
N and L. In addition, we observe that the ill-conditioning grows and spikes during training (Figs. 3,
A9, A.23 & A.25), and using an adaptive optimiser such as Adam [28] does not seem to help (Figs.
A.8 & A.24). Together, these findings help to explain why the convergence of the GD inference
dynamics (Eq. 2) can dramatically slow down on deeper models [23, 48], while also highlighting that
small inference gradients—which are commonly used to determine convergence—do not necessarily
imply closeness to a solution.

3.2 Vanishing/exploding forward pass

In the previous section (§3.1), we saw that the growing ill-conditioning of the inference landscape
with the model size and training time is one likely reason for the challenging training of PCNs at
large scale. Another reason—and as we will see the key reason—is that the forward initialisation of
the activities can vanish or explode with the depth. This is a classic finding in the neural network
literature that has been surprisingly ignored for PCNs. For fully connected networks with standard
initialisations [30, 11, 18], the forward pass vanishes with the depth, leading to vanishing gradients.
This issue can be addressed with residual connections [19] and various forms of activity normalisation
[24, 1], both of which remain key components of the modern transformer block [64].

However, while there have been attempts to train ResNets with PC [48], they have been without
activity normalisation. This is likely because any kind of normalisation of the activities seems at odds
with convergence of the inference dynamics to a solution (Eq. 2). Without normalisation, however,
the activations (and gradients) of vanilla ResNets explode with the depth (see Fig. A.30). A potential
remedy would be to normalise only the forward pass, but here we will aim to take advantage of more
principled approaches with stronger guarantees about the stability of the forward pass (§4).

4 Desiderata for stable PCN parameterisation

In §3, we exposed two main pathologies in the scaling behaviour of standard PCNs: (i) the growing
ill-conditioning of the inference landscape with model size and training time (§3.1), and (ii) the
instability of the forward pass with depth (§3.2). These instabilities motivate us to specify a minimal
set of desiderata that we would like a PCN to satisfy to be trainable at large scale.’

Desideratum 1. Stable forward pass at initialisation. At initialisation, all the layer preacti-
vations are stable independent of the network width and depth, ||z¢|| ~ O, 1 (1) for all ¢,
where zy = hy(... h1(x)) with hy(-) as the map relating one layer to the next.

To our knowledge, there are two approaches that provide strong theoretical guarantees about this
desideratum: (i) orthogonal weight initialisation for both fully connected [58, 46, 47, 68] and
convolutional networks [68], ensuring that W} W, = I at every layer ¢; and (ii) the recent Depth-z.P
parameterisation [72, 3] (see §2.1 for a review). For a replication of these results, see Fig. A.30. To
apply Depth-uP to PC, we simply reparameterise the PC energy for ResNets (Eq. 1 with 7, = 1 for
¢=2,...,H and 7, = 0 otherwise) with the layer scalings of Depth-uP (see Table 1).” We call this
reparameterisation pPC.

8We do not see these desiderata as strict (necessary or sufficient) conditions, since relatively small PCNs can
be trained competitively without satisfying them, and other conditions might be needed for successful training.

° uP and Depth-P also include an optimiser-dependent scaling of the learning rate. However, we found this
scaling to be suboptimal for PC as discussed in §7.

Linear Tanh ReLU

102
—
T
10!
<
10°

20 22 23 2% 25 28 27

H
10

~

=)
10°

N—

- 2
10!

21 22 23 24 25 26 27 21 22 23 24 25 26 27 21 22 23 24 25 26 27

H H H

orthog. =

2t 22 23 2% 25 28 27 2t 22 23 2% 25 26 27

H H

uPC

Figure 4: Parameterisations with stable forward passes induce highly ill-conditioned inference
landscapes with depth. We plot the conditioning of the activity Hessian of randomly initialised
networks over width N and depth H for the 4PC and orthogonal parameterisations. Networks with
and without residual connections were used for these respective parameterisations. Note that ReLU
networks with orthogonal initialisation cannot achieve stable forward passes (see Fig. A.30). Results
were similar across different seeds.

Table 1: Summary of parameterisations. Standard PC has unit layer premultipliers and weights
initialised from a Gaussian with variance scaled by the input width at every layer N,_;. uPC uses a
standard Gaussian initialisation and adds width- and depth-dependent scalings at every layer.

a (input weights) a, (hidden weights) ay, (output weights) by (init. variance)

PC 1 1 1 N
pPC N, /2 (No_yL)=1/2 N Y 1

We would like Desideratum 1 to hold throughout training as we state in the following desideratum.

Desideratum 2. Stable forward pass during training. The forward pass is stable during
training such that Desideratum 1 is true for all training steps t = 1,...,7".

Depth-uP ensures this desideratum for BP, but we do not know whether the same will apply to
uPC. We return to this point in §7. For the orthogonal parameterisation, the weights should remain
orthogonal during training to satisfy Desideratum 2, which could be encouraged with some kind of
regulariser. Next, we address the ill-conditioning of the inference landscape (§3.1), again first at
initialisation.

Desideratum 3. Stable conditioning of the inference landscape at initialisation. The condi-
tion number of the activity Hessian (Eq. 5) at initialisation stays constant with the network
width and depth, k(H,) ~ On g (1).

Ideally, we would like the PC inference landscape to be perfectly conditioned, i.e. x(H,) = 1.
However, this cannot be achieved without zeroing out the weights, H,(6 = 0) = I, since the Hessian
is symmetric and so it can only have all unit eigenvalues if it is the identity. Starting with small
weights (Wp);; < 1 at the cost of slightly imperfect conditioning is not a solution, since the forward
pass vanishes, thus violating Desideratum 1. See §A.3.3 for another intervention that appears to come
at the expense of performance.

What about the above parameterisations ensuring stable forward passes? Interestingly, both orthogonal
initialisation and pPC induce highly ill-conditioned inference landscapes with the depth (Fig. 4),
similar to standard PC ResNets (Fig. A.22). This highlights a potential trade-off between the stability
of the forward pass (technically, the conditioning of the input-output Jacobian) and the conditioning
of the activity Hessian. Because PCNs with ill-conditioned inference landscapes can still be trained
(e.g. see Fig. 3), we will choose to satisfy Desideratum 1 at the expense of Desideratum 3, while
seeking to prevent the condition number from exploding during training.

Desideratum 4. Stable conditioning of the inference landscape during training. The
condition number of the activity Hessian (Eq. 5) is stable throughout training such that
k(Hz(t)) = k(H,(t — 1)) for all training steps t = 1,..., 7.

S Experiments

We performed experiments with parameterisations ensuring stable forward passes at initialisation
(Desideratum 1), namely p4PC and orthogonal, despite their inability to solve the ill-conditioning of
the inference landscape with depth (Desideratum 3; Fig. 4). Due to limited space, we report results
only for PC since orthogonal initialisation was not found to be as effective (see §A.3.4). We trained
fully connected residual PCNs on standard image classification tasks (MNIST, Fashion-MNIST
and CIFAR10). This simple setup was chosen because the main goal was to test whether uPC is
capable of training deep PCNs—a task that has proved challenging with more complex datasets and
architectures [48]. We note that all the networks used as many inference steps as hidden layers (see
Figs. A.14 & A.27 for results with one step).

First, we trained ResNets of varying depth (up to 128 layers) to classify MNIST for a single
epoch. Remarkably, we find that yPC allows stable training of networks of all depths across
different activation functions (Figs. 1 & A.16). These networks were tuned only for the weight
and activity learning rates, with no other optimisation techniques such as momentum, weight decay,
and nudging, as used in previous studies [48]. Competitive performance (= 98%) is achieved in
5 epochs (Fig. A.17), 5x faster than the current benchmark [48]. Similar results are observed on
Fashion-MNIST, where competitive accuracy (~ 89%) is reached in fewer than 15 epochs (Fig.
A.18). On CIFARI1O0, performance is far from SOTA because of the fully connected (as opposed to
convolutional) architectures used, but uPC remains trainable at large depth (Fig. A.19).

Low Training loss High
=64 = 128 = 256 =512 = 1024
B L I =
T, S, : o |
z = | g
E’ = - =1
E 103 l“’ I lm”m 10,2
2 107t 1 10 10% 10° 210 ’ 1 10 102 10° - 1 10 102 10° 210 1 10 10% 10 10’ 1 10 10° 10
Activity Ir (log) Activity Ir (log) Activity Ir (log) Activity Ir (log) Activity Ir (log)
=16 =32 =64 =128
b ol —w T : %
E, n \ \ \ : 022
@ [
2 | | Y \ -
105 10’ 1 10 10° 10° et 2\ 2100 1 10 10° 10 10 2\ 1 10 102 10 107 110 102 10 10 0 1 10 102 10
Activity Ir (log) Activity Ir (log) Activity Ir (log) Activity Ir (log) Activity Ir (log)

Figure 5: uPC enables zero-shot transfer of the weight and activity learning rates across widths
N and depths . Minimum training loss (log) achieved by ResNets of varying width and depth
trained with 4PC on MNIST across different weight and activity learning rates. All networks had
Tanh as nonlinearity (see Figs. A.31-A.32 for other activation functions); those with varying width
(first row) had 8 hidden layers, and those with varying the depth (second row) had 512 hidden units
(see §A.4 for details). Each contour was averaged over 3 random seeds.

Strikingly, we also find that 4PC enables zero-shot transfer of both the weight and activity learning
rates across widths and depths (Figs. 5 & A.31-A.32), consistent with recent results with Depth-yP
[72, 3]. This means that one can tune a small PCN and then transfer the optimal learning rates
to wider and/or deeper PCNs—a process that is particularly costly for PC since it requires two
separate learning rates. In fact, this is precisely how we obtained the Fashion-MNIST (Fig. A.18)
and CIFAR10 (Fig. A.19) results: by performing transfer from 8- to 128-layer networks, avoiding the
expensive tuning at large scale.

6 Is .PC BP?

Why does ¢PC seem to work so well despite failing to solve the ill-conditioning of the inference
landscape with depth (Fig. 4)? Depth- P also satisfies other, BP-specific desiderata that PC might not
require or benefit from. Here we show that while there is a practical regime where pPC approximates
BP, it turns out to be brittle, and so BP cannot explain the success of yPC (at least on the tasks
considered). In particular, it is possible to show that, when the width is much larger than the depth
N > L, at initialisation the PC energy at the inference equilibrium converges to the MSE loss. In
this regime, PC computes the same gradients as BP and all the Depth-uP theory applies.

Theorem 1 (Limit Convergence of uPC to BP). Let F,pc(0,2) be the PC energy of a
randomly initialised linear ResNet (Eq. 1 with 7y = 1 for { = 2,... . H and 1 = 0
otherwise) parameterised with Depth-pP (Table 1) and L,,p(0) its corresponding MSE loss.
Then, as the aspect ratio of the network v := L/N vanishes, the equilibrated energy (Eq. 31)
converges to the loss (see §A.2.6 for proof)

r— O, .F#pc(a, Z*) = ﬁﬂp(a) (6)

The result relies on a recent derivation of the equilibrated energy as a rescaled MSE loss for DLNs
[22]. We simply extend this to linear ResNets and show that the rescaling approaches the identity
with ¢PC in the above limit. Fig. 6 shows that the result holds at initialisation (¢ = 0), with the
equilibrated energy converging to the loss when the width is around 32 x the depth. (Note that the
deepest networks (H = 128, N = 512) we tested in the previous section had a much smaller aspect
ratio, r = 4.) Nevertheless, we observe that the equilibrated energy starts to diverge from the loss
with training at large width and depth (Fig. 6). Note also that we do not know the inference solution
for nonlinear networks. We therefore leave further theoretical study of pPC to future work. See also
§A.1 for a discussion of how Theorem 1 relates to previous correspondences between PC and BP.

t=200

103

20 21 22 23 24 25 26 200 21 22 23 24 25 26 200 21 22 23 24 25 26

H H H

Figure 6: Convergence/Divergence of ;/PC to BP for linear ResNets. To verify Theorem 1 (Eq.
6), we plot the ratio between the MSE loss and the equilibrated uPC energy of linear ResNets (Eq.
31) at different training points ¢ as a function of the width IV and depth H (see §A.4 for details).
We observe that while at initialisation (¢! = 0) the equilibrated energy converges to the loss as the
the width grows relative to the depth (verifying Theorem 1), the correspondence breaks down with
training at large depth and width. Results were similar across different runs.

7 Discussion

In summary, we showed that it is possible to reliably train very deep (100+ layer) networks with a
local learning algorithm. We achieved this via a Depth-uP-like reparameterisation of PCNs which
we labelled uPC. We found that uPC is capable of training very deep networks with little tuning
and competitive performance on simple classification tasks (Fig. 1), while also enabling zero-shot
transfer of weight and activity learning rates across widths and depths (Fig. 5).

1PC and inference ill-conditioning. Despite its relative success, uPC failed to solve the growing
ill-conditioning of the inference landscape with the network depth (Desideratum 3; Fig. 4). This
can be explained by two additional findings. First, the forward pass of ¢PC seems to initialise the
activities much closer to the analytical solution (Eq. 4) for DLNs than standard PC (Fig. A.35).
Second, training ©PC networks with a single inference step (as opposed to as many as hidden layers)
led to performance degradation not only during training, but also with depth (Figs. A.14 & A.27).
Together, these results suggest that a stable forward pass, as ensured by pPC, is critical not only for
performance but also for dealing with landscape ill-conditioning, by initialising the activities closer
to a solution such that only a few (empirically determined) inference steps are needed. This is also
consistent with the finding that while inference convergence is necessary for successful training of
the SP, it does not appear sufficient for good generalisation (see §A.3.6). It would be interesting to
study ¢PC in more detail in linear networks given their analytical tractability.

Another recent study investigated the problem of training deep PCNs [12], showing an exponential
decay in the activity gradients over depth. This result can be seen as a consequence of the ill-
conditioning of the inference landscape with depth (Fig. 2), since flat regions where the forward pass
seems to initialise the activities (see §A.3.2) have small gradients, and depth drives ill-conditioning.
[12] proposed a reparameterisation of PCNs leveraging BP for faster inference convergence on GPUs,
and it could be interesting to combine this approach with yPC, especially for generation tasks or
more complex datasets where more inference steps might be necessary for good performance.

1PC and the other Desiderata. Did pPC satisfy some other Desiderata (§4) besides the stability of
the forward pass at initialisation (Desideratum 1)? When experimenting with uPC, we tried including
the Depth-P scalings only in the forward pass (i.e. removing them from the energy or even just the
inference or weight gradients). However, this always led to non-trainable networks even at small
depths, suggesting that the Depth-uP scalings are also beneficial for the PC inference and learning
dynamics and that the resulting updates are likely to keep the forward pass stable during training
(Desideratum 2). Deriving principled scalings specific to PC could help explain these findings or
even lead to better scalings. Finally, 4PC did not seem to prevent the ill-conditioning of the inference
landscape from growing with training (see Figs. A.28 & A.29), thus violating Desideratum 4.

Is uPC optimal? PC unlikely to be the optimal parameterisation for PCNs. This is because we
adapted, rather than derived, principled (Depth-uP) scalings for BP, with only guarantees about the
stability of the forward pass. Indeed, we did not rescale the learning rate of Adam (used in all our
experiments) by v/ NV L as prescribed by Depth-uP [72], since this scaling always led to non-trainable
networks. We note that depth transfer has also been achieved without this scaling [3, 42] and that
the optimal depth scaling is still an active area of research [10]. It would also be useful to better
understand the relationship between pPC and the (width-only) uP parameterisation for PC proposed
by [26] (see §A.1 for a comparison). More generally, it would therefore be potentially impactful to
derive principled scalings specific to PC. While an analysis far from inference equilibrium appears
challenging, one could start with the order of the weight updates of the equilibrated energy of linear
ResNets (Eq. 31).

Other future directions. Given the recent successful application of Depth-uP to convolutional
networks and transformers [3, 42], it would be interesting to investigate whether these more complex
architectures can be successfully trained on large-scale datasets with PC. Our analysis of the
inference landscape can also be applied to any other algorithm performing some kind of inference
minimisation (see §A.2.5 for a preliminary investigation of equilibrium propagation), and it could be
interesting to see whether these algorithms could also benefit from pP-like parameterisation.

10

Acknowledgements

FI is funded by the Sussex Neuroscience 4-year PhD Programme. EMA acknowledges funding by
UMBG6P and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project
number 442047500 through the Collaborative Research Center “Sparsity and Singular Structures”
(SFB 1481) as he started this project at RWTH Aachen University. CLB was partially supported
by the European Innovation Council (EIC) Pathfinder Challenges, Project METATOOL with Grant
Agreement (ID: 101070940). FI would like to thank Alexandru Meterez and Lorenzo Noci for their
help in better understanding pP, and Ivor Simpson for providing access to GPUs used to run some of
the experiments.

References

[1] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

[2] N.P. Baskerville, J. P. Keating, F. Mezzadri, J. Najnudel, and D. Granziol. Universal character-
istics of deep neural network loss surfaces from random matrix theory. Journal of Physics A:
Mathematical and Theoretical, 55(49):494002, 2022.

[3] B. Bordelon, L. Noci, M. B. Li, B. Hanin, and C. Pehlevan. Depthwise hyperparameter transfer
in residual networks: Dynamics and scaling limit. arXiv preprint arXiv:2309.16620, 2023.

[4] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

[5] C. L. Buckley, C. S. Kim, S. McGregor, and A. K. Seth. The free energy principle for action
and perception: A mathematical review. Journal of Mathematical Psychology, 81:55-79, 2017.

[6] L. Chizat, E. Oyallon, and F. Bach. On lazy training in differentiable programming. Advances
in neural information processing systems, 32, 2019.

[7] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun. The loss surfaces of
multilayer networks. In Artificial intelligence and statistics, pages 192-204. PMLR, 2015.

[8] G. Dellaferrera and G. Kreiman. Error-driven input modulation: solving the credit assignment
problem without a backward pass. In International Conference on Machine Learning, pages
4937-4955. PMLR, 2022.

[9] N. Dey, S. Bergsma, and J. Hestness. Sparse maximal update parameterization: A holistic
approach to sparse training dynamics. arXiv preprint arXiv:2405.15743, 2024.

[10] N. Dey, B. C. Zhang, L. Noci, M. Li, B. Bordelon, S. Bergsma, C. Pehlevan, B. Hanin, and
J. Hestness. Don’t be lazy: Completep enables compute-efficient deep transformers. arXiv
preprint arXiv:2505.01618, 2025.

[11] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence
and statistics, pages 249-256. JMLR Workshop and Conference Proceedings, 2010.

[12] C. Goemaere, G. Oliviers, R. Bogacz, and T. Demeester. Error optimization: Overcoming
exponential signal decay in deep predictive coding networks. arXiv preprint arXiv:2505.20137,
2025.

[13] D. Granziol. Beyond random matrix theory for deep networks. arXiv preprint arXiv:2006.07721,
2020.

[14] M. Haas, J. Xu, V. Cevher, and L. C. Vankadara. Effective sharpness aware minimization
requires layerwise perturbation scaling. In High-dimensional Learning Dynamics 2024: The
Emergence of Structure and Reasoning, 2024.

[15] M. Hardt and T. Ma. Identity matters in deep learning. arXiv preprint arXiv:1611.04231,2016.

11

[16] S.Hayou. Commutative scaling of width and depth in deep neural networks. Journal of Machine
Learning Research, 25(299):1-41, 2024.

[17] S. Hayou and G. Yang. Width and depth limits commute in residual networks. In International
Conference on Machine Learning, pages 12700-12723. PMLR, 2023.

[18] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE international conference
on computer vision, pages 1026-1034, 2015.

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770—
778, 2016.

[20] G. Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv preprint
arXiv:2212.13345, 2022.

[21] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge university press, 2012.

[22] F. Innocenti, E. M. Achour, R. Singh, and C. L. Buckley. Only strict saddles in the energy
landscape of predictive coding networks? Advances in Neural Information Processing Systems,
37:53649-53683, 2025.

[23] F. Innocenti, P. Kinghorn, W. Yun-Farmbrough, M. D. L. Varona, R. Singh, and C. L. Buckley.
Jpc: Flexible inference for predictive coding networks in jax. arXiv preprint arXiv:2412.03676,
2024.

[24] S. IToffe. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. arXiv preprint arXiv:1502.03167, 2015.

[25] S. Ishikawa and R. Karakida. On the parameterization of second-order optimization effective
towards the infinite width. arXiv preprint arXiv:2312.12226, 2023.

[26] S. Ishikawa, R. Yokota, and R. Karakida. Local loss optimization in the infinite width: Sta-
ble parameterization of predictive coding networks and target propagation. arXiv preprint
arXiv:2411.02001, 2024.

[27] A.Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in
neural networks. Advances in neural information processing systems, 31, 2018.

[28] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[29] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436-444, 2015.

[30] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Miiller. Efficient backprop. In Neural networks:
Tricks of the trade, pages 9-50. Springer, 2002.

[31] J. Lee, L. Xiao, S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-Dickstein, and J. Pennington. Wide
neural networks of any depth evolve as linear models under gradient descent. Advances in
neural information processing systems, 32, 2019.

[32] Z.Liao and M. W. Mahoney. Hessian eigenspectra of more realistic nonlinear models. Advances
in Neural Information Processing Systems, 34:20104-20117, 2021.

[33] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman. Random synaptic feedback
weights support error backpropagation for deep learning. Nature communications, 7(1):13276,
2016.

[34] T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, and G. Hinton. Backpropagation and the
brain. Nature Reviews Neuroscience, 21(6):335-346, 2020.

[35] V. A. Marchenko and L. A. Pastur. Distribution of eigenvalues for some sets of random matrices.
Matematicheskii Sbornik, 114(4):507-536, 1967.

12

[36] B. Millidge, T. Salvatori, Y. Song, R. Bogacz, and T. Lukasiewicz. Predictive coding: towards a
future of deep learning beyond backpropagation? arXiv preprint arXiv:2202.09467, 2022.

[37] B. Millidge, A. Seth, and C. L. Buckley. Predictive coding: a theoretical and experimental
review. arXiv preprint arXiv:2107.12979, 2021.

[38] B. Millidge, Y. Song, T. Salvatori, T. Lukasiewicz, and R. Bogacz. Backpropagation at the
infinitesimal inference limit of energy-based models: Unifying predictive coding, equilibrium
propagation, and contrastive hebbian learning. arXiv preprint arXiv:2206.02629, 2022.

[39] B. Millidge, Y. Song, T. Salvatori, T. Lukasiewicz, and R. Bogacz. A theoretical framework for
inference and learning in predictive coding networks. arXiv preprint arXiv:2207.12316, 2022.

[40] B. Millidge, A. Tschantz, and C. L. Buckley. Predictive coding approximates backprop along
arbitrary computation graphs. Neural Computation, 34(6):1329-1368, 2022.

[41] Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

[42] L. Noci, A. Meterez, T. Hofmann, and A. Orvieto. Super consistency of neural network
landscapes and learning rate transfer. Advances in Neural Information Processing Systems,
37:102696-102743, 2025.

[43] A. Payeur, J. Guerguiev, F. Zenke, B. A. Richards, and R. Naud. Burst-dependent synaptic
plasticity can coordinate learning in hierarchical circuits. Nature neuroscience, 24(7):1010-
1019, 2021.

[44] C. Pehlevan and B. Bordelon. Lecture notes on infinite-width limits of neural networks. 2023.

[45] J. Pennington and Y. Bahri. Geometry of neural network loss surfaces via random matrix theory.
In International conference on machine learning, pages 2798-2806. PMLR, 2017.

[46] J. Pennington, S. Schoenholz, and S. Ganguli. Resurrecting the sigmoid in deep learning
through dynamical isometry: theory and practice. Advances in neural information processing
systems, 30, 2017.

[47] J. Pennington, S. Schoenholz, and S. Ganguli. The emergence of spectral universality in deep
networks. In International Conference on Artificial Intelligence and Statistics, pages 1924-1932.
PMLR, 2018.

[48] L. Pinchetti, C. Qi, O. Lokshyn, G. Olivers, C. Emde, M. Tang, A. M’Charrak, S. Frieder,
B. Menzat, R. Bogacz, et al. Benchmarking predictive coding networks—made simple. arXiv
preprint arXiv:2407.01163, 2024.

[49] C. Qi, T. Lukasiewicz, and T. Salvatori. Training deep predictive coding networks. In New
Frontiers in Associative Memories, 2025.

[50] D. A. Roberts, S. Yaida, and B. Hanin. The principles of deep learning theory, volume 46.
Cambridge University Press Cambridge, MA, USA, 2022.

[51] R. Rosenbaum. On the relationship between predictive coding and backpropagation. Plos one,
17(3):e0266102, 2022.

[52] D.E.Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating
errors. nature, 323(6088):533-536, 1986.

[53] D. K. Salkuyeh. Comments on “a note on a three-term recurrence for a tridiagonal matrix”.
Applied mathematics and computation, 176(2):442-444, 2006.

[54] T. Salvatori, A. Mali, C. L. Buckley, T. Lukasiewicz, R. P. Rao, K. Friston, and A. Ororbia. Brain-

inspired computational intelligence via predictive coding. arXiv preprint arXiv:2308.07870,
2023.

13

[55] T. Salvatori, L. Pinchetti, B. Millidge, Y. Song, T. Bao, R. Bogacz, and T. Lukasiewicz. Learning
on arbitrary graph topologies via predictive coding. Advances in neural information processing
systems, 35:38232-38244, 2022.

[56] T. Salvatori, Y. Song, T. Lukasiewicz, R. Bogacz, and Z. Xu. Predictive coding can do exact back-
propagation on convolutional and recurrent neural networks. arXiv preprint arXiv:2103.03725,
2021.

[57] T. Salvatori, Y. Song, B. Millidge, Z. Xu, L. Sha, C. Emde, R. Bogacz, and T. Lukasiewicz.
Incremental predictive coding: A parallel and fully automatic learning algorithm. arXiv preprint
arXiv:2212.00720, 2022.

[58] A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

[59] B. Scellier and Y. Bengio. Equilibrium propagation: Bridging the gap between energy-based
models and backpropagation. Frontiers in computational neuroscience, 11:24, 2017.

[60] Y. Song, T. Lukasiewicz, Z. Xu, and R. Bogacz. Can the brain do backpropagation?—exact im-
plementation of backpropagation in predictive coding networks. Advances in neural information
processing systems, 33:22566-22579, 2020.

[61] Y. Song, B. Millidge, T. Salvatori, T. Lukasiewicz, Z. Xu, and R. Bogacz. Inferring neural
activity before plasticity: A foundation for learning beyond backpropagation. bioRxiv, pages
2022-05, 2022.

[62] R. Van Handel. Structured random matrices. Convexity and concentration, pages 107-156,
2017.

[63] B. van Zwol, R. Jefferson, and E. L. Broek. Predictive coding networks and inference learning:
Tutorial and survey. arXiv preprint arXiv:2407.04117, 2024.

[64] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, .. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,

30, 2017.

[65] H. Weyl. Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differential-
gleichungen (mit einer anwendung auf die theorie der hohlraumstrahlung). Mathematische
Annalen, 71(4):441-479, 1912.

[66] J. C. Whittington and R. Bogacz. An approximation of the error backpropagation algorithm
in a predictive coding network with local hebbian synaptic plasticity. Neural computation,
29(5):1229-1262, 2017.

[67] E. P. Wigner. Characteristic vectors of bordered matrices with infinite dimensions i. The
Collected Works of Eugene Paul Wigner: Part A: The Scientific Papers, pages 524-540, 1993.

[68] L. Xiao, Y. Bahri, J. Sohl-Dickstein, S. Schoenholz, and J. Pennington. Dynamical isometry and
a mean field theory of cnns: How to train 10,000-layer vanilla convolutional neural networks.
In International Conference on Machine Learning, pages 5393-5402. PMLR, 2018.

[69] G. Yang, E. Hu, I. Babuschkin, S. Sidor, X. Liu, D. Farhi, N. Ryder, J. Pachocki, W. Chen, and
J. Gao. Tuning large neural networks via zero-shot hyperparameter transfer. Advances in Neural
Information Processing Systems, 34:17084—17097, 2021.

[70] G. Yang and E. J. Hu. Tensor programs iv: Feature learning in infinite-width neural networks.
In International Conference on Machine Learning, pages 11727-11737. PMLR, 2021.

[71] G. Yang and E. Littwin. Tensor programs ivb: Adaptive optimization in the infinite-width limit.
arXiv preprint arXiv:2308.01814, 2023.

[72] G. Yang, D. Yu, C. Zhu, and S. Hayou. Tensor programs vi: Feature learning in infinite-depth
neural networks. arXiv preprint arXiv:2310.02244, 2023.

14

[73] J. Zhao, S. P. Singh, and A. Lucchi. Theoretical characterisation of the gauss-newton condition-
ing in neural networks. arXiv preprint arXiv:2411.02139, 2024.

[74] N. Zucchet and J. Sacramento. Beyond backpropagation: bilevel optimization through implicit
differentiation and equilibrium propagation. Neural Computation, 34(12):2309-2346, 2022.

15

A Appendix

Contents
A.l Relatedwork 16
A.2 Proofsandderivations. 17
A.2.1 Activity gradient (Eq. 4) and Hessian (Eq. 5)of DLNs 17
A.2.2 Positive definiteness of the activity Hessian 18
A.2.3 Random matrix theory of the activity Hessian 19
A.2.4 Activity Hessian of linear ResNets 21
A.2.5 Extension to other energy-based algorithms 22
A.2.6 Limit convergence of yPCto BP (Thm. 1). 23
A3 Additional experimentso 23
A.3.1 Ill-conditioning with training 23
A.3.2 Activity initialisationso 24
A3.3 Activitydecay e e e 25
A.3.4 Orthogonal initialisation 25
A3.5 pPCwithoneinferencestep L 26
A.3.6 Isinference convergence sufficient for good generalisation? 26
A4 Experimental details 27
A5 Compute TESOUICES .« . .« v v v v v v e e e e e et e e e e e e e e e e 28
A.6 Supplementary figureso 29

A.1 Related work

uP for PC [26]. The study closest to our work is [26], who derived a P parameterisation for PC
(as well as target propagation), also showing hyperparameter transfer across widths. This work differs
from ours in the following three important aspects: (i) it derives uP for PC only for the width, (ii) it
focuses on regimes where PC approximates or is equivalent to other algorithms (including BP) so
that all the uP theory can be applied, and (iii) it considers layer-wise scalar precisions -y, for each
layer energy term, which are not standard in how PCNs are trained (but are nevertheless interesting
to study). By contrast, we propose to apply Depth-uP to PC, showing transfer for depth as well as
width (Figs. 5 & A.31-A.32). We also study a regime where this parameterisation reduces to BP (Fig.
6) while showing that successful training is still possible far from this regime (Fig. 1).

Training deep PCNs [49, 48]. Our work is also related to [49], who following [48] showed that the
PC energy (Eq. 1) is disproportionately concentrated at the output layer F, (closest to the target) for
deep PCNs. They conjecture that this is problematic for two reasons: first, it does not allow the model
to use (i.e. update) all of its layers; and second, it makes the latents diverge from the forward pass,
which they claim leads to suboptimal weight updates. The first point is consistent with our theory and
experiments. In particular, because the activities of standard PCNs vanish or explode with the depth
(§3.2) and stay almost constant during inference due to the ill-conditioning of the landscape (§3.1)
(Figs. A.10-A.11 & A.36), the weight updates are likely to be imbalanced across layers. However,
the ill-conditioning contradicts the second point, in that the activities barely move during inference
and stay close to the forward pass (see §A.3.2 for relevant experiments). Moreover, divergence from
the forward pass does not necessarily lead to suboptimal weight updates and worse performance. For
standard PC, deep networks cannot achieve good performance regardless of whether one stays close
to the forward pass (see §A.3.6). For uPC, on the other hand, as many steps as the number of hidden
layers (e.g. Fig. 1) leads to depth-stable and much better accuracy than a single step (e.g. Fig. A.14).

16

PC and BP. Our theoretical result about the convergence of ©PC to BP (Theorem 1) relates to a
relatively well-established series of correspondences between PC and BP [60, 40, 60, 51, 56, 38].
In brief, if one makes some rather biologically implausible assumptions (such as precisely timed
inference updates), it can be shown that PC can approximate or even compute exactly the same
gradients as BP. In stark contrast to these results and also the work of [26] (which requires arbitrarily
specific precision values at different layers), Theorem 1 applies to standard PC, with arguably
interpretable width- and depth-dependent scalings.'®

Theory of PC inference (Eq. 2) & learning (Eq. 3). Finally, our work can be seen as a companion
paper to [22], who provided the first rigorous, explanatory and predictive theory of the learning
landscape and dynamics of practical PCNs (Eq. 3). They first show that for DLNs the energy at the
inference equilibrium is a rescaled MSE loss with a weight-dependent rescaling, a result that we
build on here for Theorem 1. They then characterise the geometry of the equilibrated energy (the
effective landscape on which PC learns), showing that many highly degenerate saddles of the loss
including the origin become much easier to escape in the equilibrated energy. Here, by contrast, we
focus on the geometry of the inference landscape and dynamics (Eq. 2). As an aside, we note that the
origin saddle result of [22] probably breaks down for ResNets, where for the linear case it has been
shown that the saddle is effectively shifted and the origin becomes locally convex [15]. We suspect
that the results generalise, but it could still be interesting to extend the theory of [22] to ResNets,
especially by also looking at the geometry of minima.

wP. For a full treatment of P and its extensions, we refer the reader to key works of the “Tensor
Programs” series [70, 69, 71, 72]. uP effectively puts feature learning back into the infinite-width
limit of neural networks, lacking from the neural tangent kernel (NKT) or “lazy” regime [27, 6, 31].
In particular, in the NTK the layer preactivations evolve in O(N~'/2) time. In pP, the features
instead change in a “maximal” sense (hence “4”"), in that they vary as much as possible without
diverging with the width, which occurs for the output predictions under SP [70]. More formally,
1P can be derived from the 3 desiderata stated in §2.1. uP was extended to depth (Depth-uP) for
ResNets by mainly introducing a 1/ V'L scaling before each residual block [72, 3]. This breakthrough
was enabled by the commutativity of the infinite-width and infinite-depth limit of ResNets [17, 16].
Standard pP has also been extended to local algorithms including PC [26] (see uP for PC above),
sparse networks [9], second-order methods [25], and sharpness-aware minimisation [14].

A.2 Proofs and derivations

All the theoretical results below are derived for linear networks of some form.

A.2.1 Activity gradient (Eq. 4) and Hessian (Eq. 5) of DLNs

The gradient of the energy with respect to all the PC activities of a DLN (Eq. 4) can be derived by
simple rearrangement of the partials with respect to each layer, which are given by

8f/8Z1 = Z1 — a1W1x - G,QW;ZQ + a%WgW2Z1 (7)
8.7-"/522 =Zo — a2W2Z1 — agng::, + a§W§W3ZQ (8)

: ©))
8]—'/8zH :ZH—CLL,1WL71ZH,1 —aLWEy—Fa%WfWLzH. (10)

Factoring out the activity of each layer

0F [0z, = 2z1(1 + a%WQTWQ) —a1Wix — aQWQTzQ (11)
8]-"/822 = ZQ(]. + a§W§W3) - (12W2Z1 - agngZ:; (12)

: (13)
OF 02y =2y(1+ai]WIW L) —ar_1Wi_1zg_1 —atWLy, (14)

'0The width scaling is inherently local, while the depth scaling is more global but could be perhaps argued to
be bio-plausible based on a notion of the brain “knowing its own depth”.

17

one realises that this can be rearranged in the form of a linear system

I + G%WgWQ —(ngg 0 . 0 71
—asWo I+ a§W3TW3 —a3W3T e 0 Zo
sz = 0 —CL3W3 I+ (IiWZW4 . 0 :
: _aL—IWL,I Z_1
0 0 0 —a;, A Wir_1 IT+a2WIw,| L 2H
H, “

15)

where the matrix of coefficients corresponds to the Hessian of the energy with respect to the activities
(Hy,) ¢, == 0*>F/0z,0z;,. We make the following side remarks about how different training and
architecture design choices impact the structure of the activity Hessian:

* In the unsupervised case where zg is left free to vary like any other hidden layer, the
Hessian gets the additional terms a%WlTwl as the first diagonal block, —a; W as the
superdiagonal block (and its transpose as the subdiagonal block), and by = 0.!' This does
not fundamentally change the structure of the Hessian; in fact, in the next section we show
that convexity holds for both the unsupervised and supervised cases.

» Turning on biases at each layer such that F, = %sz — ayWyzy_1 — by||? does not
impact the Hessian and simply makes the constant vector of the linear system more dense:
b = [(J,lWlX + by — agwgbg, by — agwgbg,, ceey aLWEy +br_1— aLWEbL]T.

* Adding an ¢? norm regulariser to the activities £||z¢||? scales the identity in each diagonal
block by 2. This induces a unit shift in the Hessian eigenspectrum such that the minimum
eigenvalue is lower bounded at one rather than zero (see §A.2.3), as shown in Fig. A.12.

* Adding “dummy” latents at either end of the network, such that Fy = %||x — z||? or
Fr = 3|ly — zr||?, simply adds one layer to the Hessian with a block diagonal given by 21I.

» Compared to fully connected networks, the activity Hessian of convolutional networks is
sparser in that (dense) weight matrices are replaced by (sparser) Toeplitz matrices. The
activity Hessian of ResNets is derived and discussed in §A.2.4.

We also note that Eq. 15 can be used to provide an alternative proof of the known convergence of PC
inference to the feedforward pass [39] z* = H, 'b = f(x) = az W, ... a; W1x when the output
layer is unclamped or free to vary with 9>F/9z% =Iand by = 0.

A.2.2 Positive definiteness of the activity Hessian

Here we prove that the Hessian of the energy with respect to the activities of arbitrary DLNs (Eq.
5) is positive definite (PD), H, > 0. The result is empirically verified for DLNs in §A.2.3 and
also appears to generally hold for nonlinear networks, where we observe small negative Hessian
eigenvalues only for very shallow Tanh networks with no skip connections (see Figs. A.7 & A.22).

Theorem A.1 (Convexity of the PC inference landscape of DLNs.). For any DLN parame-
terised by 0 .= (W1, ..., W) with input and output (x,y), the activity Hessian of the PC
energy (Eq. 1) is positive definite

H, () - 0, (16)

showing that the inference or activity landscape F(z) is strictly convex.

To prove this, we will show that the Hessian satifies Sylvester’s criterion, which states that a Hermitian
matrix is PD if all of its leading principal minors (LPMs) are positive, i.e. if the determinant of all its
square top-left submatrices is positive [21]. Recall that an n x n square matrix A has n LPMs A, of
size h X hfor h = 1,... n. For a Hermitian matrix, showing that the determinant of all its LPMs is
positive is a necessary and sufficient condition to determine whether the matrix is PD (A > 0), and
this result can be generalised to block matrices.

""Note that the lack of an identity term in the block diagonal term comes from the fact that the first layer is
not directly predicted by any other layer.

18

a1W1X

0

aLW€y
—_——
b

We now show that the activity Hessian of arbitrary DLNs (Eq. 5) satisfies Sylvester’s criterion. We
drop the Hessian subscript H for brevity of notation. The proof technique lies in a Laplace or cofactor
expansion of the LPMs along the last row. This has an intuitive interpretation in that it starts by
proving that the inference landscape of one-hidden-layer PCNs is (strictly) convex, and then proceeds
by induction to show that adding layers does not change the result.

The activity Hessian has N H LPMs of size N¢ x N{for¢ = 1,..., H. Let [H]; denote the £th LPM
of H, Ay, = |[H]| its determinant, and D, and Oy the ¢th diagonal and off-diagonal blocks of H,
respectively. Now note that H is a block tridiagonal symmetric matrix, as can be clearly seen from
Eq. 15. There is a known two-term recurrence relation that can be used to calculate the determinant
of such matrices through their LPMs [53]

Ap=|D|Arm1 = |Op—1|*PApa, £=2,....H (17)
with Ag = 1 and A; = |D;|. The first LPM is clearly PD and so its determinant is positive,
D, =1+ a%WQTWQ =0 = A; > 0, showing that the inference landscape of one-hidden-layer
linear PCNss is strictly convex. For £ = 2, the first term of the recursion (Eq. 17) is positive, since
|D2| = [T+ a2WIWj;| > 0and, A; > 0 as we just saw. The second term is negative, but it is
strictly less than the positive term, |aa W2 |? < [T+ a3WIW3||T + a3W2I'W,| and so Ay > 0.
Hence, the activity landscape of 2-hidden-layer linear PCNs remains convex. The same holds for
three hidden layers where |O2|A; < |D3|Ay = Az > 0.

We can keep iterating this argument, showing by induction that the inference landscape is (strictly)
convex for arbitrary DLNs. More formally, the positive term of the recurrence relation is always
strictly greater than the negative term,

|D¢|Ag—1 >0 (18)
DA > |0 1|?Ar_2 (19)
and so Ay, > 0 and H > 0 for all £. Convexity holds for the unsupervised case, where the activity
Hessian is now positive semidefinite since the term a?W? W is introduced (see §A.2.1). The

result can also be extended to any other linear layer transformation B, including ResNets where
B, =1+W,.

A.2.3 Random matrix theory of the activity Hessian

Here we analyse the Hessian of the energy with respect to the activities of DLNs (Eq. 5) using random
matrix theory (RMT). This analysis follows a line of work using RMT to study the Hessian of neural
networks, specifically the Hessian of the loss with respect to the parameters [7, 45, 13, 32, 2]. We
note that the structure of the activity Hessian is much simpler than the weight or parameter Hessian,
in that for linear networks the former is positive definite (Theorem A.1, §A.2.2), while for the latter
this is only true for one hidden layer [22].

In what follows, we recall from §2.2 that the PC energy (Eq. 1) has layer-wise scalings a, for all
¢, and the weights are assumed to be drawn from a zero-mean Gaussian (W);; ~ N (0, b,) with
variance set by by.

Hessian decomposition. The activity Hessian (Eq. 5) is a challenging matrix to study theoretically
as its entries are not i.i.d. even at initialization due to the off-diagonal couplings between layers.
However, we can decompose the matrix into its diagonal and off-diagonal components:

H,=D+0O (20)
with D = diag(I + a3WIW,,....T + a2WIW;) and O =
offdiag(—aaWa, ..., —ar_1Wy_1), where the off-diagonal part can be seen as a perturba-

tion. Since these matrices are on their own i.i.d. at initialisation, we can use standard RMT results to
analyse their respective eigenvalue distributions in the regime of large width N and depth H we
are interested in. We will then use these results to gain some qualitative insights into the overall
spectrum of H,.

Analysis of D. As a block diagonal matrix, the eigenvales of D are given by those of its blocks
Dy=I+a} WL Wy € RV*Nfor¢=1,...,H. Note that the size of each block depends
only on the network width N. It is easy to see that each block is a positively shifted Wishart
matrix. As N — oo, the eigenspectrum of such matrices converges to the well-known Marc¢henko-
Pastur (MP) distribution [35] if properly normalised such that a7, , W, W, ; ~ O(1/N).

19

As shown in Figs. A.1-A.2, this normalisation
can be achieved in two distinct but equivalent
ways: (i) by initialising from a standard Gaus-
sian with by = 1 and setting the layer scaling
to ag = 1/v/N, or (ii) by setting a; = 1 and
by = 1/N as done by standard initialisations

[20, 11, 18]. In either case, in the infinite-width

limit the eigenvalues of each diagonal block will BN

converge to a unit-shifted MP density with ex- . . .
tremes Figure A.1: Empirical eigenspectra of D at ini-

tialisation, holding the network width constant

ngn A(Dg) =14 (1++/N/N)*> (21) (N = 128) and varying the depth H. a, indi-
> cates the premultiplier at each network layer (Eq.
={1,5}. (22) 1), while b, is the variance of Gaussian initialisa-

While the spectrum of D will be a combination tion, with a; = 1 and bé_ = 1/ N corresponding to
of these independent MP densities, its extremes the “standard parameterisation (SP).

will be the same of D, since all of the blocks

are i.i.d. and grow at the same rate as N — oc. a=1 a=1VN

This is empirically verified in Figs. A.1-A.2, = i
which also confirm that the spectrum of D is - S . :
only affected by the width and not the depth. N - o) i

2Rz
FLCTELY

ity (log)

be=1 =

D

Analysis of O. The off-diagonal component
of the Hessian O is a sparse Wigner matrix
whose size depends on both the width and the
depth and so the correct limit should take both
N, H — oo at some constant ratio. Note that the
sparsity of O grows much faster with the depth.
Because sparse Wigner matrices are poorly un-
derstood and still an active area of research [62],

we make the simplifying assumption that O is =1 o= LVF
dense. . -

If properly normalised as above, we know that in B=lof - :
the limit the eigenspectrum of dense Wigner ma- »

trices converges the classical Wigner semicircle
20)

xRz
FLTTLEY

Cao)

Figure A.2: Empirical eigenspectra of D at ini-
tialisation, holding the network depth constant
(H = 128) and varying the width V.

distribution [67] with extremes

lim AL(O) = 2. (23)
H/N—oco

We find that the empirical eigenspectrum of O Figure A.3: Empirical eigenspectra of O at ini-
is slightly broader than the semicircle and, as tialisation, holding the network width constant
expected, is affected by both the width and the (/N = 128) and varying the depth 7.

depth (Figs. A.3-A4).

a=1/VN

ag=1
107 2
' -2
H
107 :
8
1o 107

T 0)

Analysis of H,. Given the above asymptotic
results on D and O, we can use Weyl’s inequali-
ties [65] to lower and upper bound the minimum
and maximum eigenvalues (and so the condi-

bp=1

Density (log)

tion number) of the overall Hessian at initialisa- b= 1/N h ; E ;
tion: Amax (D + O) < Anax(D) + Amax (O) and R |N |\ o
Amin(D+O0) > Apin (D) + Amin (O). The upper o o

bound (Amax = 7) appears tight, as shown in

Figs. A.5-A.7. However, the lower bound pre- Figure A.4: Empirical eigenspectra of O at ini-

. < tialisation, holding the network depth constant
dicts a negative minimum eigenvalue (A\pi, = (H = 128) and varying the width N.
—1), which is not possible since the Hessian is

positive definite as we proved in §A.2.2.

Nevertheless, we can still gain some insights
into the interaction between D and O by looking at the empirical eigenspectrum of H,. In particular,

20

we observe that the maximum and especially the minimum eigenvalue of the Hessian scale with the
network depth (Figs. A.7 & A.22), thus driving the growth of the condition number.

ap=1 ag=1/VN ag=1
| - 1 - g 107,
.t L2 I 53 5] ¥E o
g B-# 8 f-=r] 38 n=2 g
< 107 i S0 = < 10 HE= S
by=1 =z sE1k oz sEIE be=1 2z = -
2 109 =gy 2 | Cp = z | L = S
8 8 10 8 10 8 10
10~
O S — o -
AH;) AH,) A(E;) A(H:)
107! H=2 H=2 107 Nmal 107!
5 2 5 a3 5 ¥E oo
E R BE < 109 ¥R £
= < 107 BEZE D w07 B ED =1/N '] [T
be=1/N % i H be=1/N > PRE 2L
§ 10 - 3 - § 10 -r 3
8 107 8 3 10 2
1077} 1074
U o : e N e e
AH;) MH,) AH,) AH,)

Figure A.5: Empirical eigenspectra of H at Figure A.6: Empirical eigenspectra of H at
initialisation, holding the network width con- initialisation, holding the network depth con-
stant (N = 128) and varying the depth H. stant (H = 128) and varying the width N.

Linear Tanh ReLU

00 3.00
85 — 275
N 250 N
8.0
T 205 I
75 v = ~—
% 200 ¥
70 3 4
55’<E 175’<E
6.0 1.50
125
55
1.00

21 22 23 28 25 26 27 21 22 23 24 25 26 27

10
27
0.40 00
26 035
— 08 —~
2 03 N oy N
02s [T " &
= 2 ~—’ = 0.6 —
020 g =
= 05 =
23 015 & g
22 010 N 04 <
005 03
1
2 02

2t 22 23 2% 25 26 27 2t 22 23 2% 25 28 27 2t 22 23 2% 25 26 27

H

7
2 3.50

26 3.25
N

3.00

275 m

250 % =
<

225 g

200 ~<

175

s
= 2

23

1.50

21 22 23 28 25 26 27

H

Figure A.7: Maximum and minimum eigenvalues of H, at initialisation as a function of network
width N and depth L.

A.2.4 Activity Hessian of linear ResNets

Here we derive the activity Hessian for linear ResNets [19], extending the derivation in §A.2.1 for
DLNs. Following the Depth-pP parameterisation [72, 3], we consider ResNets with identity skip
connections at every layer except from the input and to the output. The PC energy for such ResNets
is given by

H
1 1 1
Fraip = sllecl® + Slleal? + > S llze — asWoezgey — o1 |2, (24)
2 2 st 2 ~—~—
- 1-skip

T N
O O

NN 4

21

where recall that € = zy — ayWyz,_; and zp = x, z;, := y. We refer to this model as “1-skip”
since the residual is added to every layer. Its activity Hessian is given by

21 + a?+1wg+1Wg+1 + ag+1(Wg+1 + Wg+1), =k 7é H

1-ski a2f1-§kip I + (I?+1W@T+1Wg+17 {=k=H
B = anon, =) % Wit — 1, (—k=1 . (25
14 k _aZJerg—‘J,-l - I7 E _ k _ _1
0, else

We find that this Hessian is much more ill-conditioned (Fig. A.22) than that of networks without
skips (Fig. 2), across different parameterisations (Fig. 4). We note that one can extend these results
to n-skip linear ResNets with energy

n H
1 1 1
F-skip = §||€LH2 + E §||€e||2 + E §||Ze —ayWozo_1 — zp_p ||? (26)
/=1 l=n+1 '

n-skip
or indeed arbitrary computational graphs [55]. It could be interesting to investigate whether there

exist architectures with better conditioning of the inference landscape that do not sacrifice the stability
of the forward pass (see §4, Fig. 4).

A.2.5 Extension to other energy-based algorithms

Here we include a preliminary investigation of the inference dynamics of other energy-based local
learning algorithms. As an example, we consider equilibrium propagation (EP) [59], whose energy
for a DLN is given by
1 L 3
E= §||Ze|\2—;ZeTWeZe—lJrgHy—ZLHQ’ 27

where z(:= x for supervised learning (as for PC), and it is also standard to include an ¢? regulariser
on the activities. Unlike PC, EP has two inference phases: a free phase where the output layer zy, is
free to vary like any other hidden layer with 8 = 0; and a clamped or nudged phase where the output
is fixed to some target y with 5 > 0. The activity gradient and Hessian of the EP energy (Eq. 27) are
given by

OF _ {Ze - Wyzpy —2; Wy, (#L 28)
0z 72— Wyzg 1 — By —2z0), (=1L
and
I (—k£L
, 1+8, (=k=1
f:aii%z W, (—k=1 (29)
WL, b—k=-1
0, else

where we abuse notation by denoting the Hessian in the same way as that of the PC energy. We
observe that the off-diagonal blocks are equal to those of the PC activity Hessian (Eq. 5). Similar to
PC, one can also rewrite the EP activity gradient (Eq. 28) as a linear system

I -w§ 0 .. 0 - Wix
-W, I Wi . 0 Z 0
V. E = 0 —W; 1 0 - : (30)
: : . . T Zr_1 0
o o o -w, tiillal La
L N—_—— T
H, z

with solution z* = H 'b. Interestingly, unlike for PC, the EP inference landscape is not necessarily
convex, which can be easily seen for a shallow 2-layer scalar network where I\ (H, (w2 > 1)) < 0.
This is always true without the activity regulariser, in which case the identity in each diagonal block
vanishes.

22

A.2.6 Limit convergence of uPC to BP (Thm. 1)

Here we provide a simple proof of Theorem 1. Consider a slight generalisation to linear ResNets (Eq.
24) of the PC energy at the inference equilibrium derived by [22] for DLNs:

B
*\ 1 Tg—1
F(z*) = QB;Q S~ r;, (31)
H H H T
where S =1, +a] W W] + (aLWLHI+agWg> <aLWLHI+agWg> (32)
=2 4 4

and the residual errorisr; = y; —ar, Wy, (Hsz I+ a(Wg) a1 W1x;. B can stand for the batch or

dataset size. Note that Eq. 31 is an MSE loss with a weight-dependent rescaling (Eq. 32). Now, we
know that, for Depth-4P, the forward pass of this model has Oy (1) preactivations at initialisation
and so the residual will also be of order 1. Note that, by contrast, for SP (a; = 1 for all ¢ and
b; = 1/N,_1) the preactivations explode with the depth (Fig. A.30).

The key question, then, is what happens to the rescaling S in the limit of large depth and width. Recall
that for uPC, a;, = 1/N and ay = 1/ NL for ¢ = 2,..., H (see Table 1). Because the output
weights factor in every term of the rescaling S except for the identity, these terms will all vanish
ata 1/N rate as N — oo, i.e. W, WL /N2 ~ O(1/N). The depth, on the other hand, scales the
number of terms in S. Therefore, the width will have to grow with the depth at some constant ratio
L/N—which can be thought of as the aspect ratio of the network [50]—to make the contribution
of each term as small as possible. In the limit of this ratio » — 0, the energy rescaling (Eq. 32)
approaches the identity S = I, the equilibrated energy converges to the MSE Fpc(z*,0) = L,,p(6),
and so PC computes the same gradients as BP.

A.3 Additional experiments

A.3.1 Ill-conditioning with training

For the setting in Fig. 3, we also ran experiments with Adam as inference algorithm and ResNets
with standard GD. All the results were tuned for the weight learning rate (see §A.4 for more details).
We found that Adam led to more ill-conditioned inference landscapes associated with significantly
lower and more unstable performance than GD (Figs. 3 & A.23).

Linear Tanh ReLLU
— 9 30k —_ 9 6M — 3
400M 2= 2= H=2
/‘g +H=2‘ /‘; 20K +H=24 /-;4M +H=24
Jas] H=2" H=2 H=2
H 200M =0 B oM
. <€ . 4\~ e /.
SR AP D S "]
0 400 900 0 400 900 0 400 900
Training iteration Training iteration Training iteration
5. 80 H=2 - H=2 S, 80 H=2*
8 60 r < H=2 g 60 —~—H=2 8 60 —~—H=2
5 ——H=2 5 —~—H=2 5 ——H=2°
g 40 3 40 : 40
© 20 © 20 x c 20
o o o . t—_——
3 100 500 900 3 100 500 900 g ° 100 500 900
— - -
Training iteration Training iteration Training iteration

Figure A.8: Same results as Fig. 3 with Adam as inference algorithm (MNIST).

Interestingly, while skip connections induced much more extreme ill-conditioning (Fig. A.22),
performance was equal to, and sometimes significantly better than, networks without skips (Figs. A.9
& A.25), suggesting a complex relationship between trainability and the geometry of the inference
landscape which we return to in §A.3.6.

23

Linear Tanh ReLU

1B ——H=2 60k ——H=2 ——H=2
—~ —— =0 —~ —— g > 40M —— g=2
o H=% 1 40K) =%
T o8 = = = = =
~ = 20k ~— 20M
F3 3 A / €
0 —————+ o o o+ o= 0 L T e 0 o——tmmtemt—t—p o—o—os—o
0 400 900 0 400 900 0 400 900
Training iteration Training iteration Training iteration
—_ — —~
X X D
~ 30 ~ 90 ~ 3
> H=2 > H=2 > 80 H=2
[N . p_ 3 80 —— oo [—~—H_2
E - 25 E . —~—F- 25 E 60 /__.—_0—0—0—‘—‘ az 25
g 40 é 0 § 40
8 20 & 60 ® 20 /—/\\
‘g 0 100 500 900 E 100 500 900 ‘%’ 100 500 900
~ ~ -
Training iteration Training iteration Training iteration

Figure A.9: Same results as Fig. 3 with skip connections (MNIST).

A.3.2 Activity initialisations

Here we present some additional results on the initialisation of the activities of PCNs. All experiments
used fully connected ResNets, GD as activity optimiser, and as many inference steps as the number
of hidden layers. For intuition, we start with linear scalar PCNs or chains. First, we verify that
the ill-conditioning of the inference landscape (§3.1) causes the activities to barely move during
inference, and increasing the activity learning rate leads to divergence for both forward and random
initialisation (Fig. A.10). Similar results are observed for uPC (see Fig. A.35).

B=1 B =10 B =50

0 - - theory 0 - - theory 1x10% - - theory
05 =1 o5 -1 s
-0. —f=1/AL —0. ——¢=1/AL 33 —{=1/4L
fwd. «» B e e T Y YA e e e e e m - = o1 W 05X10 ‘—t:l/u
1 —£=3/4L 1 —¢=3/4L —¢=3/4L
—i=1 —=1 o —t¢=1L
0 32 64 0 32 64 0 32 64
Inference iteration Inference iteration Inference iteration
Omm = — == _ _ theory O _ _ theory - - theory
=1 -1 2x10% =1
d N < 05 —f=14L —f=1/4L
ranaom = N e em e e —¢=1/2L N 1x10% —¢=1/2L
-1 —¢=3/4L —{=3/4L
—=1 o —=1
0 32 64 0 32 64 0 32 64
Inference iteration Inference iteration Inference iteration

Figure A.10: Ill-conditioning of the inference landscape prevents convergence to the analytical
solution regardless of initialisation. For different initialisations (forward and random) and activity
learning rates /3, we plot the activities of a 64-layer scalar PCN over inference at the start of training.
The theoretical activities were computed using Eq. 4. The task was a simple toy regression with
y = —x+ewithz ~ N(1,1) and ¢ ~ N(0,0.5). A standard Gaussian was used for random
initialisation, z, ~ N(0, 1). Results were similar across different random seeds.

For wide linear PCNs with forward initialisation, we find similar results except that ;/PC seems to
initialise the activities close to the analytical solution (Fig. A.11). The same pattern of results is
observed for nonlinear networks (Fig. A.36), although note that in this case we do have an analytical
solution. These results might suggest that one does not need to perform many inference steps
to achieve good performance with PC. However, we found that one inference step led to worse
performance (including as a function of depth) (Figs. A.14 & A.27) compared to as many steps as
number of hidden layers (Figs. A.16 & A.18).

24

30 e e e e e e e = = theory 30 o e e e e e e e e = = theory = = theory
« l:l/ « l:l/ « 15M l:l/
= 5 —=1/4L = 5 —e=14 = —¢=1/AL
PC § ============= —e=12L § " Tee=e==s====== —{(=12L § 1M —e=1/2L
= 1 —=34L = —e=3/4aL = —£=3/4L
""""""" —¢=L e e e e 4L —¢=L
__________________________ o
0 8 16 0 8 16 0 8 16
Inference iteration Inference iteration Inference iteration
15 15, 1000
e~ = thEOTY s ——e—eer. = thEOTY = = theory
e e —1=1 Eee—————-—x-c== —1=1 =1
=10 —i=yw =210 —t=ym = —t=1/4r
MPC 5 —i=120 § —¢=1/2L 5 20 —¢=1/2L
= s —{¢=3/4L — s —¢=3/4L — —(=3/4L
—£{=L —{=L —{=L
0 0 0
0 8 16 0 8 16 0 8 16
Inference iteration Inference iteration Inference iteration

Figure A.11: The forward pass of PC seems to initialise the activities close to the analytical
solution (Eq. 4). Similar to Fig. A.10, we plot the £? norm of the activities over inference of 16-layer
linear PCNs (N = 128) at the start of training (MNIST). Again, results were similar across different
random initialisations.

A.3.3 Activity decay

In §4, we discussed how it seems impossible to achieve good conditioning of the inference landscape
without making the forward pass unstable (e.g. by zeroing out the weights). We identified one way
of inducing relative well-conditionness at initialisation without affecting the forward pass, namely
adding an ¢? norm regulariser on the activities § Zf ||Z¢||? with o = 1. This effectively induces a
unit shift in the Hessian spectrum and bounds the minimum eigenvalue at one rather than zero (see
§A.2.3). However, we find that PCNs with any degree of activity regularisation o are untrainable
(Fig. A.12).

4.25

)
4.00 5 80
375
350 N 9 60
= 3.25\/ g
3.00 g 40
2.75 f
2.50 a 20
2.25 '_
21 22 23 28 35 26 7 1 0.5 0.1 0.05 o0.01 0
H Activity decay

Figure A.12: Activity decay induces well-conditioned inference at the cost of performance. Left:
Same plot as Fig. 2 with an added activity regulariser §||z||* with @ = 1. Righs: Maximum test
accuracy on MNIST achieved by a linear PCN with N = 128 and H = 8 over activity regularisers of
varying strength «. Solid lines and (barely visible) shaded regions indicate the mean and standard
deviation across 3 random seeds, respectively.

A.3.4 Orthogonal initialisation

As mentioned in §5, in addition to uPC we also tested PCNs with orthogonal initialisation as a
parameterisation ensuring stable forward passes at initialisation for some activation functions (§4;
Fig. A.30). We found that this initialisation was not as effective as uPC (Figs. A.13 & A.26), likely
due to loss of orthogonality of the weights during training. Adding an orthogonal regulariser could
help, but at the cost of an extra hyperparameter to tune. We also find that, except for linear networks,
the ill-conditioning of the inference landscape still grows and spikes during training, similar to other
parameterisations (e.g. Fig. 3).

25

Linear Tanh ReLU

30k oM
—~—H=2 60k ——H=2 —~—H=2
“& 20k ~H=2 9 0 —~—H=2t 3 L5M ——H=2
—— 2 o] —~—H=2 M H=9
= 10k H=2 2 20k H=2" ¢
€ H=2 ¥ H_gy £ 05M
0 =L === v}
0 sy 0 Y . e e .
0 400 900 0 400 900 0 400 900
Training iteration Training iteration Training iteration
—~ —~ _
g g o g
H=2 H=2 80 H=2
3 80 -2 g 90 H=12* 9 —~—H=2
o ——H_o C g5 ﬁ —~— g% 60 a—o—o—s—eeee 7%
3 3 3
g 75 —— 2 3 80 —— g9 g 40
s —E=7 S 75 ~E=Y D 2
@ @ @
R 100 500 900 R 100 500 900 R 100 500 900
Training iteration Training iteration Training iteration

Figure A.13: Test accuracies in Fig. 1 for orthogonal initialisation. Note that performance is
expected to drop for ReLU networks which cannot have stable forward passes with orthogonal
weights (Fig. A.30). We also plot the condition number of the activity Hessian over training.

A.3.5 pPC with one inference step

All the experiments with PC (e.g. Fig. 1) used as many inference steps as hidden layers. Motivated
by the results of §A.3.2 showing that the forward pass of ©PC seems to initialise the activities close
to the analytical solution for DLNs (Eq. 4), we also performed experiments with a single inference
step. We found that this led a degradation in performance not only at initialisation but also as a
function of depth (Figs. A.14 & A.27), suggesting that some number of steps is still necessary despite
1PC appearing to initialise the activities close to the inference solution (Fig. A.11). Similar to other
parameterisations, we find that the ill-conditioning of the inference landscape grows and spikes during
training.

Linear Tanh ReLU
40k
—o—H=28 —o—H=28 40k —o—H=2!
- 30k —— g0 > M —— g4 > —— g0t
20k ~—H=2 —~—H=2 —~— H=2
E H=2% EOEM H=2 \m-/ZOk H=2
L 10K e—o—oo—o—o—s—o—o—2 2 2 W
W
0 e s T = 0 ———————
0 400 900 0 400 900 0 400 900
Training iteration Training iteration Training iteration
> 84 H=2 > H=2 N H=2
[€) H=2 o 90 H=24 o 90 H=24
© 82 —— g9 4 —— g9 e —— g8
3 3 3
g 80 —~—H=2° g 8 ——H=2 g 8 ——H=2
© —~—H=2" © —~—H=2" © ——H=2
o 78 2 - 80
100 500 900 B %100 500 900 3 100 500 900
= = ~
Training iteration Training iteration Training iteration

Figure A.14: uPC test accuracies in Fig. 1 with one inference step. We also plot the condition
number of the activity Hessian during training.

A.3.6 Is inference convergence sufficient for good generalisation?

Our analysis of the conditioning of the inference landscape (§3.1) could be argued to rely on the
assumption that converging to a solution of the inference dynamics is beneficial for learning and
ultimately performance. This question has yet to be resolved, with some works showing both
theoretical and empirical benefits for learning close to the inference equilibrium [61, 22], while
others argue to take only one step [57]. As discussed in §7, our results suggest that convergence
close to a solution is necessary for successful training (or monotonic decrease of the loss), which for
brevity we will refer to as “trainability”. In particular, uPC seems to the activities much closer to the
analytical solution (Eq. 4) than the SP (§A.3.2), and training ©PC with one inference step leads to
worse performance (e.g. Fig. A.14) than with as many as hidden layers (e.g. Fig. 1).

Here we report another experiment that speaks to this question and in particular suggests that while
inference convergence is necessary for trainability, it is insufficient for good generalisation, at least

26

for standard PC. Training linear ResNets of varying depth on MNIST with “perfect inference” (using
Eq. 4), we observe that even the deepest (H = 32) networks now become trainable with standard
PC in the sense that the training and test losses decrease monotonically (Fig. A.15). However, the
starting point of the test losses substantially increases with the depth, and the test accuracies of the
deepest networks remain at chance level. These results do not contradict our analysis but highlight
the important distinction between trainability and generalisation. Our analysis addresses the former,
while the latter is beyond the scope of this work.

9
0.01 < 80
% : H=8 H=38 H=8
a u 10k >
3 1o0p —H=16 2 —~—H=16 Q 60 ——H=16
E —H=® S 100 ~—H=2 5 4 ///\/" —~—H=32
g 10n 2 1 \,_._._._.__. ® 20
———e——t———s
100p 0.01 I
0 468 936 100 500 900 A 100 500 900
Training iteration Training iteration Training iteration

Figure A.15: Train and test metrics of standard PCNs of varying depth trained with analytical
inference (Eq. 4). We plot the training loss, test loss and test accuracy of ResNets (N = 128) trained
with standard PC on MNIST by solving for inference analytically (using Eq. 4). All experiments
used Adam as optimiser with learning rate n = 1le~3. Solid lines and shaded regions represent the
mean and standard deviation across 3 random initialisations.

A.4 Experimental details

Code to reproduce all the experiments is available at https://github.com/thebuckleylab/jpc/
experiments/mupc_paper. We always used no biases, batch size B = 64, Adam as parameter
optimiser, and GD as inference optimiser (with the exception of Figs. A.8 & A.24). For the
SP, all networks used Kaiming Uniform (W,);; ~ U(—1/N¢—1,1/N;) as the standard (PyTorch)
initialisation used to train PCNs.

uPC experiments (e.g. Fig. 1). For the test accuracies in Figs. 1 & A.16, we trained fully
connected ResNets (Eq. 24) to classify MNIST with standard PC, ;/PC and BP with Depth-pP. To
ensure fair comparison, BP with Depth-uP employed the same scalings as yPC. All networks had
width N = 512 and always used as many GD inference iterations as the number of hidden layers
H € {2'}7_,. To save compute, we trained only for one epoch and evaluated the test accuracy every
300 iterations. For yPC, we selected runs based on the best results from the depth transfer (see
Hyperparameter transfer below). For standard PC, we conducted the same grid search over the
weight and activity learning rates as used for uPC. For BP, we performed a sweep over learning
rates) € {1e°,5e7 1, le7 1, 5e 2, 1e72 573, 1e73,5¢~4, 1le—4} at depth H = 8, and transferred
the optimal value to the deepest (H = 128) networks presented.

Fig. A.20 shows similar results for ;/PC based on the width transfer results. Fig. A.17 was obtained
by extending the training of the 128 ReLU networks in Fig. 1 to 5 epochs. Figs. A.14 & A.27 were
obtained with the same setup as Fig. 1 by running yPC for a single inference step. As noted in §5, the
results on Fashion-MNIST (Fig. A.18) were obtained with depth transfer by tuning 8-layer networks
and transferring the optimal learning rates to 128 layers.

Hessian condition number at initialisation (e.g. Fig. 2). For different activation functions (Fig.
2), architectures (Fig. A.22) and parameterisations (Fig. 4), we computed the condition number of
the activity Hessian (Eq. 5) at initialisation over widths and depths N, H € {2¢}7_,. This was the
maximum range we could achieve to compute the full Hessian matrix given our memory resources.
No biases were used since these do not affect the Hessian as explained in §A.2.1. Results did not
differ significantly across different seeds or input and output data dimensions, as predicted from the
structure of the activity Hessian (Eq. 5).

For the landscape insets of Fig. 2, the energy landscape was sampled around the linear solution of the
activities (Eq. 4) along the maximum and minimum eigenvectors of the Hessian F(z* + oV, +
BVmin), with domain «, 8 € [—2, 2] and 30 x 30 resolution.

27

https://github.com/thebuckleylab/jpc/experiments/mupc_paper
https://github.com/thebuckleylab/jpc/experiments/mupc_paper

Hessian condition number over training (e.g. Fig. 3). For different activations (e.g. Fig. 3),
architectures (e.g. Fig. A.9), algorithms (e.g. Fig. A.8) and parameterisations (e.g. Fig. A.13), we
trained networks of width N = 128 and hidden layers H € {8,16, 32} to perform classification
on MNIST and Fashion-MNIST. This set of widths and depths was chosen to allow for tractable
computation of the full activity Hessian (Eq. 5). Training was stopped after one epoch to illustrate the
phenomenon of ill-conditioning. All experiments used weight learning rate 7 = 1e~3 and performed
a grid search over activity learning rates 3 € {5e~!, 1le~!, 5¢2}. A maximum number of 7' = 500
steps was used, and inference was stopped when the norm of the activity gradients reached some
tolerance.

Hyperparameter transfer (e.g. Fig. 5). For the ResNets trained on MNIST with xPC (e.g. Fig. 1),
we performed a 2D grid search over the following learning rates: 7 € {5e~!, 1le~1, 5¢72, 1e~2} for
the weights, and 3 € {1e3,5¢?, 1e?,5¢el, 1et,5e%, 1e%,5e71, 1le™1, 5e 2, 1e~2} for the activities.
We trained only for one epoch, in part to save compute and in part based on the results of [3, Fig.
B.3] showing that the optimal learning rate could be decided after just 3 epochs on CIFAR-10. The
number of (GD) inference iterations was always the same as the number of hidden layers. For the
width transfer results, we trained networks of 8 hidden layers and widths N € {2°}19 . while for
the depth transfer we fixed the width to N = 512 and varied the depth H € {2'}/_,. Note that
this means that the plots with title N = 512 and H = 8 in Figs. 5 & A.31-A.32 are the same. The
landscape contours were averaged over 3 different random seeds, and the training loss is plotted on a
log scale to aid interpretation.

Loss vs energy ratios (e.g. Fig. 6). We trained ResNets (Eq. 24) to classify MNIST for one epoch
with widths and depths N, H € {2}5_,. To replicate the successful setup of Fig. 1, we used the same
learning rate for the optimal linear networks trained on MNIST, = 1le~!. To verify Theorem 1, at
every training step we computed the ratio between the Depth-uP MSE loss £(0) and the equilibrated
uPC energy F(z*, 0) (Eq. 31), where z* was computed using Eq. 4. All experiments used the weight
learning rate n = le~*. Fig. A.33 shows the same results for the SP, which used a smaller learning
rate 7 = le~* to avoid divergence at large depth. All the phase diagrams are plotted on a log scale for
easier visualisation. Fig. A.34 shows an example of the ratio dynamics of ¢PC vs PC for a ResNet
with 4 hidden layers and different widths. Results were similar across different random initialisations.

A.5 Compute resources

The experiments involving ;PC, hyperparameter transfer, and the monitoring of the condition number
of the Hessian during training were all run on an NVIDIA RTX A6000. The runtime varied by
experiment, with the 128-layer networks trained for multiple epochs (Figs. A.17-A.18) taking several
days. All other experiments were run on a CPU and took between one hour and half a day, depending
on the specific experiment.

28

A.6 Supplementary figures

Linear Tanh RelLU

90

Test accuracy (%)
w1
o
%
\
Test accuracy (%)
~N
w
\
\
\
Test accuracy (%)
w
o
]

300 600 900 300 600 900 300 600 900
Training iteration Training iteration Training iteration

— — H=128 BP
H=28 H=16 H=32 —e— H=64 —— H =128 pPC
H=8 —e— H=16 —e— H=32 —e— H=64 —e— H=128 PC

Figure A.16: Test accuracies in Fig. 1 for different activation functions. Solid lines and shaded

regions indicate the mean and standard deviation across 3 random seeds, respectively. BP represents
BP with Depth-uP.

g 100

= - —BP
S - - pC
5 5 * wPC
(@]

(@)

©

T

o 300 2400 4500

Training iteration

Figure A.17: 128-layer residual ReLU network trained with ;PC on MNIST for 5 epochs. Solid
lines and (barely visible) shaded regions indicate the mean and standard deviation across 5 random
seeds, respectively. BP represents BP with Depth-uP.

X

2 0 e —BP
% - = PC
5 s0 °© WPC
Q

O

©

[P 15

|_

Epoch

Figure A.18: 128-layer residual ReLU network trained with ;/PC on Fashion-MNIST. Solid lines
and (barely visible) shaded regions indicate the mean and standard deviation across 3 random seeds,
respectively. BP represents BP with Depth-uP.

29

Test accuracy (%)
w
o

Epoch

Figure A.19: 128-layer fully connected residual ReLU network trained with ¢PC on CIFAR10.
Solid lines and (barely visible) shaded regions indicate the mean and standard deviation across 3
random seeds, respectively. BP represents BP with Depth-uP. As for other datasets, we see that yPC
remains capable of training such deep networks, although performance slightly lags behind BP. Note
that accuracies for all algorithms are far from SOTA because of the fully connected (as opposed to
convolutional) architecture used.

Linear Tanh ReLU

5 e——" N=2
e ——N=27
80 =2

75
300 600 900 300 600 900 300 600 900

Training iteration Training iteration Training iteration

Test accuracy (%)

Test accuracy (%)
2
[}
2

Test accuracy (%)
2
[
2

Figure A.20: Same results as Fig. 1 varying the width NV and fixing the depth at H = 8, showing
that “wider is better” [69, 26].

22

22 -1 o 1 2

21
Figure A.21: Toy illustration of the ill-conditioning of the inference landscape. Plotted is the
activity or inference landscape F(z1, z2) for a toy linear network with two hidden units f(x) =

wswowi X, along with the GD dynamics. One weight was artificially set to a much higher value than
the others to induce ill-conditioning.

30

Linear Tanh ReLU
o
108 7 105 10
26 10
105 "
~— 25 10 — ~~
LN N 100, N
10
o o= e o
S~— ~— 103\—/
100 ¢ 23 ' ©?
102 22 w0 102
1
10! 2 10 10t
21 22 23 24 25 26 27 21 22 23 24 25 26 27 21 22 23 2% 25 26 27
H H H
Figure A.22: Same results as Fig. 2 for the activity Hessian of ResNets (Eq. 25).
Linear Tanh ReLLU
1500 —~H=2 1500 —~—H=2 20k —— =2
> —~—H- - —~—H=2 3 15k —~—H-=-2
1000 H=2 i 1000 H=2 o 0 H=2
LRl === LR == ane T
0 0 0 f~——r—r—r—sr—o—o—
0 400 900 0 400 900 0 400 900
Training iteration Training iteration Training iteration
g 80 e o g 80 po—e—e—eees __ p 7 80 " —~—a-»
9 60 —‘—H=2; g 60 —'—H=2; ® 60 —‘—H=2;
5 40 —TTH=2 S 40 ——H=2% 3 a0 ——H=2
® 20 ® 20 ® 20 T
% 0 % 0 I
R 100 500 900 R 100 500 900 R 100 500 900
Training iteration Training iteration Training iteration
Figure A.23: Same results as Fig. 3 for Fashion-MNIST.
Linear Tanh ReLLU
— — 03 —— 03 —— g 93
— 60M _._5;34 —~ 40k —.—5;34 —~ 4M —.—2;34
N 40M 5 -] 5 N 5
2] H=2 2] H=2 == H=2
~ 20M 2 20k ~
< < € 0 ——————
0 &) 0 ety i
0 400 900 0 400 900 0 400 900
Training iteration Training iteration Training iteration
- et —— H=2% - W —— =03 > 60 T, —— =2
g 60 —— ot 9 60 —— ot < ——F_ot
S 40 —— =25 S 40 —— =2 S 40 —— =9
o o o
& 20 w & 20 w & 20
— e e, ———t——t—o———+—
§ 0 0 g 0 0 0 E' %50
R 100 50 900 R 100 500 900 R 100 500 900

Training iteration

Training iteration

Training iteration

Figure A.24: Same results as Fig. A.8 for Fashion-MNIST.

31

Linear
200M g
~ 150M ——H=2
N
m 100M H=2°
fn2
< 50M
0 ——————o oo+
0 400 900
Training iteration
g
T 80 — g
8 60 —~—H=2
5 40 —~H=%
(5]
® 20
0—0—.—.—.—.——-".\.
E %400 500 900
s
Training iteration
Figure A.25:
Linear
—— = 23
“n 20k —~—H=2
o) —— g =25
~ 10k —~—H=2°
Q oo o o o o o o o H_ot
0
0 400 900
Training iteration
g
H=2°
g 75 e hgIm
©
5 —— g =25
5] —— g =20
© 70 —— g9
o
S 100 500 900
fid
Training iteration
Figure A.26:
Linear
40k —— g2
“a 30k — gt
o 20k ~H=2
=06
T 10k eee " H=2
0 =ttt
0 400 900
Training iteration
g
> 76 H=2°
% —— H=2*
5 74 ~—E=2
g —— g =28
s 72 ——pg=2
@
o 100 500 900

Training iteration

k(Hz)

Test accuracy (%)

Same results as Fig. A.9 for Fashion-

Test accuracy (%)

®
o

70

60

75

70

400
Training iteration

900

e

pe—

100

100

500
Training iteration

400
Training iteration

500
Training iteration

900

900

}
Th:
N

+H=2’
—— H=2
——H=2

Test accuracy (%)

#(Hz)

Test accuracy (%)

ReLU

400

500
Training iteration

MNIST.

ReLU

Training iteration

Same results as Fig. A.13 for Fashion-MNIST.

Test accuracy (%)

®
i<}

~
a

100

Tanh

400
Training iteration

500
Training iteration

900

——g=2
—~—H=2*
—~—H=2

H=2°

Test accuracy (%)

®
=}

~
a

100

ReLLU

Training iteration

500
Training iteration

Figure A.27: Same results as Fig. A.14 for Fashion-MNIST.

32

900

— =2
—o—H=24
+H:25

H=2°

Linear Tanh ReLU
15k —~—H=2 m ——H=2 80K H=2
> —~—H=2 3 —— gt f-\éok —— g2t
10K H=2" g} 0.5M H=2 I 40k =%
sk % 3 / 20k BT
oIE—
0 0
0 400 900 0 400 900 0 400 900
Training iteration Training iteration Training iteration
Figure A.28: Inference conditioning during training for some ;/PC networks in Fig. 1.
Linear Tanh ReLLU
15k ——pgog oM —— o 20k —— o
5 10k e > —— g0 5 15k —— g9
E H=2 E 1M H=2° E 10k H=2°
T e ¥ . A RN —
0 0
0 400 900 0 400 900 0 400 900
Training iteration Training iteration Training iteration
Figure A.29: Same results as Fig. A.28 for Fashion-MNIST.
SpP orthogonal Depth-uP
. =1 =1 =1
= —f=1/4L 0.75 —f=1/4L 1 —f=1/4L
ot ——t=1/2L <= ——g=1/2L _= ——¢=1/2L
=t TisYE § o TTEEYE R oos ity
o = = ——i= = ——t=
}J 0.65 o
2¢ 25 28 o7 28 2 2 ¢ 28 2 22 2P
Depth Depth
S i = il
=1, —f=1, =1,
"g +l=1;2L - 0.6 +l=1§2L - +l=1;2L
= ——£=3/4L S 04 ——i=34L & 05 ——2=3/4L
& ——t=1 N o. =L N ——t=1
0.2 Q&.—_.. 0
2t 28 28 27 28 2 2t 28 26 27 2f o
Depth Depth
_ _ 1 _
) Af;i/u 0.6 *f;}/u, === Af;i/u
3 — 1010 ——2=1/2L = 54 ——¢=1/2L _o ——2=1/2L
S ——t=8/4L s ——£=3/AL 3 05 ——(=3/AL
{:?j) N | ——t=1 = ., \\\ ——t=1 5 —-t=1
1 = =l 0 m———— . . . 0
2t 25 20 97 28 2t 25 20 o7 28 29 24 25 20 927 28 2
Depth Depth Depth

Figure A.30: Forward pass (in)stability with network depth for different parameterisations. For
different activation functions and parameterisations, we plot the mean ¢! norm of the feedforward
pass activities at initialisation as a function of the network depth L. Networks (N = 1024) had skip
connections for the standard parameterisation (SP) and Depth-uP but not orthogonal. Results were

similar across different seeds.

33

Low Training loss High

2
[
2

N =128 N =256 N =512 = 1024
V

> V
g L. VAZAL \AALR AVAE
L 107! = 10 :m“m” " " o
2 B = ™ B
2 - B nNER N K. AW | 1033
1072107t 1 10 102 10° 1072107' 1 10 10% 10° 10721071 1 10 10% 10° 1072107' 1 10 10% 10° 1021071 1 10 107 10J
Activity Ir (log) Activity Ir (log) Activity Ir (log) Activity Ir (log) Activity Ir (log)
H=8 H =16 H =32 H =64 H =128
s VEWL -
= 10 = iore107Y o107 1042107} 10
b= B = B
.g‘ 10° 1
g . N R . | .
1072107t 1 10 10 10° 10721071 1 10 10% 10° 10721071 1 10 107 10° 1021071 1 10 10% 10° 1021071 1 10 10% 10°
Activity Ir (log) Activity Ir (log) Activity Ir (log) Activity Ir (log) Activity Ir (log)
Figure A.31: Same results as Fig. 5 for Linear.
Low Training loss High
=64 =128 = 256 N =512 = 1024
=)
o 1a 1a 1a o
= el 151 014107 . o1
E‘ 022 7’”‘) \ ” \ . 710“
O
2 |, = o BN a5
10y, z 1 10 10° 103 1055 1 10 10° 10 10, 2\ 1016 21070 1 10 10? 10° 10y, 2 1 10 10° 10
Activity Ir (log) Activity Ir (log) Activity Ir (log) Activity Ir (log) Activity Ir (log)
H=38 H =16 H =32 H =064 H =128
~ Y N
g | = R. I,w . [B
X 107! = o107} = 1o | L1078 ..
E \ E‘U 7” B
= » B 22 —1027 [
= . \ . \ 0 \
2 . A\ | BN\ - i 7\ | BN &
10721071 1 10 10 10° 10721071 1 10 10% 10° 10721071 1 10 10% 10° 21070 1 10 107 10° 10721071 1 10 102 10°
Activity Ir (log) Activity Ir (log) Activity Ir (log) Activity Ir (log) Activity Ir (log)

Figure A.32: Same results as Fig. 5 for ReLU.

t=50 t=200

26 26
106 106 106
2° 2>
100 3 100 3 100 X
Kz Kz2 5
L= = <
102Q 2 IOZQ 2 lOZQ
2t 2t
20 20
10° 10° 10°

20 21 22 23 24 25 26 200 21 22 23 24 25 26 200 21 22 23 24 25 26

Figure A.33: Same results as Fig. 6 for the standard parameterisation (SP).

34

PC

uPC

PC

uPC

Linear Tanh ReLLU

L/F*
L/F*

468 936
Training iteration

5 — —N=2'
% 1.5 — —N=2°
|~k, 4 — : *N:Z:

1 =

2 pi
L, o.smw 0.5 uirimen Aoy

1 0 [

0 468 936 0 468 936 0 468 936

Training iteration Training iteration Training iteration

Figure A.34: Example of the loss vs energy ratio dynamics of SP and pPC for H = 4.

- = theory — - -theory 1x10%7 - - theory
=1 0.5 £=1 =1
d - —e=1/4L 0.5x10%7 —¢=1/4L
.\ —¢=1/2L ® N —¢=1/2L
—=3/4L o —(=3/4L
—=1 —t=L
-0.5x10%7
0 32 64 0 32 64 0 32 64
Inference iteration Inference iteration Inference iteration
24
‘=———————=—=- - theory — - theory 0.5x10 - - theory
t=1 L= o ¢
random & - ----S°°°°" & _osx10%
=00 0C0 I IOCIO0IS —1x10%
0 32 64 0 32 64
Inference iteration Inference iteration Inference iteration
Figure A.35: Same results as Fig. A.10 for uPC.
t=1 30k =1
10 —t=1/4L 10 —t=1/4L
= —t=120 _ 20k —¢=1/20
—=34 & = — =34
5 —t=2 = £ 10k —=L
N .y .. o
0 8 16 0 8 16 0 8 16
Inference iteration Inference iteration Inference iteration
2
10 10 00
o o =
N N 5 & 100
Y o O
0 8 16 0 8 16 0 8 16
Inference iteration Inference iteration Inference iteration

Figure A.36: Same results as Fig. A.11 for a ReLU network.

35

	Introduction
	Summary of contributions

	Background
	The maximal update parameterisation (P)
	Predictive coding networks (PCNs)

	Instability of the standard PCN parameterisation
	Ill-conditioning of the inference landscape
	Vanishing/exploding forward pass

	Desiderata for stable PCN parameterisation
	Experiments
	Is PC BP?
	Discussion
	Appendix
	Related work
	Proofs and derivations
	Activity gradient (Eq. 4) and Hessian (Eq. 5) of DLNs
	Positive definiteness of the activity Hessian
	Random matrix theory of the activity Hessian
	Activity Hessian of linear ResNets
	Extension to other energy-based algorithms
	Limit convergence of PC to BP (Thm. 1)

	Additional experiments
	Ill-conditioning with training
	Activity initialisations
	Activity decay
	Orthogonal initialisation
	PC with one inference step
	Is inference convergence sufficient for good generalisation?

	Experimental details
	Compute resources
	Supplementary figures

