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Abstract

The biological implausibility of backpropagation (BP) has motivated many alterna-
tive, brain-inspired algorithms that attempt to rely only on local information, such
as predictive coding (PC) and equilibrium propagation. However, these algorithms
have notoriously struggled to train very deep networks, preventing them from
competing with BP in large-scale settings. Indeed, scaling PC networks (PCNs)
has recently been posed as a challenge for the community [48]. Here, we show
that 100+ layer PCNs can be trained reliably using a Depth-µP parameterisation
[72, 3] which we call “µPC”. By analysing the scaling behaviour of PCNs, we
reveal several pathologies that make standard PCNs difficult to train at large depths.
We then show that, despite addressing only some of these instabilities, µPC allows
stable training of very deep (up to 128-layer) residual networks on simple classifi-
cation tasks with competitive performance and little tuning compared to current
benchmarks. Moreover, µPC enables zero-shot transfer of both weight and activity
learning rates across widths and depths. Our results serve as a first step towards
scaling PC to more complex architectures and have implications for other local
algorithms. Code for µPC is made available as part of a JAX library for PCNs.1

1 Introduction

Backpropagation (BP) is arguably the core algorithm behind the success of modern AI and deep
learning [52, 29]. Yet, it is widely believed that the brain cannot implement BP due to its non-local
nature [34], in that the update of any weight requires knowledge of all the weights deeper or further
downstream in the network. This fundamental biological implausibility of BP has motivated the study
of many local algorithms, including predictive coding (PC) [37, 36, 54, 63], equilibrium propagation
[59, 74], and forward learning [20], among others [33, 43, 8]. These algorithms offer the potential
for more energy efficient AI and have been argued to outperform BP in more biologically relevant

1https://github.com/thebuckleylab/jpc [23].
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Figure 1: µPC enables stable training of 100+ layer ResNets with zero-shot learning rate transfer.
(Right) Test accuracy of ReLU ResNets with depths H = {8, 16, 32, 64, 128} trained to classify
MNIST for one epoch with standard PC, µPC and BP with Depth-µP (see §A.4 for details). Solid
lines and shaded regions indicate the mean and ±1 standard deviation across 3 different random
seeds. These results hold across other activation functions (see Fig. A.16). See also Figs. A.17-A.19
for asymptotic results with 128-layer ReLU networks trained for multiple epochs on MNIST, Fashion-
MNIST and CIFAR10. (Left) Example of zero-shot transfer of the weight and activity learning rates
from 16- to 128-layer Tanh networks. See Figs. 5 & A.31-A.32 for an explanation and the complete
transfer results across widths as well as depths.

settings such as online and continual learning [61]. However, local learning rules have notoriously
struggled to train large and especially deep models on the scale of modern AI applications.2

For the first time, we show that very deep (100+ layer) networks can be trained reliably using a
Depth-µP-inspired parameterisation [72, 3] of PC which we call “µPC” (Fig. 1). To our knowledge,
no networks of such depth have been trained before with a local algorithm. Indeed, this has
recently been posed as a challenge for the PC community [48]. We start by showing that the
standard parameterisation of PC networks (PCNs) is inherently unscalable in that (i) the inference
landscape becomes increasingly ill-conditioned with model size and training time, and (ii) the
forward initialisation of the activities vanishes or explodes with the depth. We then show that, despite
addressing only the second instability, µPC is capable of training up to 128-layer fully connected
residual networks (ResNets) on standard classification tasks with competitive performance and little
tuning compared to current benchmarks (Fig. 1). Moreover, µPC enables zero-shot transfer of both
the weight and activity learning rates across widths and depths (Fig. 5). We make code for µPC
available as part of a JAX library for PCNs at https://github.com/thebuckleylab/jpc [23].

The rest of the paper is structured as follows. Following a brief review of the maximal update
parameterisation (µP) and PCNs (§2), Section 3 exposes two distinct pathologies in standard PCNs
which make training at large scale practically impossible. Motivated by these findings, we then
suggest a minimal set of desiderata for a more scalable PCN parameterisation (§4). Section 5 presents
experiments with µPC, and Section 6 studies a specific regime where µPC converges to BP. We
conclude with the limitations of this work and promising directions for future research (§7). For space
reasons, we include related work and additional experiments in Appendix A, along with derivations,
experimental details and supplementary figures.

2It is possible that these algorithms are more suited to alternative, non-digital hardware, but their scalability
can still be investigated on standard GPUs. Indeed, the issues we expose with the standard parameterisation of
PCNs can be argued to be hardware-independent (§3.1).

2
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1.1 Summary of contributions

• We show that µPC, which reparameterises PCNs using Depth-µP [72, 3], allows stable
training of very deep (100+ layer) ResNets on simple classification tasks with competitive
performance and little tuning compared to current benchmarks [48] (Figs. 1 & A.17-A.18).

• µPC also empirically enables zero-shot transfer of both the weight and activity learning
rates across widths and depths (Figs. 5 & A.31-A.32).

• We achieve these results by a theoretical and empirical analysis of the scaling behaviour of
the inference landscape and dynamics of PCNs (§3), revealing the following two pathologies:

– the inference landscape becomes increasingly ill-conditioned with model size (Fig. 2)
and training time (Fig. 3) (§3.1); and

– the forward pass of standard PCNs vanishes or explodes with the depth (§3.2).
• To address these instabilities, we propose a minimal set of desiderata that PCNs should

aim to satisfy to be trainable at scale (§4), revealing an apparent trade-off between the
conditioning of the inference landscape and the stability of the forward pass (Fig. 4). This
analysis can be applied to other inference-based algorithms (§A.2.5).

• To better understand µPC, we study a theoretical regime where the µPC energy converges to
the mean squared error (MSE) loss and so PC effectively implements BP (Theorem 1, Fig.
6). However, we find that µPC can successfully train deep networks far from this regime.

2 Background

2.1 The maximal update parameterisation (µP)

The maximal update parameterisation was first introduced by [70] to ensure that the order of the
activation or feature updates at each layer remains stable with the width N . This was motivated by
the lack of feature learning in the neural tangent kernel or “lazy” regime [27], where the activations
remain practically unchanged during training [6, 31]. More formally, µP can be derived from the
following 3 desiderata [70]: (i) the layer preactivations are ON (1) at initialisation, (ii) the network
output is ON (1) during training, and (iii) the layer features are also ON (1) during training.3

Satisfying these desiderata boils down to solving a system of equations for a set of scalars (commonly
referred to as “abcd”) parameterising the layer transformation, the (Gaussian) initialisation variance,
and the learning rate [71, 44]. Different optimisers and types of layer lead to different scalings. One
version of µP (and the version we will be using here) initialises all the weights from a standard
Gaussian and rescales each layer transformation by 1/

√
Nℓ−1, with the exception of the output

which is scaled by 1/NL−1. Remarkably, µP allows not only for more stable training dynamics but
also for zero-shot hyperparameter transfer: tuning a small model parameterised with µP guarantees
that optimal hyperparameters such as the learning rate will transfer to a wider model [69, 42].

More recently, µP has been extended to depth for ResNets (“Depth-µP”) [72, 3], such that transfer
is also conserved across depths L. This is done by mainly introducing a 1/

√
L scaling before each

residual block. Extensions of standard µP for other algorithms have also been proposed [25, 26, 14, 9].

2.2 Predictive coding networks (PCNs)

We consider the following general parameterisation of the energy function of L-layered PCNs [5]:

F =

L∑
ℓ=1

1

2
||zℓ − aℓWℓϕℓ(zℓ−1)− τℓzℓ−1||2 (1)

with weights Wℓ ∈ RNℓ×Nℓ−1 , activities zℓ ∈ RNℓ and activation function ϕℓ(·). Dense weight
matrices could be replaced by convolutions, all assumed to be initialised i.i.d. from a Gaussian
(Wℓ)ij ∼ N (0, bℓ) with variance scaled by bℓ. We omit multiple data samples to simplify the
notation, and ignore biases since they do not affect the main analysis, as explained in §A.2.1. We
also add scalings aℓ ∈ R and optional skip or residual connections set by τℓ ∈ {0, 1}.

3Throughout, we will use On(1) to mean Θn(1) such that the activations neither explode nor vanish with n.
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Figure 2: Wider and particulary deeper PCNs have a more ill-conditioned inference landscape.
We plot the condition number of the activity Hessian κ(Hz) (lower is better) of randomly initialised
fully connected networks as a function of the width N and depth H (see §A.4 for details). Insets
show 2D projections of the landscape of selected networks around the linear solution (Eq. 4) along
the maximum and minimum eigenvectors of the Hessian F(z∗ + αv̂min + βv̂max). Note that the
ill-conditioning is much more extreme for ResNets (see Fig. A.22). Results were similar across
different seeds.

The energy of the last layer is defined as FL = 1
2 ||zL − aLWLϕL(zL−1)||2 for some target

zL := y ∈ Rdout , while the energy of the first layer is F1 = 1
2 ||z1 − a1W1z0||2, with some optional

input z0 := x ∈ Rdin for supervised (vs unsupervised) training.4 We will refer to PC or SP as the
“standard parameterisation” with unit premultipliers aℓ = 1 for all ℓ and standard initialisations
[30, 11, 18] such as bℓ = 1/Nℓ−1, and to µPC as that which uses (some of) the scalings of Depth-µP
(§2.1).5 See Table 1 for a summary.

We fix the width of all the hidden layers N = N1 = · · · = NH where H = L − 1 is the number
of hidden layers. We use θ := {vec(Wℓ)}Lℓ=1 ∈ Rp to represent all the weights with p as the total
number of parameters and z := {zℓ}Hℓ=1 ∈ RNH to denote all the activities free to vary. Note that,
depending on the context, we will use both H and L to refer to the network depth.

PCNs are trained by minimising the energy (Eq. 1) in two separate phases: first with respect to the
activities (inference) and then with respect to the weights (learning),

Infer: min
z

F (2) Learn: min
θ

F . (3)

Inference acts on a single data point and is generally performed by gradient descent (GD), zt+1 =
zt−β∇zF with step size β. The weights are often updated at numerical convergence of the inference
dynamics, when ∇zF ≈ 0. Our theoretical results will mainly address the first optimisation problem
(Eq. 2), namely the inference landscape and dynamics, but we discuss and numerically investigate
the impact on the learning dynamics (Eq. 3) wherever relevant.

3 Instability of the standard PCN parameterisation

In this section, we reveal through both theory and experiment that the standard parameterisation
(SP) of PCNs suffers from two instabilities that make training and convergence of the PC inference
dynamics (Eq. 2) at large scale practically impossible. First, the inference landscape of standard PCNs
becomes increasingly ill-conditioned with model size and training time (§3.1). Second, depending

4Many of our theoretical results can be extended to the unsupervised case (see §A), but for ease of presentation
we will focus on the supervised case.

5We distinguish between µPC and Depth-µP for brevity, to encapsulate both the algorithm and the parameter-
isation in a single acronym.
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Figure 3: The inference landscape of PCNs grows increasingly ill-conditioned with training. We
plot the condition number of the activity Hessian (Eq. 5) (top) as well as test accuracies (bottom) for
fully connected networks of depths H ∈ {8, 16, 32} during one epoch of training. All networks had
width N = 128 and were trained to classify MNIST (see §A.4 for more details). Similar results are
observed for ResNets (Fig. A.9) and Fashion-MNIST (Fig. A.23). Solid lines and shaded regions
indicate the mean and standard deviation over 3 random seeds.

on the model, the feedforward pass either vanishes or explodes with the depth (§3.2). The second
problem is shared with BP-trained networks, while the first instability is unique to PC and likely any
other algorithm performing inference minimisation (§A.2.5).

3.1 Ill-conditioning of the inference landscape

Here we show that the inference landscape of standard PCNs becomes increasingly ill-conditioned
with network width, depth and training time. As reviewed in §2.2, the inference phase of PC (Eq. 2)
is commonly performed by GD. For a deep linear network (DLN, Eq. 1 with ϕℓ = I for all ℓ), one
can solve for the activities in closed form as shown by [26],

∇zF = Hzz− b = 0 =⇒ z∗ = H−1
z b (4)

where (Hz)ℓk := ∂2F/∂zℓ∂zk ∈ R(NH)×(NH) is the Hessian of the energy with respect to the
activities, and b ∈ RNH is a sparse vector depending only on the data and associated weights (see
§A.2.1 for details). Eq. 4 shows that for a DLN, PC inference is a well-determined linear problem.6

For arbitrary DLNs, one can also prove that the inference landscape is strictly convex as the Hessian
is positive definite7, Hz ≻ 0 (Theorem A.1; see §A.2.2 for proof). This makes intuitive sense since
the energy (Eq. 1) is quadratic in z. The result is empirically verified for DLNs in Figs. A.5-A.7 and
appears to generally hold for nonlinear networks (see Figs. A.7 & A.22).

For such convex problems, the convergence rate of GD is known to be given by the condition number
of the Hessian [4, 41], κ(Hz) = |λmax|/|λmin|. Intuitively, the higher the condition number, the more
elliptic the level sets of the energy F(z) become, and the more iterations GD will need to reach the
solution (see Fig. A.21), with the step size bounded by the highest curvature direction β < 2/λmax
(see Fig. A.10 for an example). For non-convex problems, it can still be useful to have a notion of
local conditioning [e.g. 73].

What determines the condition number of Hz? Looking more closely at the structure of the Hessian

∂2F
∂zℓ∂zk

=


I+ a2ℓ+1W

T
ℓ+1Wℓ+1, ℓ = k

−ak+1Wk+1, ℓ− k = 1

−aℓ+1W
T
ℓ+1, ℓ− k = −1

0, else

, (5)

6This contrasts with the weight landscape F(θ), which grows nonlinear with the depth even for DLNs [22].
7We note that this was claimed to be proved by [39]; however, they only showed that the block diagonals of

the Hessian are positive definite, ignoring the layer, off-diagonal interactions.
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one realises that it depends on two main factors: (i) the network architecture, including the width N ,
depth L and connectivity; and (ii) the value of the weights at any time during training θt. We first
find that the inference landscape of standard PCNs becomes increasingly ill-conditioned with the
width and particularly depth (Fig. 2), and extremely so for ResNets (Fig. A.22). See also §A.2.3 for a
random matrix theory analysis of the scaling behaviour of the initialised Hessian eigenspectrum with
N and L. In addition, we observe that the ill-conditioning grows and spikes during training (Figs. 3,
A.9, A.23 & A.25), and using an adaptive optimiser such as Adam [28] does not seem to help (Figs.
A.8 & A.24). Together, these findings help to explain why the convergence of the GD inference
dynamics (Eq. 2) can dramatically slow down on deeper models [23, 48], while also highlighting that
small inference gradients—which are commonly used to determine convergence—do not necessarily
imply closeness to a solution.

3.2 Vanishing/exploding forward pass

In the previous section (§3.1), we saw that the growing ill-conditioning of the inference landscape
with the model size and training time is one likely reason for the challenging training of PCNs at
large scale. Another reason—and as we will see the key reason—is that the forward initialisation of
the activities can vanish or explode with the depth. This is a classic finding in the neural network
literature that has been surprisingly ignored for PCNs. For fully connected networks with standard
initialisations [30, 11, 18], the forward pass vanishes with the depth, leading to vanishing gradients.
This issue can be addressed with residual connections [19] and various forms of activity normalisation
[24, 1], both of which remain key components of the modern transformer block [64].

However, while there have been attempts to train ResNets with PC [48], they have been without
activity normalisation. This is likely because any kind of normalisation of the activities seems at odds
with convergence of the inference dynamics to a solution (Eq. 2). Without normalisation, however,
the activations (and gradients) of vanilla ResNets explode with the depth (see Fig. A.30). A potential
remedy would be to normalise only the forward pass, but here we will aim to take advantage of more
principled approaches with stronger guarantees about the stability of the forward pass (§4).

4 Desiderata for stable PCN parameterisation

In §3, we exposed two main pathologies in the scaling behaviour of standard PCNs: (i) the growing
ill-conditioning of the inference landscape with model size and training time (§3.1), and (ii) the
instability of the forward pass with depth (§3.2). These instabilities motivate us to specify a minimal
set of desiderata that we would like a PCN to satisfy to be trainable at large scale.8

Desideratum 1. Stable forward pass at initialisation. At initialisation, all the layer preacti-
vations are stable independent of the network width and depth, ||zℓ|| ∼ ON,H(1) for all ℓ,
where zℓ = hℓ(. . . h1(x)) with hℓ(·) as the map relating one layer to the next.

To our knowledge, there are two approaches that provide strong theoretical guarantees about this
desideratum: (i) orthogonal weight initialisation for both fully connected [58, 46, 47, 68] and
convolutional networks [68], ensuring that WT

ℓ Wℓ = I at every layer ℓ; and (ii) the recent Depth-µP
parameterisation [72, 3] (see §2.1 for a review). For a replication of these results, see Fig. A.30. To
apply Depth-µP to PC, we simply reparameterise the PC energy for ResNets (Eq. 1 with τℓ = 1 for
ℓ = 2, . . . ,H and τℓ = 0 otherwise) with the layer scalings of Depth-µP (see Table 1).9 We call this
reparameterisation µPC.

8We do not see these desiderata as strict (necessary or sufficient) conditions, since relatively small PCNs can
be trained competitively without satisfying them, and other conditions might be needed for successful training.

9µP and Depth-µP also include an optimiser-dependent scaling of the learning rate. However, we found this
scaling to be suboptimal for PC as discussed in §7.
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Figure 4: Parameterisations with stable forward passes induce highly ill-conditioned inference
landscapes with depth. We plot the conditioning of the activity Hessian of randomly initialised
networks over width N and depth H for the µPC and orthogonal parameterisations. Networks with
and without residual connections were used for these respective parameterisations. Note that ReLU
networks with orthogonal initialisation cannot achieve stable forward passes (see Fig. A.30). Results
were similar across different seeds.

Table 1: Summary of parameterisations. Standard PC has unit layer premultipliers and weights
initialised from a Gaussian with variance scaled by the input width at every layer Nℓ−1. µPC uses a
standard Gaussian initialisation and adds width- and depth-dependent scalings at every layer.

a1 (input weights) aℓ (hidden weights) aL (output weights) bℓ (init. variance)

PC 1 1 1 N−1
ℓ−1

µPC N
−1/2
0 (Nℓ−1L)

−1/2 N−1
L−1 1

We would like Desideratum 1 to hold throughout training as we state in the following desideratum.

Desideratum 2. Stable forward pass during training. The forward pass is stable during
training such that Desideratum 1 is true for all training steps t = 1, . . . , T .

Depth-µP ensures this desideratum for BP, but we do not know whether the same will apply to
µPC. We return to this point in §7. For the orthogonal parameterisation, the weights should remain
orthogonal during training to satisfy Desideratum 2, which could be encouraged with some kind of
regulariser. Next, we address the ill-conditioning of the inference landscape (§3.1), again first at
initialisation.

Desideratum 3. Stable conditioning of the inference landscape at initialisation. The condi-
tion number of the activity Hessian (Eq. 5) at initialisation stays constant with the network
width and depth, κ(Hz) ∼ ON,H(1).

Ideally, we would like the PC inference landscape to be perfectly conditioned, i.e. κ(Hz) = 1.
However, this cannot be achieved without zeroing out the weights, Hz(θ = 0) = I, since the Hessian
is symmetric and so it can only have all unit eigenvalues if it is the identity. Starting with small
weights (Wℓ)ij ≪ 1 at the cost of slightly imperfect conditioning is not a solution, since the forward
pass vanishes, thus violating Desideratum 1. See §A.3.3 for another intervention that appears to come
at the expense of performance.
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What about the above parameterisations ensuring stable forward passes? Interestingly, both orthogonal
initialisation and µPC induce highly ill-conditioned inference landscapes with the depth (Fig. 4),
similar to standard PC ResNets (Fig. A.22). This highlights a potential trade-off between the stability
of the forward pass (technically, the conditioning of the input-output Jacobian) and the conditioning
of the activity Hessian. Because PCNs with ill-conditioned inference landscapes can still be trained
(e.g. see Fig. 3), we will choose to satisfy Desideratum 1 at the expense of Desideratum 3, while
seeking to prevent the condition number from exploding during training.

Desideratum 4. Stable conditioning of the inference landscape during training. The
condition number of the activity Hessian (Eq. 5) is stable throughout training such that
κ(Hz(t)) ≈ κ(Hz(t− 1)) for all training steps t = 1, . . . , T .

5 Experiments

We performed experiments with parameterisations ensuring stable forward passes at initialisation
(Desideratum 1), namely µPC and orthogonal, despite their inability to solve the ill-conditioning of
the inference landscape with depth (Desideratum 3; Fig. 4). Due to limited space, we report results
only for µPC since orthogonal initialisation was not found to be as effective (see §A.3.4). We trained
fully connected residual PCNs on standard image classification tasks (MNIST, Fashion-MNIST
and CIFAR10). This simple setup was chosen because the main goal was to test whether µPC is
capable of training deep PCNs—a task that has proved challenging with more complex datasets and
architectures [48]. We note that all the networks used as many inference steps as hidden layers (see
Figs. A.14 & A.27 for results with one step).

First, we trained ResNets of varying depth (up to 128 layers) to classify MNIST for a single
epoch. Remarkably, we find that µPC allows stable training of networks of all depths across
different activation functions (Figs. 1 & A.16). These networks were tuned only for the weight
and activity learning rates, with no other optimisation techniques such as momentum, weight decay,
and nudging, as used in previous studies [48]. Competitive performance (≈ 98%) is achieved in
5 epochs (Fig. A.17), 5× faster than the current benchmark [48]. Similar results are observed on
Fashion-MNIST, where competitive accuracy (≈ 89%) is reached in fewer than 15 epochs (Fig.
A.18). On CIFAR10, performance is far from SOTA because of the fully connected (as opposed to
convolutional) architectures used, but µPC remains trainable at large depth (Fig. A.19).

10 −2 10 −1 1 10 10 2 10 3 
10 −2 

10 −1 

10 -2.8 

10 -2.2 

10 -1.6 

Tr
ai

ni
ng

 lo
ss

10 −2 10 −1 1 10 10 2 10 3 
10 −2 

10 −1 

10 -2.6 

10 -2.2 

10 -1.8 

10 -1.4 

Tr
ai

ni
ng

 lo
ss

10 −2 10 −1 1 10 10 2 10 3 
10 −2 

10 −1 

10 -2.6 

10 -2.2 

10 -1.8 

10 -1.4 

Tr
ai

ni
ng

 lo
ss

10 −2 10 −1 1 10 10 2 10 3 
10 −2 

10 −1 

10 -2.4 

10 -1.8 

10 -1.2 

Tr
ai

ni
ng

 lo
ss

10 −2 10 −1 1 10 10 2 10 3 
10 −2 

10 −1 

10 -2.6 

10 -2.2 

10 -1.8 

10 -1.4 

Tr
ai

ni
ng

 lo
ss

10 −2 10 −1 1 10 10 2 10 3 
10 −2 

10 −1 

10 -2.8 

10 -2.2 

10 -1.6 

Tr
ai

ni
ng

 lo
ss

10 −2 10 −1 1 10 10 2 10 3 
10 −2 

10 −1 

10 -2.8 

10 -2.2 

10 -1.6 

Tr
ai

ni
ng

 lo
ss

10 −2 10 −1 1 10 10 2 10 3 
10 −2 

10 −1 

10 -2.8 

10 -2.2 

10 -1.6 

Tr
ai

ni
ng

 lo
ss

10 −2 10 −1 1 10 10 2 10 3 
10 −2 

10 −1 

10 -2.6 

10 -2.2 

10 -1.8 

10 -1.4 

Tr
ai

ni
ng

 lo
ss

10 −2 10 −1 1 10 10 2 10 3 
10 −2 

10 −1 

10 -2.6 

10 -2.2 

10 -1.8 

10 -1.4 

Tr
ai

ni
ng

 lo
ss

z¸ ≥ N (0, 1), z¸ = f¸(z¸≠1)

Linear, Tanh, ReLU

SP, orthogonal,Depth-µP

H = 2, H = 8, H = 16, H = 32, H = 64, H = 128

N = 64, N = 128, N = 256, N = 512, N = 1024

b¸ = 1/N, b¸ = 1, a¸ = 1, a¸ = 1/
Ô
N, aL = 1/N

z1, z2, p(z1, z2)

Euler Heun GD

VFE: F = Eq[ln q(z) ≠ ln p(z, x)] Ø ≠ ln p(x)¸ ˚˙ ˝
ELBO

(1)

F = Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠ Eq[ln q(z)]¸ ˚˙ ˝
entropy

(2)

= Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠⇠⇠⇠⇠⇠⇠:q(z) = ”(x ≠ µ)
Eq[ln q(z)]¸ ˚˙ ˝

entropy

(3)

p(z, x) = p(x|z)p(z) = N (f1(w1z), 1)N (f2(w2µ̄), 1) (4)

F = Eq[≠ ln(N (f1(w1z), 1)N (f2( ¯w2µ), 1))] (5)
= (x ≠ f1(w1z))2¸ ˚˙ ˝

data pred. error

+ (z ≠ f2(w2µ̄))2¸ ˚˙ ˝
latent pred. error

+2 ln 2fi (6)

p(zL, . . . , z0) =
LŸ

¸=1
p(z¸|z¸≠1) (7)

z0 z1 zL W1 WL (8)

F ¥
Lÿ

¸=1
||‘¸||22, ‘¸ = z¸ ≠ f¸(W¸z¸≠1) (9)

1

z¸ ≥ N (0, 1), z¸ = f¸(z¸≠1)

Linear, Tanh, ReLU

SP, orthogonal,Depth-µP

H = 2, H = 8, H = 16, H = 32, H = 64, H = 128

N = 64, N = 128, N = 256, N = 512, N = 1024

b¸ = 1/N, b¸ = 1, a¸ = 1, a¸ = 1/
Ô
N, aL = 1/N

z1, z2, p(z1, z2)

Euler Heun GD

VFE: F = Eq[ln q(z) ≠ ln p(z, x)] Ø ≠ ln p(x)¸ ˚˙ ˝
ELBO

(1)

F = Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠ Eq[ln q(z)]¸ ˚˙ ˝
entropy

(2)

= Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠⇠⇠⇠⇠⇠⇠:q(z) = ”(x ≠ µ)
Eq[ln q(z)]¸ ˚˙ ˝

entropy

(3)

p(z, x) = p(x|z)p(z) = N (f1(w1z), 1)N (f2(w2µ̄), 1) (4)

F = Eq[≠ ln(N (f1(w1z), 1)N (f2( ¯w2µ), 1))] (5)
= (x ≠ f1(w1z))2¸ ˚˙ ˝

data pred. error

+ (z ≠ f2(w2µ̄))2¸ ˚˙ ˝
latent pred. error

+2 ln 2fi (6)

p(zL, . . . , z0) =
LŸ

¸=1
p(z¸|z¸≠1) (7)

z0 z1 zL W1 WL (8)

F ¥
Lÿ

¸=1
||‘¸||22, ‘¸ = z¸ ≠ f¸(W¸z¸≠1) (9)

1

z¸ ≥ N (0, 1), z¸ = f¸(z¸≠1)

Linear, Tanh, ReLU

SP, orthogonal,Depth-µP

H = 2, H = 8, H = 16, H = 32, H = 64, H = 128

N = 64, N = 128, N = 256, N = 512, N = 1024

b¸ = 1/N, b¸ = 1, a¸ = 1, a¸ = 1/
Ô
N, aL = 1/N

z1, z2, p(z1, z2)

Euler Heun GD

VFE: F = Eq[ln q(z) ≠ ln p(z, x)] Ø ≠ ln p(x)¸ ˚˙ ˝
ELBO

(1)

F = Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠ Eq[ln q(z)]¸ ˚˙ ˝
entropy

(2)

= Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠⇠⇠⇠⇠⇠⇠:q(z) = ”(x ≠ µ)
Eq[ln q(z)]¸ ˚˙ ˝

entropy

(3)

p(z, x) = p(x|z)p(z) = N (f1(w1z), 1)N (f2(w2µ̄), 1) (4)

F = Eq[≠ ln(N (f1(w1z), 1)N (f2( ¯w2µ), 1))] (5)
= (x ≠ f1(w1z))2¸ ˚˙ ˝

data pred. error

+ (z ≠ f2(w2µ̄))2¸ ˚˙ ˝
latent pred. error

+2 ln 2fi (6)

p(zL, . . . , z0) =
LŸ

¸=1
p(z¸|z¸≠1) (7)

z0 z1 zL W1 WL (8)

F ¥
Lÿ

¸=1
||‘¸||22, ‘¸ = z¸ ≠ f¸(W¸z¸≠1) (9)

1

z¸ ≥ N (0, 1), z¸ = f¸(z¸≠1)

Linear, Tanh, ReLU

SP, orthogonal,Depth-µP

H = 2, H = 8, H = 16, H = 32, H = 64, H = 128

N = 64, N = 128, N = 256, N = 512, N = 1024

b¸ = 1/N, b¸ = 1, a¸ = 1, a¸ = 1/
Ô
N, aL = 1/N

z1, z2, p(z1, z2)

Euler Heun GD

VFE: F = Eq[ln q(z) ≠ ln p(z, x)] Ø ≠ ln p(x)¸ ˚˙ ˝
ELBO

(1)

F = Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠ Eq[ln q(z)]¸ ˚˙ ˝
entropy

(2)

= Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠⇠⇠⇠⇠⇠⇠:q(z) = ”(x ≠ µ)
Eq[ln q(z)]¸ ˚˙ ˝

entropy

(3)

p(z, x) = p(x|z)p(z) = N (f1(w1z), 1)N (f2(w2µ̄), 1) (4)

F = Eq[≠ ln(N (f1(w1z), 1)N (f2( ¯w2µ), 1))] (5)
= (x ≠ f1(w1z))2¸ ˚˙ ˝

data pred. error

+ (z ≠ f2(w2µ̄))2¸ ˚˙ ˝
latent pred. error

+2 ln 2fi (6)

p(zL, . . . , z0) =
LŸ

¸=1
p(z¸|z¸≠1) (7)

z0 z1 zL W1 WL (8)

F ¥
Lÿ

¸=1
||‘¸||22, ‘¸ = z¸ ≠ f¸(W¸z¸≠1) (9)

1

Depth & width transfer, Tanh

0.0060.008

0.010.012

0.014

0.016

0.018

0.02

0.022

10 −2 10 −1 1 10 10 2 
10 −2 

10 −1 

Activity lr (log)

W
ei

gh
t 

lr
 (

lo
g)

0.0060.008

0.010.012

0.014

0.016

0.018

0.02

0.022

10 −2 10 −1 1 10 10 2 
10 −2 

10 −1 

Activity lr (log)

W
ei

gh
t 

lr
 (

lo
g)

0.0060.008

0.010.012

0.014

0.016

0.018

0.02

0.022

10 −2 10 −1 1 10 10 2 
10 −2 

10 −1 

Activity lr (log)

W
ei

gh
t 

lr
 (

lo
g)

0.0060.008

0.010.012

0.014

0.016

0.018

0.02

0.022

10 −2 10 −1 1 10 10 2 
10 −2 

10 −1 

Activity lr (log)

W
ei

gh
t 

lr
 (

lo
g)

0.0060.008

0.010.012

0.014

0.016

0.018

0.02

0.022

10 −2 10 −1 1 10 10 2 
10 −2 

10 −1 

Activity lr (log)

W
ei

gh
t 

lr
 (

lo
g)

0.0060.008

0.010.012

0.014

0.016

0.018

0.02

0.022

10 −2 10 −1 1 10 10 2 
10 −2 

10 −1 

Activity lr (log)

W
ei

gh
t 

lr
 (

lo
g)

Linear, Tanh, ReLU

SP, orthogonal,Depth-µP

H = 2, H = 8, H = 16, H = 32, H = 64, H = 128

b¸ = 1/N, b¸ = 1, a¸ = 1, a¸ = 1/
Ô
N, aL = 1/N

z1, z2, p(z1, z2)

Euler Heun GD

VFE: F = Eq[ln q(z) ≠ ln p(z, x)] Ø ≠ ln p(x)¸ ˚˙ ˝
ELBO

(1)

F = Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠ Eq[ln q(z)]¸ ˚˙ ˝
entropy

(2)

= Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠⇠⇠⇠⇠⇠⇠:q(z) = ”(x ≠ µ)
Eq[ln q(z)]¸ ˚˙ ˝

entropy

(3)

p(z, x) = p(x|z)p(z) = N (f1(w1z), 1)N (f2(w2µ̄), 1) (4)

F = Eq[≠ ln(N (f1(w1z), 1)N (f2( ¯w2µ), 1))] (5)
= (x ≠ f1(w1z))2¸ ˚˙ ˝

data pred. error

+ (z ≠ f2(w2µ̄))2¸ ˚˙ ˝
latent pred. error

+2 ln 2fi (6)

p(zL, . . . , z0) =
LŸ

¸=1
p(z¸|z¸≠1) (7)

z0 z1 zL W1 WL (8)

F ¥
Lÿ

¸=1
||‘¸||22, ‘¸ = z¸ ≠ f¸(W¸z¸≠1) (9)

Inference: �z¸ Ã ≠÷ˆF/ˆz¸ (10)

1

Linear, Tanh, ReLU

SP, orthogonal,Depth-µP

H = 2, H = 8, H = 16, H = 32, H = 64, H = 128

b¸ = 1/N, b¸ = 1, a¸ = 1, a¸ = 1/
Ô
N, aL = 1/N

z1, z2, p(z1, z2)

Euler Heun GD

VFE: F = Eq[ln q(z) ≠ ln p(z, x)] Ø ≠ ln p(x)¸ ˚˙ ˝
ELBO

(1)

F = Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠ Eq[ln q(z)]¸ ˚˙ ˝
entropy

(2)

= Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠⇠⇠⇠⇠⇠⇠:q(z) = ”(x ≠ µ)
Eq[ln q(z)]¸ ˚˙ ˝

entropy

(3)

p(z, x) = p(x|z)p(z) = N (f1(w1z), 1)N (f2(w2µ̄), 1) (4)

F = Eq[≠ ln(N (f1(w1z), 1)N (f2( ¯w2µ), 1))] (5)
= (x ≠ f1(w1z))2¸ ˚˙ ˝

data pred. error

+ (z ≠ f2(w2µ̄))2¸ ˚˙ ˝
latent pred. error

+2 ln 2fi (6)

p(zL, . . . , z0) =
LŸ

¸=1
p(z¸|z¸≠1) (7)

z0 z1 zL W1 WL (8)

F ¥
Lÿ

¸=1
||‘¸||22, ‘¸ = z¸ ≠ f¸(W¸z¸≠1) (9)

Inference: �z¸ Ã ≠÷ˆF/ˆz¸ (10)

1

Linear, Tanh, ReLU

SP, orthogonal,Depth-µP

H = 2, H = 8, H = 16, H = 32, H = 64, H = 128

b¸ = 1/N, b¸ = 1, a¸ = 1, a¸ = 1/
Ô
N, aL = 1/N

z1, z2, p(z1, z2)

Euler Heun GD

VFE: F = Eq[ln q(z) ≠ ln p(z, x)] Ø ≠ ln p(x)¸ ˚˙ ˝
ELBO

(1)

F = Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠ Eq[ln q(z)]¸ ˚˙ ˝
entropy

(2)

= Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠⇠⇠⇠⇠⇠⇠:q(z) = ”(x ≠ µ)
Eq[ln q(z)]¸ ˚˙ ˝

entropy

(3)

p(z, x) = p(x|z)p(z) = N (f1(w1z), 1)N (f2(w2µ̄), 1) (4)

F = Eq[≠ ln(N (f1(w1z), 1)N (f2( ¯w2µ), 1))] (5)
= (x ≠ f1(w1z))2¸ ˚˙ ˝

data pred. error

+ (z ≠ f2(w2µ̄))2¸ ˚˙ ˝
latent pred. error

+2 ln 2fi (6)

p(zL, . . . , z0) =
LŸ

¸=1
p(z¸|z¸≠1) (7)

z0 z1 zL W1 WL (8)

F ¥
Lÿ

¸=1
||‘¸||22, ‘¸ = z¸ ≠ f¸(W¸z¸≠1) (9)

Inference: �z¸ Ã ≠÷ˆF/ˆz¸ (10)

1

Linear, Tanh, ReLU

SP, orthogonal,Depth-µP

H = 2, H = 8, H = 16, H = 32, H = 64, H = 128

b¸ = 1/N, b¸ = 1, a¸ = 1, a¸ = 1/
Ô
N, aL = 1/N

z1, z2, p(z1, z2)

Euler Heun GD

VFE: F = Eq[ln q(z) ≠ ln p(z, x)] Ø ≠ ln p(x)¸ ˚˙ ˝
ELBO

(1)

F = Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠ Eq[ln q(z)]¸ ˚˙ ˝
entropy

(2)

= Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠⇠⇠⇠⇠⇠⇠:q(z) = ”(x ≠ µ)
Eq[ln q(z)]¸ ˚˙ ˝

entropy

(3)

p(z, x) = p(x|z)p(z) = N (f1(w1z), 1)N (f2(w2µ̄), 1) (4)

F = Eq[≠ ln(N (f1(w1z), 1)N (f2( ¯w2µ), 1))] (5)
= (x ≠ f1(w1z))2¸ ˚˙ ˝

data pred. error

+ (z ≠ f2(w2µ̄))2¸ ˚˙ ˝
latent pred. error

+2 ln 2fi (6)

p(zL, . . . , z0) =
LŸ

¸=1
p(z¸|z¸≠1) (7)

z0 z1 zL W1 WL (8)

F ¥
Lÿ

¸=1
||‘¸||22, ‘¸ = z¸ ≠ f¸(W¸z¸≠1) (9)

Inference: �z¸ Ã ≠÷ˆF/ˆz¸ (10)

1

Linear, Tanh, ReLU

SP, orthogonal,Depth-µP

H = 2, H = 8, H = 16, H = 32, H = 64, H = 128

b¸ = 1/N, b¸ = 1, a¸ = 1, a¸ = 1/
Ô
N, aL = 1/N

z1, z2, p(z1, z2)

Euler Heun GD

VFE: F = Eq[ln q(z) ≠ ln p(z, x)] Ø ≠ ln p(x)¸ ˚˙ ˝
ELBO

(1)

F = Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠ Eq[ln q(z)]¸ ˚˙ ˝
entropy

(2)

= Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠⇠⇠⇠⇠⇠⇠:q(z) = ”(x ≠ µ)
Eq[ln q(z)]¸ ˚˙ ˝

entropy

(3)

p(z, x) = p(x|z)p(z) = N (f1(w1z), 1)N (f2(w2µ̄), 1) (4)

F = Eq[≠ ln(N (f1(w1z), 1)N (f2( ¯w2µ), 1))] (5)
= (x ≠ f1(w1z))2¸ ˚˙ ˝

data pred. error

+ (z ≠ f2(w2µ̄))2¸ ˚˙ ˝
latent pred. error

+2 ln 2fi (6)

p(zL, . . . , z0) =
LŸ

¸=1
p(z¸|z¸≠1) (7)

z0 z1 zL W1 WL (8)

F ¥
Lÿ

¸=1
||‘¸||22, ‘¸ = z¸ ≠ f¸(W¸z¸≠1) (9)

Inference: �z¸ Ã ≠÷ˆF/ˆz¸ (10)

1

0.0060.008

0.010.012

0.014

0.016

0.018

0.02

0.022

10 −2 10 −1 1 10 10 2 
10 −2 

10 −1 

Activity lr (log)

W
ei

gh
t 

lr
 (

lo
g)

0.0060.008

0.010.012

0.014

0.016

0.018

0.02

0.022

10 −2 10 −1 1 10 10 2 
10 −2 

10 −1 

Activity lr (log)

W
ei

gh
t 

lr
 (

lo
g)

0.0060.008

0.010.012

0.014

0.016

0.018

0.02

0.022

10 −2 10 −1 1 10 10 2 
10 −2 

10 −1 

Activity lr (log)

W
ei

gh
t 

lr
 (

lo
g)

0.0060.008

0.010.012

0.014

0.016

0.018

0.02

0.022

10 −2 10 −1 1 10 10 2 
10 −2 

10 −1 

Activity lr (log)

W
ei

gh
t 

lr
 (

lo
g)

0.0060.008

0.010.012

0.014

0.016

0.018

0.02

0.022

10 −2 10 −1 1 10 10 2 
10 −2 

10 −1 

Activity lr (log)

W
ei

gh
t 

lr
 (

lo
g)

0.0060.008

0.010.012

0.014

0.016

0.018

0.02

0.022

10 −2 10 −1 1 10 10 2 
10 −2 

10 −1 

Activity lr (log)

W
ei

gh
t 

lr
 (

lo
g)

z¸ ≥ N (0, 1), z¸ = f¸(z¸≠1)

Linear, Tanh, ReLU

SP, orthogonal,Depth-µP

H = 2, H = 8, H = 16, H = 32, H = 64, H = 128

N = 64, N = 128, N = 256, N = 512, N = 1024

b¸ = 1/N, b¸ = 1, a¸ = 1, a¸ = 1/
Ô
N, aL = 1/N

z1, z2, p(z1, z2)

Euler Heun GD

VFE: F = Eq[ln q(z) ≠ ln p(z, x)] Ø ≠ ln p(x)¸ ˚˙ ˝
ELBO

(1)

F = Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠ Eq[ln q(z)]¸ ˚˙ ˝
entropy

(2)

= Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠⇠⇠⇠⇠⇠⇠:q(z) = ”(x ≠ µ)
Eq[ln q(z)]¸ ˚˙ ˝

entropy

(3)

p(z, x) = p(x|z)p(z) = N (f1(w1z), 1)N (f2(w2µ̄), 1) (4)

F = Eq[≠ ln(N (f1(w1z), 1)N (f2( ¯w2µ), 1))] (5)
= (x ≠ f1(w1z))2¸ ˚˙ ˝

data pred. error

+ (z ≠ f2(w2µ̄))2¸ ˚˙ ˝
latent pred. error

+2 ln 2fi (6)

p(zL, . . . , z0) =
LŸ

¸=1
p(z¸|z¸≠1) (7)

z0 z1 zL W1 WL (8)

F ¥
Lÿ

¸=1
||‘¸||22, ‘¸ = z¸ ≠ f¸(W¸z¸≠1) (9)

1

Training lossLow High

Figure 5: µPC enables zero-shot transfer of the weight and activity learning rates across widths
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(see §A.4 for details). Each contour was averaged over 3 random seeds.
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Strikingly, we also find that µPC enables zero-shot transfer of both the weight and activity learning
rates across widths and depths (Figs. 5 & A.31-A.32), consistent with recent results with Depth-µP
[72, 3]. This means that one can tune a small PCN and then transfer the optimal learning rates
to wider and/or deeper PCNs—a process that is particularly costly for PC since it requires two
separate learning rates. In fact, this is precisely how we obtained the Fashion-MNIST (Fig. A.18)
and CIFAR10 (Fig. A.19) results: by performing transfer from 8- to 128-layer networks, avoiding the
expensive tuning at large scale.

6 Is µPC BP?

Why does µPC seem to work so well despite failing to solve the ill-conditioning of the inference
landscape with depth (Fig. 4)? Depth-µP also satisfies other, BP-specific desiderata that PC might not
require or benefit from. Here we show that while there is a practical regime where µPC approximates
BP, it turns out to be brittle, and so BP cannot explain the success of µPC (at least on the tasks
considered). In particular, it is possible to show that, when the width is much larger than the depth
N ≫ L, at initialisation the µPC energy at the inference equilibrium converges to the MSE loss. In
this regime, PC computes the same gradients as BP and all the Depth-µP theory applies.

Theorem 1 (Limit Convergence of µPC to BP.). Let FµPC(θ, z) be the PC energy of a
randomly initialised linear ResNet (Eq. 1 with τℓ = 1 for ℓ = 2, . . . ,H and τℓ = 0
otherwise) parameterised with Depth-µP (Table 1) and LµP(θ) its corresponding MSE loss.
Then, as the aspect ratio of the network r := L/N vanishes, the equilibrated energy (Eq. 31)
converges to the loss (see §A.2.6 for proof)

r → 0, FµPC(θ, z
∗) = LµP(θ). (6)

The result relies on a recent derivation of the equilibrated energy as a rescaled MSE loss for DLNs
[22]. We simply extend this to linear ResNets and show that the rescaling approaches the identity
with µPC in the above limit. Fig. 6 shows that the result holds at initialisation (t = 0), with the
equilibrated energy converging to the loss when the width is around 32× the depth. (Note that the
deepest networks (H = 128, N = 512) we tested in the previous section had a much smaller aspect
ratio, r = 4.) Nevertheless, we observe that the equilibrated energy starts to diverge from the loss
with training at large width and depth (Fig. 6). Note also that we do not know the inference solution
for nonlinear networks. We therefore leave further theoretical study of µPC to future work. See also
§A.1 for a discussion of how Theorem 1 relates to previous correspondences between PC and BP.
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Figure 6: Convergence/Divergence of µPC to BP for linear ResNets. To verify Theorem 1 (Eq.
6), we plot the ratio between the MSE loss and the equilibrated µPC energy of linear ResNets (Eq.
31) at different training points t as a function of the width N and depth H (see §A.4 for details).
We observe that while at initialisation (t = 0) the equilibrated energy converges to the loss as the
the width grows relative to the depth (verifying Theorem 1), the correspondence breaks down with
training at large depth and width. Results were similar across different runs.
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7 Discussion

In summary, we showed that it is possible to reliably train very deep (100+ layer) networks with a
local learning algorithm. We achieved this via a Depth-µP-like reparameterisation of PCNs which
we labelled µPC. We found that µPC is capable of training very deep networks with little tuning
and competitive performance on simple classification tasks (Fig. 1), while also enabling zero-shot
transfer of weight and activity learning rates across widths and depths (Fig. 5).

µPC and inference ill-conditioning. Despite its relative success, µPC failed to solve the growing
ill-conditioning of the inference landscape with the network depth (Desideratum 3; Fig. 4). This
can be explained by two additional findings. First, the forward pass of µPC seems to initialise the
activities much closer to the analytical solution (Eq. 4) for DLNs than standard PC (Fig. A.35).
Second, training µPC networks with a single inference step (as opposed to as many as hidden layers)
led to performance degradation not only during training, but also with depth (Figs. A.14 & A.27).
Together, these results suggest that a stable forward pass, as ensured by µPC, is critical not only for
performance but also for dealing with landscape ill-conditioning, by initialising the activities closer
to a solution such that only a few (empirically determined) inference steps are needed. This is also
consistent with the finding that while inference convergence is necessary for successful training of
the SP, it does not appear sufficient for good generalisation (see §A.3.6). It would be interesting to
study µPC in more detail in linear networks given their analytical tractability.

Another recent study investigated the problem of training deep PCNs [12], showing an exponential
decay in the activity gradients over depth. This result can be seen as a consequence of the ill-
conditioning of the inference landscape with depth (Fig. 2), since flat regions where the forward pass
seems to initialise the activities (see §A.3.2) have small gradients, and depth drives ill-conditioning.
[12] proposed a reparameterisation of PCNs leveraging BP for faster inference convergence on GPUs,
and it could be interesting to combine this approach with µPC, especially for generation tasks or
more complex datasets where more inference steps might be necessary for good performance.

µPC and the other Desiderata. Did µPC satisfy some other Desiderata (§4) besides the stability of
the forward pass at initialisation (Desideratum 1)? When experimenting with µPC, we tried including
the Depth-µP scalings only in the forward pass (i.e. removing them from the energy or even just the
inference or weight gradients). However, this always led to non-trainable networks even at small
depths, suggesting that the Depth-µP scalings are also beneficial for the PC inference and learning
dynamics and that the resulting updates are likely to keep the forward pass stable during training
(Desideratum 2). Deriving principled scalings specific to PC could help explain these findings or
even lead to better scalings. Finally, µPC did not seem to prevent the ill-conditioning of the inference
landscape from growing with training (see Figs. A.28 & A.29), thus violating Desideratum 4.

Is µPC optimal? µPC unlikely to be the optimal parameterisation for PCNs. This is because we
adapted, rather than derived, principled (Depth-µP) scalings for BP, with only guarantees about the
stability of the forward pass. Indeed, we did not rescale the learning rate of Adam (used in all our
experiments) by

√
NL as prescribed by Depth-µP [72], since this scaling always led to non-trainable

networks. We note that depth transfer has also been achieved without this scaling [3, 42] and that
the optimal depth scaling is still an active area of research [10]. It would also be useful to better
understand the relationship between µPC and the (width-only) µP parameterisation for PC proposed
by [26] (see §A.1 for a comparison). More generally, it would therefore be potentially impactful to
derive principled scalings specific to PC. While an analysis far from inference equilibrium appears
challenging, one could start with the order of the weight updates of the equilibrated energy of linear
ResNets (Eq. 31).

Other future directions. Given the recent successful application of Depth-µP to convolutional
networks and transformers [3, 42], it would be interesting to investigate whether these more complex
architectures can be successfully trained on large-scale datasets with µPC. Our analysis of the
inference landscape can also be applied to any other algorithm performing some kind of inference
minimisation (see §A.2.5 for a preliminary investigation of equilibrium propagation), and it could be
interesting to see whether these algorithms could also benefit from µP-like parameterisation.
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A.1 Related work

µP for PC [26]. The study closest to our work is [26], who derived a µP parameterisation for PC
(as well as target propagation), also showing hyperparameter transfer across widths. This work differs
from ours in the following three important aspects: (i) it derives µP for PC only for the width, (ii) it
focuses on regimes where PC approximates or is equivalent to other algorithms (including BP) so
that all the µP theory can be applied, and (iii) it considers layer-wise scalar precisions γℓ for each
layer energy term, which are not standard in how PCNs are trained (but are nevertheless interesting
to study). By contrast, we propose to apply Depth-µP to PC, showing transfer for depth as well as
width (Figs. 5 & A.31-A.32). We also study a regime where this parameterisation reduces to BP (Fig.
6) while showing that successful training is still possible far from this regime (Fig. 1).

Training deep PCNs [49, 48]. Our work is also related to [49], who following [48] showed that the
PC energy (Eq. 1) is disproportionately concentrated at the output layer FL (closest to the target) for
deep PCNs. They conjecture that this is problematic for two reasons: first, it does not allow the model
to use (i.e. update) all of its layers; and second, it makes the latents diverge from the forward pass,
which they claim leads to suboptimal weight updates. The first point is consistent with our theory and
experiments. In particular, because the activities of standard PCNs vanish or explode with the depth
(§3.2) and stay almost constant during inference due to the ill-conditioning of the landscape (§3.1)
(Figs. A.10-A.11 & A.36), the weight updates are likely to be imbalanced across layers. However,
the ill-conditioning contradicts the second point, in that the activities barely move during inference
and stay close to the forward pass (see §A.3.2 for relevant experiments). Moreover, divergence from
the forward pass does not necessarily lead to suboptimal weight updates and worse performance. For
standard PC, deep networks cannot achieve good performance regardless of whether one stays close
to the forward pass (see §A.3.6). For µPC, on the other hand, as many steps as the number of hidden
layers (e.g. Fig. 1) leads to depth-stable and much better accuracy than a single step (e.g. Fig. A.14).
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PC and BP. Our theoretical result about the convergence of µPC to BP (Theorem 1) relates to a
relatively well-established series of correspondences between PC and BP [66, 40, 60, 51, 56, 38].
In brief, if one makes some rather biologically implausible assumptions (such as precisely timed
inference updates), it can be shown that PC can approximate or even compute exactly the same
gradients as BP. In stark contrast to these results and also the work of [26] (which requires arbitrarily
specific precision values at different layers), Theorem 1 applies to standard PC, with arguably
interpretable width- and depth-dependent scalings.10

Theory of PC inference (Eq. 2) & learning (Eq. 3). Finally, our work can be seen as a companion
paper to [22], who provided the first rigorous, explanatory and predictive theory of the learning
landscape and dynamics of practical PCNs (Eq. 3). They first show that for DLNs the energy at the
inference equilibrium is a rescaled MSE loss with a weight-dependent rescaling, a result that we
build on here for Theorem 1. They then characterise the geometry of the equilibrated energy (the
effective landscape on which PC learns), showing that many highly degenerate saddles of the loss
including the origin become much easier to escape in the equilibrated energy. Here, by contrast, we
focus on the geometry of the inference landscape and dynamics (Eq. 2). As an aside, we note that the
origin saddle result of [22] probably breaks down for ResNets, where for the linear case it has been
shown that the saddle is effectively shifted and the origin becomes locally convex [15]. We suspect
that the results generalise, but it could still be interesting to extend the theory of [22] to ResNets,
especially by also looking at the geometry of minima.

µP. For a full treatment of µP and its extensions, we refer the reader to key works of the “Tensor
Programs” series [70, 69, 71, 72]. µP effectively puts feature learning back into the infinite-width
limit of neural networks, lacking from the neural tangent kernel (NKT) or “lazy” regime [27, 6, 31].
In particular, in the NTK the layer preactivations evolve in O(N−1/2) time. In µP, the features
instead change in a “maximal” sense (hence “µ”), in that they vary as much as possible without
diverging with the width, which occurs for the output predictions under SP [70]. More formally,
µP can be derived from the 3 desiderata stated in §2.1. µP was extended to depth (Depth-µP) for
ResNets by mainly introducing a 1/

√
L scaling before each residual block [72, 3]. This breakthrough

was enabled by the commutativity of the infinite-width and infinite-depth limit of ResNets [17, 16].
Standard µP has also been extended to local algorithms including PC [26] (see µP for PC above),
sparse networks [9], second-order methods [25], and sharpness-aware minimisation [14].

A.2 Proofs and derivations

All the theoretical results below are derived for linear networks of some form.

A.2.1 Activity gradient (Eq. 4) and Hessian (Eq. 5) of DLNs

The gradient of the energy with respect to all the PC activities of a DLN (Eq. 4) can be derived by
simple rearrangement of the partials with respect to each layer, which are given by

∂F/∂z1 = z1 − a1W1x− a2W
T
2 z2 + a22W

T
2 W2z1 (7)

∂F/∂z2 = z2 − a2W2z1 − a3W
T
3 z3 + a23W

T
3 W3z2 (8)

... (9)

∂F/∂zH = zH − aL−1WL−1zH−1 − aLW
T
Ly + a2LW

T
LWLzH . (10)

Factoring out the activity of each layer

∂F/∂z1 = z1(1+ a22W
T
2 W2)− a1W1x− a2W

T
2 z2 (11)

∂F/∂z2 = z2(1+ a23W
T
3 W3)− a2W2z1 − a3W

T
3 z3 (12)

... (13)

∂F/∂zH = zH(1+ a2LW
T
LWL)− aL−1WL−1zH−1 − aLW

T
Ly, (14)

10The width scaling is inherently local, while the depth scaling is more global but could be perhaps argued to
be bio-plausible based on a notion of the brain “knowing its own depth”.
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one realises that this can be rearranged in the form of a linear system

∇zF =


I+ a22W

T
2 W2 −a2W

T
2 0 . . . 0

−a2W2 I+ a23W
T
3 W3 −a3W

T
3 . . . 0

0 −a3W3 I+ a24W
T
4 W4

. . . 0
...

...
. . . . . . −aL−1W

T
L−1

0 0 0 −aL−1WL−1 I+ a2LW
T
LWL


︸ ︷︷ ︸

Hz


z1
z2
...

zH−1

zH


︸ ︷︷ ︸

z

−


a1W1x

0
...
0

aLW
T
Ly


︸ ︷︷ ︸

b

(15)

where the matrix of coefficients corresponds to the Hessian of the energy with respect to the activities
(Hz)ℓk := ∂2F/∂zℓ∂zk. We make the following side remarks about how different training and
architecture design choices impact the structure of the activity Hessian:

• In the unsupervised case where z0 is left free to vary like any other hidden layer, the
Hessian gets the additional terms a21W

T
1 W1 as the first diagonal block, −a1W1 as the

superdiagonal block (and its transpose as the subdiagonal block), and b1 = 0.11 This does
not fundamentally change the structure of the Hessian; in fact, in the next section we show
that convexity holds for both the unsupervised and supervised cases.

• Turning on biases at each layer such that Fℓ = 1
2 ||zℓ − aℓWℓzℓ−1 − bℓ||2 does not

impact the Hessian and simply makes the constant vector of the linear system more dense:
b = [a1W1x+ b1 − a2W

T
2 b2,b2 − a3W

T
3 b3, . . . , aLW

T
Ly + bL−1 − aLW

T
LbL]

T .

• Adding an ℓ2 norm regulariser to the activities 1
2 ||zℓ||

2 scales the identity in each diagonal
block by 2. This induces a unit shift in the Hessian eigenspectrum such that the minimum
eigenvalue is lower bounded at one rather than zero (see §A.2.3), as shown in Fig. A.12.

• Adding “dummy” latents at either end of the network, such that F0 = 1
2 ||x − z0||2 or

FL = 1
2 ||y− zL||2, simply adds one layer to the Hessian with a block diagonal given by 2I.

• Compared to fully connected networks, the activity Hessian of convolutional networks is
sparser in that (dense) weight matrices are replaced by (sparser) Toeplitz matrices. The
activity Hessian of ResNets is derived and discussed in §A.2.4.

We also note that Eq. 15 can be used to provide an alternative proof of the known convergence of PC
inference to the feedforward pass [39] z∗ = H−1

z b = f(x) = aLWL . . . a1W1x when the output
layer is unclamped or free to vary with ∂2F/∂z2L = I and bH = 0.

A.2.2 Positive definiteness of the activity Hessian

Here we prove that the Hessian of the energy with respect to the activities of arbitrary DLNs (Eq.
5) is positive definite (PD), Hz ≻ 0. The result is empirically verified for DLNs in §A.2.3 and
also appears to generally hold for nonlinear networks, where we observe small negative Hessian
eigenvalues only for very shallow Tanh networks with no skip connections (see Figs. A.7 & A.22).

Theorem A.1 (Convexity of the PC inference landscape of DLNs.). For any DLN parame-
terised by θ := (W1, . . . ,WL) with input and output (x,y), the activity Hessian of the PC
energy (Eq. 1) is positive definite

Hz(θ) ≻ 0, (16)
showing that the inference or activity landscape F(z) is strictly convex.

To prove this, we will show that the Hessian satifies Sylvester’s criterion, which states that a Hermitian
matrix is PD if all of its leading principal minors (LPMs) are positive, i.e. if the determinant of all its
square top-left submatrices is positive [21]. Recall that an n× n square matrix A has n LPMs Ah of
size h× h for h = 1, . . . , n. For a Hermitian matrix, showing that the determinant of all its LPMs is
positive is a necessary and sufficient condition to determine whether the matrix is PD (A ≻ 0), and
this result can be generalised to block matrices.

11Note that the lack of an identity term in the block diagonal term comes from the fact that the first layer is
not directly predicted by any other layer.
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We now show that the activity Hessian of arbitrary DLNs (Eq. 5) satisfies Sylvester’s criterion. We
drop the Hessian subscript H for brevity of notation. The proof technique lies in a Laplace or cofactor
expansion of the LPMs along the last row. This has an intuitive interpretation in that it starts by
proving that the inference landscape of one-hidden-layer PCNs is (strictly) convex, and then proceeds
by induction to show that adding layers does not change the result.

The activity Hessian has NH LPMs of size Nℓ×Nℓ for ℓ = 1, . . . ,H . Let [H]ℓ denote the ℓth LPM
of H, ∆ℓ = |[H]ℓ| its determinant, and Dℓ and Oℓ the ℓth diagonal and off-diagonal blocks of H,
respectively. Now note that H is a block tridiagonal symmetric matrix, as can be clearly seen from
Eq. 15. There is a known two-term recurrence relation that can be used to calculate the determinant
of such matrices through their LPMs [53]

∆ℓ = |Dℓ|∆ℓ−1 − |Oℓ−1|2∆ℓ−2, ℓ = 2, . . . ,H (17)
with ∆0 = 1 and ∆1 = |D1|. The first LPM is clearly PD and so its determinant is positive,
D1 = I+ a22W

T
2 W2 ≻ 0 =⇒ ∆1 > 0, showing that the inference landscape of one-hidden-layer

linear PCNs is strictly convex. For ℓ = 2, the first term of the recursion (Eq. 17) is positive, since
|D2| = |I + a23W

T
3 W3| > 0 and, ∆1 > 0 as we just saw. The second term is negative, but it is

strictly less than the positive term, |a2W2|2 < |I + a23W
T
3 W3||I + a22W

T
2 W2| and so ∆2 > 0.

Hence, the activity landscape of 2-hidden-layer linear PCNs remains convex. The same holds for
three hidden layers where |O2|∆1 < |D3|∆2 =⇒ ∆3 > 0.

We can keep iterating this argument, showing by induction that the inference landscape is (strictly)
convex for arbitrary DLNs. More formally, the positive term of the recurrence relation is always
strictly greater than the negative term,

|Dℓ|∆ℓ−1 > 0 (18)

|Dℓ|∆ℓ−1 > |Oℓ−1|2∆ℓ−2 (19)
and so ∆ℓ > 0 and H ≻ 0 for all ℓ. Convexity holds for the unsupervised case, where the activity
Hessian is now positive semidefinite since the term a21W

T
1 W1 is introduced (see §A.2.1). The

result can also be extended to any other linear layer transformation Bℓ including ResNets where
Bℓ = I+Wℓ.

A.2.3 Random matrix theory of the activity Hessian

Here we analyse the Hessian of the energy with respect to the activities of DLNs (Eq. 5) using random
matrix theory (RMT). This analysis follows a line of work using RMT to study the Hessian of neural
networks, specifically the Hessian of the loss with respect to the parameters [7, 45, 13, 32, 2]. We
note that the structure of the activity Hessian is much simpler than the weight or parameter Hessian,
in that for linear networks the former is positive definite (Theorem A.1, §A.2.2), while for the latter
this is only true for one hidden layer [22].

In what follows, we recall from §2.2 that the PC energy (Eq. 1) has layer-wise scalings aℓ for all
ℓ, and the weights are assumed to be drawn from a zero-mean Gaussian (Wℓ)ij ∼ N (0, bℓ) with
variance set by bℓ.

Hessian decomposition. The activity Hessian (Eq. 5) is a challenging matrix to study theoretically
as its entries are not i.i.d. even at initialization due to the off-diagonal couplings between layers.
However, we can decompose the matrix into its diagonal and off-diagonal components:

Hz = D+O (20)

with D := diag(I + a22W
T
2 W2, . . . , I + a2LW

T
LWL) and O :=

offdiag(−a2W2, . . . ,−aL−1WL−1), where the off-diagonal part can be seen as a perturba-
tion. Since these matrices are on their own i.i.d. at initialisation, we can use standard RMT results to
analyse their respective eigenvalue distributions in the regime of large width N and depth H we
are interested in. We will then use these results to gain some qualitative insights into the overall
spectrum of Hz.

Analysis of D. As a block diagonal matrix, the eigenvales of D are given by those of its blocks
Dℓ = I+ a2ℓ+1W

T
ℓ+1Wℓ+1 ∈ RN×N for ℓ = 1, . . . ,H . Note that the size of each block depends

only on the network width N . It is easy to see that each block is a positively shifted Wishart
matrix. As N → ∞, the eigenspectrum of such matrices converges to the well-known Marčhenko-
Pastur (MP) distribution [35] if properly normalised such that a2ℓ+1W

T
ℓ+1Wℓ+1 ∼ O(1/N).
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Figure A.1: Empirical eigenspectra of D at ini-
tialisation, holding the network width constant
(N = 128) and varying the depth H . aℓ indi-
cates the premultiplier at each network layer (Eq.
1), while bℓ is the variance of Gaussian initialisa-
tion, with aℓ = 1 and bℓ = 1/N corresponding to
the “standard parameterisation ” (SP).
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Figure A.2: Empirical eigenspectra of D at ini-
tialisation, holding the network depth constant
(H = 128) and varying the width N .

As shown in Figs. A.1-A.2, this normalisation
can be achieved in two distinct but equivalent
ways: (i) by initialising from a standard Gaus-
sian with bℓ = 1 and setting the layer scaling
to aℓ = 1/

√
N , or (ii) by setting aℓ = 1 and

bℓ = 1/N as done by standard initialisations
[30, 11, 18]. In either case, in the infinite-width
limit the eigenvalues of each diagonal block will
converge to a unit-shifted MP density with ex-
tremes

lim
N→∞

λ±(Dℓ) = 1 + (1±
√

N/N)2 (21)

= {1, 5}. (22)

While the spectrum of D will be a combination
of these independent MP densities, its extremes
will be the same of Dℓ since all of the blocks
are i.i.d. and grow at the same rate as N → ∞.
This is empirically verified in Figs. A.1-A.2,
which also confirm that the spectrum of D is
only affected by the width and not the depth.

Analysis of O. The off-diagonal component
of the Hessian O is a sparse Wigner matrix
whose size depends on both the width and the
depth and so the correct limit should take both
N,H → ∞ at some constant ratio. Note that the
sparsity of O grows much faster with the depth.
Because sparse Wigner matrices are poorly un-
derstood and still an active area of research [62],
we make the simplifying assumption that O is
dense.
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Figure A.3: Empirical eigenspectra of O at ini-
tialisation, holding the network width constant
(N = 128) and varying the depth H .

−2 −1 0 1 2
10 −4 

10 −3 

10 −2 

D
en

si
ty

 (
lo

g)

−2 0 2
10 −3 

10 −2 

D
en

si
ty

 (
lo

g)

−20 0 20
10 −4 

10 −3 

10 −2 

D
en

si
ty

 (
lo

g)

−2 0 2
10 −3 

10 −2 

D
en

si
ty

 (
lo

g)

b¸ = 1/N, b¸ = 1, a¸ = 1, a¸ = 1/
Ô
N

z1, z2, p(z1, z2)

Euler Heun GD

VFE: F = Eq[ln q(z) ≠ ln p(z, x)] Ø ≠ ln p(x)¸ ˚˙ ˝
ELBO

(1)

F = Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠ Eq[ln q(z)]¸ ˚˙ ˝
entropy

(2)

= Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠⇠⇠⇠⇠⇠⇠:q(z) = ”(x ≠ µ)
Eq[ln q(z)]¸ ˚˙ ˝

entropy

(3)

p(z, x) = p(x|z)p(z) = N (f1(w1z), 1)N (f2(w2µ̄), 1) (4)

F = Eq[≠ ln(N (f1(w1z), 1)N (f2( ¯w2µ), 1))] (5)
= (x ≠ f1(w1z))2¸ ˚˙ ˝

data pred. error

+ (z ≠ f2(w2µ̄))2¸ ˚˙ ˝
latent pred. error

+2 ln 2fi (6)

p(zL, . . . , z0) =
LŸ

¸=1
p(z¸|z¸≠1) (7)

z0 z1 zL W1 WL (8)

F ¥
Lÿ

¸=1
||‘¸||22, ‘¸ = z¸ ≠ f¸(W¸z¸≠1) (9)

Inference: �z¸ Ã ≠÷ˆF/ˆz¸ (10)

Learning: �W¸ Ã ≠÷ˆF/ˆW¸ (11)

Ÿ(A) = |⁄max(A)|
|⁄min(A)|

x1, x2, w11, w12, „11, „12

1

b¸ = 1/N, b¸ = 1, a¸ = 1, a¸ = 1/
Ô
N

z1, z2, p(z1, z2)

Euler Heun GD

VFE: F = Eq[ln q(z) ≠ ln p(z, x)] Ø ≠ ln p(x)¸ ˚˙ ˝
ELBO

(1)

F = Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠ Eq[ln q(z)]¸ ˚˙ ˝
entropy

(2)

= Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠⇠⇠⇠⇠⇠⇠:q(z) = ”(x ≠ µ)
Eq[ln q(z)]¸ ˚˙ ˝

entropy

(3)

p(z, x) = p(x|z)p(z) = N (f1(w1z), 1)N (f2(w2µ̄), 1) (4)

F = Eq[≠ ln(N (f1(w1z), 1)N (f2( ¯w2µ), 1))] (5)
= (x ≠ f1(w1z))2¸ ˚˙ ˝

data pred. error

+ (z ≠ f2(w2µ̄))2¸ ˚˙ ˝
latent pred. error

+2 ln 2fi (6)

p(zL, . . . , z0) =
LŸ

¸=1
p(z¸|z¸≠1) (7)

z0 z1 zL W1 WL (8)

F ¥
Lÿ

¸=1
||‘¸||22, ‘¸ = z¸ ≠ f¸(W¸z¸≠1) (9)

Inference: �z¸ Ã ≠÷ˆF/ˆz¸ (10)

Learning: �W¸ Ã ≠÷ˆF/ˆW¸ (11)

Ÿ(A) = |⁄max(A)|
|⁄min(A)|

x1, x2, w11, w12, „11, „12

1

b¸ = 1/N, b¸ = 1, a¸ = 1, a¸ = 1/
Ô
N

z1, z2, p(z1, z2)

Euler Heun GD

VFE: F = Eq[ln q(z) ≠ ln p(z, x)] Ø ≠ ln p(x)¸ ˚˙ ˝
ELBO

(1)

F = Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠ Eq[ln q(z)]¸ ˚˙ ˝
entropy

(2)

= Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠⇠⇠⇠⇠⇠⇠:q(z) = ”(x ≠ µ)
Eq[ln q(z)]¸ ˚˙ ˝

entropy

(3)

p(z, x) = p(x|z)p(z) = N (f1(w1z), 1)N (f2(w2µ̄), 1) (4)

F = Eq[≠ ln(N (f1(w1z), 1)N (f2( ¯w2µ), 1))] (5)
= (x ≠ f1(w1z))2¸ ˚˙ ˝

data pred. error

+ (z ≠ f2(w2µ̄))2¸ ˚˙ ˝
latent pred. error

+2 ln 2fi (6)

p(zL, . . . , z0) =
LŸ

¸=1
p(z¸|z¸≠1) (7)

z0 z1 zL W1 WL (8)

F ¥
Lÿ

¸=1
||‘¸||22, ‘¸ = z¸ ≠ f¸(W¸z¸≠1) (9)

Inference: �z¸ Ã ≠÷ˆF/ˆz¸ (10)

Learning: �W¸ Ã ≠÷ˆF/ˆW¸ (11)

Ÿ(A) = |⁄max(A)|
|⁄min(A)|

x1, x2, w11, w12, „11, „12

1

b¸ = 1/N, b¸ = 1, a¸ = 1, a¸ = 1/
Ô
N

z1, z2, p(z1, z2)

Euler Heun GD

VFE: F = Eq[ln q(z) ≠ ln p(z, x)] Ø ≠ ln p(x)¸ ˚˙ ˝
ELBO

(1)

F = Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠ Eq[ln q(z)]¸ ˚˙ ˝
entropy

(2)

= Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠⇠⇠⇠⇠⇠⇠:q(z) = ”(x ≠ µ)
Eq[ln q(z)]¸ ˚˙ ˝

entropy

(3)

p(z, x) = p(x|z)p(z) = N (f1(w1z), 1)N (f2(w2µ̄), 1) (4)

F = Eq[≠ ln(N (f1(w1z), 1)N (f2( ¯w2µ), 1))] (5)
= (x ≠ f1(w1z))2¸ ˚˙ ˝

data pred. error

+ (z ≠ f2(w2µ̄))2¸ ˚˙ ˝
latent pred. error

+2 ln 2fi (6)

p(zL, . . . , z0) =
LŸ

¸=1
p(z¸|z¸≠1) (7)

z0 z1 zL W1 WL (8)

F ¥
Lÿ

¸=1
||‘¸||22, ‘¸ = z¸ ≠ f¸(W¸z¸≠1) (9)

Inference: �z¸ Ã ≠÷ˆF/ˆz¸ (10)

Learning: �W¸ Ã ≠÷ˆF/ˆW¸ (11)

Ÿ(A) = |⁄max(A)|
|⁄min(A)|

x1, x2, w11, w12, „11, „12

1

Figure A.4: Empirical eigenspectra of O at ini-
tialisation, holding the network depth constant
(H = 128) and varying the width N .

If properly normalised as above, we know that in
the limit the eigenspectrum of dense Wigner ma-
trices converges the classical Wigner semicircle
distribution [67] with extremes

lim
H/N→∞

λ±(O) = ±2. (23)

We find that the empirical eigenspectrum of O
is slightly broader than the semicircle and, as
expected, is affected by both the width and the
depth (Figs. A.3-A.4).

Analysis of Hz. Given the above asymptotic
results on D and O, we can use Weyl’s inequali-
ties [65] to lower and upper bound the minimum
and maximum eigenvalues (and so the condi-
tion number) of the overall Hessian at initialisa-
tion: λmax(D+O) ≤ λmax(D) + λmax(O) and
λmin(D+O) ≥ λmin(D)+λmin(O). The upper
bound (λ̃max = 7) appears tight, as shown in
Figs. A.5-A.7. However, the lower bound pre-
dicts a negative minimum eigenvalue (λ̃min =
−1), which is not possible since the Hessian is
positive definite as we proved in §A.2.2.

Nevertheless, we can still gain some insights
into the interaction between D and O by looking at the empirical eigenspectrum of Hz. In particular,

20



we observe that the maximum and especially the minimum eigenvalue of the Hessian scale with the
network depth (Figs. A.7 & A.22), thus driving the growth of the condition number.
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Figure A.5: Empirical eigenspectra of H at
initialisation, holding the network width con-
stant (N = 128) and varying the depth H .
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Figure A.6: Empirical eigenspectra of H at
initialisation, holding the network depth con-
stant (H = 128) and varying the width N .
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Figure A.7: Maximum and minimum eigenvalues of Hz at initialisation as a function of network
width N and depth L.

A.2.4 Activity Hessian of linear ResNets

Here we derive the activity Hessian for linear ResNets [19], extending the derivation in §A.2.1 for
DLNs. Following the Depth-µP parameterisation [72, 3], we consider ResNets with identity skip
connections at every layer except from the input and to the output. The PC energy for such ResNets
is given by

F1-skip =
1

2
||ϵL||2 +

1

2
||ϵ1||2 +

H∑
ℓ=2

1

2
||zℓ − aℓWℓzℓ−1 − zℓ−1︸︷︷︸

1-skip

||2, (24)

21



where recall that ϵℓ = zℓ − aℓWℓzℓ−1 and z0 := x, zL := y. We refer to this model as “1-skip”
since the residual is added to every layer. Its activity Hessian is given by

H1-skip
z :=

∂2F1-skip

∂zℓ∂zk
=



2I+ a2ℓ+1W
T
ℓ+1Wℓ+1 + aℓ+1(W

T
ℓ+1 +Wℓ+1), ℓ = k ̸= H

I+ a2ℓ+1W
T
ℓ+1Wℓ+1, ℓ = k = H

−ak+1Wk+1 − I, ℓ− k = 1

−aℓ+1W
T
ℓ+1 − I, ℓ− k = −1

0, else

. (25)

We find that this Hessian is much more ill-conditioned (Fig. A.22) than that of networks without
skips (Fig. 2), across different parameterisations (Fig. 4). We note that one can extend these results
to n-skip linear ResNets with energy

Fn-skip =
1

2
||ϵL||2 +

n∑
ℓ=1

1

2
||ϵℓ||2 +

H∑
ℓ=n+1

1

2
||zℓ − aℓWℓzℓ−1 − zℓ−n︸︷︷︸

n-skip

||2 (26)

or indeed arbitrary computational graphs [55]. It could be interesting to investigate whether there
exist architectures with better conditioning of the inference landscape that do not sacrifice the stability
of the forward pass (see §4, Fig. 4).

A.2.5 Extension to other energy-based algorithms

Here we include a preliminary investigation of the inference dynamics of other energy-based local
learning algorithms. As an example, we consider equilibrium propagation (EP) [59], whose energy
for a DLN is given by

E =
1

2
||zℓ||2 −

L∑
ℓ=1

zTℓ Wℓzℓ−1 +
β

2
||y − zL||2, (27)

where z0 := x for supervised learning (as for PC), and it is also standard to include an ℓ2 regulariser
on the activities. Unlike PC, EP has two inference phases: a free phase where the output layer zL is
free to vary like any other hidden layer with β = 0; and a clamped or nudged phase where the output
is fixed to some target y with β > 0. The activity gradient and Hessian of the EP energy (Eq. 27) are
given by

∂E

∂zℓ
=

{
zℓ −Wℓzℓ−1 − zTℓ+1Wℓ+1, ℓ ̸= L

zℓ −Wℓzℓ−1 − β(y − zℓ), ℓ = L
(28)

and

Hz :=
∂2E

∂zℓ∂zk
=



I, ℓ = k ̸= L

I+ β, ℓ = k = L

−Wℓ+1, ℓ− k = 1

−WT
k+1, ℓ− k = −1

0, else

(29)

where we abuse notation by denoting the Hessian in the same way as that of the PC energy. We
observe that the off-diagonal blocks are equal to those of the PC activity Hessian (Eq. 5). Similar to
PC, one can also rewrite the EP activity gradient (Eq. 28) as a linear system

∇zE =


I −WT

2 0 . . . 0
−W2 I −WT

3 . . . 0

0 −W3 I
. . . 0

...
...

. . . . . . −WT
L

0 0 0 −WL I+ β


︸ ︷︷ ︸

Hz


z1
z2
...

zL−1

zL


︸ ︷︷ ︸

z

−


W1x
0
...
0
βy


︸ ︷︷ ︸

b

(30)

with solution z∗ = H−1
z b. Interestingly, unlike for PC, the EP inference landscape is not necessarily

convex, which can be easily seen for a shallow 2-layer scalar network where ∃λ(Hz(w2 > 1)) < 0.
This is always true without the activity regulariser, in which case the identity in each diagonal block
vanishes.
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A.2.6 Limit convergence of µPC to BP (Thm. 1)

Here we provide a simple proof of Theorem 1. Consider a slight generalisation to linear ResNets (Eq.
24) of the PC energy at the inference equilibrium derived by [22] for DLNs:

F(z∗) =
1

2B

B∑
i=1

rTi S
−1ri, (31)

where S = Idy
+ a2LWLW

T
L +

H∑
ℓ=2

(
aLWL

H∏
ℓ

I+ aℓWℓ

)(
aLWL

H∏
ℓ

I+ aℓWℓ

)T

(32)

and the residual error is ri = yi − aLWL

(∏H
ℓ=2 I+ aℓWℓ

)
a1W1xi. B can stand for the batch or

dataset size. Note that Eq. 31 is an MSE loss with a weight-dependent rescaling (Eq. 32). Now, we
know that, for Depth-µP, the forward pass of this model has ON,H(1) preactivations at initialisation
and so the residual will also be of order 1. Note that, by contrast, for SP (aℓ = 1 for all ℓ and
bℓ = 1/Nℓ−1) the preactivations explode with the depth (Fig. A.30).

The key question, then, is what happens to the rescaling S in the limit of large depth and width. Recall
that for µPC, aL = 1/N and aℓ = 1/

√
NL for ℓ = 2, . . . ,H (see Table 1). Because the output

weights factor in every term of the rescaling S except for the identity, these terms will all vanish
at a 1/N rate as N → ∞, i.e. WLW

T
L/N

2 ∼ O(1/N). The depth, on the other hand, scales the
number of terms in S. Therefore, the width will have to grow with the depth at some constant ratio
L/N—which can be thought of as the aspect ratio of the network [50]—to make the contribution
of each term as small as possible. In the limit of this ratio r → 0, the energy rescaling (Eq. 32)
approaches the identity S = I, the equilibrated energy converges to the MSE FµPC(z

∗,θ) = LµP(θ),
and so PC computes the same gradients as BP.

A.3 Additional experiments

A.3.1 Ill-conditioning with training

For the setting in Fig. 3, we also ran experiments with Adam as inference algorithm and ResNets
with standard GD. All the results were tuned for the weight learning rate (see §A.4 for more details).
We found that Adam led to more ill-conditioned inference landscapes associated with significantly
lower and more unstable performance than GD (Figs. 3 & A.23).
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Figure A.8: Same results as Fig. 3 with Adam as inference algorithm (MNIST).

Interestingly, while skip connections induced much more extreme ill-conditioning (Fig. A.22),
performance was equal to, and sometimes significantly better than, networks without skips (Figs. A.9
& A.25), suggesting a complex relationship between trainability and the geometry of the inference
landscape which we return to in §A.3.6.
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Figure A.9: Same results as Fig. 3 with skip connections (MNIST).

A.3.2 Activity initialisations

Here we present some additional results on the initialisation of the activities of PCNs. All experiments
used fully connected ResNets, GD as activity optimiser, and as many inference steps as the number
of hidden layers. For intuition, we start with linear scalar PCNs or chains. First, we verify that
the ill-conditioning of the inference landscape (§3.1) causes the activities to barely move during
inference, and increasing the activity learning rate leads to divergence for both forward and random
initialisation (Fig. A.10). Similar results are observed for µPC (see Fig. A.35).
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Figure A.10: Ill-conditioning of the inference landscape prevents convergence to the analytical
solution regardless of initialisation. For different initialisations (forward and random) and activity
learning rates β, we plot the activities of a 64-layer scalar PCN over inference at the start of training.
The theoretical activities were computed using Eq. 4. The task was a simple toy regression with
y = −x + ϵ with x ∼ N (1, 1) and ϵ ∼ N (0, 0.5). A standard Gaussian was used for random
initialisation, zℓ ∼ N (0, 1). Results were similar across different random seeds.

For wide linear PCNs with forward initialisation, we find similar results except that µPC seems to
initialise the activities close to the analytical solution (Fig. A.11). The same pattern of results is
observed for nonlinear networks (Fig. A.36), although note that in this case we do have an analytical
solution. These results might suggest that one does not need to perform many inference steps
to achieve good performance with µPC. However, we found that one inference step led to worse
performance (including as a function of depth) (Figs. A.14 & A.27) compared to as many steps as
number of hidden layers (Figs. A.16 & A.18).
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Figure A.11: The forward pass of µPC seems to initialise the activities close to the analytical
solution (Eq. 4). Similar to Fig. A.10, we plot the ℓ2 norm of the activities over inference of 16-layer
linear PCNs (N = 128) at the start of training (MNIST). Again, results were similar across different
random initialisations.

A.3.3 Activity decay

In §4, we discussed how it seems impossible to achieve good conditioning of the inference landscape
without making the forward pass unstable (e.g. by zeroing out the weights). We identified one way
of inducing relative well-conditionness at initialisation without affecting the forward pass, namely
adding an ℓ2 norm regulariser on the activities α

2

∑H
ℓ ||zℓ||2 with α = 1. This effectively induces a

unit shift in the Hessian spectrum and bounds the minimum eigenvalue at one rather than zero (see
§A.2.3). However, we find that PCNs with any degree of activity regularisation α are untrainable
(Fig. A.12).
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Figure A.12: Activity decay induces well-conditioned inference at the cost of performance. Left:
Same plot as Fig. 2 with an added activity regulariser α

2 ||zℓ||
2 with α = 1. Right: Maximum test

accuracy on MNIST achieved by a linear PCN with N = 128 and H = 8 over activity regularisers of
varying strength α. Solid lines and (barely visible) shaded regions indicate the mean and standard
deviation across 3 random seeds, respectively.

A.3.4 Orthogonal initialisation

As mentioned in §5, in addition to µPC we also tested PCNs with orthogonal initialisation as a
parameterisation ensuring stable forward passes at initialisation for some activation functions (§4;
Fig. A.30). We found that this initialisation was not as effective as µPC (Figs. A.13 & A.26), likely
due to loss of orthogonality of the weights during training. Adding an orthogonal regulariser could
help, but at the cost of an extra hyperparameter to tune. We also find that, except for linear networks,
the ill-conditioning of the inference landscape still grows and spikes during training, similar to other
parameterisations (e.g. Fig. 3).
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Figure A.13: Test accuracies in Fig. 1 for orthogonal initialisation. Note that performance is
expected to drop for ReLU networks which cannot have stable forward passes with orthogonal
weights (Fig. A.30). We also plot the condition number of the activity Hessian over training.

A.3.5 µPC with one inference step

All the experiments with µPC (e.g. Fig. 1) used as many inference steps as hidden layers. Motivated
by the results of §A.3.2 showing that the forward pass of µPC seems to initialise the activities close
to the analytical solution for DLNs (Eq. 4), we also performed experiments with a single inference
step. We found that this led a degradation in performance not only at initialisation but also as a
function of depth (Figs. A.14 & A.27), suggesting that some number of steps is still necessary despite
µPC appearing to initialise the activities close to the inference solution (Fig. A.11). Similar to other
parameterisations, we find that the ill-conditioning of the inference landscape grows and spikes during
training.
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Figure A.14: µPC test accuracies in Fig. 1 with one inference step. We also plot the condition
number of the activity Hessian during training.

A.3.6 Is inference convergence sufficient for good generalisation?

Our analysis of the conditioning of the inference landscape (§3.1) could be argued to rely on the
assumption that converging to a solution of the inference dynamics is beneficial for learning and
ultimately performance. This question has yet to be resolved, with some works showing both
theoretical and empirical benefits for learning close to the inference equilibrium [61, 22], while
others argue to take only one step [57]. As discussed in §7, our results suggest that convergence
close to a solution is necessary for successful training (or monotonic decrease of the loss), which for
brevity we will refer to as “trainability”. In particular, µPC seems to the activities much closer to the
analytical solution (Eq. 4) than the SP (§A.3.2), and training µPC with one inference step leads to
worse performance (e.g. Fig. A.14) than with as many as hidden layers (e.g. Fig. 1).

Here we report another experiment that speaks to this question and in particular suggests that while
inference convergence is necessary for trainability, it is insufficient for good generalisation, at least
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for standard PC. Training linear ResNets of varying depth on MNIST with “perfect inference” (using
Eq. 4), we observe that even the deepest (H = 32) networks now become trainable with standard
PC in the sense that the training and test losses decrease monotonically (Fig. A.15). However, the
starting point of the test losses substantially increases with the depth, and the test accuracies of the
deepest networks remain at chance level. These results do not contradict our analysis but highlight
the important distinction between trainability and generalisation. Our analysis addresses the former,
while the latter is beyond the scope of this work.
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Figure A.15: Train and test metrics of standard PCNs of varying depth trained with analytical
inference (Eq. 4). We plot the training loss, test loss and test accuracy of ResNets (N = 128) trained
with standard PC on MNIST by solving for inference analytically (using Eq. 4). All experiments
used Adam as optimiser with learning rate η = 1e−3. Solid lines and shaded regions represent the
mean and standard deviation across 3 random initialisations.

A.4 Experimental details

Code to reproduce all the experiments is available at https://github.com/thebuckleylab/jpc/
experiments/mupc_paper. We always used no biases, batch size B = 64, Adam as parameter
optimiser, and GD as inference optimiser (with the exception of Figs. A.8 & A.24). For the
SP, all networks used Kaiming Uniform (Wℓ)ij ∼ U(−1/Nℓ−1, 1/Nℓ) as the standard (PyTorch)
initialisation used to train PCNs.

µPC experiments (e.g. Fig. 1). For the test accuracies in Figs. 1 & A.16, we trained fully
connected ResNets (Eq. 24) to classify MNIST with standard PC, µPC and BP with Depth-µP. To
ensure fair comparison, BP with Depth-µP employed the same scalings as µPC. All networks had
width N = 512 and always used as many GD inference iterations as the number of hidden layers
H ∈ {2i}7i=3. To save compute, we trained only for one epoch and evaluated the test accuracy every
300 iterations. For µPC, we selected runs based on the best results from the depth transfer (see
Hyperparameter transfer below). For standard PC, we conducted the same grid search over the
weight and activity learning rates as used for µPC. For BP, we performed a sweep over learning
rates η ∈ {1e0, 5e−1, 1e−1, 5e−2, 1e−2, 5e−3, 1e−3, 5e−4, 1e−4} at depth H = 8, and transferred
the optimal value to the deepest (H = 128) networks presented.

Fig. A.20 shows similar results for µPC based on the width transfer results. Fig. A.17 was obtained
by extending the training of the 128 ReLU networks in Fig. 1 to 5 epochs. Figs. A.14 & A.27 were
obtained with the same setup as Fig. 1 by running µPC for a single inference step. As noted in §5, the
results on Fashion-MNIST (Fig. A.18) were obtained with depth transfer by tuning 8-layer networks
and transferring the optimal learning rates to 128 layers.

Hessian condition number at initialisation (e.g. Fig. 2). For different activation functions (Fig.
2), architectures (Fig. A.22) and parameterisations (Fig. 4), we computed the condition number of
the activity Hessian (Eq. 5) at initialisation over widths and depths N,H ∈ {2i}7i=1. This was the
maximum range we could achieve to compute the full Hessian matrix given our memory resources.
No biases were used since these do not affect the Hessian as explained in §A.2.1. Results did not
differ significantly across different seeds or input and output data dimensions, as predicted from the
structure of the activity Hessian (Eq. 5).

For the landscape insets of Fig. 2, the energy landscape was sampled around the linear solution of the
activities (Eq. 4) along the maximum and minimum eigenvectors of the Hessian F(z∗ + αv̂min +
βv̂min), with domain α, β ∈ [−2, 2] and 30× 30 resolution.
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Hessian condition number over training (e.g. Fig. 3). For different activations (e.g. Fig. 3),
architectures (e.g. Fig. A.9), algorithms (e.g. Fig. A.8) and parameterisations (e.g. Fig. A.13), we
trained networks of width N = 128 and hidden layers H ∈ {8, 16, 32} to perform classification
on MNIST and Fashion-MNIST. This set of widths and depths was chosen to allow for tractable
computation of the full activity Hessian (Eq. 5). Training was stopped after one epoch to illustrate the
phenomenon of ill-conditioning. All experiments used weight learning rate η = 1e−3 and performed
a grid search over activity learning rates β ∈ {5e−1, 1e−1, 5e−2}. A maximum number of T = 500
steps was used, and inference was stopped when the norm of the activity gradients reached some
tolerance.

Hyperparameter transfer (e.g. Fig. 5). For the ResNets trained on MNIST with µPC (e.g. Fig. 1),
we performed a 2D grid search over the following learning rates: η ∈ {5e−1, 1e−1, 5e−2, 1e−2} for
the weights, and β ∈ {1e3, 5e2, 1e2, 5e1, 1e1, 5e0, 1e0, 5e−1, 1e−1, 5e−2, 1e−2} for the activities.
We trained only for one epoch, in part to save compute and in part based on the results of [3, Fig.
B.3] showing that the optimal learning rate could be decided after just 3 epochs on CIFAR-10. The
number of (GD) inference iterations was always the same as the number of hidden layers. For the
width transfer results, we trained networks of 8 hidden layers and widths N ∈ {2i}10i=6, while for
the depth transfer we fixed the width to N = 512 and varied the depth H ∈ {2i}7i=3. Note that
this means that the plots with title N = 512 and H = 8 in Figs. 5 & A.31-A.32 are the same. The
landscape contours were averaged over 3 different random seeds, and the training loss is plotted on a
log scale to aid interpretation.

Loss vs energy ratios (e.g. Fig. 6). We trained ResNets (Eq. 24) to classify MNIST for one epoch
with widths and depths N,H ∈ {2i}6i=1. To replicate the successful setup of Fig. 1, we used the same
learning rate for the optimal linear networks trained on MNIST, η = 1e−1. To verify Theorem 1, at
every training step we computed the ratio between the Depth-µP MSE loss L(θ) and the equilibrated
µPC energy F(z∗,θ) (Eq. 31), where z∗ was computed using Eq. 4. All experiments used the weight
learning rate η = 1e−4. Fig. A.33 shows the same results for the SP, which used a smaller learning
rate η = 1e−4 to avoid divergence at large depth. All the phase diagrams are plotted on a log scale for
easier visualisation. Fig. A.34 shows an example of the ratio dynamics of µPC vs PC for a ResNet
with 4 hidden layers and different widths. Results were similar across different random initialisations.

A.5 Compute resources

The experiments involving µPC, hyperparameter transfer, and the monitoring of the condition number
of the Hessian during training were all run on an NVIDIA RTX A6000. The runtime varied by
experiment, with the 128-layer networks trained for multiple epochs (Figs. A.17-A.18) taking several
days. All other experiments were run on a CPU and took between one hour and half a day, depending
on the specific experiment.
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A.6 Supplementary figures
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Figure A.16: Test accuracies in Fig. 1 for different activation functions. Solid lines and shaded
regions indicate the mean and standard deviation across 3 random seeds, respectively. BP represents
BP with Depth-µP.
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Figure A.17: 128-layer residual ReLU network trained with µPC on MNIST for 5 epochs. Solid
lines and (barely visible) shaded regions indicate the mean and standard deviation across 5 random
seeds, respectively. BP represents BP with Depth-µP.Fashion-MNIST, T = H, 15 epochs
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Figure A.18: 128-layer residual ReLU network trained with µPC on Fashion-MNIST. Solid lines
and (barely visible) shaded regions indicate the mean and standard deviation across 3 random seeds,
respectively. BP represents BP with Depth-µP.
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Figure A.19: 128-layer fully connected residual ReLU network trained with µPC on CIFAR10.
Solid lines and (barely visible) shaded regions indicate the mean and standard deviation across 3
random seeds, respectively. BP represents BP with Depth-µP. As for other datasets, we see that µPC
remains capable of training such deep networks, although performance slightly lags behind BP. Note
that accuracies for all algorithms are far from SOTA because of the fully connected (as opposed to
convolutional) architecture used.
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Figure A.20: Same results as Fig. 1 varying the width N and fixing the depth at H = 8, showing
that “wider is better” [69, 26].
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Figure A.22: Same results as Fig. 2 for the activity Hessian of ResNets (Eq. 25).
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Figure A.23: Same results as Fig. 3 for Fashion-MNIST.
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Figure A.24: Same results as Fig. A.8 for Fashion-MNIST.
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Figure A.25: Same results as Fig. A.9 for Fashion-MNIST.
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Figure A.26: Same results as Fig. A.13 for Fashion-MNIST.
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Figure A.27: Same results as Fig. A.14 for Fashion-MNIST.

32



0 400 900
0

5k

10k

15k

Training iteration

0 400 900

0

0.5M

1M

Training iteration

0 400 900
0

20k

40k

60k

80k

Training iteration

Inference conditioning

Linear, Tanh, ReLU

SP, orthogonal,Depth-µP

H = 2, H = 8, H = 16, H = 32

b¸ = 1/N, b¸ = 1, a¸ = 1, a¸ = 1/
Ô
N, aL = 1/N

z1, z2, p(z1, z2)

Euler Heun GD

VFE: F = Eq[ln q(z) ≠ ln p(z, x)] Ø ≠ ln p(x)¸ ˚˙ ˝
ELBO

(1)

F = Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠ Eq[ln q(z)]¸ ˚˙ ˝
entropy

(2)

= Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠⇠⇠⇠⇠⇠⇠:q(z) = ”(x ≠ µ)
Eq[ln q(z)]¸ ˚˙ ˝

entropy

(3)

p(z, x) = p(x|z)p(z) = N (f1(w1z), 1)N (f2(w2µ̄), 1) (4)

F = Eq[≠ ln(N (f1(w1z), 1)N (f2( ¯w2µ), 1))] (5)
= (x ≠ f1(w1z))2¸ ˚˙ ˝

data pred. error

+ (z ≠ f2(w2µ̄))2¸ ˚˙ ˝
latent pred. error

+2 ln 2fi (6)

p(zL, . . . , z0) =
LŸ

¸=1
p(z¸|z¸≠1) (7)

z0 z1 zL W1 WL (8)

F ¥
Lÿ

¸=1
||‘¸||22, ‘¸ = z¸ ≠ f¸(W¸z¸≠1) (9)

Inference: �z¸ Ã ≠÷ˆF/ˆz¸ (10)

1

Linear, Tanh, ReLU

SP, orthogonal,Depth-µP

H = 2, H = 8, H = 16, H = 32

b¸ = 1/N, b¸ = 1, a¸ = 1, a¸ = 1/
Ô
N, aL = 1/N

z1, z2, p(z1, z2)

Euler Heun GD

VFE: F = Eq[ln q(z) ≠ ln p(z, x)] Ø ≠ ln p(x)¸ ˚˙ ˝
ELBO

(1)

F = Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠ Eq[ln q(z)]¸ ˚˙ ˝
entropy

(2)

= Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠⇠⇠⇠⇠⇠⇠:q(z) = ”(x ≠ µ)
Eq[ln q(z)]¸ ˚˙ ˝

entropy

(3)

p(z, x) = p(x|z)p(z) = N (f1(w1z), 1)N (f2(w2µ̄), 1) (4)

F = Eq[≠ ln(N (f1(w1z), 1)N (f2( ¯w2µ), 1))] (5)
= (x ≠ f1(w1z))2¸ ˚˙ ˝

data pred. error

+ (z ≠ f2(w2µ̄))2¸ ˚˙ ˝
latent pred. error

+2 ln 2fi (6)

p(zL, . . . , z0) =
LŸ

¸=1
p(z¸|z¸≠1) (7)

z0 z1 zL W1 WL (8)

F ¥
Lÿ

¸=1
||‘¸||22, ‘¸ = z¸ ≠ f¸(W¸z¸≠1) (9)

Inference: �z¸ Ã ≠÷ˆF/ˆz¸ (10)

1

Linear, Tanh, ReLU

SP, orthogonal,Depth-µP

H = 2, H = 8, H = 16, H = 32

b¸ = 1/N, b¸ = 1, a¸ = 1, a¸ = 1/
Ô
N, aL = 1/N

z1, z2, p(z1, z2)

Euler Heun GD

VFE: F = Eq[ln q(z) ≠ ln p(z, x)] Ø ≠ ln p(x)¸ ˚˙ ˝
ELBO

(1)

F = Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠ Eq[ln q(z)]¸ ˚˙ ˝
entropy

(2)

= Eq[≠ ln p(z, x)]¸ ˚˙ ˝
energy

≠⇠⇠⇠⇠⇠⇠:q(z) = ”(x ≠ µ)
Eq[ln q(z)]¸ ˚˙ ˝

entropy

(3)

p(z, x) = p(x|z)p(z) = N (f1(w1z), 1)N (f2(w2µ̄), 1) (4)

F = Eq[≠ ln(N (f1(w1z), 1)N (f2( ¯w2µ), 1))] (5)
= (x ≠ f1(w1z))2¸ ˚˙ ˝

data pred. error

+ (z ≠ f2(w2µ̄))2¸ ˚˙ ˝
latent pred. error

+2 ln 2fi (6)

p(zL, . . . , z0) =
LŸ

¸=1
p(z¸|z¸≠1) (7)

z0 z1 zL W1 WL (8)

F ¥
Lÿ

¸=1
||‘¸||22, ‘¸ = z¸ ≠ f¸(W¸z¸≠1) (9)

Inference: �z¸ Ã ≠÷ˆF/ˆz¸ (10)

1

Figure A.28: Inference conditioning during training for some µPC networks in Fig. 1.
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Figure A.29: Same results as Fig. A.28 for Fashion-MNIST.
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Figure A.30: Forward pass (in)stability with network depth for different parameterisations. For
different activation functions and parameterisations, we plot the mean ℓ1 norm of the feedforward
pass activities at initialisation as a function of the network depth L. Networks (N = 1024) had skip
connections for the standard parameterisation (SP) and Depth-µP but not orthogonal. Results were
similar across different seeds.
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Figure A.31: Same results as Fig. 5 for Linear.
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Figure A.32: Same results as Fig. 5 for ReLU.
PC, Adam, 1e-4
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Figure A.33: Same results as Fig. 6 for the standard parameterisation (SP).
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Figure A.34: Example of the loss vs energy ratio dynamics of SP and µPC for H = 4.
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Figure A.35: Same results as Fig. A.10 for µPC.
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Figure A.36: Same results as Fig. A.11 for a ReLU network.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims are clearly stated in the abstract and introduction and are
strongly supported by experiments. We include a summary of contributions at the end of the
introduction, and the main limitation of our work (extension to more complex architectures)
is clearly stated in the abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We state the main limitation of our work (referring to the extension to more
complex architectures) in the abstract, and address all important limitations in the discussion
(§7).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Our two main theoretical results (Thms. 1 & A.1) rely on the key assumption
of network linearity, which we state clearly and emphasise where relevant. Complete proofs
are provided in the Appendix (§A.2.2 & A.2.6), with intuitions included in the main text.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide details needed to reproduce all the experimental results in §A.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We release code that can be used to reproduce all the experimental results at
https://github.com/thebuckleylab/jpc [23].

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify important details of all the experiments in the main text and all
other relevant information in §A.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars where most relevant (e.g. Fig. 1). Where they are not
included, it is always because results did not significantly vary across different seeds or runs,
as stated in the corresponding figure captions. Wherever shown, error bars always represent
±1 standard deviation, as noted in the captions.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide information on the compute resources used for the different
experiments in §A.5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We see no potential positive or negative societal impact of the work since the
models tested are too simple for modern AI applications.

39

https://neurips.cc/public/EthicsGuidelines


Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All of our experiments use JPC [23], an MIT-licensed library for training
PCNs, which we cite in the main text.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We make MIT-licensed modifications to JPC [23] to allow for training of
PCNs with µPC.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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