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ABSTRACT

Competitive programming has emerged as a critical benchmark for evaluating the
reasoning and coding capabilities of Large Language Models (LLMs). Despite
impressive progress on existing benchmarks, we argue that current evaluations
overstate model proficiency, masking a substantial gap between LLMs and elite
human programmers. This gap arises from two key limitations: insufficient diffi-
culty and scope of benchmark problems, and evaluation bias from low-quality test
cases. To address these shortcomings, we present AetherCode, a new benchmark
that draws problems from premier programming competitions such as IOI and
ICPC, offering broader coverage and higher difficulty. AetherCode further incor-
porates comprehensive, expert-validated test suites built through a hybrid of auto-
mated generation and human curation, ensuring rigorous and reliable assessment.
By combining challenging problem design with robust evaluation, AetherCode
provides a more faithful measure of LLM capabilities and sets a new standard for
future research in code reasoning.

1 INTRODUCTION

Competitive programming is widely regarded as a crucial benchmark for evaluating the reasoning
and coding capabilities of Large Language Models (LLMs) (OpenAI et al., 2025). Solving com-
plex competitive programming problems demands not only sophisticated reasoning abilities but also
knowledge from diverse domains, including mathematics, data structures, and algorithms. Recent
years have witnessed rapid advancements in the reasoning capabilities of LLMs, a key indicator of
which is their success on a majority of existing code reasoning benchmarks. State-of-the-art mod-
els now achieve over 90% Pass@1 accuracy on MBPP (Austin et al., 2021) and HumanEval (Chen
et al., 2021), and over 80% on LiveCodeBench (Jain et al., 2025). These encouraging developments
might lead one to ask: has competitive programming been mastered by LLMs?

In this paper, we argue that a significant gap still exists between the performance of LLMs and
top-tier human competitors in programming contests. We propose that the perception of LLM dom-
inance stems primarily from the limitations in the breadth and rigor of current code reasoning bench-
marks, which are no longer sufficient to fully assess the capabilities of today’s increasingly powerful
models. Specifically, we identify two main shortcomings in existing benchmarks:

• Insufficient Difficulty and Scope. Early benchmarks such as HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021) consist of basic coding tasks, for instance, sorting or
reversing a list, which present minimal reasoning challenges for state-of-the-art LLMs.
More recent “competition-level” benchmarks often source problems from a limited set
of websites. For example, LiveCodeBench (Jain et al., 2025) collects problems mainly
from LeetCode and AtCoder, while CodeELO (Quan et al., 2025) and LiveCodeBench Pro
(Zheng et al., 2025) originate solely from CodeForces. The problems from these web-
sites have inherent limitations. LeetCode problems are generally easier and often require
only the implementation of a single function rather than a complete program. CodeForces
contests, which typically feature 5-7 problems within a 2-3 hour timeframe, constrain the
design space for problem setters, for example, leading to a scarcity of problems that require
complex, large-scale implementations.

• Evaluation Bias from Low-Quality Test Cases. Inaccurate verifiers introduce bias into
the evaluation (Vendrow et al., 2025). The correctness of a piece of code is verified us-
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Table 1: Comparison between AetherCode and other code reasoning benchmarks

Dataset Difficulty # Problems Updates Test Cases
Construction Source

HumanEval (Chen et al., 2021) ★ 164 ✘ Handcrafted Original
MBPP (Austin et al., 2021) ★ 974 ✘ Handcrafted Original
APPS (Hendrycks et al., 2021) ★★★ 5,000 ✘ Crawled CodeForces, AtCoder etc.
USACO (Shi et al., 2024) ★★★ 307 ✘ Publicly accessible USACO
CodeContests (Li et al., 2022) ★★★ 165 ✘ Mutation CodeForces, AtCoder etc.
LiveCodeBench (Jain et al., 2025) ★★ 1055 ✔ Semi-automatic LeetCode, AtCoder
CodeELO (Quan et al., 2025) ★★★ 387 ✔ - CodeForces
LiveCodeBench Pro (Zheng et al., 2025) ★★★ 584 ✔ - CodeForces

AetherCode ★★★ 456 ✔ G-V Agent & Experts Premier Contests

ing a comprehensive set of test cases (input-output pairs). An incomplete test suite may
fail to detect incorrect submissions, particularly those with subtle flaws, such as the mis-
handling of corner cases or solutions that exceed time limits under specific, extreme con-
ditions. Consequently, designing high-quality test cases is a huge challenge that requires
a deep understanding of potential failure points, a skill typically honed through extensive
competitive programming experience. Most past benchmarks lack sufficiently rigorous
test cases. HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021), for instance,
rely on a small number of handwritten test cases. Others, including EvalPlus (Liu et al.,
2023), CodeContests (Li et al., 2022), and LiveCodeBench (Jain et al., 2025), employ naive
test case generation pipelines, such as random mutation, which fall far short of the qual-
ity of expert-designed test suites. Furthermore, recent research (Wang et al., 2025b) has
revealed issues with test case correctness itself; for example, many test cases in the Code-
Contests dataset do not adhere to the problem’s constraints, causing even correct solutions
to fail. It is worth noting that some recent benchmarks, such as CodeELO (Quan et al.,
2025) and LiveCodeBench Pro (Zheng et al., 2025), have attempted to leverage the official
CodeForces judging service to indirectly access its high-quality, expert-crafted test cases.
However, this approach presents two significant issues. First, it raises compliance risks, as
CodeForces explicitly prohibits the use of crawlers on its judging interface. Second, this
method is constrained by submission frequency limits, which impedes agile and flexible
experimentation. Therefore, we contend that an open-source benchmark with high-quality,
self-contained test cases remains critically important for the LLM community.

To address these challenges, we introduce AetherCode, a new benchmark with the following key
contributions:

Problem Curation from Top-Tier Competitions. AetherCode is the first benchmark to system-
atically collect latest problems from premier programming competitions worldwide, including the
Olympiad in Informatics (OI) and the International Collegiate Programming Contest (ICPC). Our
process involved a comprehensive collection, meticulous cleaning, and format conversion of prob-
lems from PDF to a Markdown+LaTeX structure. Each problem statement was manually proofread
for correctness, and a team of competitive programming experts annotated each problem with clas-
sification tags.

High-Quality Test Case Generation. We developed a hybrid methodology, combining automated
generation with expert annotation, to create high-quality test cases for every problem. We evaluated
the correctness and comprehensiveness of our test cases by validating them against a large corpus of
collected solutions, enforcing a standard of zero false positives and zero false negatives.

This paper is organized as follows: Section 2 details the benchmark curation process. Section 3
presents our evaluation results. Section 4 presents some related work, and Section 5 concludes the
paper with comments for future research.

2 BENCHMARK CURATION

This Section details the curation process of the AetherCode Benchmark. The overall curation pro-
cess is illustrated in Fig. 1. Then, Sections 2.1 and 2.2 describe the specifics of problem collection
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Premier Contests
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b. Problem Categorizing

Category Difficulty Time/Organizer Images
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c. Test Case Construction

…
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Accuracy Check Expert Audit Verified 

Test Cases

Figure 1: Curation process of AetherCode. (a) We begin by converting the collected problem
statements from PDF to a Markdown+LaTeX format, which is then manually proofread for accuracy.
(b) Each problem is then categorized by its algorithm type and difficulty level, and we also compile
additional metadata, such as the time and the organizer of the contest. (c) To ensure quality, we use
a G-V Agent in conjunction with human experts to annotate test cases. The accuracy of these test
cases is then evaluated against a collected set of solutions and further audited by gold medalists and
professional problem setters.

and categorizing, respectively. Section 2.3 explains how we construct high-quality test cases for
each problem.

2.1 PROBLEM COLLECTION

We source our problems from premier programming competitions worldwide rather than from on-
line programming websites. Based on their target audience, these competitions can be broadly
categorized into two main series: the Olympiad in Informatics (OI) series, which is aimed at pre-
college school students, and the International Collegiate Programming Contest (ICPC) series, which
is designed for college students.

OI Series. The Olympiad in Informatics is a series of competitions aimed at popularizing computer
science knowledge among high-school students and cultivating outstanding talents in computer sci-
ence. The OI competitions usually require participants to solve algorithm-related problems by pro-
gramming. Take the International Olympiad in Informatics (IOI), the top-level event of OI, as an
example. Each contestant competes individually, and each country can send up to 4 players. During
the two-day competition, players need to independently solve 3 problems within 5 hours each day,
mainly using C++. Furthermore, various countries and regions host their own national or regional
OI competitions, such as the National Olympiad in Informatics (NOI) in China and the USA Com-
puting Olympiad (USACO) in the United States. Top-performing contestants in these competitions
earn the opportunity to advance to the IOI.

ICPC Series. The ICPC is the oldest, largest, and most prestigious university-level programming
contest in the world. Each team consists of up to 3 students and uses one computer to solve 10 - 13
problems in 5 hours, using programming languages such as C, C++, Java, or Python. The team that
correctly solves the most problems with the least total time wins.

The world is divided into several regions for the ICPC. In Europe, there are Central Europe (CERC),
North Europe (NWERC), South-East Europe (SEERC), and South-West Europe (SWERC) regions.
Other regions include Asia-Pacific, Asia East Continent, North America, Latin America, Africa, and
Arab region, etc. The ICPC is a multi-tiered event. First, there are regional contests held worldwide
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from September to November each year. The top-performing teams in the regional contests advance
to the regional finals or championships. Then, the best teams from these finals or championships
qualify for the ICPC World Finals, which is usually held from April to June each year. This is
the highest-level stage of the ICPC, where the best teams from around the world compete for the
championship.

In addition to the official ICPC events, we also incorporated problems from other large-scale and
renowned collegiate programming contests, such as the China Collegiate Programming Contest
(CCPC).

For each problem, we collected the following components:

• Problem Statement. The statement typically comprises a title, a detailed problem descrip-
tion, input/output specifications, sample inputs and outputs with explanations, data range
constraints, and time/memory limits. The majority of the problem statements was origi-
nally in PDF format. To enhance comprehension for LLMs, we converted these PDFs into
a Markdown format with LaTeX for mathematical notations. Each converted file was then
manually proofread to ensure its accuracy.

• Solutions. We curated a collection of over 30,000 human-written solutions for these prob-
lems, encompassing both correct and incorrect submissions. For each problem, we ensured
a minimum of 5 correct and 20 incorrect solutions. The primary purpose of collecting
these solutions is to evaluate the quality of the subsequently generated test cases, a process
detailed in Section 2.3.

• Test Cases. A minority of the competitions, e.g., USACO, publicly released their official
test cases, which we collected and standardized. For problems where official test cases
were not available, we constructed our high-quality test cases. The methodology for this
construction is described in Section 2.3.

• Metadata. We also gathered auxiliary information, such as the date of the competition (for
decontamination purposes) and human contestant performance data (to facilitate difficulty
assessment), among other available data points.

The data charactistics and statistics of AetherCode v1 are presented in Table 2.

2.2 PROBLEM CATEGORIZATION

Beyond curating problems, an equally critical step in constructing AetherCode was the systematic
categorization of each problem to ensure comprehensive coverage and facilitate fine-grained evalua-
tion. To this end, we adopted a multi-dimensional categorization framework designed with the input
of competitive programming experts:

Difficulty Segmentation. Problems were divided into four levels of difficulty: Easy, Medium, Hard,
and Extreme. This classification was guided by expert judgment as well as official contest results.
Most of the problems are distributed roughly evenly among Easy, Medium, and Hard. Notably,
problems that no human contestant was able to solve during a competition were specially classified
as Extreme, representing challenges that push the boundaries of algorithmic reasoning. The number
of problems under each difficulty level is presented in Fig. 2. This difficulty classification is judged
entirely from the perspective of humans rather than being classified by LLM’s performance. This
is because we want to provide a perspective to study how the difficulty for LLMs differs from the
difficulty in the eyes of humans. Specifically, we rank problems within the same contest based
on the number of participants who successfully solved them. For contests without leaderboards,
as well as for determining the relative difficulty order across different contests, we rely on expert
evaluation. Finally, based on the overall difficulty ranking of all problems, we divide the dataset into
three roughly equal categories: Easy, Medium, and Hard.

Temporal and Contextual Dimensions. Each problem was annotated with metadata to enable both
decontamination and longitudinal analysis of model performance: (1) Date of the contest, allowing
chronological tracking of trends in problem design and model capabilities. (2) Organizer and
competition type, primarily distinguishing between Olympiad in Informatics (OI) and International
Collegiate Programming Contest (ICPC) series. (3) Competition scope, categorizing contests as
regional-level, national-level, or worldwide.
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Problem Properties. Some problems require additional considerations beyond a standard in-
put–output interface: (1) Problems dependent on visual or image-based input were excluded from
the benchmark. (2) Problems requiring special judges (custom checkers) were explicitly labeled to
ensure proper handling during evaluation.

Algorithmic and Domain Categories. To capture the breadth of algorithmic knowledge tested
in programming contests, we implemented a hierarchical taxonomy as shown in Appendix B. The
first level consists of ten categories: Algorithm Basics, Search, Dynamic Programming, Strings,
Mathematics, Data Structures, Graph Theory, Computational Geometry, Common Techniques, and
Problems on Trees. The number of problems corresponding to these ten major categories is shown
in the Figure 2. The second level has 144 categories, which are presented in Appendix B. It includes
more detailed algorithm tags. For example, the major category “Mathematics” contains several sub-
categories such as Number Theory, Linear Algebra, Probability, Game Theory, Combinatorics, and
Polynomials. Problems can belong to multiple categories to reflect their cross-disciplinary nature.

This structured categorization enables targeted evaluation of model strengths and weaknesses while
also ensuring that AetherCode serves as a scalable resource for future research. In particular, it
allows progress to be tracked across difficulty levels, problem types, and algorithmic domains, pro-
viding a more comprehensive understanding of model capabilities.

2.3 TEST CASE CONSTRUCTION

Recent studies (Liu et al., 2023; Wang et al., 2025b) have highlighted concerns regarding the quality
of test cases in several existing code datasets. For instance, benchmarks such as MBPP (Austin
et al., 2021) and HumanEval (Chen et al., 2021) include only a limited number of handwritten test
cases per problem. Others, like CodeContests (Li et al., 2022) and EvalPlus (Liu et al., 2023),
rely on naive methods such as mutation to generate test cases. Consequently, such test cases are
insufficient for comprehensively evaluating the correctness and efficiency of a program. Therefore,
we contend that the quality of test case construction is a critical factor determining the overall quality
of a benchmark.

Notably, some recent benchmarks (Quan et al., 2025; Zheng et al., 2025) directly utilize the Code-
Forces’s judging service for evaluation. This approach allows them to indirectly access high-quality
test cases created by professional problem setters, thereby circumventing the challenge of test case
construction. However, this method presents potential compliance risks, as CodeForces explicitly
prohibits the use of crawlers on its judging interface. Furthermore, this approach is constrained by
submission frequency limits, which impedes agile and flexible evaluation. Therefore, we argue that
a benchmark equipped with its own high-quality test cases remains critically important for the LLM
community.

To ensure AetherCode possesses sufficiently high-quality test cases, we approached the task from
two perspectives. First, we established more stringent evaluation criteria for test case quality, which
is presented in Section 2.3.1. Second, we employed a hybrid approach, combining automated gen-
eration with expert annotation, to construct the test cases, which are presented in Sections 2.3.2 and
2.3.3. A deteiled procedure of test case generation is presented in Appendix C.

2.3.1 TEST CASE QUALITY ASSESSMENT

Previous research on test case quality has predominantly focused on quantity, operating under the
assumption that a greater number of test cases correlates with higher quality (Li et al., 2022; 2023).
However, recent studies (Wang et al., 2025b) indicate that quantity is not a direct proxy for quality.
This discrepancy arises from two primary issues. First, test cases in some older datasets, despite their
volume, suffer from significant correctness issues, often violating the problem’s explicit constraints.
Second, conventional test case generation methods that merely amass large volumes of random data
fail to provide adequate coverage of various special and corner cases.

Consequently, we depart from evaluating test cases by their quantity and instead propose a direct
assessment of their ability to discriminate between correct and incorrect solutions. In our framework,
we conceptualize the entire test suite for a problem as a binary classifier, that is, a classifier that
distinguishes between correct and incorrect solutions. We then evaluate the performance of this
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Table 2: Data characteristics of
AetherCode v1 (2401-2505)

CATEGORY METRIC COUNT

Year # 2024 400
# 2025 56

Origin # OI 76
# ICPC 380

Test Cases Avg. Tests 47.15

Categories # Categories 10
# Tags 144

Figure 2: Difficulty and category distributions of the Aether-
Code v1 (2401-2505). The definitions of the category abbre-
viations are in Table 4.

classifier using a large, curated collection of both correct and incorrect submissions. We adopt the
True Positive Rate (TPR) and True Negative Rate (TNR) as our primary evaluation metrics.

TPR =
True Positive

True Positive + False Negative
=

Number of Passed Correct Solutions

Number of Correct Solutions
(1)

TNR =
True Negative

True Negative + False Positive
=

Number of Rejected Incorrect Solutions

Number of Incorrect Solutions
(2)

The TPR measures the correctness of the test cases; a high TPR indicates that correct solutions are
not erroneously failed, which is expected when the test cases themselves are valid. Conversely, the
TNR measures the comprehensiveness or coverage of the test cases, quantifying their ability to
detect (or “hack”) incorrect solutions.

By employing a hybrid approach that combines automated generation with expert curation, we have
achieved a 100% TPR and 100% TNR on our collected solution set. This signifies that all collected
correct solutions pass our test cases, while all collected incorrect solutions are successfully rejected.
To the best of our knowledge, AetherCode is the first benchmark that sets such a high standard for
test cases.

2.3.2 AUTOMATIC CONSTRUCTION OF TEST CASES

We employed the Generator-Validator (G-V) Agent System (Wang et al., 2025b) to automatically
construct test cases for these problems. This is a multi-agent system composed of two interacting
agents: a validator and a generator. The generator agent writes a test case generator program to
produce diverse test cases, including random and various corner cases. The validator agent writes a
validator program to ensure that the test cases produced by the generator are correct and adhere to
the problem’s constraints.

Previous research (Wang et al., 2025b) has pointed out that some past code datasets blindly increased
the quantity of test cases while ignoring their validity, thereby introducing significant bias into eval-
uations. Therefore, the validator plays a crucial role in ensuring the correctness of the test cases. To
further guarantee quality, we have added a manual human-in-the-loop step to review and correct the
validator programs, ensuring that all of our test cases are valid.

In this test case generation task, the G-V agent system alone achieves a TNR of 89.9%. Furthermore,
due to the incorporation of additional human verification for the validator, it attains a TPR of 100%.
Recognizing that this Automatic Construction phase could not achieve a 100% TNR on its own, we
introduced an additional expert annotation stage to further strengthen the test cases.

2.3.3 EXPERT ANNOTATION OF TEST CASES

To this end, we recruited 67 competitive programming experts. The majority of them hold Code-
forces ratings above 2000, with a few experts exceeding 2600 and achieving the title of International
Grandmaster. These experts were tasked with constructing targeted test cases specifically designed
to fail the various incorrect solutions we had collected. These manually crafted test cases were then
merged with the automatically generated ones to form the final test suite.
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Table 3: Performance comparison between reasoning models and non-reasoning models on Aether-
Code v1 (%, 2401-2505). The Difficulty and Year columns show the models’ pass@1 scores on
problems of varying difficulty levels and from different years. The Pass@N column displays the
models’ Pass@1, Pass@2, and Pass@4 scores.

Model DIFFICULTY YEAR PASS@N

Easy Medium Hard Extreme 2024 2025 1 2 4

Reasoning Models

o4-mini-high 65.3 32.1 8.0 3.8 35.8 32.6 35.5 43.0 46.6
Gemini-2.5-Pro 60.1 28.6 8.5 2.5 33.7 25.0 32.7 39.8 46.0
Seed-1.6-Thinking-0715 53.9 20.2 4.7 0 28.3 14.7 26.6 33.0 38.5
DeepSeek-R1-0528 46.2 16.0 3.8 0 23.4 14.3 22.3 27.4 32.4
Qwen3-235B-A22B-Thinking-2507 43.1 18.6 4.0 1.3 23.6 11.6 22.2 28.9 36.0
Gemini-2.5-Flash 42.1 15.2 2.7 0 22.0 8.0 20.3 24.5 28.5
GLM-4.5 40.1 14.3 2.7 0 20.6 9.8 19.3 24.9 29.2
Qwen3-235B-A22B 37.6 12.4 1.9 0 19.1 7.1 17.6 21.7 25.2
Qwen3-32B 34.8 10.9 2.7 0 17.7 6.7 16.3 20.4 23.9
Claude-4.5-Sonnet-thinking 36.8 8.8 2.2 0 17.1 10.3 16.3 19.8 23.3
Claude-4-Opus-thinking 30.0 5.2 1.0 0 13.1 7.6 12.4 15.6 18.2
Qwen3-8B 23.7 4.8 0.8 0 11.1 2.7 10.0 13.0 15.5

Non-Reasoning Models

GPT-4.1 23.9 5.7 1.1 0 11.3 4.5 10.5 13.2 15.3
Kimi-K2 23.1 4.7 1.0 0 10.6 4.0 9.8 12.2 14.5
DeepSeek-V3-0324 20.8 4.0 0 0 8.9 5.4 8.5 10.5 12.3
Qwen3-Coder-480B-A35B 19.7 2.2 0.6 0 8.6 1.8 7.7 9.9 11.8
Claude-4-Sonnet-nothinking 18.4 2.6 0.8 0 7.9 4.5 7.5 9.1 11.0
GPT-4o 11.6 1.0 0.2 0 4.9 1.3 4.4 5.6 7.0

Furthermore, we recognized that for certain problems with a limited number of collected incorrect
solutions (fewer than 50), achieving a 100% TNR might not sufficiently guarantee the robustness
of the test cases. To address this, we subjected the test cases for all problems to a manual quality
audit by a specialized review team. Each member of this elite team holds at least three ICPC gold
medals and has a minimum of two years of experience in competitive programming problem-setting.
Their deep understanding of potential pitfalls and common errors in each problem allows them to
leverage their extensive experience to further ensure the quality and comprehensiveness of the test
cases. Specifically, this elite team further supplements missing corner cases and additionally writes
various incorrect and inefficient solutions to verify the comprehensiveness of the test cases.

Additionally, for problems that accept multiple valid outputs, customized judging scripts (a.k.a.
checker, or special judge) were provided and thoroughly reviewed by these experts to ensure correct
evaluation.

3 EVALUATION

Our evaluation includes 11 reasoning models and 6 non-reasoning models. The reasoning mod-
els comprise o4-mini-high (OpenAI, c), Gemini-2.5-Pro/Flash (Comanici et al., 2025),
Seed-1.6-thinking (Chen et al., 2025a), DeepSeek-R1 Guo et al. (2025), GLM-4.5 (Zeng
et al., 2025), Claude-4-Opus-thinking and Qwen3 (Yang et al., 2025a), among others. The non-
reasoning models consist of GPT-4.1 (OpenAI, a), GPT-4o (OpenAI, b), Kimi-K2 (Kimi-Team
et al., 2025), DeepSeek-V3 (Liu et al., 2024), Claude-4-Sonnet (without thinking), and
Qwen3-Coder. All models are configured with a maximum output length of 32,768 tokens. Each
model is evaluated four times in each problem, and the average numbers are reported. Detailed
settings of the experiment are presented in Appendix A.

3.1 MAIN RESULT

Table 3 presents a comprehensive performance evaluation of several prominent models on Aether-
Code. For full results, please refer to the online leaderboard. The analysis yields the following key
conclusions:
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Table 4: Performance comparison (Pass@1) between reasoning models and non-reasoning models
across 10 major categories: Algorithm Basics (Basic), Search, Dynamic Programming (DP), Strings
(Str.), Mathematics (Math), Data Structures (DS), Graph Theory (Graph), Computational Geometry
(Geo.), Common Techniques (Tech.), and Problems on Trees (Tree).

Model Basic Search DP Str. Math DS Graph Geo. Tech. Tree

Reasoning Models

o4-mini-high 38.1 28.5 27.7 35.6 31.8 25.8 28.5 27.1 26.9 7.3
Gemini-2.5-Pro 36.1 24.5 24.6 29.8 31.5 25.4 26.2 18.1 23.0 7.3
Seed-1.6-Thinking 32.2 17.0 17.3 26.0 24.2 17.9 18.8 12.5 19.2 1.0
DeepSeek-R1-0528 26.3 16.0 14.6 23.1 19.3 16.3 15.6 10.4 13.8 7.3
Qwen3-235B-A22B-Thinking-2507 26.2 14.5 15.0 20.2 21.1 14.8 15.6 11.8 15.1 4.2
Gemini-2.5-Flash 24.1 16.5 11.8 19.2 16.7 16.3 17.2 13.2 11.4 4.2
GLM-4.5 22.8 14.0 13.0 21.2 15.6 12.9 13.7 10.4 15.1 2.1
Qwen3-235B-A22B 22.2 13.0 8.4 20.2 13.5 11.0 12.5 11.1 9.4 4.2
Qwen3-32B 19.7 11.5 10.9 18.3 14.1 11.0 9.4 6.9 11.2 0
Claude-4.5-Sonnet-thinking 20.7 11.5 8.2 17.3 9.1 9.4 10.6 11.1 11.4 0
Claude-4-Opus-thinking 16.0 10.0 5.7 17.3 6.3 8.3 7.0 8.3 7.7 0
Qwen3-8B 13.3 9.0 3.9 15.4 7.6 7.9 6.3 1.4 4.9 1.0

Non-Reasoning Models

GPT-4.1 13.9 9.5 3.4 19.2 4.2 8.3 5.5 6.3 6.0 0
Kimi-K2 13.7 7.5 3.6 15.4 7.0 8.1 6.6 0.7 3.6 0
DeepSeek-V3-0324 12.1 7.0 1.8 14.4 3.9 6.3 4.3 0 3.6 0
Qwen3-Coder-480B-A35B 11.1 5.5 1.8 14.4 4.2 5.2 4.3 1.4 2.9 1.0
Claude-4-Sonnet-nothinking 10.9 8.0 1.8 13.5 2.6 5.0 3.5 2.1 3.4 0
GPT-4o 7.2 4.5 0.7 11.5 1.6 2.9 0.4 0 1.5 0

Significant Performance Gap between Models. o4-mini-high and Gemini-2.5-Pro de-
liver exceptional performance, establishing an elite tier with a significant gap over other models.
They are notably two of the three models capable of tackling the ”Extremely Difficult” problems.
This consistent, substantial lead across all difficulty tiers underscores the high degree of discrimina-
tion provided by the AetherCode benchmark.

Reasoning Models Comprehensively Outperform Non-Reasoning Models. As anticipated, rea-
soning models demonstrate markedly superior performance compared to non-reasoning models. For
instance, models from the Qwen3 series, such as Qwen3-32B, outperform several non-reasoning
models despite having fewer parameters. More notably, even with four sampling attempts (Pass@4),
the performance of non-reasoning models still falls short of that achieved by reasoning models.
This phenomenon indicates that for complex tasks like coding competitions, the solution space ex-
ploration capabilities of non-reasoning models are constrained, making it difficult to find correct
solutions through limited sampling. This bottleneck is particularly pronounced in weaker models.

Top-Tier Models Exhibit Great Exploration Potential. A comparison of Pass@1 and Pass@4
scores reveals that increasing the number of samples yields a more substantial performance improve-
ment for top-tier models. For example, o4-mini-high’s score improved by 11.1% (from 35.5%
to 46.6%), whereas the weaker Qwen3-32B only saw a gain of 7.6% (from 16.3% to 23.9%).
Particularly noteworthy is Gemini-2.5-Pro, which achieved a remarkable performance increase
of 13.3% (from 32.5% to 46.0%). This demonstrates its vast exploration potential in solving com-
plex programming problems, enabling it to generate more diverse and high-quality solutions through
multiple attempts.

3.2 PERFORMANCE ACROSS ALGORITHMS

The performance comparison in Table 4 reveals a significant differentiation in model capabilities
across various problem categories. All models, regardless of being reasoning or non-reasoning
types, uniformly excel at pattern-based tasks such as “Basic Algorithms” and “Strings”. However,
their limitations become equally apparent when handling highly abstract problems. Most mod-
els struggle to tackle “Computational Geometry” and “Tree Structures”, with the performance of
o4-mini-high in computational geometry being a notable exception. Furthermore, the short-
comings of non-reasoning models are particularly pronounced, as their capability bottlenecks extend
into domains that also demand deep logic and abstract thinking, such as “Dynamic Programming”
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and “Mathematics”. It is worth noting that, due to the inconsistent distribution of problems across
categories, individual categories (such as Tree) may happen to be particularly difficult, resulting in
lower model scores. The difficulty distribution for each category is presented in Appendix B.

Generally speaking, models with higher overall scores also tend to be stronger across nearly every
subcategory, with o4-mini-high ranking first in all of them. However, this analysis also allows
us to identify the weaknesses of certain models. For example, while GPT-4.1 has the highest overall
score among the non-reasoning models, its performance on mathematical problems is significantly
weaker.

3.3 DIAGNOSIS OF FAILURE REASONS

We categorize all model failure cases into four types. Wrong Answer means the program outputted
an incorrect result. Time Limit Exceeded means the program failed to output an answer within the
given time limit. Runtime Error means the program encountered an error during runtime, including
Segmentation Error, exceeding the memory limit, etc. Compile Error means the program has a syn-
tax error and could not be successfully compiled. The statistical results are presented in Appendix
E Table 8.

For the majority of models, the primary error type is Wrong Answer, accounting for approximately
70% to 80% of cases, followed by Time Limit Exceeded. The Claude series is slightly different,
with Wrong Answer and Time Limit Exceeded each accounting for roughly half of the errors. We
conducted a study on the failure cases of the Claude models and found that, on difficult problems,
they tend to design algorithms that are correct but inefficient, rather than prioritizing adherence to
the problem’s time complexity constraints.

Compile Error rates vary significantly across different models. Most models maintain a Compile
Error rate within 10%, with the Claude series achieving the lowest. However, some models ex-
hibit particularly high Compile Error rates, such as GLM-4.5. Our analysis of GLM-4.5’s Compile
Error cases revealed that over half were caused by the model using the incorrect programming lan-
guage; for example, it writes a Python program while being instructed to use C++. This indicates a
deficiency in GLM-4.5’s ability to follow programming language instructions.

To further analyze the causes of model failures, we conducted a more granular attribution of er-
ror types. We performed a qualitative analysis of reasoning cases from o4-mini-high. The
primary failure reasons identified include: incorrect algorithmic logic, failure to handle corner
cases, insufficient algorithmic efficiency, and implementation errors. Furthermore, we found that
o4-mini-high sometimes acknowledges its inability to solve a problem rather than providing an
incorrect answer. Relevant problems and corresponding cases are provided in the Appendix E.

4 RELATED WORK

4.1 CODE BENCHMARKS

Coding ability is one of the important capabilities of LLMs. How to evaluate the coding ability of
LLMs has also received widespread attention from researchers in recent years. Existing code bench-
marks can be roughly divided into three categories: basic benchmarks, code reasoning benchmarks,
and software-engineering (SWE) benchmarks.

Representative of the basic benchmarks are HumanEval (Chen et al., 2021), MBPP (Austin et al.,
2021), CoderEval (Yu et al., 2024), PPM (Chen et al., 2024), DynaCode (Hu et al., 2025), and
DyCodeEval (Chen et al., 2025b), which contain some fundamental programming tasks such as
sorting and simple sequence operations. Because they are relatively basic, they are also suitable as
observation metrics for model capabilities during the pre-training stage.

Code reasoning benchmarks are primarily composed of competitive-level programming tasks that
simultaneously evaluate a model’s reasoning and coding abilities, testing its capacity for deep rea-
soning. Representative examples include CodeContests (Li et al., 2022) and LiveCodeBench (Jain
et al., 2025). In this paper, we mainly focus on code reasoning tasks.
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Software-engineering (SWE) benchmarks mainly focus on repository-level engineering code tasks,
examining the model’s agentic capabilities, environmental interaction, code comprehension, task
planning, instruction following, and long-context abilities. Representative examples in this category
include SWE-bench (Jimenez et al., 2024), SWE-bench Verified (Chowdhury et al., 2025), Multi-
SWE-bench (Zan et al., 2025), and EvoCodeBench (Li et al., 2024).

4.2 CODE REASONING BENCHMARKS

Code reasoning benchmarks primarily consist of competition-level programming problems and are
used to evaluate the deep reasoning capabilities of LLMs. Many existing benchmarks collect prob-
lems from online programming websites like LeetCode and CodeForces, including CodeContests
(Li et al., 2022) (from Aizu, AtCoder, Codechef, CodeForces, HackerEarth), LiveCodeBench (Jain
et al., 2025) (from AtCoder and LeetCode), CodeELO (Quan et al., 2025) (from CodeForces), Live-
CodeBench Pro (Zheng et al., 2025) (from CodeForces), and ProBench (Yang et al., 2025b) (from
CodeForces, Luogu, NowCoder). Some efforts have also been made to gather problems from ma-
jor competitions, including USACO Bench (Shi et al., 2024), LLM-Pros (Hossain et al., 2025),
OJBench (Wang et al., 2025a), and ICPC-Eval (Xu et al., 2025); however, these are limited to a few
specific contests, and some rely on outdated data, posing a significant risk of data contamination.
For example, ICPC-Eval only includes 11 ICPC contests from 2023 to 2024; USACO Benchmark
includes USACO problems from 2011 to 2023; OJBench only includes 4 ICPC contests with NOI
problems from 2016 to 2023; LLM-Pros includes 14 ICPC contests from 2011 to 2024. To our
knowledge, AetherCode is the first benchmark to comprehensively collect latest problems from pre-
mier competitions around the world, surpassing previous work in both breadth and depth.

5 CONCLUSION

In this paper, we introduced AetherCode, a challenging, rigorously evaluated benchmark purpose-
built to assess LLMs’ coding and reasoning capabilities. AetherCode distinguishes itself by sourc-
ing all its problems from premier global programming competitions, including OI series and ICPC
series, which ensures a high degree of challenge and relevance. Furthermore, it features a compre-
hensive and meticulously validated suite of test cases, created through a hybrid model of automated
generation and expert curation. By validating against a dataset of over 30,000 human submissions,
our test suite achieves 100% TPR and 100% TNR on our collected solution set, guaranteeing excep-
tional accuracy and reliability in evaluation.

Our comprehensive evaluation of several leading-edge models on AetherCode yielded critical in-
sights. We observed a significant performance disparity among models, with top performers like
o4-mini-high and Gemini-2.5-Pro establishing a distinct upper tier. Reasoning models
demonstrated a clear and consistent advantage over their non-reasoning counterparts across all diffi-
culty levels, highlighting the crucial role of logical deduction in solving complex algorithmic prob-
lems. Overall, even the most advanced models today can only solve a small fraction of problems
in AetherCode. This indicates that current LLMs still have considerable room for improvement in
reasoning and coding, and there remains a significant gap compared to top human experts.

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Jiaze Chen, Tiantian Fan, Xin Liu, Lingjun Liu, Zhiqi Lin, Mingxuan Wang, Chengyi Wang, Xiang-
peng Wei, Wenyuan Xu, Yufeng Yuan, Yu Yue, Lin Yan, Qiying Yu, Xiaochen Zuo, Chi Zhang,
Ruofei Zhu, Zhecheng An, Zhihao Bai, Yu Bao, Xingyan Bin, Jiangjie Chen, Feng Chen, Hong-
min Chen, Riwei Chen, Liangqiang Chen, Zixin Chen, Jinsong Chen, Siyan Chen, Kaiyuan Chen,
Zhi Chen, Jin Chen, Jiecao Chen, Jinxin Chi, Weinan Dai, Ning Dai, Jiahui Dai, Shihan Dou,
Yantao Du, Zhengyin Du, Jianhui Duan, Chen Dun, Ting-Han Fan, Jiazhan Feng, Junda Feng,
Ziyuan Feng, Yuwei Fu, Wenqi Fu, Hanjie Fu, Hao Ge, Hongyi Guo, Mingji Han, Li Han, Wen-
hao Hao, Xintong Hao, Qianyu He, Jerry He, Feng He, Wen Heng, Zehua Hong, Qi Hou, Liang
Hu, Shengding Hu, Nan Hu, Kai Hua, Qi Huang, Ziyue Huang, Hongzhi Huang, Zihao Huang,

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ting Huang, Wenhao Huang, Wei Jia, Bin Jia, Xiaoying Jia, Yuhua Jiang, Haobin Jiang, Ziheng
Jiang, Kaihua Jiang, Chengquan Jiang, Jianpeng Jiao, Xiaoran Jin, Xing Jin, Xunhao Lai, Zheng
Li, Xiang Li, Liyi Li, Hongkai Li, Zheng Li, Shengxian Wan, Ya Wang, Yunshui Li, Chenggang
Li, Niuniu Li, Siyu Li, Xi Li, Xiao Li, Aoyan Li, Yuntao Li, Nianning Liang, Xinnian Liang,
Haibin Lin, Weijian Lin, Ye Lin, Zhicheng Liu, Guanlin Liu, Guanlin Liu, Chenxiao Liu, Yan
Liu, Gaohong Liu, Juncai Liu, Chundian Liu, Deyi Liu, Kaibo Liu, Siyao Liu, Qi Liu, Yongfei
Liu, Kang Liu, Gan Liu, Boyi Liu, Rui Long, Weiqiang Lou, Chenwei Lou, Xiang Luo, Yao Luo,
Caiping Lv, Heyang Lv, Bole Ma, Qianli Ma, Hongzhi Ma, Yiyuan Ma, Jin Ma, Wenchang Ma,
Tingting Ma, Chen Mao, Qiyang Min, Zhe Nan, Guanghan Ning, Jinxiang Ou, Haojie Pan, Ren-
ming Pang, Yanghua Peng, Tao Peng, Lihua Qian, Lihua Qian, Mu Qiao, Meng Qu, Cheng Ren,
Hongbin Ren, Yong Shan, Wei Shen, Ke Shen, Kai Shen, Guangming Sheng, Jinlong Shi, Wenlei
Shi, Guang Shi, Shuai Shuai Cao, Yuxin Song, Zuquan Song, Jing Su, Yifan Sun, Tao Sun, Zewei
Sun, Borui Wan, Zihan Wang, Xiaohui Wang, Xi Wang, Shuguang Wang, Jun Wang, Qinlong
Wang, Chenyuan Wang, Shuai Wang, Zihan Wang, Changbao Wang, Jiaqiang Wang, Shihang
Wang, Xuwu Wang, Zaiyuan Wang, Yuxuan Wang, Wenqi Wang, Taiqing Wang, Chengzhi Wei,
Houmin Wei, Ziyun Wei, Shufa Wei, Zheng Wu, Yonghui Wu, Yangjun Wu, Bohong Wu, Shuang
Wu, Jingqiao Wu, Ning Wu, Shuangzhi Wu, Jianmin Wu, Chenguang Xi, Fan Xia, Yuqiao Xian,
Liang Xiang, Boren Xiang, Bowen Xiao, Zhen Xiao, Xia Xiao, Yongsheng Xiao, Chao Xin,
Shulin Xin, Yuwen Xiong, Jingjing Xu, Ziwen Xu, Chenyin Xu, Jiayi Xu, Yifan Xu, Wei Xu,
Yufei Xu, Shikun Xu, Shipeng Yan, Shen Yan, Qingping Yang, Xi Yang, Tianhao Yang, Yuehang
Yang, Yuan Yang, Ximing Yang, Zeyu Yang, Guang Yang, Yifan Yang, Xuesong Yao, Bairen
Yi, Fan Yin, Jianian Yin, Ziqiang Ying, Xiangyu Yu, Hongli Yu, Song Yu, Menghan Yu, Huan
Yu, Siyu Yuan, Jun Yuan, Yutao Zeng, Tianyang Zhan, Zheng Zhang, Yun Zhang, Mofan Zhang,
Wang Zhang, Ru Zhang, Zhi Zhang, Tianqi Zhang, Xinyi Zhang, Zhexi Zhang, Sijun Zhang, Wen-
qiang Zhang, Xiangxiang Zhang, Yongtao Zhang, Yuyu Zhang, Ge Zhang, He Zhang, Yue Zhang,
Renjie Zheng, Ningxin Zheng, Zhuolin Zheng, Yaowei Zheng, Chen Zheng, Xiaoyun Zhi, Wan-
jun Zhong, Cheng Zhong, Zheng Zhong, Baoquan Zhong, Xun Zhou, Na Zhou, Huan Zhou, Hang
Zhu, Defa Zhu, Wenjia Zhu, and Lei Zuo. Seed1.5-thinking: Advancing superb reasoning models
with reinforcement learning, 2025a. URL https://arxiv.org/abs/2504.13914.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Simin Chen, Xiaoning Feng, Xiaohong Han, Cong Liu, and Wei Yang. PPM: automated genera-
tion of diverse programming problems for benchmarking code generation models. Proc. ACM
Softw. Eng., 1(FSE):1194–1215, 2024. doi: 10.1145/3643780. URL https://doi.org/10.
1145/3643780.

Simin Chen, Pranav Pusarla, and Baishakhi Ray. Dynamic benchmarking of reasoning capabilities
in code large language models under data contamination, 2025b. URL https://arxiv.org/
abs/2503.04149.

Yao Cheng, Jianfeng Chen, Jie Chen, Li Chen, Liyu Chen, Wentao Chen, Zhengyu Chen, Shijie
Geng, Aoyan Li, Bo Li, Bowen Li, Linyi Li, Boyi Liu, Jiaheng Liu, Kaibo Liu, Qi Liu, Shukai
Liu, Siyao Liu, Tianyi Liu, Tingkai Liu, Yongfei Liu, Rui Long, Jing Mai, Guanghan Ning, Z. Y.
Peng, Kai Shen, Jiahao Su, Jing Su, Tao Sun, Yifan Sun, Yunzhe Tao, Guoyin Wang, Siwei
Wang, Xuwu Wang, Yite Wang, Zihan Wang, Jinxiang Xia, Liang Xiang, Xia Xiao, Yongsheng
Xiao, Chenguang Xi, Shulin Xin, Jingjing Xu, Shikun Xu, Hongxia Yang, Jack Yang, Yingxiang
Yang, Jianbo Yuan, Jun Zhang, Yufeng Zhang, Yuyu Zhang, Shen Zheng, He Zhu, and Ming Zhu.
Fullstack bench: Evaluating llms as full stack coders, 2025. URL https://arxiv.org/
abs/2412.00535.

11

https://arxiv.org/abs/2504.13914
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/3643780
https://doi.org/10.1145/3643780
https://arxiv.org/abs/2503.04149
https://arxiv.org/abs/2503.04149
https://arxiv.org/abs/2412.00535
https://arxiv.org/abs/2412.00535


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Neil Chowdhury, James Aung, Chan Jun Shern, Oliver Jaffe, Dane Sherburn, Giulio Starace, Evan
Mays, Rachel Dias, Marwan Aljubeh, Mia Glaese, Carlos E. Jimenez, John Yang, Leyton Ho,
Tejal Patwardhan, Kevin Liu, and Aleksander Madry. Introducing SWE-bench verified, 2025.
URL https://openai.com/index/introducing-swe-bench-verified/.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, Luke Marris, Sam Petulla, Colin
Gaffney, Asaf Aharoni, Nathan Lintz, Tiago Cardal Pais, Henrik Jacobsson, Idan Szpektor, Nan-
Jiang Jiang, Krishna Haridasan, Ahmed Omran, Nikunj Saunshi, Dara Bahri, Gaurav Mishra, Eric
Chu, Toby Boyd, Brad Hekman, Aaron Parisi, Chaoyi Zhang, Kornraphop Kawintiranon, et al.
Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next
generation agentic capabilities, 2025. URL https://arxiv.org/abs/2507.06261.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,
Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring
coding challenge competence with APPS. In Joaquin Vanschoren and Sai-Kit Yeung (eds.),
Proceedings of the Neural Information Processing Systems Track on Datasets and Bench-
marks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html.

Md. S. Hossain, Anika Tabassum, Md. Fahim Arefin, and Tarannum Shaila Zaman. Llm-pros:
Analyzing large language models’ performance in competitive problem solving. In IEEE/ACM
International Workshop on Large Language Models for Code, LLM4Code@ICSE 2025, Ottawa,
ON, Canada, May 3, 2025, pp. 80–87. IEEE, 2025. doi: 10.1109/LLM4CODE66737.2025.00015.
URL https://doi.org/10.1109/LLM4Code66737.2025.00015.

Wenhao Hu, Jinhao Duan, Chunchen Wei, Li Zhang, Yue Zhang, and Kaidi Xu. Dynacode: A
dynamic complexity-aware code benchmark for evaluating large language models in code gen-
eration. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Findings of the Association for Computational Linguistics, ACL 2025, Vienna, Austria,
July 27 - August 1, 2025, pp. 21980–21997. Association for Computational Linguistics, 2025.
URL https://aclanthology.org/2025.findings-acl.1133/.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. LiveCodeBench: Holistic and contamination free
evaluation of large language models for code. In The Thirteenth International Conference on
Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025.
URL https://openreview.net/forum?id=chfJJYC3iL.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R.
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
VTF8yNQM66.

Kimi-Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi K2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

Jia Li, Ge Li, Xuanming Zhang, Yihong Dong, and Zhi Jin. Evocodebench: An evolving code gen-
eration benchmark aligned with real-world code repositories, 2024. URL https://arxiv.
org/abs/2404.00599.

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and
Ge Li. TACO: Topics in Algorithmic COde generation dataset, December 2023. URL http:
//arxiv.org/abs/2312.14852. arXiv:2312.14852 version: 3.

12

https://openai.com/index/introducing-swe-bench-verified/
https://arxiv.org/abs/2507.06261
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://doi.org/10.1109/LLM4Code66737.2025.00015
https://aclanthology.org/2025.findings-acl.1133/
https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2404.00599
https://arxiv.org/abs/2404.00599
http://arxiv.org/abs/2312.14852
http://arxiv.org/abs/2312.14852


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
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A EXPERIMENT SETTINGS

The experimental platform is equipped with 3.8 GHz Intel CPUs and is isolated into several pods
using Docker. The container environment is SandboxFusion (Cheng et al., 2025) with Ubuntu 20.04,
where each container instance is exclusively allocated 2 cores and 4 GB of memory. Each container
instance runs only one piece of code at a time. The gcc version used for compiling the code is
9.4.0, with the C++17 standard and O2 optimization enabled.

We use the following user prompt for the evaluation.

Please solve the following programming problem using {LANGUAGE}.
Please place your final answer in a markdown code block.
{STATEMENT}

B CATEGORY DETAILS

The distribution of problem difficulty for each primary category is presented in Table 5, and the
complete list of the primary categories and secondary categories (tags) is presented in Table 6.

C COMPLETE PROCEDURE OF TEST CASE GENERATION

The complete test case generation process is as follows:

1. Writing validator. A validator is a program used to verify whether a test case input adheres
to the problem’s constraints. We first utilize the validator agent to generate the validator
program, followed by manual correction of any errors.

2. Writing generator. We employ the generator agent to create a generator program. This
program is then used to produce test case inputs, which are passed to the ground truth
solution to obtain the corresponding test case outputs.

3. Writing checker and interactor. We utilize checker and interactor agents to generate the
respective programs. A checker program is essential for problems that accept multiple valid
solutions, while an interactor program is required for interactive problems. Subsequently,
these undergo manual review and error correction.

4. Human expert augmentation. Human experts supplement the machine-generated test
cases, adding new cases until a 100% TNR is achieved on the collected solution set.

5. Elite team audit. Finally, our elite team conducts a comprehensive review of each problem.
This process includes adding corner cases, rejecting unqualified samples, and specifically
authoring incorrect or inefficient solutions to re-verify the coverage of the test cases.

D SOURCE AND COPYRIGHT DETAILS

The complete list of the contest sources of AetherCode v1 is presented in Table 7.

Some of the problems have clear copyright holders and licenses, including:

• IOI. Copyright held by the IOI General Assembly; released under the CC BY License.

• JOI. Copyright held by The Japanese Committee of International Olympiad in Informatics;
released under the CC BY-SA 4.0 License.

• USACO. Copyright held by USACO; released under the CC BY-NC-SA 4.0 License.

• NOI (China). Copyright held by the China Computer Federation; released under the CC
BY-NC 4.0 License.

For some problems, the authorization or copyright status is currently unverifiable. We remain com-
mitted to removing any potentially infringing problems upon the request of the copyright holders.
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E DETAILS OF FAILURE ANALYSIS

The distribution of failure reasons (by judging verdicts) across evaluated models is presented in
Table 8.

We performed a qualitative analysis of the causes of errors in o4-mini-high. The primary error
categories and their corresponding cases are listed below. The problems and responses for these
cases are provided in the supplementary material.

• cases/acknowledge inability: The model admits its inability to complete the
problem, outputting: “I’m sorry, but I can’t get to a working solution in the time I have.

• cases/corner case: The model identified key properties but failed to properly handle
all corner cases.

• cases/implementation error: The model encountered an error during code im-
plementation, specifically failing to close parentheses.

• cases/incorrect logic: The model failed to employ the correct algorithmic logic.
• cases/inefficient: The model used an inefficient algorithm. In this example, the

model correctly calculated the algorithm’s time complexity but failed to realize that an
O(n3) algorithm is typically unable to handle a data scale of n = 5000 within one second.

F LLM USAGE

In this work, we utilized LLMs to facilitate writing on tasks such as text refinement, translation, and
searching for related literature. Furthermore, Vision-Language Models (VLMs) were employed for
the generation of illustrations.

Table 5: Distribution of problem difficulty for each Category in AetherCode v1 (2401-2505).

Category Easy Medium Hard Extreme
Basic Algorithms 43.11% 27.11% 25.78% 4.00%
Common Techniques 30.61% 42.18% 21.77% 5.44%
Computational Geometry 16.67% 30.56% 47.22% 5.56%
Data Structures 23.33% 33.33% 37.50% 5.83%
Dynamic Programming 20.91% 30.91% 45.45% 2.73%
Graph Theory 21.88% 31.25% 37.50% 9.38%
Mathematics 25.00% 32.29% 36.46% 6.25%
Search 28.00% 32.00% 36.00% 4.00%
Strings 38.46% 15.38% 38.46% 7.69%
Tree Problems 16.67% 25.00% 50.00% 8.33%
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Table 6: Category division and detailed tag distribution of AetherCode.

Category Tags

Algorithm Basics Enumeration, Simulation, Recursion, Greedy, Sorting, Divide and Con-
quer, Binary Search, Doubling, Recurrence

Search DFS, BFS, Bidirectional Search, Heuristic Search, A*, Iterative Deep-
ening Search, IDA*, Dancing Links

Dynamic Programming Basic DP, Memorization Search, Knapsack DP, Range DP, DP on
DAGs, Tree DP, Bitmask DP, Digit DP, Plug DP, Counting DP, Dy-
namic DP, Probability DP, DP Optimization

Strings String Matching, String Hashing, Trie, Palindrome Automation, Pre-
fix Function, Z-function, Automation, AC Automation, Suffix Array,
Suffix Automation, Suffix Balanced Tree, Generalized Suffix Automa-
tion, Suffix Tree, Manacher’s Algorithm, KMP Algorithm, Sequence
Automation, Minimal Representation, Lyndon Factorization, Main-
Lorentz Algorithm

Mathematics Number Theory, Linear Algebra, Linear Programming, Abstract Al-
gebra, Probability Theory, Game Theory, Young Matrix, Inclusion-
Exclusion Principle, Combinatorics, Polynomials

Data Structures Stack, Queue, Linked List, Hash Table, Disjoint Set Union, Heap, Block
Structure, Monotonic Queue, ST Table, Binary Indexed Tree, Segment
Tree, Balanced Tree, Binary Tree & Balanced Tree, Block Decomposi-
tion, Persistent Data Structures, Tree-in-Tree, K-D Tree, Cartesian Tree,
Huffman Tree, STL-based Data Structure

Graph Theory Matrix-Tree Theorem, Directed Acyclic Graph, Topological Sort, Min-
imum Spanning Tree, Minimum Diameter Spanning Tree, Minimum
Tree Spanning, Connectivity, Shortest Path, 2-SAT, Difference Con-
straints, Hamiltonian Graph, Modular Shortest Path, Graph Coloring,
Eulerian Graph, Dominating Tree, Bipartite Graph, Prüfer Sequence,
Planar Graph, Chordal Graph, Network Flow, Graph Matching, Ran-
dom Walk on Graphs, LGV Lemma, Strongly Connected Components

Computational Geometry Euclidean Distance, Manhattan Distance, Chebyshev Distance, Pick’s
Theorem, Triangulation, Convex Hull, Sweep Line, Rotating Calipers,
Half-Plane Intersection, Closest Pair of Points, Random Increment
Method, Reflection Transformation, Misc. CG

Common Techniques Discretization, Two Pointer Technique, Prefix Sum & Difference, Frac-
tional Programming, Randomization, Hanging Line Method, Binary
Thinking, Pattern Recognition, Gray Code, Expression Evaluation,
Construction, Properties of Bitwise Operations, Conjecture of Conclu-
sions, Interactive Problems, Meet in Middle, Ad-hoc, Uncertainty Al-
gorithms, Square Root Decomposition

Problems on Trees LCA, DSU on Tree, Divide and Conquer on Points, Block Decomposi-
tion on Tree, Heavy-Light Decomposition, Chain Decomposition, Tree
Diameter and Centroid, LCT
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Table 7: Curated Contest Source of AetherCode v1 (2401-2505).

Competition Name Category Date

Croatian Open Competition in Informatics 2023/2024 Contest #3 Croatian OI 2024/1/13
USACO 2024 January Contest (Platinum) USACO Platinum 2024/1/26
The 2023-2024 ICPC Southwestern Europe Regional Contest ICPC Regional Contests 2024/1/28
Croatian Open Competition in Informatics 2023/2024 Contest #4 Croatian OI 2024/2/10
USACO 2024 February Contest (Platinum) USACO Platinum 2024/2/16
USACO 2024 US Open Contest (Platinum) USACO Platinum 2024/3/15
Singapore National Olympiad in Informatics 2024 Final Contest NOI (SG) 2024/3/16
Croatian Open Competition in Informatics 2023/2024 Contest #5 Croatian OI 2024/3/16
The 2024 ICPC Latin America Championship ICPC Regional Championships/Finals 2024/3/17
The 2024 ICPC Europe Championship ICPC Regional Championships/Finals 2024/3/24
The 2024 British Informatics Olympiad Final British OI 2024/4/6
Baltic Olympiad in Informatics 2024 Day 1 Baltic OI 2024/5/4
Baltic Olympiad in Informatics 2024 Day 2 Baltic OI 2024/5/5
Asia-Pacific Informatics Olympiad 2024 (APIO 2024) APIO 2024/5/18
The 2024 ICPC North America Championship ICPC Regional Championships/Finals 2024/5/27
Central European Olympiad in Informatics 2024 Day 1 (CEOI 2024 Day 1) Central European OI 2024/6/25
Central European Olympiad in Informatics 2024 Day 2 (CEOI 2024 Day 2) Central European OI 2024/6/27
China National Olympiad in Informatics 2024 Day 1 NOI 2024/7/18
China National Olympiad in Informatics 2024 Day 2 NOI 2024/7/20
European Girls’ Olympiad in Informatics 2024 Day 1 European Girl’s OI 2024/7/23
European Girls’ Olympiad in Informatics 2024 Day 2 European Girl’s OI 2024/7/25
International Olympiad in Informatics 2024 Day 1 IOI 2024/9/3
International Olympiad in Informatics 2024 Day 2 IOI 2024/9/5
The 2024 ICPC World Finals Astana ICPC World Finals 2024/9/19
The 2024 ICPC Kunming Invitational Contest ICPC Regional Contests 2024/9/28
The 2024 Nordic Collegiate Programming Contest NCPC 2024/10/5
Croatian Open Competition in Informatics 2024/2025 Contest #1 Croatian OI 2024/10/5
CCPC 2024 Harbin Site CCPC 2024/10/26
The 2024 ICPC Asia Chengdu Regional Contest ICPC Regional Contests 2024/10/27
The 2024 ICPC Asia Nanjing Regional Contest ICPC Regional Contests 2024/11/3
Croatian Open Competition in Informatics 2024/2025 Contest #2 Croatian OI 2024/11/9
2024-2025 ICPC Latin American Regional Programming Contest ICPC Regional Championships/Finals 2024/11/9
2024 Rocky Mountain Regional Contest ICPC Regional Contests 2024/11/9
2024 North Central NA Regional Contest ICPC Regional Contests 2024/11/9
2024 Mid-Central USA Programming Contest ICPC Regional Contests 2024/11/9
CCPC 2024 Chongqing Site CCPC 2024/11/10
The 2024 ICPC Greater NY Regional Contest ICPC Regional Contests 2024/11/10
The 2024 ICPC Asia Hangzhou Regional Contest ICPC Regional Contests 2024/11/10
CCPC 2024 Jinan Site CCPC 2024/11/16
The 2024 ICPC Pacific Northwest Regional Contest (Div. 1) ICPC Regional Contests 2024/11/16
The 2024 ICPC Pacific Northwest Regional Contest (Div. 2) ICPC Regional Contests 2024/11/16
ICPC NA South Division 2024 - Division 2 ICPC Regional Contests 2024/11/16
ICPC NA South Division 2024 - Division 1 ICPC Regional Contests 2024/11/16
The 2024 ICPC Southern California Regional Contest ICPC Regional Contests 2024/11/16
The 2024 ICPC Southeastern Europe Regional Contest (SEERC 2024) ICPC Regional Contests 2024/11/17
The 2024 ICPC Asia Shanghai Regional Contest ICPC Regional Contests 2024/11/17
The 2024 ICPC Asia Seoul Regional Contest ICPC Regional Contests 2024/11/23
The 2024 ICPC Northwestern Europe Regional Contest (NWERC 2024) ICPC Regional Contests 2024/11/24
The 2024 ICPC Asia Shenyang Regional Contest ICPC Regional Contests 2024/11/24
Romanian Master of Informatics 2024 Day 1 Romanian OI 2024/11/28
Romanian Master of Informatics 2024 Day 2 Romanian OI 2024/11/29
The 2024 ICPC Asia Kunming Regional Contest ICPC Regional Contests 2024/12/1
Croatian Open Competition in Informatics 2024/2025 Contest #3 Croatian OI 2024/12/12
USACO 2024 December Contest (Platinum) USACO Platinum 2024/12/13
The 2024 ICPC Northern Eurasia Finals ICPC Regional Championships/Finals 2024/12/15
The 2024 ICPC Central Europe Regional Contest ICPC Regional Contests 2024/12/15
CCPC 2024 Zhengzhou Site CCPC 2024/12/21
The 2024 ICPC Asia Yokohama Regional Contest ICPC Regional Contests 2024/12/22
The 2024 ICPC Asia Hong Kong Regional Contest ICPC Regional Contests 2024/12/22
The 2024 ICPC Asia East Continent Final Contest ICPC Regional Championships/Finals 2024/12/28
USACO 2025 January Contest (Platinum) USACO Platinum 2025/1/24
Croatian Open Competition in Informatics 2024/2025 Contest #4 Croatian OI 2025/1/25
The 24th Japanese Olympiad in Informatics Final Round (JOI 2024/2025) Japanese OI 2025/2/2
Croatian Open Competition in Informatics 2024/2025 Contest #5 Croatian OI 2025/2/15
USACO 2025 February Contest (Platinum) USACO Platinum 2025/2/21
The 2025 ICPC Europe Championship ICPC Regional Championships/Finals 2025/3/2
2025 ICPC Asia West Finals ICPC Regional Championships/Finals 2025/3/7
The 2025 ICPC Latin America Championship ICPC Regional Championships/Finals 2025/3/16
USACO 2025 US Open Contest (Platinum) USACO Platinum 2025/3/21
Singapore National Olympiad in Informatics 2025 Final Contest NOI (SG) 2025/3/22
The 2025 British Informatics Olympiad Final British OI 2025/4/12
Baltic Olympiad in Informatics 2025 Day 1 Baltic OI 2025/4/26
Baltic Olympiad in Informatics 2025 Day 2 Baltic OI 2025/4/27
The 2025 ICPC China Zhejiang Province Programming Contest (22nd) ICPC Regional Contests 2025/5/10
CCPC Final 2024 CCPC Final 2025/5/11
Asia-Pacific Informatics Olympiad 2025 (APIO 2025) APIO 2025/5/17
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Competition Name Category Date

The 2025 ICPC Asia Wuhan Invitational Contest ICPC Regional Contests 2025/5/17
The 2025 ICPC North America Championship ICPC Regional Championships/Finals 2025/5/26

Table 8: Distribution of failure reasons across evaluated models (% of total errors).

Model Wrong Answer Time Limit Runtime Error Compile Error

Reasoning Models

o4-mini-high 86.0 6.1 0.3 7.6
Gemini-2.5-Pro 76.3 18.1 0.1 5.4
Seed-1.6-thinking-0715 79.1 15.2 0.1 5.6
DeepSeek-R1-0528 77.1 11.1 0.1 11.7
Qwen-3-235B-A22B-thinking 81.3 12.3 0.0 6.4
Gemini-2.5-Flash 79.7 11.4 0.1 8.9
GLM-4.5 71.0 10.5 0.0 18.5
Qwen-3-235B-A22B 77.8 12.0 0.1 10.1
Qwen-3-32B 77.7 13.8 0.1 8.5
Claude-Sonnet-4.5-thinking 45.8 51.7 0.0 2.5
Claude-4-Opus-thinking 48.2 48.3 0.0 3.5
Claude-4-Sonnet-thinking 50.8 45.8 0.0 3.4
Qwen-3-8B 69.2 9.1 0.1 21.7

Non-Reasoning Models

GPT-4.1 79.3 12.5 0.1 8.1
Kimi-K2 77.0 7.2 0.0 15.7
DeepSeek-V3 82.8 9.2 0.1 7.8
Qwen-3-Coder-480B-A35B-Instruct 78.9 15.3 0.1 5.8
Claude-4-Sonnet 65.2 30.7 0.0 4.0
GPT-4o 72.1 8.5 0.1 19.3

G EXAMPLE PROBLEMS

Example 1

Source: The 2024 ICPC World Finals Astana
Title: The Silk Road . . . with Robots!
Time limit: 5 seconds

Parts of the ancient silk road passed through southern Kazakhstan. You’ve been fantasizing
about a modern silk road, which has its own special features. Along your fantasy road are
robots as well as stores holding stashes of tenges (the national currency of Kazakhstan). If a
robot moves to a location with a store, the robot collects all that store’s tenges for you.

The cost of moving a robot is 1 tenge for every meter moved. So the amount of profit from
moving a robot to a store is the number of tenges held by the store minus the number of
meters the robot has moved to reach the store.

Consider this scenario, which stretches over several days. Initially, the road is empty, with
no robots or stores. Every day, either a new robot or a new store is placed on an unoccupied
location along the road. Immediately before that, each existing store on the road is restocked
with tenges so that its total amount is the same as it was when it was first placed on the road,
and each robot is returned to its original starting location.

For each day, you need to determine the maximum amount of profit that could be gained by
moving robots to collect tenges from the stores. Note that no two robots start in the same
location, but they may occupy the same location as they move. Each store can be emptied of
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its tenges only once during a single day.

Input
The first line contains an integer n (1 ≤ n ≤ 2 ⋅ 105), the number of days. This is followed by
n lines, where the i-th line starts with an integer ti, which is equal to 1 if a new robot is added
on day i, or is equal to 2 if a new store is added that day.
If ti = 1, the line contains another integer xi (0 ≤ xi ≤ 10

8), denoting the location of the new
robot.
If ti = 2, the line contains another integer xi (0 ≤ xi ≤ 10

8) denoting the location of the new
store, followed by another integer ci (0 ≤ ci ≤ 10

8), denoting the number of tenges at the
store.
All the given locations are distinct.

Output
Output n integers, the maximum profit you can make after each day.

# Sample Input:
6
1 20
2 15 15
2 40 50
1 50
2 80 20
2 70 30

# Sample Output:
0
10
35
50
50
60

Example 2

Source: The 2024 ICPC Asia East Continent Final Contest
Title: Boolean Function Reconstruction
Input file: standard input
Output file: standard output
Time limit: 4 seconds
Memory limit: 1024 megabyte

Given the truth table of a boolean function with n boolean variables as input, construct an
expression that satisfies this function. In the expression, you are only allowed to use the
logical and (&) and logical or (∣) operators. Specifically, a truth table of a boolean function
with n boolean variables gives all the 2

n outputs corresponding to the possible values of n
input variables. A boolean expression ⟨expr⟩ has the following forms:

• T, F: Represents True and False.
• a, b, ..., z: Represents one of the variables. The i-th variable is represented by the i-th

lowercase letter in alphabetical order.
• (⟨expr⟩&⟨expr⟩): Represents the logical and operation applied to the results of two

expressions.
• (⟨expr⟩ ∣ ⟨expr⟩): Represents the logical or operation applied to the results of two

expressions.
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The logical and operation and the logical or operation are defined as two boolean functions
below that take two boolean values.

x1 x2 x1&x2 x1 ∣ x2

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

Determine whether an expression exists that satisfies the conditions. If such an expression
exists, ensure that the number of binary operators (& and ∣) does not exceed 2

n−1 + 10, and
the depth of parentheses nesting does not exceed 100 layers. It can be proven that if a solution
exists, there is always one that meets the constraints of the problem.
Input
The input consists of multiple test cases. The first line contains an integer T (1 ≤ T ≤ 2

16),
the number of test cases. For each test case, there are two lines:

• The first line contains an integer n (1 ≤ n ≤ 15).
• The second line contains a binary string s with length 2

n, indicating the truth table of
the given function.

To interpret the input binary string, suppose the i-th variable has a value of xi. Then, the
corresponding function value, f(x1, x2, . . . , xn), is equal to the (∑n

i=1 xi ⋅ 2
i−1 + 1)-th bit of

the string s.
It is guaranteed that the sum of 22n over all test cases will not exceed 2

30.

Output
For each test case:

• Output Yes or No on the first line to indicate whether an expression satisfying the
conditions exists.

• If an expression exists, output the expression on the second line. The expression
must strictly adhere to the format given in the problem description, without adding or
omitting parentheses, and without adding extra spaces.

Example

standard input standard output
7 Yes
2 (a&b)
0001 Yes
2 (a∣b)
0111 Yes
2 T
1111 Yes
3 ((a&(b∣c))∣(b&c))
00010111 No
1 Yes
10 a
2 Yes
0101 (a&(b&(c&(d&e))))
5
0000000000000000000000000000000001

Note
Below is the truth table interpretation for the fourth sample.
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x3 x2 x1 f(x1, x2, x3)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
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